FIR vs. IIR

- one wall
- one-shot delay
- feedforward

Out $=$ in + delayedIn

- two walls
- recirculating delay
- feedback

Out $=$ in + delayedOut

...as math

$\mathrm{x}_{\mathrm{n}}=$ this input sample
$\mathrm{X}_{(\mathrm{n}-\mathrm{N})}=$ Nth previous input

$$
y_{n}=a_{0} X_{n}+a_{N} X_{(n-N)}
$$

$$
y_{n}=a_{0} x_{n}-b_{N} y_{(n-N)}
$$

FIR
IIR

use a pencil

$$
\mathrm{x}_{0,1,2,3, \ldots}=\underline{0,1,0,0,0,0,0,0, \ldots}
$$

- $\mathrm{a}_{0}=.5$
- $a_{1}=.5$
- $\mathrm{X}_{0}=0$
- $y_{n}=a_{0} x_{n}+a_{1} X_{(n-1)}$
- $\mathrm{a}_{0}=.5$
- $b_{1}=-.5$
- $\mathrm{y}_{0}=0$
- $\mathrm{y}_{\mathrm{n}}=\mathrm{a}_{0} \mathrm{x}_{\mathrm{n}}-\mathrm{b}_{1} \mathrm{y}_{(\mathrm{n}-1)}$
write out $\mathrm{y}_{1,2,3, \ldots}=\ldots$

impulse responses

FIR vs. IIR

- one wall
- one-shot delay
- feedforward
test FIR in webchuck

Out $=$ in + delayedIn

- two walls
- recirculating delay
- feedback
test IIR in webchuck
delayed (y)

Out $=$ in + delayedOut

- $\mathrm{a}_{0}=.5$
- $a_{1}=.5$
- $\mathrm{X}_{0}=0$
- $\mathrm{y}_{\mathrm{n}}=\mathrm{a}_{0} \mathrm{X}_{\mathrm{n}}+\mathrm{a}_{1} \mathrm{X}_{(\mathrm{n}-1)}$
coeffs - $\mathrm{a}_{0}=.5$
- $\mathrm{b}_{1}=-.5$
state
system
- $\mathrm{y}_{0}=0$
- $\mathrm{y}_{\mathrm{n}}=\mathrm{a}_{0} \mathrm{x}_{\mathrm{n}}-\mathrm{b}_{1} \mathrm{y}_{(\mathrm{n}-1)}$

the all-in-one filter difference equation (as C code)

```
/* This code implements the standard difference equation, (Cook: pg. 26)
    Y[0] =g*(x[0])+a[1] * x[1].. +a[N] * x[G])
    -b[1]\ * y[1] - ..4-G[M]*y[M]
For simplicity, N = M = "OFLIER" */
```

Out $=$ In + delayedIn - delayedOut
[0] = this sample
[1] = last sample
$[\mathrm{N}]=\mathrm{Nth}$ delayed sample

convolution (FIR)

convert any IR to FIR

Low order FIR
a0,a1

High order FIR

(coefficients made from IR of IIR)

summary

- filters, linear, don't add frequencies (as opposed to modulation or distortion, non-linear)
- filters change duration and spectral weighting
- size from big to little: echo, pitch, eq, image pos.
- Sharpness ('Q') from high to low: string, tube
- it's hard to find simple filters in nature, most are combinations, complexes

