
Digital Filters 

3.0 Introduction 

This chapter introduces digital filtering, stressing intuition along with the 
terminology and notation used to describe digital filters. First, filtering will 
be discussed in general, followed by definitions and examples of Finite 
Impulse Response (FIR) and Infinite Impulse Response (IIR) filters. Then, 
the general form of a digital filter will be given and discussed. The Z transform 
will be introduced as a simple algebraic substitution operator, and this will 
be exploited to define and develop the notion ofthe transfer fimction. Zeroes 
and poles will be defined, and some useful filter forms will be shown. Math­
averse readers could possibly skip this chapter for now, returning to it when 
needed in later chapters, but 1'd recommend reading at least until your eyes 
glaze over. 

3 . 1  Linear Systems, LTI Systems, Convolution 

Linearity is a property of systems that allows us to use many powerful 
mathematical and signal processing techniques to analyze and predict the 
behavior ofthese systems. Linearity has two defining criteria: 
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22 3. Digital Filters 

Homogeneity: if x -? y 

Superposition: if x 1 -? Y 1 and x2 -? y2 

then ax -? � for any a 

then xl + x2 -? yl + y2 

(-? is read ''yields'', and corresponds to a system operating on x to yieldy). 

These equations state that a mixture and/or scaling of inputs simply results 

in a mixture and/or scaling of the outputs . No "new" signals are created by a 

linear system (we 'll have more rigorous means to define "new" later). 

A time-invariant system obeys the property: 

If x(n) -? yen) then x(n + N) -? yen + N) for any N, 

which simply means that the system doesn't change its behavior with time. 

Here, x(n) is the chain of samples put into the system, and yen) is the 

corresponding chain of output samples. Practically speaking, most systems 

actually do change over time. A reasonable assumption, however, is that many 

systems of interest do not change their behavior quickly, and can be treated as 

time-invariant over time intervals of interest. The bones of the middle ear, 

acoustics in rooms, a good quality stereo amplifier, and many other systems 

behave like Linear Time-Invariant (LTI) systems over much of their normal 

operating range . If a system is linear and time-invariant, we can characterize 

its behavior by measuring its impulse response as shown in Figure 3 . 1 .  

The impulse response is defined mathematically as: 

hen) = yen), for x(n) = D(n) 

where D(n) = 1 ,  n = 0, 

0, otherwise. 

Linearity and time invariance mean that if we excite a system with an 

input of 1 at time zero, and ° thereafter, we can "record" (observe) the output 

and use that to determine exactly what the system response would be to any 

arbitrary input. To prove to ourselves that this is true, all we need do is invoke 

x(n)= H 

o (n) ----=:J L TI 
! . --I system 

Impulse 

h(n) 

�
)=

t 
Impu lse 

response 
Figure 3. 1 .  Impulse response of a Linear Time-Invariant (LTI) system. 
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3.1 . Linear Systems, LTI Systems, Convolution • 

the three properties ofLTI systems: homogeneity, superposition, and time­

invariance. Thus, any input can be decomposed into a time-ordered set of 

weighted impulses: 

Each input sample can be viewed as a separate weighted (xo' xl' etc., are 

the weights) impulsive input, and the outputs can be viewed as individual 

outputs, which are weighted versions of the impulse response hen): 

yen) = xoh(n) + x]h(n - 1) + x2h(n - 2) + x3h(n - 3) + . . .  + xJz(n - M) 

= Li x(i)h(n - i) denoted by x(n) * hen). 

Figure 3 .2 shows the interaction of an input signal with a linear time­

invariant system as a decomposition of separate impulse responses. While 

h(n) 8(n) �LTI H� 1l 
I system T 

Xo 
I � 

Yo = xo h(n) 
I I 
I Xl 

� Yl'll I 

X2 
�

Y2,11 
X3 

� +  X4 
� 

Y4, I I I 

Xs 
� 

Ys I 
, i 

Xs 
---¥-I � 

Figure 3.2. Convolution of input with impulse response of Linear Time-Invariant 
(LTI) system. 
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24 3. Digital Filters 

seeming quite tedious to calculate (which it is), this operation, called 
convolution, will be very important in that it allows us to use many 
mathematical tools to analyze and simulate LTl Systems. 

3.2 Digital Filters 

By forming linear combinations of past input and output samples, digital filters 
operate on streams of numbers that are uniformly sampled in time (such as 
samples of audio). Current and past inputs are usually denoted as 

x(n), x(n - f), x(n - 2), ... 

where n is the current time, n-l is the time one sampling period before the 
current one, n-2 is two sampling periods ago, etc. Current and past outputs 
are usually denoted as 

yen), yen - 1), yen - 2), . . .  

As discussed in Chapter 1, PCM signals are formed by sampling an analog 
waveform at regular intervals in time. The sampling intervals are spaced T 
seconds apart, where T= lIsampling rate. Thus, relating the integer time indices 
n, n + 1 ,  etc., of a sampled signal x to actual times in seconds requires 
multiplying by the sampling period. 

x(n) = xwntillll<Jus(n1) 
x(n - 1) = XwntinuouJnT - T) 

etc., where T� 1/(Sampling Rate) 

3.3 FIR Filters 

A simple two-point moving average filter can be written as: 

yen) � 0.5 (x(n) + x(n - 1)). (3.1) 

Such a filter is called a FIR (Finite Impulse Response), because it operates 
only on a finite number of delayed versions of its inputs. The number of delays 
used is referred to as the filter "order." FIR means the filter's impulse response 
yields only a finite number of nonzero output samples (two successive values 
of one half in this case). Even though it expresses a sum, Equation 3 . 1  is 
called a difference equation. Figure 3.3 shows a block signal processing 
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3.3. FIR Filters 

x( n )  --.---------?>( + H>-� y( n )  
0.5 

-1 

Z 

Figure 3.3. Two-point moving average digital filter. 

• 

diagram of the two-point moving average filter. The Z I block in the 

feedforward block represents a unit sample of delay. We'll find out more 

about Z and Z I later on. 

Filters of the fonn of Equation 3 . 1  are also called nonrecursive, moving 

average, or all zero (more on that later). Figure 3.4 shows a signal processing 

block diagram of a general FIR filter. From the discussion of convolution in 

Section 3 . 1 ,  note now that an arbitrary (fmite length) impulse response can be 

stored in the coefficients of an FIR filter, and the operation ofthe filter would 

then actually perform the convolution. Thus, any LTI system with rmite-Iength 

x ( n ) ---!>----.-------l 
g r---'� 

y(n)  

Figure 3.4. A high (Nth) order general FIR digital filter. 

25 
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26 • 3. Digital Filters 

impulse response can be modeled by an FIR filter, provided that the impulse 

response of the LTI system is bandlimited to the Nyquist frequency. 

3.4 11K Filters 

A simple filter that operates on past outputs can be written as 

y(n) � (g x(n)) + (r y(n - 1)) (3.2) 

It's easy to show that the impulse response oftms filter for g = 1 is yn = 1.0, 
r, r

�
r, y3, etc. This type of response is called an exponential decay. It's easy to 

see why filters of this fann are called Infinite Impulse Response (IIR) filters, 

because for a nonzero Y, the output teclmically never goes exactly to zero. If 

r is negative, the filter will oscillate positive and negative each sample, 

corresponding to even and odd powers of Y. This is called an exponential 
oscillation. If the magnitude of r is greater than one, the filter output will 

grow without bOlllld. This condition is called instability, and such filters are 

called unstable. 
Filters of the fonn of Equation 3.2 are also called recursive, all pole 

(more on that later), and autoregressive. Figure 3.5 shows a signal processing 

block diagram ofthe simple recursive filter described in Equation 3.2. Figure 

3.6 shows a higher order IIR filter block diagram. 

3.5 The General Filter Form 

The most general digital filter operates on both its inputs and outputs, and its 

difference equation is written: 

y(n) � g(x(n) + a,x(n - 1) + a,x(n - 2) + . . .  + a,;;(n - N» (3.3) 

-b,y(n - 1 ) - b,y(n - 2) - ... - bMy(n -M). 

x(n) ---,.....-g .... 
r 

}---� y(n )  

-1 Z 
Figure 3.5. First order recursive digital filter. 
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3.6 The Z Transform • 

x(n) 9 }--� y(n) 

-b 
1 -b -1 2 Z 

-b 
M 0 

0 

0 

Z -
1 

Figure 3.6. High order recursive digital filter. 

Note that the length of input sample "history" is not required to be equal 
to the length of output sample "history," though in practice they are commonly 
asswned to be equal. The "order" of a filter is equal to the longest delay used 
in the filter; in the filter of Equation 3.3, the order would be the greater of N 
or M. Since general digital filters have IIR components as shown in Equation 
3 .3, such filters are also called IIR filters. Another tenn for filters with both 
FIR and IIR parts is pole-zero filter (more later). One final conmlonly used 
term is Auto-Regressive MovingAverage, or ARMA. Figure 3.7 shows a signal 
processing block diagram of the general pole-zero digital filter described in 
Equation 3 .3 .  

3.6 The Z Transform 

A common analytical tool for digital filters is the Z transform representation. 
As we said before, we'll defme Zl (Z to the minus 1) as a single sample of 
delay, and in fac� Z·I is sometimes called the Delay Operator. To transform a 
filter using the Z transfonn, simply capitalize all variables x andy, and replace 
all time indices (n - a) with the appropriate time delay operator Z ". Thus, the 
Z transformed version of Equation 3 .3  would be written: 

27 
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28 3. Digital Filters 

x(n ) 9 y(n ) 

-b 
a1 1 

- b -1 a2 2 
-b Z 

M aN 
0 

0 

0 

Z -1 

Figure 3.7.  General pole-zero (UR) filter. 

Y �  g( X+ alXZ 1 + a,XZ ' + . . .  + aNXZ N ) (3.4) 

-bIYZ 1 _  b,YZ ' - . . .  - bMYZ M. 

We'll see in subsequent sections and chapters how the Z transform can 

be used for analyzing and manipulating signals and filters. 

3.7 The Transfer Function 

A powerful relationship used for analyzing digital filters is the transfer function, 
which is found by solving for the ratio of output (Y) to input (X) in the 

Z-transfonned filter expression. The transfer function for Equation 3.4 can 

be solved by using simple algebra: 

Y(l + blZ-1 + b,Z-' + . . .  + bMZ-M) 

� gX(l + alZ-1 + a,Z-' + . . .  + aNZ- N) (3.5) 
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3.9 First Order One-Zero and One-Pole Filters 

The transfer function is notated as H H is the Z transfol1ll of the time­
domain impulse response function hen). Transfol1llation ofx andy into the Z 
domain gives us a tool for talking about a function H (the Z transform of h) 
that takes X as input and yields Y. 

3.8 Zeroes and Poles 

Looking at the numerator of Equation 3.6 as a polynomial in Z·I, there will be 
N values of Z-l that make the numerator equal to zero, and the transfer fimction 
will be zero at these values. These values that make tile polynomial equal to 
zero are potentially complex numbers: Re + jIm, where Re and 1m are called 
the real and imaginary parts, andj � ,1(-1). The zero values are called zeroes 
of the filter because they cause the gain of the transfer function to be zero. 
The two· dimensional (real and imaginary) space of possible values of Z is 
called the z-plane. 

Similarly, the denominator will have M values of Z·I that make it zero, 
and these values cause the filter gain to be infinite at those values. These M 
values are called poles of the filter (like tent poles sticking up in the transfer 
function, with inImite height where the denominator is zero). Poles are 
important because they can model resonances in physical systems (we'll see 
that in the next chapter). Zeroes model signal cancellations, as in the destructive 
interference discussed in Chapter 2. 

3.9 First Order One-Zero and One-Pole Filters 

The sinlple two· point moving average filter was defined in Equation 3 .1 ,  and 
shown in Figure 3 .3 .  A more general form of the first order one·zero filter is 
shown in Figure 3 .8, and is described by the following equations: 

yen) � g(x(n) + ax(n - 1)) (3 .7) 

YlX � g(l + aZ I). (3.8) 

This filter has a single zero at Z � -a, and exhibits a maximum gain of 
g . (1 + laD. Figure 3 .9 shows the gain responses versus frequency of this filter 
for various values of a (with g set to 1/(1 + laD to normalize the maximum 
gain). Such plots are called spectral magnitude plots, because they show the 
magnitude of the gain of the filter at each frequency, frOI11 zero Hz up to one 
half of tile sampling rate (the maximum unaliased frequency). We will see a 
lot 1110re on spectra and spectral plots in Chapters 5 and 6. 

29 
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30 • 

x(n ) 
9 

-1 
Z 

Figure 3.8.  General one-zero filter. 

3 .  Digital Filters 

y(n ) 

As can be seen from Figure 3 .9, positive values of a cause the filter to 
favor low frequencies over high. Such filters are called low pass filters. 
Negative values of a cause the filter to be a high pass filter, as shown in 
Figure 3 .8 .  If a is set to -1 and g to T (the sampling period), the one-zero 
filter becomes the digital approximation to differentiation (delta in adj acent x 
values divided by delta time). We'll use this in later chapters. 

The simple first order one-pole filter was shown in Figure 3.5 and is 
described by the equations below: 

yen) = gx(n) + ry(n - 1 ) 

YlX = g / (1 - rZl). 

(3 .9) 

(3 . 1 0) 

This filter has a single pole at Z = r, and exhibits a maximum gain of 
g/(l - Irl). Figure 3 . 1  ° shows the gain responses versus frequency of this 
filter for various values of r (g is set to 1 - Irl to normalize the filter maximum 
gain). As we observed before, the absolute value of r must be less than one in 
order for the filter to be stable. As can be seen from Figure 3 . 1 0, positive 
values of r cause the filter to favor low frequencies (low pass), while negative 
values cause the filter to favor high frequencies (high pass). If both g and r 

I Output I Input I I Output I Input I 

OHz Frequency SRl2 Frequency SRl2 

Figure 3 .9. Gain versus zero location for one-zero filter. 
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32 • 

y g(l + a1Z-1 + a2Z-2) 
X 1 + b1Z-1 + b2Z-2 . 

3. Digital Filters 

(3 . 12) 

This filter has two poles and two zeroes. Depending on the values of the 
a and b coefficients, the poles and zeroes can be placed in fairly arbitrary 
positions around the z-plane, but not completely arbitrary if the a and b 
coefficients are real numbers (not complex) .  Remember from quadratic 
equations in algebra that the roots of a second order polynomial can be found 
by the formula: (-al +/- (a1

2 
- 4ayl2] / 2  for the zeroes, and similarly for the 

poles using the b coefficients. It turns out that for complex roots, the positions 
will always end up as a complex conjugate pair of the form Re +/-jIm. Filters 
with two poles are called resonators, or phasors. 

For practical use in sound processing, there is a wonderful formulation 
of the BiQuad that deals more directly with resonator parameters: 

y g(l - 2rz cos(27rFreqzT)Z-1 + r;Z-2) 
X 1 - 2rp cos (27r FreqpT)Z-l + r�Z-2 

y(n) = g(x(n) - 2rz cos (27rFreqzT)x(n - 1) + r;x(n - 2)) 

(3 . 1 3) 

+2rp cos (27rFreqpT)y(n - 1) - r;y(n - 2) . (3 . 14) 

This describes the filter coefficients in terms of an exponential damping 
parameter (rz for the zeroes, rp for the poles) and a center frequency of 
resonance (antiresonance for the zeroes), which is Freqz for the zeroes and 
Freq for the poles. We can now control aspects of the filter more directly p 
from these parameters, knowing that once we decide on rz and Freqz' we can 
convert to aI' a2, bl, and b2 directly. Figure 3 . 1 1  shows the BiQuad in block 
diagram form. 

y(n )  

-2 rzcos(21tFreqz T) 

r 2 z 

Figure 3. 1 1 .  BiQuad filter block diagram. 
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3 . 1 0. The Second Order Pole/Zero (BiQuad) Filter • 
1m 

SR+-____ -+ __ � __ r_� 
"2 Re 

Figure 3 . 1  Z. Z-plane pole/zero plot ofBiQuad with zeroes at 1 .0. 5000 Hz. and poles 

at 0.99. 3000 Hz (sampling rate is 22050). 

Just as with the filter of Equation 3 .2, rp must be strictly less than one, 

and for the resonance formulation it is usually kept nonnegative, because we 
can use the frequency variable to swing the position around in an arc anywhere 
in the z-plane. Freqz and Freqp can take on any value from zero to one half the 

sampling rate (the Nyquist frequency). Freqz and Freqp can actually take on 
any value, but they will alias to frequencies within the Nyquist range, because 

of the "modulo 21t" nature of the cosine functions in Equation 3 . l 3 .  Figure 

3 . 1 2  shows the z-plane pole/zero plot of a Biquad filter with rz set to 1 .0; 
Freqz set to 5000 Hz; rp set to 0.99; and Freqp set to 3 000 Hz (sampling rate is 
22050 Hz). The resonance parameters, r, are reflected by the radial distance 
from the origin in the z-plane. The frequency parameters determine the angle 
of the pole/zero locations. 

Figure 3 . l 3  shows the spectrum (top) of a random noise input to the 

BiQuad Filter, along with the spectrum of the filtered noise signal. White 
noise is named similarly to white light, where all frequencies are present in 
relatively equal amplitude, as shown in the magnitude versus frequency plot. 
Passing white noise through a filter results in what is called colored noise, in 
direct analogy to passing light through a color filter. Note the peak in the 
filtered output spectrum at 3000 Hz corresponding to the pole resonances, 
and the dip at 5000 Hz corresponding to the zero antiresonances. 

Figure 3 . 1 4  shows some superimposed frequency responses of a Biquad 
with g set to 0. 1 ;  r set to 0.99 and 0.97; the zeroes set at special locations p 
(+/-1 on the real axis); and Freqp swept from 0 to 4000 Hz in 500 Hz steps 
(sampling rate is 8000 Hz). Locating the zeroes at those locations offrequency 
= 0 and frequency = SRATE/2 helps to keep the total filter gain nearly constant, 
independent of the frequency of the resonator. 

33 
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34 3. Digital Filters 

olse s pec rum 

::::� 

OdB,
N • t � 

-90d I::S-Bl--�-- ------------------------+ 
OHz 5500Hz 1 1 025Hz 

OdB Biquad fi ltered n oise 
-30dB-U��_III'F+__i!fi!trn -,-------------------1 

-90dB-I----------��,._____------____,__,_� 
OHz 1 1 025Hz 

Figure 3 .1 3. White noise input spectrum (top) versus BiQuad filtered output spectrum 

(bottom). The BiQuad has a resonator pole pair at 3 000 Hz with r = 0.99, and a zero 

pair at 5000 Hz with r = 1 . 0  (same filter as shown in the z-plane view of Figure 3 . 1 2). 

3. 1 1 A Little on Fi lter Topologies 
If you've had enough of digital filters, difference equations, the z-plane, and 

all that for now, you can skip the next sections and go on to Chapter 4. However, 

if you just can't get enough of this stuff, read on for some notes about 

implementing digital filters. 

Digital filters are described by simple linear algebraic equations. As such 

they can be factored in a number of ways, and thus a given filter might be 

implemented in a wide variety of ways. As an example, we will use the filter 

shown in Figure 3 . 1 5 (hereafter we ' ll iet g = 1 for convenience). 

0:: 

-60 0 1 k  2k 3k 4k 
0:: 

-60 0 1 k  2k 3k 4k 

Fig ure 3 . 1 4. BiQuad transfer function magnitudes with zeroes set at +/- 1 . 0  (one 

zero at DC and one at SRATE/2); r = 0.99 (top plot), and r = 0.97 (lower plot). 

Resonance frequencies are set to 0, 500, 1 000, 1 500, 2000, 2500, 3 000, 3 5 00, and 

4000 Hz (sample rate = 8000). 
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3.1 1 .  A Little on Filter Topologies 

x(n ) 9 

-.2125 

-1 .4725 

-0.20825 

-0.9604 

y(n ) 

-1 .2925 

1 .2925 

-1.0 

Figure 3.1 5. A fourth order HR. third order FIR digital filter. 

The filter of Figure 3 . 1 5  has a difference equation (for g = 1 )  of 

• 

yen) = x(n) - 1 . 2925 x(n - 1) + 1 .2925 x(n - 2) - x(n - 3) - 0.2 1 25 yen - 1 )  
- 1 .4725 yen - 2 )  - 0.20825 yen - 3 )  - 0.9604 yen - 4). 

We can write out the Z transform of this filter as: 

y 1 - 1 .2925Z-1 + 1 .2925Z-2 - Z-3 
X 1 + 0.2125Z-1 + 1.4725Z-2 + 0.20825Z-3 + 0.9604Z-4 · 

Noting that the numerator is of third order, and the denominator is of 

fourth order, we can factor each into first and second order filter segments: 

y (1 - 0.2925Z-1 + Z-2) . ( 1  - Z-l) 

X (1 - 0.6Z-1 + 0.98Z-2) . ( 1  + 0.8125Z-1 + 0.98Z-2) 
. 

Now that we've factored it, we can compare the sections to our standard 

BiQuad forms given in Equation 3. 1 1  and see that this filter gives us two 
resonances: one at r = 0.99,f= 3/8 SRATE; and one at r=0.99,f= 7/8 SRATE. 

It also gives us one complex zero pair at r = 1 .0,/= 5/7 SRATE. Finally, it 

implements a single zero at f = O. Since the transfer function is just a product 

of these, we can rewrite it as a chain of simple filter segments: 

YIX = ( 1 - 0.2925 ZI + Z2 ) . ( 1 - ZI) . 1/( 1 - 0.6Z1 + 0.98Z·2) 
. 1/( 1  + 0.8 1 25Z1 + 0.98Z·2). 
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36 • 3. Digital Filters 

y(n )  

x(n) y(n )  

Figure 3.1 6. Two topological variants of the filter shown in Figure 3 . 1 5. Linearity 
says we can reorder the sections any way we like. 

The mathematics ofLTI systems tells us that these can be implemented 

in any order. Two of many such possibilities are shown in Figure 3 . 1 6 .  Note 

that the gain term can also go at any point in the chain. 

The form shown in Figure 3 . 1 5  is called the direct form, and the forms 

shown in Figure 3 . 1 6 are all calledfactared cascade forms. There are many 

other forms for filters, including parallel. You might ask, "If the math says 

they're all the same, then why would we care about different forms?" Well, 

it turns out that the math is only strictly true in the pure case of infinite precision 

computation. For finite word sizes, even floats in computers, then round­

ing, truncation, quantization, etc . ,  can all make a difference in filter 

implementations.  Some topologies do better with [mite precision computation. 

However, for the rest of this book we won't much care about this, because 

it's really not that critical of an issue for floating point computations on low 

order filters. 

3. 1 2  Conclusion 

Digital filters operate on sampled signals by forming linear combinations of 

past inputs and outputs. LTI (linear time-invariant) systems are common in 

the acoustical world, and any LTI system can be modeled by a digital filter. 

Simple low order filters can be used to implement simple high and low pass 

functions, as well as implementing the averaging, differentiation, and 

integration operations. The second order pole-zero filter (called the "BiQuad") 
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3.12. Conclusion 

is a convenient and flexible form, allowing independent control of resonance 

and antiresonance. The next chapter will look at the first actual physical model 

in this book and relate the sinmlation of that physical model (and more complex 

systems) to digital filters. 

Reading: 
Ken St iegl itz. A Digital Signal Processing Primer. Menlo P ark: Add is on Wesley, 1996. 

Lawrence Ra biner and Be rnard Gold. Theory and Application of Digital Signal 
Processing. Englewood Cl iffs: Prent ice Hall, 1974. 

Code: 
filter.c 

GUIRes oLa b 

Sounds: 
[Track 1 1 ]  One-Pole Filtered Speech, r � 0.9 

,
0.95

, 
0.99

, 
-0.9

, 
-0.95, -0.99. 

[Track 12] B iQuad F iltered No ise. 

[Track 13] No ise F iltered Through Topolog ies of F igures 3 . 15-3 . 16. 
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