Digital Filters

3.0 Introduction

This chapter introduces digital filtering, stressing intuition along with the
terminology and notation used to describe digital filters. First, filtering will
be discussed in general, followed by definitions and examples of Finite
Impulse Response (FIR) and Infinite Impulse Response (IIR) filters. Then,
the general form of a digital filter will be given and discussed. The Z wansform
will be introduced as a simple algebraic substitution operator, and this will
be exploited to define and develop thenotion ofthe transfer fimction. Zeroes
and poles will be defined, and some useful filter forms will be shown. Math-
averse readers could possibly skip this chapter for now, returning to it when
needed in later chapters, but I’d recommend reading at least until your eyes
glaze over.

3.1 Linear Systems, LTl Systems, Convolution

Linearity is a property of systems that allows us to use many powerful
mathematical and signal processing techniques to analyze and predict the
behavior ofthese systems. Linearity has two defining criteria:
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2 00 3. Digital Filters

Homogeneity: if x - y then ox - oy for any o
Superposition: ifx1 - y1 and x2 > )2 then xI +x2 - yl +)2

(- is read “yields”, and corresponds to a system operating on x to yieldy).

These equations state that a mixture and/or scaling of inputs simply results
in amixture and/or scaling of the outputs. No “new” signals are created by a
linear system (we’ll have more rigorous means to define “new” later).

A time-invariant system obeys the property:

If x(n) > y(n) thenx(n+ N) - y(n+ N) forany V,

which simply means that the system doesn’t change its behavior with time.
Here, x(n) is the chain of samples put into the system, and y(») is the
corresponding chain of output samples. Practically speaking, most systems
actually do change over time. A reasonable assumption, however, is that many
systems of interest do not change their behavior quickly, and can be treated as
time-invariant over time intervals of interest. The bones of the middle ear,
acoustics in rooms, a good quality stereo amplifier, and many other systems
behave like Linear Time-Invariant (LTT) systems over much of their normal
operating range. If a system is linear and time-invariant, we can characterize
its behavior by measuring its impulse response as shown in Figure 3.1.
The impulse response is defined mathematically as:

h(n) = y(n), for x(n) = 6(n)

where 6(n)=1,n=0,
0, otherwise.

Linearity and time invariance mean that if we excite a system with an
input of 1 at time zero, and 0 thereafter, we can “record” (observe) the output
and use that to determine exactly what the system response would be to any
arbitrary input. To prove to ourselves that this is true, all we need do is invoke

x(n)= H h(n)
(5(11) [T y(n)=
system [ O
Impulse
Impulse resgonse

Figure 3.1. Impulse response of a Linear Time-Invariant (LTI) system.

EBSCChost - printed on 11/2/2022 5:54 PM via STANFORD UNI VERSI TY LI BRARIES. All use subject to https://ww. ebsco.coniterns-of-use



EBSCChost -

3.1. Linear Systems, LTI Systems, Convolution .O

the three properties of LTI systems: homogeneity, superposition, and time-
invariance. Thus, any input can be decomposed into a time-ordered set of
weighted impulses:

x(n) =x,6(m) +x 8(n—1)+x,8n-2)+x06n-3)+ .. +x,80n-M).

Each input sample can be viewed as a separate weighted (x,, x , etc., are
the weights) impulsive input, and the outputs can be viewed as individual
outputs, which are weighted versions of the impulse response A(#):

Wn) = xh(n) +xh(n—1) +x,h(n —2) +xh(n-3)+ ... +x h(n- M)
=2 x(i)a(n 1) denoted by x(n) * h(n).

Figure 3.2 shows the interaction of an input signal with a linear time-
mvariant system as a decomposition of separate impulse responses. While

h(n)

é(n LTI H
_IL%' system |~

x(n) (n)
i [ e
Jxo— Yo =Xoh(n)
A i
—— [ Ha—
—1 v Sl
— [
i e
— G

Figure 3.2. Convolution of input with impulse response of Linear Time-Invariant
(LTT) system.
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@ 3. Digital Filters

seeming quite tedious to calculate (which it is), this operation, called
convolution, will be very important in that it allows us to use many
mathematical tools to analyze and simulate LTI Systems.

3.2 Digital Filters

By forming linear combinations of past inputand output samples, digital filters
operate on streams of numbers that are uniformly sampled in time (such as
samples of audio). Current and past inputs are usually denoted as

x(n), x(n — 1), x(n—2), ...

where n is the current time, n—1 is the time one sampling period before the
current one, n—-2 is two sampling periods ago, etc. Current and past outputs
are usually denoted as

y(n), y(n - 1), y(n = 2),

As discussed in Chapter 1, PCM signalsare formed by sampling ananalog
waveform at regular intervals in time. The sampling intervals are spaced T
seconds apart, where T= 1/sampling rate. Thus, relating the integer time indices
n, n+1, etc,, of a sampled signal x to actual times in seconds requires
multiplying by the sampling period.

X(Vl) : xoominuous(n])
x(n-1)=x (nT-T)

continuous

etc., where 7= 1/(Sampling Rate)

3.3 FIR Filters

A simple two-point moving average filter can be written as:

() = 0.5 (x(n) + x(n — 1)). (3.1)

Such a filter is called a FR (Finite Impulse Response), because it operates
only on a finite number of delayed versions of its inputs. The number of delays
used is referred to as the filter “order.” FIR means the filter’s impulse response
yields only a finite number of nonzero output samples (two successive values
of one half in this case). Even though it expresses a sum, Equation 3.1 is
called a difference equation. Figure 3.3 shows a block signal processing
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3.3. FIR Filters .@

x(n) 0.5 yin)

Z-1

Figure 3.3. Two-point moving average digital filter.

diagram ef the twe-peint meving average filter. The Z ! bleck in the
feedferward bleck represents a unit sample ef delay. We’ll find eut mere
abeut Z and Z ' later en.

Filters of the ferm of Equatien 3.1 are alse called nenrecursive, meving
average, eor all zere (mere en that later). Figure 3.4 shews a signal precessing
bleck diagram ef a general FIR filter. Frem the discussien ef cenvelutien in
Sectien 3.1, netenew that an arbitrary (finite length) impulse respense can be
stered in the ceefficients ef an FIR filter, and the eperatien ef the filter weuld
then actually perferm the cenvelutien. Thus, any LTI system with finite-length

x(n) — I Gg,?v(n)

1 A

Aa
-1 2
Z A
— aN
o]
o]
[o]

Figure 3.4. A high (Nth) order general FIR digital filter.
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impulse response can be modeled by an FIR filter, provided thatthe impulse
response of the LTI system is bandlimited to the Nyquist frequency.

3.4 IIR Filters

A simple filter that operates on past outputs can be written as

Y(n) = (gx(n)) + (¢ y(n—1)) (3.2)

It’s easy to show that the impulse response of this filter for g = 1 is »” = 1.0,
r,r'r, ¥, etc. Thistype of response is called an expenential decay. 1t’s easy to
see why filters of this form are called Infinite Impulse Respense (IIR) filters,
because for a nonzero r, the output teclmically never goes exactly to zero. If
r is negative, the filter will oscillate positive and negative each sample,
corresponding to even and odd powers of r. This is called an expenential
escillatien. If the magnitude of  is greater than one, the filter output will
grow without bound. This condition is called /nstability, and such filters are
called unstable.

Filters of the form of Equation 3.2 are also called recursive, all pole
(more on that later), and autoregressive. Figure 3.5 shows a signal processing
block diagram of the simple recursive filter described in Equation 3.2. Figure
3.6 shows a higher order IIR filter block diagram.

3.5 The General Filter Form

Themost general digital filter operates on both its inputs and outputs, and its
difference equation is written:

Wn) = g(x(n) + ax(n—1) + ax(n—2) + ... + «x(n—N)) (3.3)
~by(n—1)-b,y(n-2)—.. - b,yn-M).

x(n)—5—=(+ >y(n)

r
7z =

Figure 3.5. First order recursive digital filter.

printed on 11/2/2022 5:54 PMvia STANFORD UNI VERSI TY LI BRARI ES. All use subject to https://ww.ebsco.confterns-of-use



EBSCChost -

3.6 The Z Transform “

x(n)

Figure 3.6. Highorder recursive digital filter.

Note that the length of input sample “history” is not required to be equal
to the length of output sample “history,” though in practice they are commonly
assumed to be equal. The “order” of a filter is equal to the longest delay used
in the filter; in the filter of Equation 3.3, the order would be the greater of M
or M. Since general digital filters have IR components as shown in Equation
3.3, such filters are also called IR filters. Another terin for filters with both
FR and IIR parts is pole-zero filter (more later). One final commonly used
term is Auto-Regressive Moving Average, or ARMA. Figure 3.7 shows a signal
processing block diagram of the general pole-zero digital filter described in
Equation 3.3.

3.6 The Z Transform

A common analytical tool for digital filters is the Z transform representation.
As we said before, we’ll define Z*! (Z to the minus 1) as a single sample of
delay, and in fact, Z"! is sometimes called the Delay @perator. To transform a
filter using the Z wansformn, simply capitalize all variables x andy, and replace
all time indices (n — a) with the appropriate time delay operator Z *. Thus, the
Z transformed version of Equation 3.3 would be written:
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Figure 3.7. General pele-zere (IIR) filter.

V=g(X+aXZ'+aXZ?+..+a XZ") (3.4)
b YZ'- b Y2 ...~ b YZH

We’ll see in subsequent sections and chapters how the Z transform can
be used for analyzing and manipulating signals and filters.

3.7 The Transfer Function

A powerful relationship used for analyzing digital filters is the transter function,
which is found by solving for the ratio of output (¥) to input (.Y') in the
Z-transformed filter expression. The transfer function for Equation 3.4 can
be solved by using simple algebra:

)’(1 + blZWl + b2ZH2 + " + b;\,I'ZH’M)
=gXQ+ a2 + 0,27+ . +ayZ7V) (3.5)
Y g(1+a12““1+aZZ“2+...+aNZm:v)

H=== { ;
X 1+6 2V + by Z-2 4+ .+ by Z—M (3.6)
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3.9 First Order One-Zero and One-Pole Filters ..

The transfer function is notated as H. H is the Z transform of the time-
domain impulse response function A(»n). Transformation of x andy into the Z
domain gives us a tool for talking about a function H (the Z transform of /)
that takes X as input and yields Y.

3.8 Zeroes and Poles

Looking atthe numerator of Equation 3.6 as a polynomial in Z*!, there will be
Nvalues of Z! that make the numerator equal to zero, and the transfer function
will be zero at these values. These values that make the polynomial equal to
zero are potentially complex numbers: Re + jlim, where Re and Jm are called
the real and imaginary parts, and j = V(~1). The zero values are called zeroes
of the filter because they cause the gain of the wransfer function to be zero.
The two-dimensional (real and imaginary) space of possible values of Z is
called the z-plane.

Similarly, the denominator will have M values of Z* that make it zero,
and these values cause the filter gain to be infinite at those values. These M
values are called poles of the filter (like tent poles sticking up in the transfer
function, with infinite height where the denominator is zero). Poles are
important because they can model resonances in physical systems (we’ll see
that in the next chapter). Zeroes model signal cancellations, as in the destructive
interference discussed in Chapter 2.

3.9 First Order One-Zero and One-Pole Filters

The simple two-point moving average filter was defined in Equation 3.1, and
shown in Figure 3.3. A more general form ofthe first order one-zero filter is
shown in Figure 3.8, and is described by the following equations:

y(n)= glx(n) + ax(n - 1)) (3.7)
YIX=g(1 +aZ). (3.8)

This filter has a single zero at Z = —a, and exhibits a maximum gain of
g (1 +|al). Figure 3.9 shows the gain responses versus frequency of this filter
for various values of a (with g set to 1/(1 + |a) to normalize the maximum
gain). Such plots are called spectral magritude plots, because they show the
magnitude of the gain of the filter at each frequency, from zero Hz up to one
half of the sampling rate (the maximum unaliased frequency). We will see a
lot more on spectra and spectral plots in Chapters 5 and 6.
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X(n)g >(+)—Y(n)

-1 d

> Z

Figure 3.8. General one-zero filter.

As can be seen from Figure 3.9, positive values of & cause the filter to
favor low frequencies over high. Such filters are called low pass filters.
Negative values of & cause the filter to be a high pass filter, as shown in
Figure 3.8. If & is set to —1 and g to T (the sampling period), the one-zero
filter becomes the digital approximation to differentiation (delta in adjacentx
values divided by delta time). We’ll use this in later chapters.

The simple first order one-pole filter was shown in Figure 3.5 and is
described by the equations below:

y(m) = gx(n) + ry(n—1) (.9)
YIX=g/(1—rZ"). (3.10)

This filter has a single pole at Z = #, and exhibits a maximum gain of
g/(1 — |r|). Figure 3.10 shows the gain responses versus frequency of this
filter for various values of # (g s set to 1 —|r| to normalize the filter maximum
gain). As we observed before, the absolute value of » must be less than one in
order for the filter to be stable. As can be seen from Figure 3.10, positive
values of # cause the filter to favor low frequencies (low pass), while negative
values cause the filter to favor high frequencies (high pass). If both g and »

A | Output / Input | A| Output / Input |
a=.25 a=-.25
-5 a—"5 Differentiator
Moving a™: = x(n) = x(n-1)
average— 2=75 - 2
x(n) + x(n-1) a=.75 ~
2.
a=1
a=-1
OHz Frequency SR/2 OHz Frequency SR/2

Figure 3.9. Gain versus zero location for one-zero filter.
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3.10 The Second Order Pole/Zero (BiQuad) Filter

A special ferm of digital filwer is the Bifua s narned because the
nurcemter and desercinater of the ransfer functien ar b eth s=scend erder
or Quadratic pelynarvials in Z* Any pelynarual can be factered inte first
and sscend erderpel ynarmals withreal ceefician; thws, all that's needed
@ facwer the oansferfuncten of EqQuatien 3.5 er 3.6 is first and secend
emder building blecks. Tle scend exder twe-pele Wecks cormspond Ve
resena Ve, oI eseillaters with expenerntal darrgung, and are very pewerful
yuildingvlecksferdigitalfilter syserce. Thesecerd emer twezem building
Vlecks are antiresena%ers, capable of placing a Pair of cemplex zerees
anywhere in the z-plane. A twe-22 m b leck swrmldined with a twe-pele Weck

rcakesuPpa Eicnad.
The BiQuad in the tirce and Z oansfem damains leeks like:
y(n) = g2(2(n) + &:2(n - 1) + &;2(n - 2)) (3.11)

=by(n—1) - b:3(n - 2)
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Y  gl4+aZ7t 4+ ayZ72) (3.12)
X 1+b12_1+b2Z_2

This filter has two poles and two zeroes. Depending on the values of the
# and b coefficients, the poles and zeroes can be placed in fairly arbitrary
positions around the z-plane, but not completely arbiwary if the &« and b
coefficients are real numbers (not complex). Remember from quadratic
equations in algebra that the roots of a second order polynomial can be found
by the formula: (—a, +/— (&> —44,)"*] /2 for the zeroes, and similarly for the
poles using the b coefficients. It turns out that for complex roots, the positions
will always end up as a cemplex cenjugate pair of the form Re +/— jIm. Filters
with two poles are called resenaters, or phasers.

For practical use in sound processing, there is a wonderful formulation
of the BiQuad that deals more directly with resonator parameters:

Y  g(1—2r.ces(2rFreq.T)Z " +r2Z72) (3.13)
X  1—2rpces(2rFreqyT)Z~1 +r2Z~2

y(n) = g(z(n) — 2r, ces(2rFreq.T)x(n — 1) + r2z(n — 2))

+2ry cos(2nFreqyT)y(n — 1) — riy(n —2). (3.14)
This describes the filter coefficients in terms of an exponential damping
parameter (r, for the zeroes, r, for the poles) and a center frequency of
resonance (antiresonance for the zeroes), which is Freq, for the zeroes and
Freqp for the poles. We can now control aspects of the filter more directly
from these parameters, knowing that once we decide on r and Freq , we can
convert to &, &, b, and b, directly. Figure 3.11 shows the BiQuad in block
diagram form.

2 o

Figure 3.11. BiQuad filter block diagram.
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Im
Zero
/
pole
Reson.
Freq.
o T\
2 Re

Figure 3.12. Z-plane pole/zero plot of BiQuad with zeroes at 1.0, 5000 Hz, and poles
at 0.99, 3000 Hz (sampling rate is 22050).

Just as with the filter of Equation 3.2, », must be strictly less than one,
and for the resonance formulation it is usually kept nonnegative, because we
canuse the frequency variable to swingthe position around in an arc anywhere
in the z-plane. Freq_ and Freq, can take onany value from zero to one half the
sampling rate (the Nyquist frequency). Freq, and Freq, can actually take on
any value, but they will alias to frequencies within the Nyquist range, because
of the “modulo 2r” nature of the cosine functions in Equation 3.13. Figure
3.12 shows the z-plane pole/zero plot of a Biquad filter with #, set to 1.0;
Freq_setto 5000 Hz; r,setto 0.99; and Freq, setto3000 Hz (sampling rate is
22050 Hz). The resonance parameters, #, are reflected by the radial distance
from the origin in the z-plane. The frequency parameters determine the angle
of the pole/zero locations.

Figure 3.13 shows the spectrum (top) of a random noise input to the
BiQuad Filter, along with the spectrum of the filtered noise signal. White
noise is named similarly to white light, where all frequencies are present in
relatively equal amplitude, as shown in the magnitude versus frequency plot.
Passing white noise through a filter results in what is called colored noise, in
direct analogy to passing light through a color filter. Note the peak in the
filtered output spectrum at 3000 Hz corresponding to the pole resonances,
andthe dip at 5000 Hz corresponding to the zero antiresonances.

Figure 3.14 shows some superimposed frequency responses of a Biquad
with g setto 0.1; r, set t0 0.99 and 0.97; the zeroes set at special locations
(+/-1 on the real axis); and Freq, swept from 0 to 4000 Hz in 500 Hz steps
(sampling rate is 8000 Hz). Locating the zeroes at those locations of frequency
=0 and frequency = SRATE/2 helps to keep the total filter gain nearly constant,
independent of the frequency of the resonator.
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OHz 5500Hz 11025Hz
Biquad filtered noise

OHz 5500Hz 11025Hz

Figure 3.13. White noise input spectrum (top) versus BiQuad filtered output spectrum
(bottom). The BiQuad has a resonator pole pair at 3000 Hz with » = 0.99, and a zero
pair at 5000 Hz with » = 1.0 (same filter as shown in the z-plane view of Figure 3.12).

3.11 A Little on Filter Topologies

If you’ve had enough of digital filters, difference equations, the z-plane, and
all that for now, you can skip the next sections and go on to Chapter 4. However,
if you just can’t get enough of this stuff, read on for some notes about
implementing digital filters.

Digital filters are described by simple linear algebraic equations. As such
they can be factored in a number of ways, and thus a given filter might be
implemented in a wide variety of ways. As an example, we will use the filter
shown in Figure 3.15 (hereafter we’ll let g = 1 for convenience).

0dB

QQQA /\ /\ A /\ /\ /\

-30

-60% 1K 2K 3K 2k
0dBT =0 97

-30 —= e

-605 1K 2K 3k 2K

Figure 3.14. BiQuad transfer function magnitudes with zeroes set at +/—1.0 (one
zero at DC and one at SRATE/2); r = 0.99 (top plot), and » = 0.97 (lower plot).
Resonance frequencies are set to 0, 500, 1000, 1500, 2000, 2500, 3000, 3500, and
4000 Hz (sample rate = 8000).
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x(n) @x>yin)

d
2125 12925
147257 A T1—1.2925
-0.20825 -4 . 3p=t0
-0.9604A Z-1
I
v
Z-1
—— ]

Figure 3.15. A fourth order IIR, third order FIR digital filter.

The filter of Figure 3.15 has a difference equation (for g = 1) of

y(n) =x(n) — 1.2925 x(n — 1) + 1.2925 x(n — 2) — x(n — 3) — 0.2125 y(n — 1)
—1.4725 y(n—2)—0.20825 y(n—3) — 0.9604 y(n— 4).
We can write out the Z transform of this filter as:

Y B 1-1.2925Z-1 +1.29257-2 — 73
X 140212521 +1.4725Z-2 + 0.20825Z 3 + 0.9604Z 4"

Noting that the numerator is of third order, and the denominator is of
fourth order, we can factor each into first and second order filter segments:

¥ 1-029252"'+272).(1-271)

X (1-06Z 1409822 (140812521 +09822)

Now that we’ve factored it, we can compare the sections to our standard
BiQuad forms given in Equation 3.11 and see that this filter gives us two
resonances: one at #=0.99, f=3/8 SRATE; and one at #¥=0.99, /= 7/8 SRATE.
It also gives us one complex zero pair at » = 1.0, f = 5/7 SRATE. Finally, it
implements a single zero at /= 0. Since the transfer function is just a product
of these, we can rewrite it as a chain of simple filter segments:

YIX=(1-02925 71 +72)- (1 - Z") - 1/(1 — 0.6Z" + 0.98Z7)
11+ 0.8125Z" + 0.98Z2),
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A
-0.8125
-0.984 /1.0 -0.984

Figure 3.16. Two topological variants of the filter shown in Figure 3.15. Linearity
says we can reorder the sections any way we like.

The mathematics of LTT systems tells us that these can be implemented
in any order. Two of many such possibilities are shown in Figure 3.16. Note
that the gain term can also go at any point in the chain.

The form shown in Figure 3.15 is called the direct form, and the forms
shown in Figure 3.16 are all called factored cascade forms. There are many
other forms for filters, including parallel. You might ask, “If the math says
they’re all the same, then why would we care about different forms?” Well,
itturns out that the math is only strictly wue in the pure case of infinite precision
computation. For finite word sizes, even floats in computers, then round-
ing, truncation, quantization, etc., can all make a difference in filter
implementations. Some topologies do better with finite precision computation.
However, for the rest of this book we won’t much care about this, because
it’s really not that critical of an issue for floating point computations on low
order filters.

3.12 Conclusion

Digital filters operate on sampled signals by forming linear combinations of
past inputs and outputs. LTI (linear time-invariant) systems are common in
the acoustical world, and any LTI system can be modeled by a digital filter.
Simple low order filters can be used to implement simple high and low pass
functions, as well as implementing the averaging, differentiation, and
integration operations. The second order pole-zero filter (called the “BiQuad”)
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is aconvenient and flexible form, allowing independent control of resonance
and antiresonance. The next chapter will look at the first actual physical model
in this book and relate the simulation of that physical model (and more complex
systems) to digital filters.

Reading:
Ken Stieglitz. 4 Digital Signal Precessing Primer. Menlo Park: Addison Wesley, 1996.

Lawrence Rabiner and Bernard Gold. Theeiy and Application of Digital Signal
Precessing. Englewood Cliffs: Prentice Hall, 1974.

Code:

filter.c

GUIResoLab

Sounds:
[Track 11] @ne-Pole Fiitered Speech, r = 0.9 ,0.95, 0.99, -0.9, -0.95, —0.99.

[Track 12) BiQuad Filtered Noise.
[Track 13] Noise Filtered Through Topologies of Figures 3.15-3.16.
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