
Music 220A – Homework 3 – Lab, Part 2: FM Function  
 
In this lab, we’ll write a function to carry out the FM synthesis 
patch on the right. The challenge in writing this function is 
thinking about how to structure the patch, and the best way to 
structure the main function and any sub-functions. A 
recommended way is walked through below, though if you had 
another preferred strategy, you are welcome to do that instead. 
At the end of this lab, your script will output a .wav file that is 
ONE 10-second note at 440 Hz, in which the modulator 
frequency is 75 Hz, the modulator gain ramps from [0.0 800.0 
0.0] at [0 5 10] seconds, and the carrier amplitude ramps from 
[0.0 1.0 0.5 0.0] at [0 3 5 10] seconds. 
 
As always, if anything isn’t clear, refer to the UGen page on the 
ChucK Programming Guide to look up objects and their 
functions. http://chuck.cs.princeton.edu/doc/program/ugen.html 
 
Step 1: Determine the patch hookup order 
 
Analyze the above diagram. It outlines the basic building blocks we need to build the patch. There are 
two oscillators (a modulator and a carrier) and two envelopes (one for the index, or gain, of the 
modulator, and another for the carrier). 
 
Since all of these components are being connected to calculate the resulting sound, they should be 
“hooked up” in our patch line before being sent to the dac. This should looks as follows – note that the 
modulator’s values are essentially applied to those of the carrier! 
 
SinOsc m => Envelope envm => SinOsc c => ADSR envc => dac; //modulator to carrier 
 
You can use different envelopes if you please – either Envelope (which simply ramps to one value and 
ramps back down in ChucK) or ADSR (which has an attack, decay, sustain, and release component – of 
which sustain is just a pure gain value, and the other three are durations) could be used. 
 
Step 2: Add the line to calculate FM values 
 
ChucK takes care of some of the math of FM synthesis for you through the line below. Include this line. 
If you were doing FM synthesis ‘by hand’ (example at the end of this lab), you’d have to handle directly 
the math surrounding changing the carrier frequency. 
 
//set to do fm synthesis 
2 => c.sync; 
 
Step 2: Finishing the Envelope Functions 
 
We present below a main function, the playFM() function, that will call two other functions and run 
them in parallel – one that controls the envelope of the modulator, playEnvm(), and the other that 
controls the envelope of the carrier, playEnvc().  It sets the frequency of the oscillators based on the 
inputs, the gain of the modulator, the length of the note, and some inputs to control your envelopes. 



 
//play function for our FM instrument 
//this function calls our two envelopes and runs them in parallel 
fun void playFM( float mfreq, float cfreq, float mgain, dur length, float 
 mPeakPoint, float cADSR[]  )  
{ 
    //set frequency values 
    cfreq => c.freq; 
    mfreq => m.freq; 
     
    //open and close envelopes 
    spork ~ playEnvm( mgain, length, mPeakPoint ); 
    spork ~ playEnvc( length, cADSR ); 
     
    length => now; 
} 

 
Critically, Note that we are sending only one value to the Envelope function, which controls the 
envelope of the modulator, to tell it at what time (expressed as a fraction of the total length of the note) it 
should reach its peak value. By sending in a value of a proportion of the total length, instead of a 
duration at which it should reach its peak value, we minimize the likelihood that we’ll actually send a 
duration that is longer than our total note length! Similarly, we are sending in all four values of the 
carrier’s ADSR envelope as floats – the attach, decay, and sustain, are proportions of the total note 
length, and the sustain is just a gain value. Therefore, all of them are floats by this conceptualization. 
 
Below are our two envelope functions. Since you’re getting more familiar with ChucK at this point, we 
are not going to go through the functions line-by-line, sufficed to say that each function serves to tend to 
each envelope! 
 
fun void playEnvm( float mgain, dur length, float mPeakPoint ) 
{ 
    //get value of a half 
    length * mPeakPoint => dur mPeakPointDur; 
    //set target value for envelope for env1 
    envm.target( mgain ); 
    //set time to reach target 
    envm.duration( mPeakPointDur ); 
    //turn on the modulator! 
    envm.keyOn();   
    mPeakPointDur => now;  
    envm.keyOff(); 
    length - mPeakPointDur => now; 
} 
 
fun void playEnvc( dur length, float cADSR[] ) 
{ 

Note that the last line in this function advances time – you need this line to allow enough time for the 
sporked functions to run in their entirety! 



    //get values for carrier ADSR envelope 
    length * cADSR[0] => dur A; 
    length * cADSR[1] => dur D; 
    cADSR[2] => float S; 
    length * cADSR[3] => dur R; 
     
    //set ADSR envelope for envc 
    envc.set( A, D, S, R ); 
    // open envelope (start attack) 
    envc.keyOn(); 
    // wait through A+D+S, before R 
    length-envc.releaseTime() => now; 
    // close envelope (start release) 
    envc.keyOff(); 
    // wait for release 
    envc.releaseTime() => now; 
} 
 
playFM( 75, 440, 800, 10::second, .5, [.3,.2,.5,.1] ); 
 
 
As in the last lab, you should record your sound as a deliverable. To record the output of a ChucK file to 
a .wav, include the following in your code before the playFM function:  

// write to a file  
dac => WvOut out => blackhole; 
 me.sourceDir() + "/LASTNAME_FM.wav" => string _capture;  
_capture => out.wavFilename;  
 
Label your file as LASTNAME_FM.wav. 
 

For those interested, if you had to actually calculate the carrier frequency 
values, you’d had to do the following calculations. Essentially, FM synthesis “by hand”: 
 
SinOsc carrier => dac; //carrier 
SinOsc modulator => blackhole; //modulator 
 
220 => float cf; //carrier freq (pitch) 
6 => float mf; //modulator freq (vibrato rate) 
1 => float index; //index of modulation (vibrato depth) 
 
mf => modulator.freq; //set the modulator frequency 
 
//loop 
while( true ) { 
   cf + (index*modulator.last()) => carrier.freq; //setting carrier freq 
   1::samp => now;  
} 


