
Mikael Laurson and Mika Kuuskankare

PWGL BOOK

(version 1.0 beta RC 17)

July 31, 2011

2

Contents

Introduction . 11

1 Overview 13
1.1 Quick-Start . 13
1.2 User-Interface . 13

1.2.1 Utilities Menu . 13
1.2.2 Mouse Operations . 14
1.2.3 Keyboard Shortcuts . 14
1.2.4 Documentation . 14

1.3 PWGL-Keyboard-Shortcuts . 14
1.4 2D-Keyboard-Shortcuts . 16
1.5 Main-Menus . 17

1.5.1 File . 17
1.5.2 Edit . 17
1.5.3 PWGL . 18
1.5.4 Patches . 18
1.5.5 Help . 18
1.5.6 Utilities . 18

1.6 Preferences . 18
1.6.1 PWGL Preferences . 18
1.6.2 Audio/Midi Setup . 19
1.6.3 Sample Paths . 20

1.7 Tutorials . 20
1.8 Programming-Interface . 20

1.8.1 Errors . 20
1.8.2 Textual Programming . 21
1.8.3 Libraries . 21

1.9 Libraries . 21
1.9.1 General Information about PWGL Libraries 21

1.9.1.1 Where Libraries Are Installed 21
1.9.1.2 Creating a PWGL Library 21

1.9.2 Techincal Details . 22
1.9.2.1 Constituent Bits of a Typical Library 22
1.9.2.2 The ASDF System Definition 22
1.9.2.3 Defining Your Own Package 23

3

4

1.9.2.4 Defining Standard Lisp Code 23
1.9.2.5 Defining Boxes . 23
1.9.2.6 Defining Menus . 23
1.9.2.7 Compiling Your Library 23
1.9.2.8 Tutorial Patches . 24
1.9.2.9 Library Properties . 24

1.10 Documentation . 24
1.11 Publications . 25
1.12 Credits . 26

1.12.1 Development Team . 26
1.12.2 Third-Party Libraries . 26

2 Tutorial 27
2.1 Basic . 27

2.1.1 Start-Here . 27
2.1.2 Abstraction . 28
2.1.3 Extendable . 29
2.1.4 Input-Boxes . 30
2.1.5 Trigger-Boxes . 31
2.1.6 Sliderbank . 32
2.1.7 Application-Input-Boxes . 33
2.1.8 Database-Input-Boxes . 34
2.1.9 Constructor-Boxes . 35
2.1.10 Programming . 36
2.1.11 Box-Creation . 37

2.2 Control . 38
2.2.1 PWGL-Map1 . 38
2.2.2 PWGL-Map2 . 39
2.2.3 Circ . 40
2.2.4 Switch . 41
2.2.5 Const-Value . 42
2.2.6 PWGL-Value1 . 43
2.2.7 PWGL-Value2 . 44
2.2.8 PWGL-Value3 . 45
2.2.9 Reduce-Accum . 46

2.3 Editors . 47
2.3.1 Introduction . 47
2.3.2 2D . 47

2.3.2.1 Spiral . 47
2.3.2.2 Interpol-Bpfs . 48
2.3.2.3 Bezier . 49
2.3.2.4 Bezier-to-BPF . 50
2.3.2.5 2D-Constructor . 51
2.3.2.6 2D-Chord-Seq . 52
2.3.2.7 PWGL-Sample . 53
2.3.2.8 BPF-Arithmetic . 54

5

2.3.2.9 Marker . 55
2.3.3 Chord-Editor . 56

2.3.3.1 Overtone-Arp . 56
2.3.3.2 Chord-Matrix . 57
2.3.3.3 Circ-Chords . 58
2.3.3.4 Constructing-ENP-Objects-1 59

2.3.4 Score-Editor . 60
2.3.4.1 Transpose-Chords . 60
2.3.4.2 ENP-Constructor . 61
2.3.4.3 ENP-Constructor-Mix 62
2.3.4.4 ENP-Object-Composer 63
2.3.4.5 ENP-Score-Notation-Filter 64
2.3.4.6 Advanced-Topics . 65
2.3.4.7 Adjoin-Voices . 66
2.3.4.8 Collect-Objects . 67
2.3.4.9 Constructing-ENP-Objects-2 68
2.3.4.10 Constructing-ENP-Objects-3 69
2.3.4.11 Canvas-Expression . 70

2.3.5 Scripting . 71
2.3.5.1 Scripting Syntax . 71
2.3.5.2 Mark-Matchings . 72
2.3.5.3 Analysis . 73

2.3.5.3.1 ENP-Script 73
2.3.5.3.2 Schoenberg-Op25 74
2.3.5.3.3 Kuitunen-Vocal-Texture 75
2.3.5.3.4 Parallel-Fifths 76

2.3.5.4 Score Manipulation . 77
2.3.5.4.1 Arpeggio-Chords 77
2.3.5.4.2 Beethoven-Expressions 78
2.3.5.4.3 Chopin-Octaves 79
2.3.5.4.4 RTM-Modification 80
2.3.5.4.5 Chopin-Layout 81
2.3.5.4.6 Reassigning-Pitches 82

2.3.6 Rhythm . 83
2.3.6.1 Basic . 83
2.3.6.2 Random-Rhythms . 84
2.3.6.3 Pulses . 85
2.3.6.4 Rhythm-Database . 86

2.4 Special-Boxes . 87
2.4.1 Display-Box . 87

2.4.1.1 OpenGL Macros . 87
2.4.1.2 Colors . 89
2.4.1.3 Examples . 92

2.4.1.3.1 Basic . 92
2.4.1.3.2 Using-Variables 93
2.4.1.3.3 Macros . 94

6

2.4.1.3.4 Lorenz-Attractor 95
2.4.2 Shell . 96

2.4.2.1 Introduction . 96
2.4.2.2 Basic-Principles . 97

2.4.2.2.1 Basics . 97
2.4.2.2.2 Managing-Options 98
2.4.2.2.3 Error-Handling 99
2.4.2.2.4 Output . 100

2.4.2.3 Examples . 101
2.4.2.3.1 Simple-Io-Example 101
2.4.2.3.2 Opening-and-Viewing 102
2.4.2.3.3 Executing . 103
2.4.2.3.4 Executing-Script 104
2.4.2.3.5 Redirection 105
2.4.2.3.6 Piping . 106
2.4.2.3.7 Hairy-Example 107
2.4.2.3.8 Scripting . 108

2.4.3 Code-Box . 109
2.4.3.1 Introduction . 109
2.4.3.2 MIDI-List-to-Score . 110
2.4.3.3 Create-Bpfs . 110
2.4.3.4 PMC-Examples . 111
2.4.3.5 Transpose-Chords-V2 112
2.4.3.6 Function-Argument . 113
2.4.3.7 Series-Filter . 114
2.4.3.8 Multi-Eval . 115

2.4.4 Frame-Box . 116
2.5 Constraints . 117

2.5.1 Introduction . 117
2.5.1.1 Main Components . 118

2.5.2 Overview . 118
2.5.2.1 Search-Space . 118

2.5.2.1.1 Search-Space Examples 118
2.5.2.2 Search-Space . 120
2.5.2.3 PM-Syntax . 121

2.5.2.3.1 PMC Rule Structure 121
2.5.2.3.2 PM-Part . 121
2.5.2.3.3 Lisp-Code Part 121
2.5.2.3.4 Pattern Matching Examples 121

2.5.2.4 PM-Syntax . 122
2.5.2.5 PMC-Rule-Examples . 123
2.5.2.6 PMC-Rule-Examples . 123
2.5.2.7 Heuristic-Rules . 124
2.5.2.8 Heuristic-Rule-Examples 125
2.5.2.9 Score-PMC-Syntax . 125

2.5.2.9.1 Score-PMC Rule Structure 125

7

2.5.2.10 Accessors . 126
2.5.2.10.1 Accessors . 126
2.5.2.10.2 Examples . 126
2.5.2.10.3 Accessor Test 127

2.5.2.11 Accessors1 . 127
2.5.2.12 Accessors2 . 128
2.5.2.13 Accessors3 . 129
2.5.2.14 Selectors . 130

2.5.2.14.1 Selector Keywords 130
2.5.2.14.2 Examples . 131

2.5.2.15 Selectors . 131
2.5.2.16 M-Method . 132

2.5.2.16.1 M-Method Keywords 133
2.5.2.16.2 Examples . 133

2.5.2.17 Utility-Functions . 134
2.5.2.18 Score-PMC-Rule-Examples 135

2.5.3 Heuristic . 135
2.5.3.1 Profile-PMC . 135
2.5.3.2 Heuristics-W-Menu-Box 136
2.5.3.3 Heuristics-W-Score-Bpfs 137

2.5.4 PMC . 138
2.5.4.1 Cartesian-All-Perm . 138
2.5.4.2 12-Note-Chord . 139
2.5.4.3 PMC-PCS-Ex . 140
2.5.4.4 All-Interval-Series . 141
2.5.4.5 All-Interval-Series-2-Wildcard 142
2.5.4.6 PMC-Beats . 143
2.5.4.7 Subsets . 144
2.5.4.8 Fantasiesonnightfantasies 145
2.5.4.9 Fund-Suspension-Chain 146

2.5.5 Score-PMC . 147
2.5.5.1 PMC Vs-Score-PMC . 147
2.5.5.2 3-Voice . 148
2.5.5.3 6-Voice . 149
2.5.5.4 Chord . 150
2.5.5.5 Grace . 151
2.5.5.6 HSG . 152
2.5.5.7 6-Z47b-Blues . 153
2.5.5.8 Grace-Duetto . 154
2.5.5.9 First-Species-Counterpoint 155
2.5.5.10 Alberti-Bass . 156

2.5.6 RTM . 157
2.5.6.1 Introduction . 157
2.5.6.2 Rnd-Mod-RTM . 158
2.5.6.3 2-Part-RTM-Textures . 159
2.5.6.4 Reduce-RTM . 160

8

2.5.6.5 8-Voice-Attack-Dens . 161
2.5.6.6 RTM-Simulation . 162
2.5.6.7 RTM-Imitation1 . 163
2.5.6.8 RTM-Imitation2 . 164

2.5.7 Expression-Access . 165
2.5.7.1 Basic-Expression-Access 165
2.5.7.2 Advanced-Expression-Access 166
2.5.7.3 Sample-Score-BPF . 167

2.6 PC-Set-Theory . 168
2.6.1 Exploring-ICV . 168
2.6.2 Subsets-Distribution . 169
2.6.3 Supersets-Distribution . 170

2.7 Synth . 171
2.7.1 Introduction . 171

2.7.1.1 Synth Boxes . 171
2.7.1.2 Multichannel Signals 172
2.7.1.3 Developer Tools . 172

2.7.2 Basic . 172
2.7.2.1 Sine . 172
2.7.2.2 RT-Sliders . 173
2.7.2.3 Vibrato . 174
2.7.2.4 File-Mode . 175
2.7.2.5 Envelope . 176
2.7.2.6 Sample-Load . 177
2.7.2.7 Sample-Play . 178
2.7.2.8 Interpolation . 179

2.7.3 Vector . 180
2.7.3.1 Basic-Vector . 180

2.7.3.1.1 Slider-Bank-Drummer 180
2.7.3.1.2 Randi-Bell 181
2.7.3.1.3 Combiner . 182
2.7.3.1.4 Indexor . 183
2.7.3.1.5 Envelope-Vector 184

2.7.3.2 Multichan . 185
2.7.3.2.1 Multichan-Drummer 185
2.7.3.2.2 VBAP2D . 186
2.7.3.2.3 Combine-Stereo-Signals 187
2.7.3.2.4 Distance . 188

2.7.3.3 Vector-Applications . 189
2.7.3.3.1 Intpol-Filterbank 189
2.7.3.3.2 Reson-Mix 190
2.7.3.3.3 Masterswitch 191

2.7.4 Copy-Synth-Patch . 192
2.7.4.1 Copy-Synth-Patch . 192
2.7.4.2 CSP-Bells . 193

2.7.5 Synthesis-Methods . 194

9

2.7.5.1 Additive . 194
2.7.5.2 Subtractive . 195
2.7.5.3 Fm . 196
2.7.5.4 Formants . 197
2.7.5.5 Granular . 198

2.7.6 MIDI . 199
2.7.6.1 MIDI-Membrane . 199

2.7.7 Compiler . 200
2.7.7.1 Stereo-Bell . 200

2.7.8 RT-Sequences . 201
2.7.8.1 Introduction . 201

2.7.8.1.1 RT-Sequences and Compositional Sketches . . 201
2.7.8.1.2 With-Synth Macros 201
2.7.8.1.3 Synth-Events and Synth-Triggers 202
2.7.8.1.4 . 202
2.7.8.1.5 Triggering RT-Sequences 203

2.7.9 RT-Seq1 . 203
2.7.10 Poly-Seq . 204
2.7.11 Score1-Sine . 205
2.7.12 Score2-Envelope . 206
2.7.13 Score3-Expressions . 207
2.7.14 Score4-Vector . 208

10

Introduction

PWGL is an OpenGL based visual programming language specialized in computer aided
composition and sound synthesis. PWGL is a successor of PatchWork (PW) and aims to
develop and improve many of the useful concepts behind PW. PWGL provides a direct
access to its base languages, Common Lisp and CLOS. Besides a library of basic boxes
(arithmetic, lisp functions, list handling, loops, abstractions, conversion, etc.), PWGL
contains several large scale applications, such as:

(1) Expressive Notation Package, ENP (represented in PWGL by Score-editor and
Chord-editor)

(2) 2D-editor

(3) PWGLSynth

(4) Constraints

This Help Viewer contains some basic information and several example patches demon-
strating PWGL. For more information see the entry ’Overview/Tutorials’. PWGL is dis-
tributed as freeware. Currently, it runs under Mac OS X (Universal) and Windows
XP operating systems. It is downloadable from our web page (www.siba.fi/PWGL).
PWGL is distributed in two different configurations: as a standalone application,
called ’PWGL-application’, that is targeted mainly to end users, and as a developers
version, ’PWGL-binaries’, that requires the LispWorks 5.0 programming environment
(www.lispworks.com). This version will be made available as a pre-compiled module
that is loaded on top of LispWorks.

11

12

1 Overview

1.1 Quick-Start

A PWGL patch is the main workspace where the user can add boxes and create relations
between them using connections.
All main operations are performed using a 3-button mouse, where the left mouse button
is used for selecting, dragging, adjusting the size of a box and editing input boxes. The
scroll wheel (middle button) is used for pan and zoom operations. The right button
is used for context sensitive popup menus (there are separate popup menus for: main
window, each box type, each input box type, and connections).
When the mouse is moved above a patch window the cursor indicates what operations
are possible in the current mouse position.
Boxes can be added using the window popup menu (right-click on the window area).
Boxes can be positioned by dragging them (left-click on the box area). Connections can
be created by clicking the mouse on an output of a box and dragging the resulting red
connection line above an input-box of another box (the connection line becomes green).
Selected boxes and connections can be removed from the patch by typing the ’delete’
key or by using the cut operation.
Some operations are typically performed directly from the keyboard such as: patch
evaluation (’v’), playing (’space’), and box or window documentation (’d’). For more
information see the ’Keyboard Shortcuts’ menu entry under the ’Help’ menu.

1.2 User-Interface

1.2.1 Utilities Menu

When PWGL is launched the main menu bar contains a menu called ’Utilities’. This
menu is used to switch between Listener (Command/Control+L, not available in
PWGL-Application), PWGL output (Command/Control+B) and PWGL (Command/Con-
trol+1). Command/Control+2 and Command/Control+3 can be used to access the
current ENP and 2D window. If the current window is a PWGL, a ENP or a 2D window,
the menu bar contains a ’Help’ menu to access tutorials, keyboard shortcuts, documen-
tation, etc.

13

14 1. OVERVIEW

1.2.2 Mouse Operations

PWGL requires currently a 3-button mouse (left button, scroll wheel, right button).
Mouse operations are as follows (these operations typically require only one hand):

(1) move (i.e. no buttons are pressed) changes the cursor (’arrow’, ’hand’, ’pointing-
finger’, ’resize’, ’left/right-resize’, ’up/down-resize’, ’cross’) depending on what kind
of object is under the current mouse position. The cursor shape gives a hint of what
operation is going to occur if the mouse is being pressed.

(2) left button can be used to select boxes/input-boxes/connections, move boxes,resize
boxes, scroll menu input-boxes, edit numerical values, etc. If left button is double-
clicked the system typically opens an editor depending on where the click occurred
(window-click opens a Lisp function dialog, box-click a box-editor, abstraction-click
an abstraction, editor input-box-click an editor application window, etc.). The shift
key can be used to extend the current selection.

(3) scroll wheel (middle button) allows to pan (middle button drag), or zoom (scroll
wheel up/down) either globally or locally. Control middle button drag allows to
zoom continuously.

(4) right button is used for context sensitive popup menus. A window-click opens a
window popup menu, a box-click a box popup menu, an input-box-click a input
popup menu, a connection-click a connection popup menu, and so on.

1.2.3 Keyboard Shortcuts

Keyboard shortcuts can be inspected by selecting the ’Keyboard Shortcuts’ menu from
the ’Help’ menu.

1.2.4 Documentation

Window documentation can be accessed by typing ’d’ (no boxes should be selected) or
from the window popup menu. Box documentation can be accessed by selecting the
box and typing ’d’ or from the box popup menu.

1.3 PWGL-Keyboard-Shortcuts

Shortcut Documentation
Command + n New patch
Command + o Open patch
Command + s Save patch
Command + S Save patch as
Command + e Export EPS
Command + u Load library

1.3. PWGL-KEYBOARD-SHORTCUTS 15

Command + U Autolaod libraries
Command + z Undo
Command + x Cut
Command + c Copy
Command + v Paste
Command + a Select All
Command + d Duplicate
Command + f Fit in Window
Command + . Stop PWGL Process(es)
Command + ? PWGL Help
Up move an input box up/down
Down move an input box up/down
Left move to previous measure
Right move to next measure
Backspace delete boxes or connections
Tab wiki-link-show-target
Shift + Tab shift-Tab: select next window snapshot
Escape Reset frame-box mode
Space start/stop ENP score/2D-editor
+ add input-box/input-boxes
- remove input-box/input-boxes
0 set box-string to empty
1 send ’user-key-received’ message to boxes with trigger-string = 1
2 send ’user-key-received’ message to boxes with trigger-string = 2
3 send ’user-key-received’ message to boxes with trigger-string = 3
4 send ’user-key-received’ message to boxes with trigger-string = 4
5 send ’user-key-received’ message to boxes with trigger-string = 5
6 send ’user-key-received’ message to boxes with trigger-string = 6
7 send ’user-key-received’ message to boxes with trigger-string = 7
8 send ’user-key-received’ message to boxes with trigger-string = 8
9 send ’user-key-received’ message to boxes with trigger-string = 9
A add special synth output for recursive connections
C set box complement color
D show slider numeric display
L toggle abstraction lambda mode on/off
M minimize/maximize box
N Select previous frame-box
P open play-mixer window
S select current ENP-score
T edit tags
X align selected boxes by x co-ordinates - center alignment
a apply add operation to selected boxes
c set window color or selected box/input-box/connection color
d show documentation

16 1. OVERVIEW

e edit definition
f print code compilation expression of an abstraction in ’lambda’

mode
h Show man
i inspect
k apply kill operation to selected boxes
l toggle lock on/off
m switch box input connection mode or connection draw mode
n Select next frame-box
o open application windows or open box
p set shell-box post-process
q toggle quicktime player on or off
r reset PWGL box
s stop synth or stop PMC processes
t Show box tutorial
v patch-value from the selected output(s) or the left-most output
x align selected boxes by x co-ordinates - the reference point is given

by the upmost box
y align selected boxes by y co-ordinates - the reference point is given

by the left-most box
z zoom inside next sweep selection
F7 replace an old version of a box
F8 print synth-debug info
F12 print decompilation expression

1.4 2D-Keyboard-Shortcuts

Shortcut Documentation
Command + o Open 2D-objects
Command + w Close window
Command + e Export midifile
Command + i Import midifile
Command + z Undo
Command + x Cut
Command + c Copy
Command + v Paste Object
Command + V Paste selection
Command + a Select All
Command + d Duplicate Object
Command + f Fit in Window
Command + ? PWGL Help
Enter select main PWGL window
Up bpf: increase selected point distances in x direction

1.5. MAIN-MENUS 17

Down bpf: decrease selected point distances in x direction
Prior scroll to previous page
Next scroll to next page
Home scroll to begin
End scroll to end
Left bpf: decrease selected point distances in y direction
Right bpf: increase selected point distances in y direction
Backspace delete active object
Tab select next object as active
Shift + Tab select previous object as active
Space play/stop sample/chord-seq
0 x scroll to 0
= x/y scroll to 0/0
F fit inside selection
L fit inside co-ordinate limits
R reload default sample
c edit active object color
f fit active-object in window
i inspect 2D view
n rename active object
z zoom inside next sweep selection

1.5 Main-Menus

1.5.1 File

Contains standard file menu-items such as: New, Open..., Close Window, Save, and Save
As.... The menu-item ’Export EPS...’ exports the current patch as an ’.eps’ file. Finally
there are options to load libraries. The term ’PWGL-library’ refers to official libraries
that are distributed inside the ’PWGL’ folder to all users, whereas the term ’User-library’
refers to private user libraries that are typically found in the ’PWGL-User’ folder (inside
your home folder). You can install your own libraries in both places - installing them
outside the PWGL-Application folder has the simple benefit of not accidentally deleting
them, if you install a new version of PWGL. For more information on writing your own
libraries see the Section ”Libraries”.

1.5.2 Edit

Contains standard edit menu-items: ’Undo’, ’Cut’, ’Copy’, ’Paste’, ’Select All’, and ’Dupli-
cate’. All these have a more or less standard behaviour, except for ’Undo’, that works
only when making destructive changes where boxes are removed (either using cut or
delete operations) from a patch. Note that undo has to be called immediately after
deletion operation.

18 1. OVERVIEW

1.5.3 PWGL

Contains menus for ’About PWGL’ and three preference options: ’PWGL Preferences...’,
’Audio/MIDI Setup...’, and ’Sample Paths...’. Two menu-items, ’Fit In Window’ and ’Stop
PWGL process’, allow to scale the contents of a patch to fit the current window size and
to stop the current process. Each of the preference options open a dialog, where the
user can specify default values and/or behaviour of the PWGL system. Each option can
be saved and loaded (the preferences are saved inside ’PWGL-User’). Preferences are
discussed in more detail in the section ’Preferences’

1.5.4 Patches

Contains menu-items for all main patch windows that are currently open. The current
patch has a ’carrot’ sign before the patch name. All patches that have been modified are
marked with a ’dot’.

1.5.5 Help

is used to access tutorials and documentation (’PWGL Help...’ and ’ENP Help...’), and
keyboard shortcut listings (’Keyboard Shortcuts...’). This menu also contains two refer-
ence dialogs. The first one, ’PWGL box reference...’, lists all PWGL boxes that are found
in the main window popup menu of a PWGL window. The dialog can be sorted either
according to box name or to menu name. It shows the documentation string of the se-
lected box and also lists all tutorials where this box is used. The tutorials can be opened
by clicking at the respective tutorial pathname. The second one, ’Constraints’, serves as
a reference for the most important utility functions used by the constraints system.

1.5.6 Utilities

is used to switch between Listener (Command/Control+L, not available in PWGL-
Application), PWGL output (Command/Control+B) and PWGL (Command/Con-
trol+1). Command/Control+2 and Command/Control+3 is used to access the current
ENP and 2D window.

1.6 Preferences

1.6.1 PWGL Preferences

contains defaults for patch windows, window popup menus, connections, boxes, synth,
2D, ENP and MIDI.

(1) General The ’Active menu items’ option is used to specify which menus are visible
in the main window popup menu when the ’Menu Filter’ option (see the next pref-
erence option) is on. If the ’Menu Filter’ option is off, then all kernel and loaded
library menus available in the system are shown. The ’Menu Shortcut’ option spec-
ifies which menu item can be accessed directly using a shift right-button click. The

1.6. PREFERENCES 19

’Compact tutorial’ option allows to specify whether the tutorial window is drawn in
compact mode or not.

(2) Appearance Here the user can control various appearance options dealing with
default connection mode, box coloring scheme, skin name, and window scaler.

(3) Synth Contains general sound synthesis defaults that will be copied by each new
’synth-box’ (these defaults can be locally modified and saved using the box editor).
These parameters deal with saving of the output of a synthesis patch to a file (i.e.
when a synthesis patch is run in ’file’ mode) and they are used to define the current
file format, sample rate, bit depth, file mode, and oversampling. The parameter
’extra time’ is used to extend the file length when working, for instance, with rever-
berated signals that require extra decay time. ’Pathname’ gives the current sound
sample pathname.

(4) Constraints When ’Multi-search’ is set to ’better response’, then during search the
graphics part of the system is responsive (i.e. the user can stop processes, play
scores, check partial solutions). This option is usually recommended as the user
has full control of the system. If ’Multi-search’ is set to ’better performance’, the
system becomes less responsive and it may take several seconds before the system
responds to mouse clicks. The search is here typically much faster than in the first
option. This mode is recommended when a search has been already tested in the
slower mode, and the user needs full speed.

(5) MIDI Contains the current MIDI device. Specialized MIDI devices can be defined
by the user. The pitchbend range parameter is used for micro-tonal tuning (note
that this parameter should match the pitchbend settings of your MIDI synthesizer).
Micro-tonal tuning is realized automatically by analyzing the score and reserving
channels for playback. If a score can be played with equal temperament then only
one channel is reserved, in case of 1/4 tone temperament 2 channels are reserved,
in case of 1/8 tone temperament 4 channels are reserved, and so on. The maximum
resolution is 1/64 tone temperament that requires 16 channels. Play speed scaler
is used to scale the playback speed of MIDI information (1.0 no change, 0.5 half
speed, 2.0 double speed). Chord-editor arpeggio speed is given in seconds. When
’Use default startup volume’ is on, then before the actual playback starts, the sys-
tem sends to all channels MIDI volume messages (the volume value is given in the
next parameter input). When ’Play continuous control’ is on, then the system au-
tomatically sends control information when it encounters in the score continuous
dynamics expressions (either crescendo or diminuendo markings), or Score-BPFs
(the type of the Score-BPF must be ’:midi-cc’). In the latter case the the Score-BPF
can contain up to three separate bpfs each controlling its own continuous control
information. The controller numbers (1-127) for each case (dynamics expression,
bpf 1-3) are given in the next four parameter inputs.

1.6.2 Audio/Midi Setup

is used to define current audio out/in and MIDI devices. In Mac the user has also
the option to use the internal QuickTime synthesizer. PWGL supports eight MIDI-out

20 1. OVERVIEW

ports (’A’ channels 1-16, ’B’ channels 17-32, ’C’ channels 33-48, ’D’ channels 49-64,
’E’ channels 65-80, ’F’ channels 81-96, ’G’ channels 97-112, ’H’ channels 113-128), for
MIDI-in there is only one port.

1.6.3 Sample Paths

A PWGL patch typically saves all required information (e.g. windows, boxes, connec-
tions, text-files, etc.) so that the patch is functional even when it is later used in another
machine or even in another operating system. Sound samples are an exception in this
scheme as only the pathname of the sound sample is saved. This can potentially create
problems if a patch is loaded in another environment. ’Sample Paths’ can be used to
define directory pathnames that are used in case the absolute sample pathname that
was stored along with the patch is not found. Each directory pathname is tested one by
one if a sample with the same file name is found within the current directory.

1.7 Tutorials

The tutorial part of this Help Viewer aims to demonstrate how PWGL works in practice.
The examples are organized as a hierarchical folder structure - shown in the left part
column of the help window - that contains at the leaves patch examples (file names
with the extension ’.pwgl’). When a patch file name is selected, the respective patch
window is opened in the right part of the tutorial window (if a patch is large there
can be noticeable delay, because the patch is loaded from the hard disk). The patches
are fully functional, i.e. they can be evaluated, played, boxes and connections can be
added or deleted, and so on. Saving is disabled. Some tutorial patches have a window
documentation text which can be opened by typing ’d’ (no boxes should be selected) or
by choosing the ’Window documentation...’ option in the window popup menu.
There is also a dedicated tutorial for ENP (found in the ’Help’ menu).

1.8 Programming-Interface

PWGL is a cross-platform application. Therefore, when naming files and folders you
should avoid the following directory separator and wild-card characters: ’:’, ”, ’/’, ’*’, ’?’,
’”’, ’<’, ’>’, and ’|’. Generally you should also avoid spaces in file and directory names
as they pose legibility problems at least in Unix based systems and Web browsers. The
recommended characters in safe cross-platform file names include ’a-z’, ’A-Z’, ’0-9’, ’-’,
and ’ ’. If you plan to use mixed mode alphabetic letters you should also note that most
Unix file systems are case sensitive. Also, if you plan to transfer files over a network,
certain server software may truncate long file names.

1.8.1 Errors

As PWGL-Application is a programming environment, the user will encounter occasion-
ally error situations. PWGL has error handling routines that will open a dialog with a

1.9. LIBRARIES 21

text indicating the cause of the error. By clicking the ’OK’ button the user can typically
continue to use PWGL without having to restart the system. Sometimes, however, an
error situation may open the ’Terminal’ application. In this case the ’Terminal’ window
displays a list of numbered options that indicate how to continue. Normally it is best to
choose the ’abort’ option by writing: ’:a’ followed by return or enter.

1.8.2 Textual Programming

PWGL-Application contains three basic textual tools that allow Lisp programming: text-
box, Lisp-code box, and code-box. Code evaluation and compilation options are found
in the ’Eval’ menu.
For your personal code never use the system package ’:ccl’ or ’system’.
For more details see the tutorial patches:

(1) Basic/programming.pwgl

(2) Basic/box-creation.pwgl

1.8.3 Libraries

The ’PWGL-library’ folder in the distribution folder contains an example library template
called ’mylib’. This example contains several demo boxes and a hierarchical user menu.
See also the next entry of this tutorial.

1.9 Libraries

1.9.1 General Information about PWGL Libraries

1.9.1.1 Where Libraries Are Installed

PWGL searches for Libraries in two locations. One inside the PWGL-Application folder,
the other inside your home folder (click on the links below to see the exact location).

1.9.1.2 Creating a PWGL Library

The easiest way of creating a new library is to go to File I Create PWGL Library... and use
the Library Tool to fill in the appropriate information. When finished the tool creates the
required components, all the needed files and folders along with some additional parts,
such as dynamically updated front and info pages, logo, etc. It is a good practise to try
to provide all the pertinent information about the library. It helps maintaining and dis-
tributing your work. It also makes it easier to use some of the advanced documentation
features of PWGL, details of which are given in the following sections.

22 1. OVERVIEW

1.9.2 Techincal Details

This section enumerates the key points you need to know in order to be able to develop
your own libraries. The PWGL user library scheme relies on the ASDF system definition
facility. You should take a moment to get acquainted with ASDF. A good place to start
the official documentation: asdf Manual

1.9.2.1 Constituent Bits of a Typical Library

Writing your own libraries requires a couple of files. You can find an example library in
pwgl-library/mylib.
The following sections explain briefly the purpose of each file:

FILE SECTION
mylib.asd Defining an ASDF system
package.lisp Defining your own package
standard-lisp-code.lisp Defining standard lisp code
boxes.lisp Defining boxes
menus.lisp Defining menus
tutorial Tutorial patches
lib-properties.txt Library properties

1.9.2.2 The ASDF System Definition

An ASDF system basically lists all the source files of your library. Typically, they need to
be loaded in a certain order. An easy way of specifying this is to use the option :serial
t and then list them in the desired order after the :components keyword as shown in
the following example:� �
(in-package :asdf)

(defsystem :mylib
;; :serial t means that each component is only compiled , when the
;; predecessors are already loaded
:serial t
:components
((: file "package") ; use your own package
;; macros first , if you need some
(:file "macros")
;; define your boxes and other lisp functions
(:file "code")
;; specify the entries in the popup-menu , which is used to add
;; boxes to a patch (right-click)
(:file "menus")))� �

If you ever need more options for defining your system, you can look at: Defining
systems with defsystem

http://constantly.at/lisp/asdf/index.html
http://constantly.at/lisp/asdf/Defining-systems-with-defsystem.html#Defining%20systems%20with%20defsystem
http://constantly.at/lisp/asdf/Defining-systems-with-defsystem.html#Defining%20systems%20with%20defsystem

1.9. LIBRARIES 23

1.9.2.3 Defining Your Own Package

It is recommended that you define your own package for your library, as this keeps its
symbols together and also allows for autoloading your library by simply opening a patch
that uses it (see also ’Library properties’).

1.9.2.4 Defining Standard Lisp Code

You can write of course any lisp code you like! (see ’Compiling your library’) Among all
the possibilites you have there, you will mainly want to define functions using ’defun’
and possibly macros using ’defmacro’.

1.9.2.5 Defining Boxes

The boxes make up the interface of your library - those functions that are actually used
from a patch. A simple box definition looks as follows:� �
(PWGLdef fn1 ((a 1))

"fn1"
()

(list a))� �
PWGL provides a special definer for boxes: ’PWGLdef’ A box definition works similarly
to a function definition using ’defun’ (in fact a box is a function!). But ’PWGLdef’ allows
you to make a much richer definition. You can specify default values and control the
appearance of the box in much detail. For more information see Tutorial/Basic/box-
creation.pwgl

1.9.2.6 Defining Menus

This defines the entries in the popup-menu that you get with ctrl-click. If you need more
explanation about the syntax of ’add-PWGL-user-menu’, please ask us on the mailing
list.� �
(ccl:: add-PWGL-user-menu
’(: menu-component

("MyLib"
((fn1)
("fns1" (fn2))
("fns2" (fn3 fn4)

("deepfns2" (fn5)))
(: menu-component
(fn6 fn7))))))� �

1.9.2.7 Compiling Your Library

If you load a library using File I Load library, the library will be automatically compiled,
before it is loaded. The rationale of this is that you can write your own lisp code and
use it with PWGL (or download any thirdparty lisp code from the internet) even if

24 1. OVERVIEW

you are using PWGL standalone (this is a new feature in PWGL-rc10). Depending on
which PWGL system you are using, the compilation happens slightly differently. On
all systems, a so called ’fasl-file’ will be placed next to the lisp source code file. If you
are using PWGL standalone (without LispWorks), for a lisp file called boxes.lisp the
compiled version will be called boxes.clufasl. This is a ’universal fasl format’, that can
be loaded on any platform (mac, windows ...). If you are using the Binary version of
PWGL together with LispWorks, a fasl file in the native format of the actualy platform
being used will be generated. If you need more information on this, please contact us
on the mailing list.

1.9.2.8 Tutorial Patches

If a library contains a folder called ’tutorial’ then this folder will appear (with the current
library name) in the PWGL Help navigation pane after the library has been loaded.
Typically this folder contains example patches and text files. The patches should use
a standard size (the correct size can be obtained from Window I Set Tutorial size). It
is also recommended that a tutorial patch should contain written documentation (the
documentation string can be added using Window I Edit Window...). For more lengthy
textual information you can use also a plain text file (with an extension ’.txt.’) where
the text part should be enclosed inside quotation marks.

1.9.2.9 Library Properties

The file ’lib-properties.txt’ is used to specify additional properties of a library in a lispy
format. For mylib this file currently contains:� �
(: package-names ("my-package"))� �
The property ’:package-names’ is used here, because the name of the package that mylib
uses is different from the library name (this property is only needed in such a case). It
allows a library to be automatically loaded, by simply opening a patch that uses it. More
additional properties will be used in the future to allow checking for updates on the web
etc...

1.10 Documentation

Here you find a collection of articles that are useful for understanding some of the
advanced tools in PWGL dealing with constraint programming, scripting, ENP-score-
notation, box design, and sound synthesis.
There are 2 articles related to our constraint syntax. The first one is an old text from
1996 that describes the basic PMC syntax. The second one, in turn, describes some
more recent work that deals with a new Score-PMC syntax (see the Score-PMC-syntax’
page in the ’Constraints’ section that explains the most recent syntax).
ENP-scipt is introduced in the following article:
’Recent Developments in Enp-Score-Notation’ discusses the main concepts behind ENP-
score-notation.

1.11. PUBLICATIONS 25

The following paper provides information for users who want to develop software for
PWGL.
’Multichannel Signal Representation in PWGLSynth’ gives an overview of our synthesis
system. We describe how to represent visually multichannel signals in a synthesis patch.

1.11 Publications

Here is a list of more recent publications dealing with PWGL, ENP and PWGLSynth:

M. Laurson and M. Kuuskankare. PWGL: A Novel Visual Language based on Com-
mon Lisp, CLOS and OpenGL. In Proc. of ICMC02, pp. 142-145, Gothenburg,
Sweden, Sept. 2002.

M. Kuuskankare and M. Laurson. ENP2.0 A Music Notation Program Implemented
in Common Lisp and OpenGL. In Proc. of ICMC02, pp. 463-466, Gothenburg,
Sweden, Sept. 2002.

M. Laurson and M. Kuuskankare. From RTM-notation to ENP-score-notation. In
Journees d’Informatique Musicale, Montbeliard, France, 2003.

M. Laurson and V. Norilo. RECENT DEVELOPMENTS IN PWSYNTH. In Proc. of
DAFx 2003, pp. 69-72, London, England, Sept. 2003.

M. Kuuskankare and M. Laurson. ENP-Expressions, Score-BPF as a Case Study. In
Proc. ICMC03, pp. 103-106, Singapore, Sept. 2003.

M. Laurson and M. Kuuskankare. Some Box Design Issues in PWGL. In Proc.
ICMC03, pp. 271-274, Singapore, Sept. 2003.

M. Laurson and V. Norilo. Copy-synth-patch: A Tool for Visual Instrument Design.
In Proc. ICMC04, Miami.

M. Kuuskankare and M. Laurson. Intelligent Scripting in ENP using PWCon-
straints. In Proc. ICMC04, Miami.

M. Kuuskankare and M. Laurson. Recent Developments in ENP-score-notation. In
Proc. SMC04, 2004.

M. Laurson and M. Kuuskankare. PWGL Editors: 2D-Editor as a Case Study. In
Proc. SMC04, 2004.

M. Laurson, V. Norilo and M. Kuuskankare. PWGLSynth, A Visual Synthesis Lan-
guage for Virtual Instrument Design and Control. Computer Music Journal, vol.
29, no. 3, pp. 29-41, 2005.

M. Kuuskankare and M. Laurson. Expressive Notation Package. Computer Music
Journal, vol. 30, no. 4, 2006.

26 1. OVERVIEW

1.12 Credits

PWGL is based on many concepts and ideas that were originally developed for Patch-
Work (Laurson, Rueda, Duthen, Assayag, Agon) and thus credit should be given to
numerous programmers, composers and researchers that were involved in this project.
However, PWGL has been completely rewritten and redesigned in order to create a mod-
ern cross-platform environment for computer assisted composition, analysis and sound
synthesis.

1.12.1 Development Team

The current research team at Sibelius Academy behind PWGL consists of Mikael Laur-
son, Mika Kuuskankare and Vesa Norilo. Recently the team has been augmented by
Kilian Sprotte.
The approximate contribution list within the project is as follows:

PWGL: Mikael Laurson, Mika Kuuskankare and Kilian Sprotte

ENP: Mika Kuuskankare

PWGLSynth: Vesa Norilo (C++ code), Mikael Laurson (PWGL interface)

Programming tools and CAPI interface: Mika Kuuskankare

A special thanks goes to Kimmo Kuitunen who has provided several tutorials for PWGL-
Help.

1.12.2 Third-Party Libraries

PWGL uses the following software packages that are distributed with their own respec-
tive licenses:

PortAudio Portable Real-Time Audio Library Copyright (c) 1999-2000 Ross
Bencina and Phil Burk

libsndfile by Erik de Castro Lopo (Released under the terms of the GNU Lesser
General Public License.) Copyright (c) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

FOMUS for Lilypond and MusicXML export Copyright (c) 2005, 2006 David
Psenicka, All Rights Reserved

MIDI (file I/O) Copyright (c) 2007 by David Lewis, Marcus Pearce, Christophe
Rhodes and contributors

2 Tutorial

2.1 Basic

2.1.1 Start-Here

This is a basic demonstration patch generating a sine wave function.
The final result can be seen in the ’2D-Editor’ box that is found in the bottom of the
patch.
To inspect any intermediate result select the respective box and press ’v’. The result will
be printed in the ’PWGL output’ window.
Documentation of the current patch window can be accessed by pressing ’d’ (note that
no boxes should be selected). In the tutorial this information is also shown either on
the right side of the window or below the navigation panel
Documentation of individual boxes are accessed by selecting the respective boxes and
by pressing ’d’.
For general user-interface issues (mouse operations, keyboard short-cuts, popup-menus,
etc.) see the ’User-Interface’ text in the ’Overview’ section.

27

28 2. TUTORIAL

sample-fun

sin 0

0.1 xmax

2D-Editor

Eobjects active

eval-box

pi

*

S

number

2

4

(1) select '2D-Editor' ->
(2) press 'v'

<- number of cycles

<- evaluate here to see the result

Figure 2.1: 01-start-here

2.1.2 Abstraction

An abstraction-box can be opened by a double-click (1).
An abstraction can have arbitrary many inputs and outputs (2 and 3). Abstraction inputs
and outputs are added in the abstraction-window using the window popup-menu.
The box either has the label ’A’ or ’La’ (for ’Lambda’).
In the former case, when evaluated, the abstraction-box returns a value as any other
PWGL-box (2 and 3). In example 3 the individual outputs can be evaluated by selecting
only the respective output and pressing the ’v’ key.
If the label is ’La’, the box is in a lambda-state and returns an ’anonymous function’,
that is, the result of compiling the contents of the abstraction window to a Lisp function
(4, 5 and 6). This output can be fed to a box that requires a function as input (typical
examples are for instance ’mapcar’ and ’PWGL-apply’).
Normally the number of inputs of the lambda-state abstraction box correspond directly
to the number of arguments of the resulting anonymous function (thus in (4) and (5)
the number of arguments is 1). In (6), however, the abstraction box with 2 inputs
results in a 1-argument function, as the second input is connected to a value-box. Thus
all connected inputs are excluded from the argument list of the resulting function. This

2.1. BASIC 29

scheme is useful in cases where the user wants to give directly from the top-level patch
extra data that is used internally by the function.

Abs1

A

transpose1

A

(60 67)

5

res

add5

La

midis

res

add5

La

midis

res

mapcar

function

(60 67)

transpose2

A

(60 67)

5

res union

An abstraction box (labelled with 'A' or 'La') contains an
abstraction-window and allows to hide patches inside sub-windows.

1 2 3

4 5

add-int

La

midis

int

res
mapcar

function

(60 67)

6

value-box

7

Figure 2.2: 02-abstraction

2.1.3 Extendable

This patch demonstrates some boxes with different argument lists. A box is extendable
if it has an arrow in the low-left corner. The arrow either points downwards or upwards.
In the first case input-boxes can be added. In the second case the box does not allow
anymore new input-boxes and input-boxes can only be removed.
To add input-boxes type ’+’, to remove them type ’-’.
The patch contains boxes with different argument lists.
Boxes that represent normal lisp function argument lists extend boxes either with one
input-box (&optional and &rest) at a time or with two input-boxes (&key).
The last box, Multi-PMC, has a more complex extension pattern of 3 and 4 input-boxes.

30 2. TUTORIAL

g+

non-extendable

0 0

+

&rest
S

0

position

&key

() (0 1)

approx-midi

&optional

60 2

0.0

A box is extendable if it has an arrow in the low-left corner.
To add input-boxes type '+', to remove them type '-'.

Abs1

A

Multi-PMC

3+4 pattern

(4* ((0_3)))

() () ()

Figure 2.3: 03-extendable

2.1.4 Input-Boxes

The main conceptual unit in PWGL is a box that contains typically one or several input-
boxes.
This patch gives an overview of some of the most commonly used input-boxes. The
properties of an input-box can be inspected and edited by selecting the ’edit input-box’
option from the input-box popup-menu item.
The first row shows the input-boxes for textual Lisp values like numbers, lists, sym-
bols, strings, etc. Note that the value input-boxes support the ’expand-list’ short-hand
notation that allows to generate automatically lists.
The second row shows several menu input-boxes. Both simple menus and hierarchical
menus are supported. A simple menu contains at the top-left side a small scroll triangle.
The hierarchical menu is represented by two scroll areas (one at the top-left side, one
at the bottom-left side). The top-level menus of a hierarchical menu can be changed
by dragging the bottom-left scroll area. Traditional popup-menus can be invoked with
a ctrl-click. The last box in the second row, called ’menu-box’, is special as it allows to
edit the contents of its menu input-box directly in a text-editor. The text-editor can be
opened by double-clicking the input-box.

2.1. BASIC 31

The third row shows a slider input-box and a button input-box.

num-box

step = 1

0

value-box

number

1.0

value-box

list

(1 2 (3 4))

num-box

step = 0.1

0

0.0

pwgl-circ

reset :no

(1 2 3)

gm-instrument

 hierarchical menu

1 Acoustic_Grand_Piano

sc-info

simple menu hierarchical menu

prime 3-1

value-box

expandlst

(4*(1_12))

number input-boxes and value input-boxes

menu input-boxes and hierarchical menu input-boxes

slider-bank with a slider input-box and a box with a button input-box

menu-box

1

Figure 2.4: 04-input-boxes

2.1.5 Trigger-Boxes

PWGL contains boxes that can be triggered from the keyboard or using external MIDI
controllers. This feature is mainly useful when using PWGL synth.
All trigger boxes in this patch, except the first one (code-box), are synth boxes (see the
’S’ label at the low-right corner of the boxes).
The trigger string (normally a number ranging from 1-9) can be edited by opening the
’edit box’ dialog (to open the dialog use the box popup menu). A green number (or
in more rare cases text) will appear at the left side of the box. If the user presses the
corresponding number from the keyboard, the box will triggered.
It is also possible to trigger a box using MIDI CC (continuous controller) numbers (1-
127). The small green MIDI CC number will appear at the low-right corner of the box
(see the upper row of boxes where the boxes have been assigned MIDI CC numbers 64,
65, and 66).
See the ’Synth’ tutorial for practical examples how to use the trigger feature.

32 2. TUTORIAL

code-box
1

C

sample-player

2

S

0 1.0

0.5 <<trig>>

envelope-trigger

3

S

0.0 <<trig>>

impulse-trigger

4

S

0.2 <<trig>>

line-trigger

5

S

-0.5 0.5

0.1 1.0

<<trig>>

trigger string ->

MIDI CC ->

Figure 2.5: 04b-trigger-boxes

2.1.6 Sliderbank

This patch gives some slider-bank examples. The properties of individual slider input-
boxes can be edited by selecting the ’edit slider...’ option from the input-box popup-
menu item.
The patch contains also a slider-bank with predefined slider setups (1). A setup can
be recalled by clicking one of the buttons below the slider-bank box. Individual slider
setups can be stored by pressing ’a’. This will store the current slider positions. Slider
setups can also be defined/edited by opening the box editor using the ’edit slider...’
option from the box popup-menu item. The setups are stored as a list of lists of slider
values.
In (2) the slider-bank responds to MIDI continuous control (CC) messages. This is
reflected by using green color at the slider handles; also there is a small numbered
green triangle at the low-left corner of the slider-bank box. The CC assignments are
given by opening the box editor and entering a list of controller numbers (one number
for each slider) using the MIDI CC input (in this case we use controllers 1, 2 and 3).

2.1. BASIC 33

0.0 100.00.00.0 0.0 0.0

25.83 31.67

23.79 1.06 2

0.0

1 2 3 4 5

5.0 30.0 1.0 64.0 8.0 80.0 113.0

1

45.6846.6546.65

2

slider-bank accepting
 MIDI CC messages

slider-bank with five setups

Figure 2.6: 05-sliderbank

2.1.7 Application-Input-Boxes

This patch shows five editor boxes (labeled with ’E’). Each of these boxes contain one
application input-box. An application-input box contains a dedicated editor-window
that can be opened by double-clicking the application input-box.
The input-box shows the contents of the editor-window. This view can be panned or
zoomed locally using the scroll-wheel button of the mouse.

34 2. TUTORIAL

2D-Editor

Eobjects active

Score-Editor

E

&

?

bb b b

b b b b

1

34
34

œ œ œ œ œ œ œ
q = 60

œ œ œ œn œ œ œn

œ œ œ œ œ œ œ œ œ œ

q = 60

œ œ œ œ œ œ œ œ œn œn
1
2

score pitches rtms/times

Chord-Editor

E

&
? w w w w# w w# w w# w w w# w#

chord pitches

All application input-boxes contain an editor-window
and can be panned and zoomed locally

This is a comment

Music notation related boxes can be played
by selecting the box and by pressing 'space'.

text-box

(E)

This
is a
text
box

Figure 2.7: 06-application-input-boxes

2.1.8 Database-Input-Boxes

PWGL contains special extendable boxes that change their appearance and behaviour
according to the first input-box of the main-box. By changing the state of the first
input-box the box will change the number of inputs, input-types, extension patterns
and default values.
This scheme allows to define within one box complex applications that can be used to
build various structures, represent databases, etc.

2.1. BASIC 35

2D-constructor

:bpf

((0 1 2) (0 1 0))

enp-constructor

:score ()<- change the first input and extend the box ->

Special database input-boxes can change
the behaviour and layout of a box.

Figure 2.8: 07-database-input-boxes

2.1.9 Constructor-Boxes

This patch demonstrates two constructor boxes that are used to build objects for the
2D-Editor, Chord-Editor and Score-Editor.
The type of the object is defined by the first input-box. Changing the object type will
change the layout, the input-box types and default values of the box (see also the pre-
vious tutorial).

36 2. TUTORIAL

2D-Editor

Eobjects active

enp-constructor

:chord (60 89)

:expressions :crescendo

Score-Editor

E

&
1

14 œ
œq = 60

P1

score pitches rtms/times

PWGL contains two major constructor boxes:
(1) '2D-constructor' to construct 2D-objects
(2) 'ENP-constructor' to construct ENP-objects

See the 'Editors' section for more examples.

2D-constructor

:scrap

(((0 0) (1 0) (1 1) (0 2)) ((2 2) (0 5) (1 0)))

enp-object-composer

score object/s

Figure 2.9: 08-constructor-boxes

2.1.10 Programming

PWGL contains three basic textual tools that allow Lisp programming: text-box, Lisp-
code box, and code-box. The main differences between these boxes are the following.
The contents of a ’text-box’ can be read into the patch (using the output), and thus the
box is used besides code also for data and rules.
The contents of a ’Lisp’-code box cannot be accessed from a patch and thus it is used
mainly for code. The contents is compiled automatically when the patch is loaded.
The ’code-box’ allows the user to express in textual form complex Lisp expressions and
it is one of the most important tools to interface Lisp with the graphical part of PWGL.
The user can open a text-editor by double-clicking the box. In the text editor, while the
user writes the code, the text is simultaneously analysed. The appearance of the box is
calculated automatically based on this analysis. There is a special section dedicated to
the code-box in this tutorial.
Note, that when working with code with the text-box or the Lisp-code box, the first line
should always be a package declaration, for instance: ’(in-package :cl-user)’.
Important: avoid using the system package (’:ccl’ or ’:system’) for your personal code,
as this may cause name conflicts with the underlying PWGL system.

2.1. BASIC 37

Note: the code-box is different as it works always in package ’:ccl’.

(Lisp)

text-box

(E)

(in-package :cl-user)

(defun test1 (a b c)
 (+ a b c))

;(test1 1 2 3)

All boxes can be opened with a double-click

A 'text-box' is used to for textual
data, rules and code. Note that
the contents is not loaded
automatically.

A lisp-code box, labeled '(Lisp)',
 is normally used only for code.
The contents is compiled automatically
when the patch is loaded.

To access the information
contained in the text-box
select it and type 'v'.

code-box

C

0

0

A code-box is the main tool for
interfacing your Lisp code with PWGL.

Figure 2.10: 09-programming

2.1.11 Box-Creation

This patch gives information of how to create your own boxes in PWGL.
The patch contains four text-boxes that contain box definitions with increasing complex-
ity: (A) simple ’defun’ case (B) ’PWGLDef’ case (C) Extended case with layout options
(D) Box definition, complex version
Open a text box and compile it. After this choose a PWGL window and enter the box
names in the ’Lisp function’ dialog.
Note: the paper ’icmc2003 box-design.pdf’ dealing with PWGL-boxes is found in the
’Documentation’ entry in the ’Overview’ section of this tutorial.
The ’documentation/programming/box examples’ folder gives some more complex ex-
amples that demonstrate how input boxes can interact within a PWGL-box.

38 2. TUTORIAL

text-box

(A) simple 'defun' case (E)

(in-package :ccl)

#|
==
 (A) simple 'defun' case:
==
all inputs are value-input-boxes with a default value equal to '()'.
|#
(defun simple1 (a b c)
 "simple defun case"
 (+ a b c))
;to add the box to a patch go to the PWGL 'Lisp function' dialog and type 'simple1'

(defun simple2 (a b c &optional (d 8))
 "&optional case"
 (list a b c d))
;to add the box to a patch go to the PWGL 'Lisp function' dialog and type 'simple2'

(defun simple3 (a b c &key (d 8)(e 9))
 "&key case"
 (list a b c d e))
;to add the box to a patch go to the PWGL 'Lisp function' dialog and type 'simple3'

(defun simple4 (a b &rest c)
 "&rest case"
 (list a b c))
;to add the box to a patch go to the PWGL 'Lisp function' dialog and type 'simple4'

;you can also give all functions as a list in the PWGL 'Lisp function' dialog i.e.:
;(simple1 simple2 simple3 simple4)

text-box

 (B) 'PWGLDef' case (E)

(in-package :ccl)

#|
==
 (B) 'PWGLDef' case
==
PWGLDef creates a method and allows to define the input-box types and default
values for all inputs. Furthermore, the <keyword-args> argument allows to specify
the layout,color, size, class, etc.

PWGLDef (<name> <args> <documentation> <keyword-args> &body <body>)
<name> name of the method
<args> consists of a list of lists, where each sublist is either in the form:
 (<symbol> <default value>)
 or
 (<symbol> () <input-box definition>)
 In the former case the input-type will be a value-input-box (this is the most common input-box).
 In the latter case <input-box definition> is either an expression that should return
 a valid input-box object (see down the comment concerning input-box constructors),
 or a keyword that refers to a library of global predefined input-box type definitions.
<documentation> documentation string
<keyword-args> a list of keywords that allow to customize the box.
 Valid keywords are:
 :class
 :r :g :b
 :w :h :border
 :groupings :extension-pattern :x-proportions :y-proportions
 :proportional-coordinates
 :outputs
<body> body of the method definition

For more details see the paper 'icmc2003_box-design.pdf'.

(Comment for PW users: PWGLDef resembles somewhat the old PW macro 'defunp', the main
difference is that it creates a method not a function.)
|#

#|
==
For instance a box with 3 inputs where:
- 2 first inputs are value-input-boxes and have default-values 1 and 2
- 3rd input is a menu-box (can be defined as a global menu-box type, this is the preferred way
 if the menu-list is very long)
can be defined as follows:
|#

; EITHER use the global menu-box type definition:
(add-box-type :yes-maybe-mbox
 `(mk-menu-subview :menu-list ,(add-menu-list-keyword :yes-no-list '(":t" ":nil" ":maybe")) :value 1))

(PWGLDef abc2 ((a 1) (b 2) (c () :yes-maybe-mbox)) ;; <name> <args>
 "PWGLDef abc2" ;; <documentation>
 () ;; <keyword-args>
 (cond ((eq c :maybe) "maybe") ;; <body>
 ((eq c :nil) ())
 (t (+ a b))))
;to add the box to a patch go to the PWGL 'Lisp function' dialog and type 'abc2'

; OR the menubox is a local input (the menu-list is now a list of string/value pairs):
(PWGLDef abc3 ((a 1) (b 2) (c () (mk-menu-subview :menu-list '(("t" 1) ("nil" 2) ("maybe" 3)) :value 1)))
 "PWGLDef abc3"
 (:groupings '(1 1 1) :r 1 :g 0 :b 0 :y-proportions '(1 1 1.5))
 (cond ((= c 1) "true case")
 ((= c 2) "fail case")
 (t (+ a b))))
;to add the box to a patch go to the PWGL 'Lisp function' dialog and type 'abc3'

; &optional: extends the box with 1 input at a time until limit
(PWGLDef abc4 ((a 1) (b 2) &optional (c 3) (d 4))
 "PWGLDef abc4"
 (:groupings '(1 1) :w 0.15)
 (list a b c d))
;to add the box to a patch go to the PWGL 'Lisp function' dialog and type 'abc4'

; &key: extends the box with 2 inputs (1. key, 2. arg) at a time until limit
(PWGLDef abc5 ((a 1) (b 2) &key (c 3) (d 4) (e 5))
 "PWGLDef abc5"
 (:groupings '(1 1) :w 0.45)
 (list a b c d e))
;to add the box to a patch go to the PWGL 'Lisp function' dialog and type 'abc5'

; &rest extends the box with 1 input at a time without limit
(PWGLDef abc6 ((a 1) (b 2) &rest (c 3))
 "PWGLDef abc6"
 (:groupings '(2) :w 0.45)
 (list a b c))
;to add the box to a patch go to the PWGL 'Lisp function' dialog and type 'abc6'
;(abc2 abc3 abc4 abc5 abc6)
#|
==
 Input-box constructors
==
Following input-box constructors are available:

PWGL-subview-constructors ->

(mk-chord-subview
 mk-dialog-box-subview
 mk-score-subview
 mk-application-subview
 mk-slider-subview
 mk-hierarchical-menu-subview
 mk-menu-subview
 mk-value-subview
 mk-num-subview
 mk-text-subview
 mk-2d-subview
 mk-static-text-subview
 mk-button-subview
 mk-update-menu-subview)
==
 Predefined input-box type library
==
To see all current predefined box-types evaluate followimg:

(maphash #'(lambda (a b) (pprint (list a b))) *PWGL-box-type-library*)

|#

text-box

(D) Box definition, complex version (E)

(in-package :ccl)

#|
==
 (D) Box definition, complex version
==
Boxes with arbitrary layouts are typically defined in 4 steps:
(1) define a subclass of 'PWGL-box'
(2) define a 'patch-value' method for the new class
(3) define a new generic method
(4) define a 'mk-box-function' method specialized to the symbol defined in 'defgeneric'
|#
;(1)
(defclass PWGL-box-tutti (PWGL-box) ())

;(2)
(defmethod patch-value ((self PWGL-box-tutti) outbox)
 (declare (ignore outbox))
 (print "TUTTI"))

;(3)
(defgeneric mytutti () (:documentation "Tutti"))

;(4)
(defmethod mk-box-function ((self (eql 'mytutti)) x y)
 (mk-PW-box 'PWGL-box-tutti 'mytutti "TUTTI" x y 0.6 0.5
 (list
 (mk-slider-subview :minval -50 :maxval 50 :grid t)
 (mk-static-text-subview :box-string "")
 (mk-slider-subview :minval -50 :maxval 50 :grid t)

 (mk-static-text-subview :box-string "")

 (mk-slider-subview :minval 0 :maxval 500)
 (mk-static-text-subview :box-string "")
 (mk-slider-subview :minval 0 :maxval 500)
)
 :groupings '(3 1 3)
 :x-proportions '((2 5 1) (1) (1 5 2))
 :y-proportions '(3 1 3)
 :r 0.5 :g 0.6 :b 0.6))
;to add the box to a patch go to the PWGL 'Lisp function' dialog and type 'mytutti'

;(1)
(defclass PWGL-box-tutti2 (PWGL-box) ())

;(2)
(defmethod patch-value ((self PWGL-box-tutti2) outbox)
 (declare (ignore outbox))
 (print "TUTTI2"))

;(3)
(defgeneric mytutti2 () (:documentation "Tutti2"))

;(4)
(defmethod mk-box-function ((self (eql 'mytutti2)) x y)
 (mk-PW-box 'PWGL-box-tutti2 'mytutti2 "test" x y 1.0 0.9
 (list (mk-static-text-subview :box-string "text" :font-scaler 0.5)
 (mk-slider-subview :value 100 :minval 0 :maxval 100)

 (mk-2D-subview :doc-string ""
 :application-window (mk-2D-application-window))
 (mk-chord-subview
 :doc-string "" :r 1.0 :g 1.0 :b 1.0
 :application-window (let ((sc #+mac 2.3 #+win32 2.7 #+linux 2.3))
 (make-instance 'chord-editor-window
 :view-size (make-point 350 170)
 :scalefx sc :scalefy sc
 :translx 18.0 :transly #+mac -8.0 #+win32 -8.0 #+linux -8.0
 :chord (make-instance 'chord :notes (list (make-instance 'note :midi 60))))))
 (mk-slider-subview :value 100 :minval 0 :maxval 100 :box-string "1")
 (mk-slider-subview :value 100 :minval 0 :maxval 100 :box-string "2")
 (mk-slider-subview :value 100 :minval 0 :maxval 100 :box-string "3")
 (mk-slider-subview :value 100 :minval 0 :maxval 100 :box-string "4")

 (mk-score-subview
 :doc-string "" :r 1.0 :g 1.0 :b 1.0
 :application-window (make-enp-application-window '(((())))))

 (mk-slider-subview :value 100 :minval 0 :maxval 100 :box-string "xx" :horizontal t)

)
 :proportional-coordinates '((1/12 1/12 4/12 1/9) (3/12 1/12 1/6 1/6)
 (6/12 1/12 2/9 4/10)
 (9/12 1/12 2/9 4/10)
 (1/12 4/12 1/20 1/6) (2/12 4/12 1/20 1/6) (3/12 4/12 1/20 1/6) (4/12 4/12 1/20 1/6)
 (1/12 7/12 7/9 4/15)
 (1/12 11/12 5/6 1/20))
))
;to add the box to a patch go to the PWGL 'Lisp function' dialog and type 'mytutti2'
;(mytutti mytutti2)

text-box

(C) Extended case with layout options (E)

(in-package :ccl)

#|
==
 (C) Extended case with layout options
==
Use of :groupings and :extension-pattern keywords in PWGLDef
expressions with &optional or &rest.

Note that the :groupings keyword refers only to the required
arguments. The optional argument behaviour can be controlled
using the :extension-pattern keyword.
|#
;==
;The following default &optional extension pattern:
(PWGLDef foo0 ((x 0) &optional (y 1) (b 88))
 ""
 ()
 ())

;can be controlled in more detail using the :extension-pattern keyword:
(PWGLDef foo1 ((x 0) &optional (y 1) (b 88))
 ""
 (:groupings '(1) :extension-pattern '(2))
 ())

;Here we control the required arguments layout with '(2 1).
;The &optional arguments are in turn extended with a pattern '(2 3):
(PWGLDef foo2 ((x1 0)(x2 0)(x3 0) &optional (y 1) (b 88) (e 1) (r 88)(k 88))
 ""
 (:groupings '(2 1) :extension-pattern '(2 3))
 ())

;==
;The following default &rest extension pattern:
(PWGLDef blah0 ((x 0) &rest (y 1))
 ""
 ()
 (list x y))

; can be controlled in more detail using the :extension-pattern keyword:
(PWGLDef blah1 ((x 0) &rest (y 1))
 ""
 (:extension-pattern '(1 2 1 2))
 (list x y))

;Here we control the required arguments layout with '(1 1).
;The &rest arguments are in turn extended with a pattern '(1 5 1 7 1):
(PWGLDef blah2 ((x1 0)(x2 0) &rest (y 1))
 ""
 (:groupings '(1 1) :extension-pattern '(1 5 1 7 1))
 ())

#|
==
The following examples use also other layout related keywords:
 y-proportions :x-proportions
 :proportional-coordinates
 :w :h
 :r :g :b
|#
(PWGLDef glorp1 ((x 0) &optional (y 1) (b 88))
 ""
 (:groupings '(1) :extension-pattern '(2) :y-proportions '(1 2) :x-proportions '((1) (1 2)))
 ())

(PWGLDef glorp2 ((x1 0)(x2 0)(x3 0) &optional (y 1) (b 88) (e 1) (r 88)(k 88))
 ""
 (:groupings '(2 1) :extension-pattern '(2 3)
 :y-proportions '(1 2 1 3) :x-proportions '((1 0.3) (1) (2 3) ((:fix 0.1) 2 (:fix 0.1))))
 ())

(PWGLDef glorp3 ((x1 0)(x2 1)(x3 2) (y 3) (b 4) (e 5) (r 6)(h 7) (j 8)(k 9))
 ""
 (:proportional-coordinates '((1/12 1/12 4/12 1/9) (3/12 1/12 1/6 1/6)
 (6/12 1/12 2/9 4/10)
 (9/12 1/12 2/9 4/10)
 (1/12 4/12 1/20 1/6) (2/12 4/12 1/20 1/6) (3/12 4/12 1/20 1/6) (4/12 4/12 1/20 1/6)
 (1/12 7/12 7/9 4/15)
 (1/12 11/12 5/6 1/20))
 :w 1.7 :h 0.6
 :b 1.0)
 ())

;(foo0 foo1 foo2 blah0 blah1 blah2 glorp1 glorp2 glorp3)

Figure 2.11: 10-box-creation

2.2 Control

2.2.1 PWGL-Map1

This patch and the companion patch called ’PWGL-map2’ demonstrates how list han-
dling loops can be realized in PWGL using the PWGL-map loop. A PWGL-map loop
reminds somewhat the PW-map module of PW. PWGL-map has, however, been com-
pletely redesigned in order to facilitate loop handling routines in PWGL.
The PWGL-map loop consists of two boxes, PWGL-enum and PWGL-map, which are
always used together. PWGL-enum is used to initialize the loop with initial lists to be
treated by the loop. PWGL-enum is an extendible box: for each extended input there is
also a corresponding output. PWGL-map, in turn, is used during the loop as a collector
of the incoming patch evaluation at the second input ’patch’. PWGL-map has three
optional arguments: ’test’, ’accum’ and ’endtest’. See the box documentation of PWGL
map for further details.
This patch contains four basic examples: (1) a simple iteration of one list (2) an example
with three parallel lists (3) the result list is filtered with the lisp function ’oddp’ (4) a

2.2. CONTROL 39

loop where the result is not collected (i.e. this kind of loop is used only for a side effect,
such as printing)

pwgl-enum

(0 1)

pwgl-map

enum patch

pwgl-enum

(1 2 3)

(a b c)

(4 5 6 7)

pwgl-map

enum patch

list

argument

args

args

+

S

number

1

pwgl-enum

(0_20)

pwgl-map

enum patch

(lambda (x) ())

pwgl-enum

(2 3 4 5)

pwgl-map

enum patch

oddp

pwgl-print

obj

1 2

3 4

Figure 2.12: 01-PWGL-map1

2.2.2 PWGL-Map2

This patch demonstrates more PWGL-map loop examples. Each example uses the op-
tional PWGL-map box arguments ’test’, ’accum’ and ’endtest’.
This patch contains five examples: (1) a simple iteration that collects all elements (2)
an example that accepts only odd numbers and returns the sum of the result list (3) like
example (2) but the minimum value of the result is returned (4) like example (2) but
the maximum value of the result is returned (5) a loop that accepts only values that are
not in the result list. The ’endtest’ stops the loop if the result length exceeds 12.

40 2. TUTORIAL

pwgl-repeat

200 patch

g-random

0 11

pwgl-enum

(0 1 2 3 4 5)

pwgl-map

enum patch

identity

:collect

pwgl-enum

list

pwgl-map

enum patch

(lambda (n l) (not (member n l)))

:collect

(lambda (n l) (> (length l) 12))

pwgl-enum

(2 3 4 5)

pwgl-map

enum patch

oddp

:minimize

pwgl-enum

(2 3 4 5)

pwgl-map

enum patch

oddp

:maximize

pwgl-enum

(2 3 4 5)

pwgl-map

enum patch

oddp

:sum

1 2 4

5

3

Figure 2.13: 02-PWGL-map2

2.2.3 Circ

This patch demonstrates some features of the ’PWGL-circ’ box that is used for circular
lists.
The ’reset’ button allows to reset the circular list – i.e. the box will start with the first
item of the list –(1). The list can also be reset automatically using the second input–with
the option ’:yes’–(2) and (3). In these cases the list will be reset each time the patch is
evaluated.
(4) and (5) demonstrate how to use the PW ’expand-list’ format for the ’clist’ input.
In (6) and (7) the ’PWGL-circ’ has been extended with extra ’clist’ inputs. In these cases
all given ’clists’ are merged to one circular list of lists. (7) shows how these sublists can
be circulated individually.

2.2. CONTROL 41

pwgl-circ

reset :yes

(1 2 3)

(4 5 6 7)

(c v b)

circs

pwgl-circ

reset :yes

clist

pwgl-repeat

20 patch

pwgl-pop-circ

circ-list

pwgl-circ

reset :yes

(1 2 3)

pwgl-repeat

10 patch

pwgl-circ

reset :yes

(1 2 3)

(4 5 6 7)

(c v b)

pwgl-repeat

10 patch

pwgl-circ

reset :no

(2_10s2)

pwgl-circ

reset :no

(a (2_7) b)

pwgl-circ

reset :no

(1 2 3)

pwgl-circ

reset :yes

(1 2 3)1 2

3

4 5

6

7

Figure 2.14: 03-circ

2.2.4 Switch

This patch gives some examples of how to use switch and merge boxes in PWGL.
(1) shows a simple PWGL-switch box where the incoming patch can be chosen by se-
lecting one of the buttons of the PWGL-switch box. If no input is connected then only
the index is returned.
(2) shows a PWGL-merge box where the incoming patches can be chosen by selecting
any combination of buttons of the PWGL-merge box. This box returns all selected inputs
as a list. If no input is connected then only the index is returned.
(3) shows a master switch box (’MSW’) that has 2 simple switch boxes (’a’ and ’b’) as
slaves. The box-string of the master switch (here ’sw’) controls all simple switch boxes
with the same box-string.

42 2. TUTORIAL

sw

a

value-box

67

value-box

(0_50s2)

sw

b

value-box

67

value-box

(0_50s2)

g-random

low 10list

argument

args

sw

master switch
MSWsimple switch

value-box

67

value-box

(0_50s2)

value-box

67

value-box

(0_50s2)

merge

1 3

2

after selecting 'MSW' evaluate here ->

<- select the current input(s) ->

<- select inputs

Figure 2.15: 04-switch

2.2.5 Const-Value

This patch gives some ’const-value’ box examples, where the idea is to keep some data
constant even when several boxes are connected to an output of a box (in normal situ-
ations this would cause multiple evaluations of the latter box).
(1) a simple case where the random data is kept constant each time the ’const-value’
box is evaluated.
(2) and (3) demonstrate different behavior in a loop context using the: ’:once’, ’:loop-
init’, and ’:eachtime’ options of the second optional input.

2.2. CONTROL 43

g-random

0 100

list

argument

args

args

args

pwgl-repeat

2 patch

1+

x

1+

x

const-value

patch list

argument

args

args

args

pwgl-enum

(0 1 2)

pwgl-map

enum patch

const-value

patch

:once

1
2

3

<- change the
 'loopmode' option

Figure 2.16: 05-const-value

2.2.6 PWGL-Value1

’pwgl-value’ allows to use pseudo-local variables or functions in PWGL. The values are
stored in a hash table and they can be accessed anywhere in a patch. Note that the hash
table is cleared with every top-level patch evaluation.
The ’value-key’ parameter is a keyword. If the ’init’ or the ’write’ input is not given then
the value stored under ’value-key’ is returned.
An initial value can be stored under ’value-key’ using the optional argument ’init’. After
this the value can be accessed by other ’pwgl-value’ boxes or from textual code in a
patch (for instance in scripting or constraints rules). If the initial value needs to be
updated after the initialization then use the ’write’ argument.
(1) a basic example where a random list is kept static during several ’pwgl-repeat’ calls.
(2) shows how initial values defined ’pwgl-value’ can be referred to inside an abstraction
that is in ’lambda’ mode.
In (3) ’pwgl-value’ is used to initialize a lambda expression, which acts later in the patch
as a Lisp closure.

44 2. TUTORIAL

pwgl-repeat

10 patch
pwgl-progn

patch

patches

pwgl-repeat

10 patch
pwgl-progn

patch

patches

g-random

0 (0_9)

pwgl-enum

list

pwgl-map

enum patch

test

pwgl-progn

patch

patches

value-box

((6 7 5 4) (0 1 3 2)(0 2 3 4))

filter-scs

La

x

4-1 4-2b
pwgl-value

:mysc

:init &key

pwgl-value

:myclosure

:init &key

value-box

#.(let ((x 0)) #'(lambda ()(prog1 x (incf x 2))))

pwgl-value

:myclosure

pwgl-value

:myrnd

:init &key

pwgl-value

:myrnd

1 3

2

Figure 2.17: 06-PWGL-value1

2.2.7 PWGL-Value2

This more complex example demonstrates how the PWGL-value box can be used to
initialize, read and write information in a loop.
An initial list, ’(4 0 5 2 3 1)’ , is gradually transformed to another list, ’(6 7 9 10 11)’,
using the PWGL-value and the PWGL-map loop boxes.
The initial list is created and stored under the keyword ’subst-list’; (1); within the loop
the current state of this list read (2); and after the substitute operation the modified list
is written back under ’subst-list’ (3). Thus ’subst-list’ is modified at each loop step.

2.2. CONTROL 45

pwgl-enum

list

(6 7 8 9 10 11)

pwgl-map

enum patch

substitute

new old

sequence

pwgl-value

:subst-list

:init (4 0 5 2 3 1)

pwgl-value

:subst-list

pwgl-value

:subst-list

:write &key

1

2

3

Figure 2.18: 07-PWGL-value2

2.2.8 PWGL-Value3

Here we use PWGL-value to calculate an interval distribution for a chord (1).
In (2) we store the input chord under ’:init’. Then we pass this list (except the last
element) to a pwgl-map loop. Inside the loop we read again our ’:init’ list (3), but we
also remove each time the first element of this list (note that we use here the ’:write’
operation). Thus the ’:init’ list becomes shorter at each iteration step.
Finally, in (4), we calculate and sort the final interval distribution.
In (5) we use the code-box to define the left-part visual patch definition in textual form.

46 2. TUTORIAL

pwgl-enum

list

pwgl-map

enum patch

g-

l1? l2?

pwgl-value

lst

:init &key

pwgl-value

lst

:write &key

pwgl-value

lst

cdr

x

butlast

list

flat

l

mapcar

function

list

calc-int-counts

La

int

ints

remove-duplicates

sequence

const-value

patch

sort

sequence <

:key first

menu-box

(0 1 2 7)

2

3

1

4

code-box

C

chord 5

Figure 2.19: 08-PWGL-value3

2.2.9 Reduce-Accum

This patch presents the standard ’reduce’ Common Lisp function (equivalent to the
OpenMusic ’accum’ function).
This tutorial is roughly based on the on-line OpenMusic ’accum’ tutorial, but here we
use ’reduce’ instead of ’accum’.
In (1), (2) and (3) we use ’reduce’ in conjunction with simple lisp functions (list, + and
*).
In (4) and (5) we utilize the PWGL abstraction scheme (note that the abstractions are
in ’lambda’ mode) to define the functions for the first input visually.

2.3. EDITORS 47

reduce

list

list (1 2 3 4)

:initial-value ()

reduce

sum

+ (1 2 3 4)

:initial-value 0

reduce

pi approx

function (2_500)

:initial-value 1

pi-approx

La

prev

new

float

n

*

S

6.0

args

text-box

(E)

(in-package :ccl)

(reduce 'list '(1 2 3 4) :initial-value ())

(reduce '+ '(1 2 3 4) :initial-value 0)

(reduce '* '(1 2 3 4) :initial-value 0)

(sqrt (* 6.0 (float (reduce #'(lambda (y x) (+ y (/ 1 (expt x 2)))) (pw::arithm-ser 2 1 500) :initial-value 1))))
sqrt

a

reduce

factorial

* (1_4)

:initial-value 1

1

2

3

5

reduce

sum-list

function (1 2 3 4)

:initial-value (0)

sum-list

La

prev

new

4

Figure 2.20: 10-reduce-accum

2.3 Editors

2.3.1 Introduction

The ’Editors’ chapter of the tutorial consists of five subsections. The first three sub-
sections are dedicated to each main editor in PWGL, i.e. 2D-Editor, Chord-Editor and
Score-Editor. The last subsections deal with our scripting language that allow to make
various side-effects to a score. We also have a subsection that demonstrates some ways
how to create beat objects in PWGL.

2.3.2 2D

2.3.2.1 Spiral

This is a basic patch that demonstrates how a ’2D-constructor’ box can be used to create
a bpf (break-point function) object.
The patch uses two ’sample-fun’ boxes that calculate the x- and y-coordinates. In order
to get the final spiral result, we scale the y-coordinates with the help of a ’interpolation’

48 2. TUTORIAL

box. The final result can be seen in the ’2D-Editor’.

sample-fun

x

cos 0

step xmax

sample-fun

y

sin 0

step xmax

eval-box

length

interpolation

1 0.1

samples 0.5

g* g*

list

*

pi

30

2D-constructor

:bpf

xs/l

ys

(0.94 0.94 0.56)

2D-Editor

Eobjects active

0.1 1.1

<- switch here
<- number of cycles

Figure 2.21: 01-spiral

2.3.2.2 Interpol-Bpfs

In this patch we generate 50 bpfs using a interpolation process. The starting point is
always a sine function. The end point for the interpolation can be specified with a
switch box that has five options: ’sin’, ’cos’, ’log’, ’tan’ and ’random’.
Also the colors for the resulting bpfs are calculated with a ’interpolation’ box. The red
portion of the RGB values are gradually changed from 0.4 to 1.0.

2.3. EDITORS 49

interpolation

begin end

samples 2

sample-fun

sin 0

0.2 10

sample-fun

fun 0.001

0.4 20
interpolation

color

(0.4 0.3 0.2) (1.0 0.3 0.2)

samples 2

2D-Editor

E1/50 objects active

2D-constructor

:bpf

1

ys

color

num-box

50

sin cos log tan random

Figure 2.22: 02-interpol-BPFs

2.3.2.3 Bezier

A ’2D-constructor’ box is used here to generate 50 bezier functions (see the first input
that is ’:bezier’). Also we use several interpolation boxes to achieve the final result
which is given in the ’2D-Editor’.

50 2. TUTORIAL

interpolation

(0 0) (0 -3)

samples 0.7

interpolation

0.5 2.5

samples 2

interpolation

(0 0) (0 2)

samples 2

interpolation

color

(0.1 0.1 0.1) (1 0.2 0.2)

samples 2

num-box

50 2D-constructor

:bezier

xs

ys

ctrlpoffs

color

pwgl-enum

list

lists

lists

lists

pwgl-map

2D-Editor

E1/50 objects active

Figure 2.23: 03-bezier

2.3.2.4 Bezier-to-BPF

This patch is similar to the previous ones: we generate 50 bpfs. The difference is
however that the starting point and end point of the interpolation process are given as
two bezier functions that are found in the upper part of the patch. The conversion (from
bezier to bpf) and the interpolation are found in the abstraction ’interpol-bps’.

2.3. EDITORS 51

2D-Editor

start
Eobjects active

2D-Editor

E1/50 objects active

2D-Editor

end
Eobjects active

pwgl-enum

list

lists

lists

pwgl-map

2D-constructor

:bpf

xs/l

ys

color

intpol-bpfs

A

1st

2nd

50

x y c

Figure 2.24: 04-bezier-to-bpf

2.3.2.5 2D-Constructor

This patch contains several 2D-object types situated in ’2D-Editor’ boxes (upper row).
The x and y values are accessed using the optional ’x’ and ’y’ outputs. These outputs can
be added to a ’2D-Editor’ box using the box-editor (the box-editor opens either with the
’edit box...’ box popup menu-item or by a double click on the main box area).
The x and y values can be manipulated and fed to ’2D-constructor’ boxes (middle part
of the patch). The lowest row contains ’2D-Editor’ boxes that show the final results.

52 2. TUTORIAL

2D-constructor

:bpf

xs/l

ys

2D-constructor

:bezier

xs

ys

2D-Editor

E/Aobjects active x y

2D-Editor

E/Aobjects active x y

2D-Editor

E/Aobjects active x y

2D-Editor

E/Aobjects active x y

2D-constructor

:scrap

xs/ys

ys

2D-constructor

:marker

xs

2D-Editor

Eobjects active

2D-Editor

Eobjects active

2D-Editor

Eobjects active

2D-Editor

Eobjects active

g-

1 l2?

g-

1 l2?

g-

1 l2?

g-

1 l2?

g-power

l1? 2.0

Figure 2.25: 05-2D-constructor

2.3.2.6 2D-Chord-Seq

This patch shows how music notation related objects can be fed to a 2D-Editor. We have
here four input options to the ’2D-Editor’ box that can chosen with a switch box ’(1) (2)
(3) (4)’: (1) a metric 2-part score; (2) a non-mensural score; 3) a chord; (4) a list
chords (here the chords are calculated algorithmically in the abstraction ’gen-chords’).

2.3. EDITORS 53

2D-Editor

E1/2 objects active

Score-Editor

E

&

?

bb b b

b b b b

1

34
34

œ œ œ œ œ œ œ
q = 60

œ œ œ œn œ œ œn

œ œ œ œ œ œ œ œ œ œ

q = 60

œ œ œ œ œ œ œ œ œn œn
1
2

score pitches rtms/times

(1) (2) (3) (4)

Chord-Editor

E

&
?

-3 -2 -1 0 1 2 3

w w w w w38 w w#38 w w w38 w14 w w14 w#38 w# w w#

chord pitches

gen-chords

A

Score-Editor

E

&

00:00 00:01 00:02 00:03

˙14 œb œ œ œb œ œb œb œ
π

P1

score pitches rtms/times

1
2

3

4

Figure 2.26: 06-2D-chord-seq

2.3.2.7 PWGL-Sample

This patch demonstrates the ’pwgl-sample’ box which can be used to sample following
2D-objects: bpf, bezier, sound-sample and scrap collection.
’pwgl-sample’ first calculates an internal sampling interval according to the min and
max x-values and the ’no-of-points’ argument of the 2D-object in question. After this
a train of sampling pulses are generated and the respective y-values are read at each
pulse (x) value.
The upper ’2D-Editor’ contains three 2D-objects: a sound sample, a bpf, and a bezier.
The current 2D-object can be selected using the master switch box ’samp/bpf/bez’. The
result of the sampling process is a bpf that is shown in the lower ’2D-Editor’ box.

54 2. TUTORIAL

2D-Editor

E1/3 objects active

2D-Editor

Eobjects active

samp/bpf/bez

nth

samp/bpf/bez

samp/bpf/bez

MSW

2D-constructor

:bpf

xs/l

pwgl-sample

object

300

select a 2D-object

Figure 2.27: 07-pwgl-sample

2.3.2.8 BPF-Arithmetic

This patch shows how some generic arithmetic boxes (’g+’, ’g-’, ’g*’, etc.) are able to
work also with bpfs. The first argument is here always a single bpf (sine function) and
the second argument is a list of bpfs (sine functions). The user can choose different
options with a switch box. The result is shown in lower ’2D-Editor’ box.

2.3. EDITORS 55

2D-Editor

Eobjects active

g+

l1? l2?

2D-Editor

E1/50 objects active

2D-Editor

E1/50 objects active

g-random

low high

g-

l1? l2?

g-abs

l?

Figure 2.28: 08-BPF-arithmetic

2.3.2.9 Marker

Here the starting point is a complex bpf that is found in the upper ’2D-Editor’ box. In
the ’filter-points’ abstraction we choose points from the original bpf according to some
criteria (here we use a filter that accepts only points that have a y-value that is greater
than the ’limit’ input). The x-values of all selected points are used to generate markers
(see the ’2D-constructor’ box where the first input is ’:marker’). Both the resulting
marker-collection and the original bpf are fed to the lower ’2D-Editor’ box.
Note that the ’limit’ input will change continuously at each evaluation due to the ’pwgl-
circ’ box (this will result in a more sparse marker-collection).

56 2. TUTORIAL

2D-Editor

E/Aobjects active x y
filter-points

A

x

y

limit2D-constructor

:marker

xs
mapcar

car

list

list

2D-Editor

E/A1/2 objects active x y

pwgl-circ

reset :no

(0.1_0.7s0.05)

pwgl-print

evaluate the 2D-Editor box continuously

Figure 2.29: 10-marker

2.3.3 Chord-Editor

2.3.3.1 Overtone-Arp

This patch contains three options to create overtones (see the three ’f->m’ boxes): (1)
harmonic series; (2) compressed series; (3) stretched series. The result is converted to
midi-values with an 1/8 tone approximation). After this the midi list is looped and at
each iteration step a note object is created with a pitch and offset-time value (the latter
parameter comes from an ’interpolation’ box which generates an accelerando gesture).
Finally the resulting list of notes is given to the ’enp-object-composer’ box that creates a
chord that is shown in the ’Chord-Editor’ box.

2.3. EDITORS 57

pwgl-enum

list

lists

pwgl-map

enum patch

enp-constructor

:note pitch

:offset-time arg

f->m

harmonic

(110_1900s110)

Chord-Editor

E

&
?

-3 -2 -1 0 1 2 3

w w w w w38 w w#38 w w w38 w14 w w14 w#38 w# w w#

chord pitches

length

sequence approx-midi

midis 8

interpolation

0 2

samples 0.8

f->m

inharmonic<

(110_1900s120)

f->m

inharmonic>

(110_1900s100)

<- switch here for different overtone structures

enp-object-composer

chord object/s

Figure 2.30: 01-overtone-arp

2.3.3.2 Chord-Matrix

A Chord-Editor can contain also several chords. In this example a list of four midi-value
lists (see the ’text-box’) is given to the ’Chord-Editor’ box. This creates a 1*4 chord
matrix where chords can be inspected, played and edited in the ’Chord-Editor’ .

58 2. TUTORIAL

text-box

chords (E)

(36 43 52 58 62 66 69 73 77 83 92 99)
(36 43 52 57 58 61 62 65 66 71 80 87)
(36 43 47 51 52 53 56 57 58 62 66 73)
(36 43 45 49 52 53 58 59 62 66 68 75)

Chord-Editor

E1/4

&
? w w w w# w w# w w# w w w# w#

chord pitches

The chord-editor contains the chords as a 1*4 matrix.
The chords can be played or edited either individually
or as a group.

Figure 2.31: 02-chord-matrix

2.3.3.3 Circ-Chords

This example is similar to the previous one except that we have inserted here a ’pwgl-
circ ’ box before the ’Chord-Editor’ box. The user can inspect one by one the chords in a
circular fashion by re-evaluating the ’Chord-Editor’ box.

2.3. EDITORS 59

pwgl-circ

reset :no

clist

Chord-Editor

E

&
? w w w w# w w# w w# w w w# w#

chord pitches

text-box

chords (E)

(36 43 52 58 62 66 69 73 77 83 92 99)
(36 43 52 57 58 61 62 65 66 71 80 87)
(36 43 47 51 52 53 56 57 58 62 66 73)
(36 43 45 49 52 53 58 59 62 66 68 75)

evaluate the Chord-Editor box continuously
to circulate a list of chords

Figure 2.32: 03-circ-chords

2.3.3.4 Constructing-ENP-Objects-1

Here we demonstrate the use of the ’enp-constructor’ -box. The first three constructor
boxes are used to create notes with specific attributes (enharmonic spelling). The last
one is, in turn, used to create a chord containing the notes created before. Furthermore,
in this box, an accent expression is assigned to the chord.

60 2. TUTORIAL

enp-constructor

:note 68

:enharmonic :flat

Chord-Editor

E

&
?

˙˙b˙b
>

chord pitches

enp-constructor

:note 61

:enharmonic :flat

enp-constructor

:note 60

list

argument

args

args

enp-constructor

:chord pitches

:expressions :accent

Figure 2.33: 09-constructing-enp-objects-1

2.3.4 Score-Editor

2.3.4.1 Transpose-Chords

A PWGL patch that generates chord sequences. The pitches are calculated by combining
two chords (’chord1’ and ’chord2’). The second chord is kept untransposed while the
first one is transposed with intervals ranging from 0 to 12. The user can choose (by
selecting one of the options of the master switch box called ’a tempo/acc’) whether
the resulting chord sequence will have static delta-time values or whether the sequence
forms an accelerando gesture. The non-mensural result is shown in the ’Score-Editor’
box.

2.3. EDITORS 61

x-union
g+

sort-list

enp-constructor

:chord pitches

:start-time arg

:duration arg

:velocity arg

pwgl-enum

(0_12)

lists

lists

(60_120s5)

pwgl-map

Chord-Editor

chord1
E

&
?

˙̇̇̇#

chord pitches

Chord-Editor

chord2
E

&
?

˙# ˙̇̇̇

chord pitches

*

S

number

0.5

dx->x

0 dxs

interpolation

acc

0.5 0.1

13 0.3

a tempo/acc

value-box

a tempo

(0_10s0.6)

a tempo/acc

0.5

a tempo/acc

MSW

Score-editor

E

&

00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09 00:10 00:11

œ# œœœœœœ# œ
œ# œ# œœœœ# œœœ

œ# œœœ# œœœ# œ
œ# œ# œœœœœ œ# œœœ# œœ# œœ

œ# œœœœœœœ
œ#

œ# œœ# œœ# œœ# œœ
œ# œœœœ
œ#

œ# œœœ# œœœœœ
œ# œœœœœ# œœ# œ#

œ# œœœ# œœœœœ
œ# œœœœ# œœ# œ

œ# œœœœœ
œœ#

P1

score pitches rtms/times

interval
stime
dur
vel

Figure 2.34: 01-transpose-chords

2.3.4.2 ENP-Constructor

ENP-score-notation is a score format to describe in textual form various score elements
like beats, measures, voices and parts. This basic format can be extended using key-
words to represent other score attributes such as pitch, enharmonics, expressions, and
so on, resulting in complete scores.
Our example is based on the following two-measure rhythmic structure, see the ’text-
box’ (1): (((((2 (1)) (1 (1.0 1 1 1)) (1 (1 1 1 1 1)) (1 (1 1 6)))
((1 (1.0 -1)) (2 (-1 1 1 1 1 1)) (1 (1 1)) (1 (1)))))) that is extended with keyword/value
pairs to produce the final score shown in the ’Score-Editor’ (3).
The ENP-score-notation format is converted to a score using the box ’enp-constructor’
(2).

62 2. TUTORIAL

Score-Editor

E

&

1

5
4

˙14
π

œ
œb œn œ œb œ œb œb œn

5

œ

f

œb œ .

fp

q = 60

œ
‰

Z

J ‰ ¿
^

ƒslap

¿

^
¿#
^

¿#

^

¿#

^6

œ

fp

gliss. œgliss.

Z

.

Alto Saxophone
(in Eb)

1

score pitches rtms/times

text-box

ENP-score-notation (E)

((((2 ((1 :notes (52.5) :expressions ((:slur1 :slope -6.0) :pp))))
 (1 ((1.0 :notes (52.5) :expressions (:slur1))
 (1 :notes ((58 :enharmonic 1)) :expressions (:slur1))
 (1 :notes (59) :expressions (:slur1))
 (1 :notes (62) :expressions (:slur1))))
 (1 ((1 :notes ((63 :enharmonic 1)) :expressions (:slur1 :crescendo1))
 (1 :notes (65) :expressions (:crescendo1))
 (1 :notes ((66 :enharmonic 1)) :expressions (:crescendo1))
 (1 :notes ((68 :enharmonic 1)) :expressions (:crescendo1))
 (1 :notes (69) :expressions (:crescendo1))))

 (1 ((1 :notes ((72)) :expressions (:slur2 :f))
 (1 :notes ((73 :enharmonic 1)) :expressions (:slur2) :x-offset 1.0)
 (6 :notes (79) :expressions (:fp :crescendo2) :x-offset 2.0))))

 ((1 ((1.0 :notes (79) :expressions (:crescendo2))
 (-1 :notes (72) :expressions (:fz))))

 (2 (-1
 (1 :notes ((72 :note-head :x)) :expressions (:accent-grave :ff (:group1 :print-symbol "slap" :expression-fore-color 0)))
 (1 :notes ((69 :note-head :x)) :expressions (:accent-grave :group1))
 (1 :notes ((73 :note-head :x)) :expressions (:accent-grave :group1))
 (1 :notes ((68 :note-head :x)) :expressions (:accent-grave :group1))
 (1 :notes ((66 :note-head :x)) :expressions (:accent-grave :group1))))

 (1 ((1 :notes (77) :expressions (:glissando1 :fp :crescendo3))
 (1 :notes ((80 :note-head :invisible)) :expressions (:glissando1 :crescendo3) :x-offset 1.0)))

 (1 ((1 :notes (83) :expressions (:glissando1 :fz :staccato :crescendo3)))))) :instrument "Alto Saxophone")

enp-constructor

:score score-notation

More ENP-score-notation related examples
 can be found in the ENP Tutorial.

1

3

2

Figure 2.35: 02-enp-constructor

2.3.4.3 ENP-Constructor-Mix

In this example we first construct a chord object using the ’enp-constructor’ box (1).
After this we read the chord object from the ’Chord-editor’ box and pass it to a box
called ’enp-score-notation’ (2). This box converts any ENP object to ENP-score-notation
format. Here we can use various filters to include or exclude properties. In our case we
exclude nothing, i.e. we get a duplicate of the original chord without modifications (3).
You can apply a filter by double-clicking the right-most input just beside the ’:exclude’ in-
put (4). A dialog appears giving you several options which information you can exclude
from the result. Select, for instance, the ’expressions’ option. If you now reevaluate the
patch at (3), the expressions contained in the original chord will disappear.
See also the related patch called ’ENP-score-notation-filter’.

2.3. EDITORS 63

enp-constructor

:chord pitches

:notes 62

:duration 2.0

Chord-Editor

E

&
?

˙# ˙
f

chord pitches

enp-score-notation

score

:exclude nil

Chord-Editor

E

&
?

˙# ˙
f

chord pitches

enp-constructor

:chord pitches

value-box

(1.0 :notes (61) :expressions (:f))

1

2

3

4

Figure 2.36: 03-ENP-constructor-mix

2.3.4.4 ENP-Object-Composer

This patch demonstrates the use of the ’enp-object-composer’ box. We start with a flat
list of two note objects that are generated in (1). In the resulting four scores we add
from left to right each time a new list around the previous list expression. Thus we
gradually imbed the two notes deeper and deeper in the ENP score hierarchy resulting
in: (2) two parts (3) two voices (4) two measures (5) two beats.

64 2. TUTORIAL

list

argument

pwgl-repeat

2 patch

list

argument
list

argument

Score-Editor

E

&

1

1

4 œ

q = 60

P1

&

1

4 œ

q = 60

P1

¬

L

score

Score-Editor

E

&

1

1

4 œ

q = 60

œ

q = 60

Ps
1
2

score

Score-Editor

E

&

1

1

4 œ

q = 60

œP1

score

Score-Editor

E

&

1

2

4 œ œ

q = 60

P1

score

enp-constructor

:note 67

enp-object-composer

score object/s

enp-object-composer

score object/s

enp-object-composer

score object/s
enp-object-composer

score object/s

1

2 3 4 5

Figure 2.37: 04-ENP-object-composer

2.3.4.5 ENP-Score-Notation-Filter

This patch uses as a starting point a score given in (1). We use here two ’enp-score-
notation’ boxes.
To the left (2) we use the ’:exclude’ option with ’nil’, and thus the resulting score is an
exact duplicate of the original.
To the right (3) we use in turn the ’:include’ option with ’nil’. This means that we strip
all other score information except the underlying rhythmic structure.

2.3. EDITORS 65

Score-Editor

E

&
1

34 ¿ œ# œ# œ œ# œ
3

q = 60

Instrument 1

score pitches rtms/times

enp-score-notation

score

:exclude nil

Score-Editor

E

&
1

34 œ œ œ œ œ œ
3

q = 60

P1

score pitches rtms/times

Score-Editor

E

&
1

34 ¿ œ# œ# œ œ# œ
3

q = 60

P1

score pitches rtms/times

enp-score-notation

score

:include nil

enp-constructor

:score score-notation

enp-constructor

:score score-notation

1

32

Figure 2.38: 05-ENP-score-notation-filter

2.3.4.6 Advanced-Topics

This patch contains two abstractions.
In the first one, ’Combo’, we extract various substructures from the original score (1).
In (2) you can use a switch box to choose the substructure you are interested in. The
result can be found in (3).
In the second abstraction, ’Constructor’, we generate scores using several’enp-
constructor’ boxes. You can use a switch box (1) to choose the resulting score which is
found in (2).

66 2. TUTORIAL

Combo

A

Constructors

A

Demonstrates the use of the
following boxes:
1) enp-score-notation,
2) enp-constructor,
3) collect-enp-objects, and
4) enp-object-composer.

The repertoire of the
enp-constructor box

Figure 2.39: 06-Advanced-Topics

2.3.4.7 Adjoin-Voices

The two boxes, ’collect-enp-objects’ and ’enp-object-composer’ can in many cases be
used in pairs as demonstrated in this example. Here, the two voices found in the input
scores at the top are concatenated by collecting the measures (1) from both scores
and then appending them together (2). The ’enp-object-composer’ (3) creates a new
voice using the measures collected from the input scores. This box fills in the missing
structures between the source and target objects.
It is important to copy the objects as ’collect-enp-objects’ returns the actual instances
found in the input scores. This is done using the ’duplicate-instnce’ box (4)

2.3. EDITORS 67

Score-Editor

E

&
1

44 œ œ œ ˙
q = 60

P1

score pitches rtms/times

Score-Editor

E

&
1

44 œ œ œ œ ˙
q = 60

P1

score pitches rtms/times

collect-enp-objects

object :measure

collect-enp-objects

object :measure

append

list1

lists

Score-Editor

E

&
1

44 œ œ œ ˙
q = 60

œ œ œ œ ˙P1

score pitches rtms/times

duplicate-instance

object

duplicate-instance

object

1

2

3

4

enp-object-composer

voice object/s

Figure 2.40: 07-adjoin-voices

2.3.4.8 Collect-Objects

This example demonstrates how to retrieve segments form a score. The input score
at the top contains two parts. The ’collect-enp-objects’ box (1) collects all the objects
that are of the type indicated by the menu-box (2). The first of the collected objects is
selected an converted into a score using the ’enp-object-composer’ box (3). In effect,
this patch defines a method to retrieve from the score, the first part, the first voice, the
first measure, the first beat, the first chord, and the first note.

68 2. TUTORIAL

Score-Editor

E

&

4

4

œ
œ#

œ œ œ
œ œ# œ

œ
œ

œ
œ

œ

œ
œ

œ
œ

œ

œ

œ

œ

œ œ# œ

œ

œ

œ

œ

œ#
œ œ œ

œ œ
œ œ

œ
œ œ œ œ#

œ œ œ ˙
Instruments

1
2

?

4

4

œ œ# ˙ ˙ œ

œ
œ œ

Instrument 1

¬

L

score pitches rtms/times

first-object

A

objects

collect-enp-objects

object type

Score-Editor

E

&

4

4

œ
œ#

œ œ œ
œ œ# œ

œ
œ

œ
œ

œ

œ
œ

œ
œ

œ

œ

œ

œ

œ œ# œ

œ

œ

œ

œ

œ#
œ œ œ

œ œ
œ œ

œ
œ œ œ œ#

œ œ œ ˙
Instruments

1
2

score pitches rtms/times

duplicate-instance

object

1 2

3

menu-box

:part

enp-object-composer

score object/s

Figure 2.41: 08-collect-objects

2.3.4.9 Constructing-ENP-Objects-2

This is a more complex example utilizing the ’enp-constructor’ -box. Here we demon-
strate how to build a chord containing several notes with varying durations and dynam-
ics. On the left, the two text boxes show partial analysis information of a bell sound (1).
The first of them, gives the frequencies and the second one gives the initial amplitudes
scaled between 0.0 and 1.0 according to the loudest partial.
The individual start-times of the notes inside the chord can also be manipulated by a
switch (3). The first position sets all start-times to 0.0 and the second position, in turn,
calculates the start-times in reverse order according to the initial amplitudes.
Note also the use of ’:offset-dur’ attribute that allows to give a note inside a chord an
extra duration that is relational to the duration of the containing chord.

2.3. EDITORS 69

enp-constructor

:note pitch

:vel arg

:offset-time arg

:offset-dur 5.0

Chord-Editor

E

&
?

-5 -4 -3 -2 -1 0 1 2 3 4 5

w35
w32 w27 w#17 w61w87 w#59w62w76 w9

chord pitches

(E)

74.936
149.535
223.485
373.548
455.751
617.759
643.677
723.833
919.61
993.077

pwgl-enum

list

lists
pwgl-map

f->m

freqs
g*

l1? 127

enp-constructor

:chord pitches

g*

5.0 l2?

(E)

0.32
1.0
0.59
0.27
0.23
0.27
0.14
0.23
0.77
0.14

g-

1.0 l2?

1

3

2

Figure 2.42: 09-constructing-enp-objects-2

2.3.4.10 Constructing-ENP-Objects-3

The ’pwgl-enum’ box (1) gives two parallel lists that define pitch and offset-time respec-
tively. The ’text-box’ in (2) gives examples of different ways of defining ENP-expressions
and their properties. Here we define, among other things, a Score-BPF expression con-
taining some points (see the ’:points’ attribute). The points are given in a list format
where each sublist is a pair consisting of a relative time and the corresponding (y)value.
The start-times are automatically scaled inside the extent of the resulting expression.
The ’enp-constructor’ box (3) is used build the note objects. It can be used to define the
properties of ENP-objects, such as, notes and chords.

70 2. TUTORIAL

enp-constructor

:note pitch

:expressions nil

:offset-time arg

:offset-dur -0.6

enp-constructor

:chord pitches

:kind arg

Score-Editor

E

&

00:00 00:01

œ#

œ
œ œ#

œ

œ

P f

P1

score pitches rtms/times

pwgl-enum

(54 64 69 68 72 83)

(0.1 0.6 1.0 1.3 1.5 1.7)

pwgl-map

enum patch

text-box

(E)

(:bpf/1 :points ((0.0 0.0) (0.5 0.25) (0.75 0.75) (1.0 1.0))
 :dy 2.0)
:slur/1
(:crescendo/1 :initial-dynamics :mp :end-dynamics :f
 :points ((0.0 100) (1.0 150)))

:acc-2

1 2

3

enp-object-composer

chord-sequenceobject/s

Figure 2.43: 09-constructing-enp-objects-3

2.3.4.11 Canvas-Expression

This patch shows how the Canvas-expression can be used with ENP-score-notation.
(1) Demonstrates how a specific expression is expressed textually and how the textual
representation can be used to create an exact copy of the original object.
(2) Gives the current repertoire of graphical primitives inside Canvas-expression, which
are: (a) :arrow (b) :filled-circle (c) :circle (d) :lineloop (e) :polygon (f) :linestrip (g)
:line (h) :text
See the text-box at the bottom of the patch for possible attributes for each of the primi-
tives.

2.3. EDITORS 71

Score-Editor

E

&
1

28 œ
ao

eqq = 60

P1

score pitches rtms/times

enp-score-notation

score

:exclude nil

enp-constructor

:score score-notation

Score-Editor

E

&
1

28 œ
ao

eqq = 60

P1

score pitches rtms/times

Score-Editor

E

&
1

28 œ

abcdwhqe
P1

score pitches rtms/times

enp-score-notation

score

:exclude nil

text-box

(E)

(((((2
 ((1
 :notes
 (65)
 :expressions
 ((:canvas-expression
 :elements
 ((:arrow
 :color
 :green
 :vertices
 ((:x 3.9999988 :y 1.2499999) (:x 8.800003 :y 1.25))
 :pattern
 26
 :line-width
 2.0)
 (:filled-circle :color :cyan :x 4.25 :y -0.6000008)
 (:circle
 :color
 :mediumvioletred
 :pattern
 22
 :line-width
 1.5
 :x
 1.0000001
 :y
 -0.6500002)
 (:lineloop
 :color
 :deeppink
 :vertices
 ((:x 0.15 :y 0.9500001)
 (:x 1.1499999 :y 0.9500001)
 (:x 1.1499999 :y 1.9499995)
 (:x 0.15 :y 1.9499995))
 :pattern
 35
 :line-width
 0.6)
 (:polygon
 :color
 :darkturquoise
 :vertices
 ((:x 1.7500001 :y 0.95000017)
 (:x 2.7500003 :y 0.95000017)
 (:x 2.7500003 :y 1.9499993)
 (:x 1.7500001 :y 1.9499993)))
 (:linestrip
 :color
 :maroon
 :vertices
 ((:x 6.45 :y -1.15)
 (:x 6.950001 :y -0.19999993)
 (:x 7.4500003 :y -0.65000004)
 (:x 7.95 :y 0.35))
 :pattern
 44
 :line-width
 0.4)
 (:line
 :color
 :mediumvioletred
 :vertices
 ((:x 8.600001 :y -0.59999997) (:x 9.6 :y -0.59999997))
 :pattern
 11
 :line-width
 5.0)
 (:text
 :color
 :blue
 :font-scaler
 0.62000037
 :x
 7.000001
 :y
 2.6999994
 :text
 "abcd")
 (:text
 :color
 :goldenrod
 :font-scaler
 1.3499997
 :x
 -0.1
 :y
 2.7499998
 :text
 "whqe"
 :font
 :musical-symbols)))))))
 :time-signature
 (2 8)
 :metronome
 (4 60)))
 :instrument
 nil
 :staff
 :treble-staff))

1 2

Figure 2.44: 20-canvas-expression

2.3.5 Scripting

2.3.5.1 Scripting Syntax

Scripting can be used to produce various side-effects (such as expressions, analytical
information, timing, color, clef position, etc.) to an input-score using the ’enp-script’
box. The position, outlooks and type of the side-effects are defined by the ’rules’ input.
A scripting rule uses a similar syntax than a Score-PMC rule. Both start with a pattern-
matching part where the syntax is identical in both cases. The difference, however,
deals with the Lisp-code part. In a Score-PMC rule the Lisp-code part typically returns
a truth value, whereas in a ENP-script rule the Lisp code either returns an expression
definition or nil.
In the former case the rule is used to insert expressions in the score, for instance:� �
(* ?1 ?2 ?3

(?if (add-expression ’group ?1 ?2 ?3
:info (sc-name (list (m ?1) (m ?2) (m ?3)))))

"analyse 3-card melodic set-classes")� �

72 2. TUTORIAL

Here the rule adds an expression (’add-expression’) of type ’group’ to all adjacent
melodic three-note formations (’?1 ?2 ?3’). The string appearing in the score is given
after the ’:info’ keyword.
In the latter case the rule is used for setting slot values for music notation related objects
such as notes, chords, beats, measures, and so on:� �
(* ?1 :chord

(?if (when (m ?1 :complete? t)
(dolist (n (notes ?1))

(if (< (midi n) 60)
(setf (clef-number n) 1)
(setf (clef-number n) 0)))))

"assign notes below 60 to bass clef")� �
This rule sets the clef number of all notes in a chord so that notes having a midi-value
below 60 will be assigned to the bass clef.
For a more detailed discussion of the constraints syntax see the ’Constraints’ chapter of
this tutorial.
Also for more information see the paper ’ENP-Script-ISMIR05.pdf’ that is found in the
’documentation/publications’ folder.

2.3.5.2 Mark-Matchings

This patch demonstrates visually the behavior of basic rule accessor keywords that can
be used in the pattern-matching part of a rule (see also the ’Constraints’ section for more
information).
The rules contain the Lisp-expression (?mark ?1 ?2 ...) which is used to temporarily
store the indicated objects (?1 and ?2) so that they can later be displayed in the score.
This information is not saved or copied along with the score or the patch but needs to
be generated again if needed. This feature can be used for example for pedagogical or
debugging purposes.
When evaluated the ’enp-script’ box stores all cases found by ’?mark’ as a database that
can be inspected by the user by opening a rule diagnostics dialog with a double-click.
The upper part of the dialog contains two columns. To the left we have names of all
current scripting rules.
When a rule is selected a list of all matched positions can be found in the right part
of the dialog. When one of these positions is clicked, the exact position is shown in
the input score using various drawing devices (such as circles, connected shapes, bezier
functions, etc.).

2.3. EDITORS 73

Score-Editor

E

&

1

6
4 ˙b

P

˙ . œ

q = 72

4
4 ˙ ˙b ˙b œ ˙

3

Soprano

¬

L

score pitches rtms/times

enp-script

A

score

rules

()

Score-Editor

E

&

00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09

œb ˙ œ œ œb œb œb

P

P1

¬

L

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1 ?2
 (?if (?mark ?1 ?2))
 ":name No 1 note :documentation consecutive notes")

(* ?1 ?2 :chord (m ?1 :complete? t)
 (?if (?mark ?1 ?2))
 ":name No 2 chord :documentation consecutive chords")

(* ?1 ?2 :beat (m ?2 :complete? t)
 (?if (?mark ?1 ?2))
 ":name No 3 beat :documentation consecutive beats")

(* ?1 ?2 :measure (m ?2 :complete? t)
 (?if (?mark ?1 ?2))
 ":name No 4 measure :documentation consecutive measures")

(* ?1 ?2 :harmony (m ?2 :complete? t)
 (?if (?mark ?1 ?2))
 ":name No 5 harmony :documentation consecutive harmonies")

(* ?1 ?2 ?3 :score-sort
 (?if (?mark ?1 ?2 ?3))
 ":name No 6 score-sort :documentation consecutive score-sort notes")

(* ?1 * ?2
 (?if (?mark ?1 ?2))
 ":name No 7 2-wildcard note :documentation 2-wildcard case with melodic notes")

(* ?1 * ?2 :harmony (m ?2 :complete? t)
 (?if (?mark ?1 ?2))
 ":name No 8 2-wildcard harmony :documentation 2-wildcard case with harmonies")
#|
(* ?1 ?2
 (?if (?mark ?1 ?2 :kind :connected-circles))
 ":name No 1 note :documentation consecutive notes with circles")
|#

After evaluating double-click the box ->
to open the rule diagnostics dialog.

Figure 2.45: 01b-mark-matchings

2.3.5.3 Analysis

2.3.5.3.1 ENP-Script

A ’enp-script’ box is used here to annotate a score with analytical information. The ’text-
box’ gives one scripting rule that analyzes all adjacent melodic 3-note groups according
to their pitch-set-class content.
If the third input, ’selection?’, of the ’enp-script’ box is ’T’, then the analysis will be
applied only to the current selection.
Analysis information that have been added by enp-script can be removed using the ’enp
script history’ dialog.

74 2. TUTORIAL

Score-editor

E

&

1

5
4

˙
π

œ
œb œn œ œb œ œb œb œn

5

œ

f

œb œ .

fp

q = 60

œ
‰

Z

J ‰ ¿
^

ƒslap

¿

^
¿#
^

¿#

^

¿#

^6

œ

fp

gliss. œgliss.

Z

.

Alto Saxophone
(in Eb)

1

score pitches rtms/times

text-box

analysis (E)

(in-package :ccl)

(* ?1 ?2 ?3
 (?if (add-expression 'group ?1 ?2 ?3
 :info (sc-name (list (m ?1) (m ?2) (m ?3)))))
 "analyse melodic 3-card set-classes")

enp-script

A

score

rules

() <- change this input to 'T' to apply the script only to a selection

Select from the box popup menu 'enp script history...'
to inspect or to delete script history

Figure 2.46: 01-ENP-script

2.3.5.3.2 Schoenberg-Op25

This example contains four scripting rules. The first three rules add standard expres-
sions such as slurs, accents and crescendo markings. The fourth scripting rule annotates
the score with row analysis information. The Lisp-code box (’row-forms’) contains some
Lisp code that is needed for the row analysis.
The ’rule-filter’ box below the ’text-box’ can be used as follows. First double-click the
box. This action opens a dialog showing all the documentation strings of the incoming
rules. Here you can select any subset that will be output from the box.

2.3. EDITORS 75

(Lisp)

row-forms

text-box

(E)

(in-package :ccl)

(* ?1 ?2 (?if (when (and
 (> (abs (- (m ?2) (m ?1))) 12)
 (not (prev-rest? ?2)))
 (add-expression 'slur ?1 ?2))) "slur")

(* ?1 (?if (when (= (beaming-level ?1) 2)
 (add-expression 'accent-grave ?1))) "accent")

(* ?1 ?2 ?3 ?4 ?5 ?6 (?if (when (and (= (beaming-level ?1) 2)(= (beaming-level ?6) 2))
 (add-expression 'crescendo ?1 ?2 ?3 ?4 ?5 ?6))) "cresc")

(* ?1
 (?if (let ((ms (mapcar #'mod12 (m ?1 :l 12)))
 (rows (pmc-value :rows :init '#.(ccl::calc-row-forms '(4 5 7 1 6 3 8 2 11 0 9 10))))
 pos row)
 (when (and (= (mod (notenum ?1) 12) 0)
 (= (length ms) 12)
 (setq row (match-row-form ms rows)))
 (add-expression 'group (m ?1 :l 12 :object t) :info row :user-position-y-correction -1))))
 "label rows")

Score-Editor

E

&
1

34 Ó . ‰ œb
œ œ œb œb

œ .b œb œn œb œ œ œn
1

? 34 ‰ œ
œ œ œb œb

œ .b œb œ œ œ œ œb ‰
œb

œb œb œ œ1

& ‰ œb
œb œb œ œn

œ . œ œb œ œb œb œb1

?
œ .

& œ œ# œ œb œb œb ? ‰ œ
œ œ œb œb

1

score pitches rtms/times

rule-filter

1

rules

Chord-Editor

op25-Trio-row
E

& w w w w# w# w# w# wn w wn w w#
chord pitches

value-box

(4 5 7 1 6 3 8 2 11 0 9 10)

g+

enp-script

A

score

rules

()

Figure 2.47: 02-Schoenberg-op25

2.3.5.3.3 Kuitunen-Vocal-Texture

This example utilizes two scripting rules. The first one finds all harmonic formations
that consist of symmetric chords. These cases are marked with connected shapes that
are cycled through three different shapes. The second one performs a motivic analysis
of consecutive 3-note cells.
To see the complete analysis evaluate the ’enp-script’ box.

76 2. TUTORIAL

Score-Editor

E

&

6

4 ˙b
˙ . œ

q = 72

4

4 ˙ ˙b
˙b œ ˙

3

&

6

4
˙ . œ œb

˙

4

4

œ . œb
j ˙ œ . œ

j

˙

&

6

4

˙ ˙b

˙b

4

4 œ œ .
j

˙ ˙b
˙

?

6

4

˙
˙ ˙b

4

4
˙ . œb

˙ ˙ œb

3

¬

L

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1 :harmony
 (?if
 (let ((midis (m ?1 :complete? t))
 (shape (pmc-value :shape :init #.(let ((x -1)) #'(lambda ()(incf x))))))
 (when (and midis (sym-chord? (m ?1)))
 (add-expression 'score-expression ?1
 :kind :connected-shapes
 :shape (case (mod shape 3)
 (1 :rectangle)
 (0 :circle)
 (2 :triangle))
 :color (case (mod shape 3)
 (1 :blue)
 (0 :brown)
 (2 :green))))))
 "symmetric harms")

(* ?1 ?2 ?3
 (?if
 (when (zerop (mod (1- (notenum ?1)) 3))
 (add-expression 'analysis-group ?1 ?2 ?3
 :name :motives
 :display-type :letter
 :color :grey
 :analysis-key (list (mod12 (m ?1)) (mod12 (m ?2)) (mod12 (m ?3))))))
 "motives")

enp-script

A

score

rules

()

Figure 2.48: 03-Kuitunen-vocal-texture

2.3.5.3.4 Parallel-Fifths

This example shows how classical voice-leading mistakes can be marked in a score.
This is a fairly complex analysis task, and we use here in the ’m-method’ the special ’:vl-
martrix’ (vl = voice-leading) keyword to access a matrix object consisting of notes that
define both adjacent harmonic and melodic relations simultaneously. From this object
we access a list of lists of notes, where each sublist forms a melodic (or horizontal ’:h’)
movement. Using this data structure we can perform the actual analysis where we find
all voice-leading cases that form parallel fifths.

2.3. EDITORS 77

Score-Editor

E

&

?

1

24

24

œ œ œ œ œœ œ œ œ œ
œ œ œ œœ œ œ œ

Ps
1
2
3
4

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1 :harmony
 (?if
 (let* ((mat (matrix-access (m ?1 :vl-matrix 2 :object t) :h)))
 (when mat
 (destructuring-bind (m11 m12) (first mat)
 (when (and (/= (m m11) (m m12)))
 (loop for mel2 in (rest mat) do
 (destructuring-bind (m21 m22) mel2
 (when (and (/= (m m21) (m m22))
 (= (mod12 (abs (- (m m11) (m m21)))) 7)
 (= (mod12 (abs (- (m m12) (m m22)))) 7))
 (add-expression 'score-expression m11 m12
 :kind :line
 :color :red)
 (add-expression 'score-expression m21 m22
 :kind :line
 :color :red)))))))))
 "Find and mark parallel fifths")

enp-script

A

score

rules

()

Figure 2.49: 05-parallel-fifths

2.3.5.4 Score Manipulation

2.3.5.4.1 Arpeggio-Chords

This patch demonstrates how simple midi-list values (given in the ’text-box’ in the upper
part of the patch) can be converted to a more meaningful and readable musical presen-
tation with the help of ENP-script. The list input contains four 12-note chords, which
are are transformed step-wise to a result that is shown in the ’Score-Editor’. These steps
include setting the piano staff and assigning the lowest notes to the bass clef; adjusting
the start time of each chord; and finally manipulating the offset-time of individual notes
within the chords so that the result contains either upward or downward arpeggios with
an accelerating gesture.

78 2. TUTORIAL

text-box

chords (E)

(36 42 47 53 58 64 69 75 80 86 91 97)
(36 41 46 52 57 63 68 74 79 85 90 95)
(36 41 46 51 56 62 67 73 78 83 88 93)
(36 41 46 51 56 61 66 71 76 81 86 91)

Score-Editor

E

&

?

00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09

P1

score pitches rtms/times

text-box

staff+clef (E)

(in-package :ccl)

(i1
 (?if
 (setf (staff (read-key i1 :part)) (make-instance 'piano-staff)))
 "piano-staff")

(* ?1 :chord
 (?if (when (m ?1 :complete? t)
 (dolist (n (notes ?1))
 (if (< (midi n) 60)
 (setf (clef-number n) 1)
 (setf (clef-number n) 0)))))
 "assign notes below 60 to bass clef")

text-box

time+dur (E)

(in-package :ccl)

(* ?1 :chord
 (?if
 (when (m ?1 :complete? t)
 (let* ((dtime 2)
 (time (pmc-value :time :init #.(let ((x 0)) #'(lambda ()(prog1 x (incf x 2)))))))
 (dolist (n (notes ?1)) (setf (dur n) dtime) (setf (offset-time n) 0))
 (setf (start-time ?1) time))))
 "assign start-times")

text-box

arpeggio-up (E)

(in-package :ccl)

(* ?1 :chord (?if
 (when (m ?1 :complete? t)
 (let* ((notes (sort (copy-list (notes ?1)) '< :key 'midi))
 (dur 2)
 (times (interpolation 0 (* 0.75 dur) (length notes) 0.8)))
 (dolist (n notes)
 (setf (offset-time n) (pop times))
 (setf (dur n) (- dur (offset-time n)))))))
 "arpeggio")

text-box

arpeggio-down (E)

(in-package :ccl)

(* ?1 :chord (?if
 (when (m ?1 :complete? t)
 (let* ((notes (sort (copy-list (notes ?1)) '> :key 'midi))
 (dur 2)
 (times (interpolation 0 (* 0.75 dur) (length notes) 1.2)))
 (dolist (n notes)
 (setf (offset-time n) (pop times))
 (setf (dur n) (- dur (offset-time n)))))))
 "arpeggio")

enp-script

A

score

rules

()

(2,3,4,5) choose from left to right one script
at a time and evaluate the enp-script box.

2 3 4 5

eval and lock Score-editor

1

Figure 2.50: 01-arpeggio-chords

2.3.5.4.2 Beethoven-Expressions

Here two basic scripting rules are used to add automatically slurs and staccatos to the
score.

2.3. EDITORS 79

Score-Editor

E

&bb
1

38 œ œ œ œ œ œ œ œn œ œ œ œ œ œn œ œ œ œ œ œ œ œ œ œb
P1

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1 ?2
 (?if (when (downbeat? ?1)
 (add-expression 'slur ?1 ?2)))
 "Add a slur to the notes.")

(* ?1 ?2 ?3 ?4 ?5 ?6
 (?if (when (downbeat? ?1)
 (add-expression 'staccato ?3 ?4 ?5 ?6)))
 "Add a staccato to the last four notes of the group.")

enp-script

A

score

rules

()

Figure 2.51: 02-Beethoven-expressions

2.3.5.4.3 Chopin-Octaves

This example differs from the previous scripting patches as it contains two sets of rules
that are given in two separate text-boxes. The first contains a rule that adds octaves
to all notes in the score. The second set contains a rule that assigns all notes below
middle-C to the bass clef.
Normally the scripting engine executes all rules in parallel (i.e. all rules are applied to
the first note, then all rules are applied to the second note, etc.).
Here we cannot use this basic scheme as the first rule makes side-effects to the basic
score structure (i.e. adds notes). Thus we must ensure that the first rule has been
completely executed before the second one starts.
This is why we give the rules as a list (see the ’list’ box). When the script engine
encounters this list, it executes the first rule for all notes in the score before starting
with the next rule.

80 2. TUTORIAL

Score-Editor

E

&
?

##
##

1

44
44

œ œ# œ
3

œ œ# œ
3

œ œ‹ œ
3

œ œ# œ
3

œ# œ‹ œ
3

œ œ# œ
3

œ œ‹ œ
3 œ œ œ#

3

œ œ# œ
3

œ œ# œ
3

œ œ‹ œ
3

œ œ# œ
3

œ# œ‹ œ
3

œ œ# œ
3

œ œ‹ œ
3

œ œ œ#
3

Ps
1
2

score pitches rtms/timestext-box

(E)

(in-package :ccl)

(* ?1 :chord
 (?if
 (when (m ?1 :complete? t)
 (mapcar #'(lambda(note)
 (insert-note ?1
 :midi (+ (midi note) 12)
 :enharmonic (enharmonic note)))
 (notes ?1))))
 "Add octave(s) to a chord.")

list

argument

args
text-box

(E)

(in-package :ccl)

(* ?1
 (?if
 (when (< (midi ?1) 59)
 (setf (clef-number ?1) 1)))
 "Assign qualifying notes to lower staff.")

enp-script

A

score

rules

()

Figure 2.52: 03-Chopin-octaves

2.3.5.4.4 RTM-Modification

Scripting can also be used to change the metric structure of a score. Here we halve the
denominators of time signatures and halve the unit-length of main-beats. This results
in a score where all chords have exactly equal timing information when compared to
the original score, although the measure and beat information is written differently in
the modified score.

2.3. EDITORS 81

Score-Editor

E

÷
1

84 œ œ œ œ œ
3

œ œ œ œ ˙ 64 œ œ œ œ œœ œj j˙P1

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1 :measure
 (?if
 (when (m ?1 :complete? t)
 (setf (low ?1) (/ (low ?1) 2))))
 "Halve the denominators of time signatures.")

(* ?1 :beat
 (?if
 (when (m ?1 :complete? t)
 (setf (unit-length ?1) (/ (unit-length ?1) 2))))
 "Halve the unit-length of main-beats.")

enp-script

A

score

rules

()

Figure 2.53: 04-rtm-modification

2.3.5.4.5 Chopin-Layout

In this patch we use scripting to change some layout features of a score. In the first
rule we diminish the beat-size of a beat of the upper voice (this results in a smaller
note-head size) and in the second one we change x-offset value of the chords to ensure
that the stems are aligned with the modified note-heads.
The patch contains a switch box that allows to toggle between the original layout and
the modified one.

82 2. TUTORIAL

Score-Editor

E

&

?

###

###

1

44

44

œ œ œ œ œ œ œ œ œ œ œ œ œ œ# œ œ œ œ# œ œ# œ œ œn œ
q = 96

œ . œ œ . œ œ . œ# œ . œ

œ œ œ œ
3 œ œ œ œ

3 œ œ œ œ
3

œ œ# œ œ
3

Ps1

2

3

score pitches rtms/times

text-box

new layout (E)

(in-package :ccl)

(* ?1 :beat :parts '((1 1))
 (?if
 (when (m ?1 :complete? t)
 (setf (beat-scaling ?1) 0.6)))
 "Scale beat size of main beats in voice 1.")

(* ?1 :chord :parts '((1 1))
 (?if
 (when (m ?1 :complete? t)
 (setf (x-offset ?1) 0.2)))
 "Move chords in the first voice by 0.2 units.")

text-box

original (E)

(in-package :ccl)

(* ?1 :beat :parts '((1 1))
 (?if
 (when (m ?1 :complete? t)
 (setf (beat-scaling ?1) 1.0)))
 "Reset beat size of main beats in voice 1.")

(* ?1 :chord :parts '((1 1))
 (?if
 (when (m ?1 :complete? t)
 (setf (x-offset ?1) 0.0)))
 "Move chords in the first voice to 0.0.")

enp-script

A

score

rules

()

Figure 2.54: 05-Chopin-layout

2.3.5.4.6 Reassigning-Pitches

In this example we duplicate a score (1), and assign new pitches for a result score (2).
The new pitches are given in (3). Note that all other score information of the original
score are kept in the result score.
The actual pitch assignment is realized with enp-script that has one scripting rule (4).
The ’update-pitches’ abstraction (5) has two purposes: it defines one ’pre’ operation
and one ’post’ operation that are fed to the ’prepare-fns’ input of the ’enp-script’ box
(the ’pre’ operation is run before enp-script, and the ’post’ operation after enp-script).
First, the ’pre’ operation stores the pitch list under the keyword ’:pitches’ (this list is
then accessed inside the scripting rule). Second, the ’post’ operation restores correct
midi-values for the tied notes after running enp-script.

2.3. EDITORS 83

Chord-Editor

E

&

?

w# w# w
w# wn

w w#
w wn

wn
w

w#

chord pitches

Score-Editor

E

&

1

3
8

œ .

∏

œ#
.

œj

q = 60

4
8

œ#

Ï

œ
.

œ œ#
.

5
8 œ

sul ponticello

tr

Ï

œ

~~~~~~

œ

~~~~~~~

j
3
8 œ#

ord.

œ œ .#

P

œj œ

ƒ

œ .

sƒ

®
jj

P1

score pitches rtms/times

enp-script

A

score

rules

()

prepare-fns+args

Score-Editor

E

&

1

3
8

œ .

∏

œ#
.

œj

q = 60

4
8

œ#

Ï

œ
.

œ œ#
.

5
8 œ

sul ponticello

tr

Ï

œ

~~~~~~

œ

~~~~~~~

j
3
8 œ#

ord.

œ œ .#

P

œj œ

ƒ

œ .

sƒ

®
jj

P1

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1
 (?if (let ((midi (nth (1- (notenum ?1)) (pwgl-value :pitches))))
 (when midi (setf (midi ?1) midi))))
 "set midis")

pwgl-progn

patch

patches
<- eval here

update-pitches

A

pitches

1

2

3

45

Figure 2.55: 06-Reassigning-pitches

2.3.6 Rhythm

2.3.6.1 Basic

This section demonstrates how to create beat objects in a patch for ENP. A beat consists
of a RTM-list and a unit-length.
The RTM-list defines the internal proportions of a beat and it can consist of positive
numbers (attacks), negative numbers (rests), or positive floating point numbers (ties).
The unit-length, in turn, gives the number of units that are used for this beat (the actual
unit, e.g. 1/4 note, 1/8 note, etc., is defined in the time-signature of the measure that
owns the beat) .
In (1) and (2) a RTM-list is created and the result is shown in (3). In (4) the user gives
a unit-length. This information is collected in an ’enp-constructor’ box (5) that creates
the beat object. This result is in turn fed to an ’enp-object-composer’ box (6) that creates
the final score object (7).

84 2. TUTORIAL

rest attack attack

list

E

(-1 1 1)

enp-constructor

:beat unit-length

score-notation

Score-Editor

E

&
1

14 ‰ œ œ
3

q = 60

P1

score pitches rtms/times

E

-1

E

1

E

1

1

2

13 4

5

6

7

enp-object-composer

score object/s

Figure 2.56: 01-basic

2.3.6.2 Random-Rhythms

This patch demonstrates how to create random beats. First we create a RTM-list (1).
After this we simplify the RTM-list with the ’gcd’ (greatest common divisor) function
(2). (3) shows the resulting RTM-list. Finally in (4) we generate a random unit-length.

2.3. EDITORS 85

Score-Editor

E

&
1

24 œ ˙
3

q = 60

P1

score pitches rtms/times

enp-constructor

:beat unit-length

score-notation

g-random

1 2

g-random

1 3

pwgl-repeat

count patch

g-random

1 3

pwgl-apply

gcd arg

const-value

patch

g/

l1? l2?

number of sub-beats RTM-values unit-lenght

text-box

E

(1)1

2

3

4

enp-object-composer

score object/s

Figure 2.57: 02-random-rhythms

2.3.6.3 Pulses

In this example the shape of a bpf controls the number of elements of 10 RTM-lists (1).
The current bpf is first sampled, scaled and truncated between 1 and 5 (2). After this
the final RTM-list is created in a loop (3). Here we create also the beat objects with the
help of a ’enp-constructor’ box.
The 2D-Editor contains 4 bpfs and the current one can be selected using the arrow
up/down keys.

86 2. TUTORIAL

2D-Editor

E4/4 objects active

pwgl-sample

object

10

g-scaling

vals?

1

5

pwgl-repeat

count 1

g-round

pwgl-enum

list

pwgl-map

enum patch

enp-constructor

:beat 1

score-notation

Score-Editor

E

&
1

œ œ œ œ œ
5

œ œ œ œ œ
5

œ œ œ œ œ œ œ œ œ œ œ
3

œ œ œ
3

œ œ œ œ œ œ

q = 60

P1

score pitches rtms/times

1

2
3

number of beats

enp-object-composer

score object/s

enp-object-composer

measure object/s

Figure 2.58: 03-pulses

2.3.6.4 Rhythm-Database

A menu-box is used as a database of different RTM-lists (1). This database can inspected
and edited by double-clicking the menu input.

2.4. SPECIAL-BOXES 87

enp-constructor

:beat 1

score-notation

Score-Editor

E

&
1

14 œ œ œ
3

q = 60

P1

score pitches rtms/times

menu-box

(1 1.0 1) rhythm database1

enp-object-composer

score object/s

Figure 2.59: 04-rhythm-database

2.4 Special-Boxes

2.4.1 Display-Box

2.4.1.1 OpenGL Macros

There are special macros that can be used to draw graphical primitives, such as, lines,
polygons, circles, etc. The following list enumerates the current set. The names should
give appropriate hints as to their usage (the required parameters are shown in paren-
thesis):

(1) draw-2D-arrow (x1 y1 x2 y2 &key (xsize 0.5) (ysize 0.3))

(2) draw-2D-box (x1 y1 x2 y2 &key filled-p)

(3) draw-2D-circle (x y r &key filled-p)

(4) draw-2D-line (x1 y1 x2 y2)

(5) draw-2D-lines (&rest 2D-coordinates)

88 2. TUTORIAL

(6) draw-2D-point (x y &key (size 1.0))

(7) draw-2D-polygon (&rest 2D-coordinates)

(8) draw-2D-quads (&rest 2D-coordinates)

(9) draw-2D-text (x y string font scaler &optional (justification t))

(10) draw-2D-triangles (x1 y1 x2 y2 x3 y3 &key filled-p)

(11) with-2D-object (type). Type can be one of the following keywords: :polygon
:points :line :lines :line-loop :line-strip :triangles :triangle-strip :triangle-fan :quads
:quad-strip. Vertices can be added to the object with add-2D-vertex (see below).

(1) add-2D-vertex (x y)

There are also some OpenGL specific macros that can be used to perform, for example,
various matrix operations, or to change the graphics attributes, such as, transparency or
current line width. The following enumerates the available macros arranged in groups
according to their usage:

(1) with-GL-translate (dx dy)

(2) with-GL-scale (factor)

(3) with-GL-rotate (degree)

(4) with-GL-matrix

(1) with-GL-color (color)

(2) with-GL-color-and-alpha (color alpha)

(3) with-GL-color-3f (r g b)

(4) with-GL-color-4f (r g b alpha)

(1) with-GL-line-width (width)

(2) with-GL-point-size (size)

(3) with-GL-line-stipple (pattern). Pattern is a two digit number

defining the pattern, e.g., 88 means 8 points on, 8 points off; and

44 means 4 points on, 8 points off.

2.4. SPECIAL-BOXES 89

2.4.1.2 Colors

Color keyword
:ALICEBLUE
:ANTIQUEWHITE
:AQUAMARINE
:AZURE
:BEIGE
:BISQUE
:BLACK
:BLANCHEDALMOND
:BLUE
:BLUEVIOLET
:BROWN
:BURLYWOOD
:CADETBLUE
:CHARTREUSE
:CHOCOLATE
:CORAL
:CORNFLOWERBLUE
:CORNSILK
:CYAN
:DARK-BLUE
:DARKGOLDENROD
:DARKGREEN
:DARKKHAKI
:DARKOLIVEGREEN
:DARKORANGE
:DARKORCHID
:DARKSALMON
:DARKSEAGREEN
:DARKSLATEBLUE
:DARKSLATEGRAY
:DARKSLATEGREY
:DARKTURQUOISE
:DARKVIOLET
:DEEPPINK
:DEEPSKYBLUE
:DIMGRAY
:DIMGREY
:DODGERBLUE
:FIREBRICK
:FLORALWHITE
:FORESTGREEN

90 2. TUTORIAL

:GAINSBORO
:GHOSTWHITE
:GOLD
:GOLDENROD
:GRAY
:GRAY-BLUE
:GREEN
:GREENYELLOW
:GREY
:HONEYDEW
:HOTPINK
:INDIANRED
:IVORY
:KHAKI
:LAVENDER
:LAVENDERBLUSH
:LAWNGREEN
:LEMONCHIFFON
:LIGHT-BLUE
:LIGHT-BROWN
:LIGHT-RED
:LIGHTBLUE
:LIGHTCORAL
:LIGHTCYAN
:LIGHTGOLDENROD
:LIGHTGOLDENRODYELLOW
:LIGHTGRAY
:LIGHTGREY
:LIGHTPINK
:LIGHTSALMON
:LIGHTSEAGREEN
:LIGHTSKYBLUE
:LIGHTSLATEBLUE
:LIGHTSLATEGRAY
:LIGHTSLATEGREY
:LIGHTSTEELBLUE
:LIGHTYELLOW
:LIMEGREEN
:LINEN
:MAGENTA
:MAROON
:MEDIUM-BLUE
:MEDIUM-BROWN
:MEDIUM-GREEN

2.4. SPECIAL-BOXES 91

:MEDIUM-YELLOW
:MEDIUMAQUAMARINE
:MEDIUMBLUE
:MEDIUMORCHID
:MEDIUMPURPLE
:MEDIUMSEAGREEN
:MEDIUMSLATEBLUE
:MEDIUMSPRINGGREEN
:MEDIUMTURQUOISE
:MEDIUMVIOLETRED
:MIDNIGHTBLUE
:MINTCREAM
:MISTYROSE
:MOCCASIN
:NAVAJOWHITE
:NAVY
:NAVYBLUE
:OLDLACE
:OLIVEDRAB
:ORANGE
:ORANGERED
:ORCHID
:PALEGOLDENROD
:PALEGREEN
:PALETURQUOISE
:PALEVIOLETRED
:PAPAYAWHIP
:PEACHPUFF
:PERU
:PINK
:PLUM
:POWDERBLUE
:PURPLE
:RED
:ROSYBROWN
:ROYALBLUE
:SADDLEBROWN
:SALMON
:SANDYBROWN
:SEAGREEN
:SEASHELL
:SIENNA
:SKYBLUE
:SLATEBLUE

92 2. TUTORIAL

:SLATEGRAY
:SLATEGREY
:SNOW
:SPRINGGREEN
:STEELBLUE
:TAN
:THISTLE
:TOMATO
:TURQUOISE
:VIOLET
:VIOLETRED
:WHEAT
:WHITE
:WHITESMOKE
:YELLOW
:YELLOWGREEN

2.4.1.3 Examples

2.4.1.3.1 Basic

PWGL-display-box
PWGL-display-box can be used to visualize a wide range of information. This patch
gives a simple example how the display-box can be used to draw graphics in the patch.
Double-click the box to view and edit the code.

2.4. SPECIAL-BOXES 93

circle

Figure 2.60: 02-basic

2.4.1.3.2 Using-Variables

PWGL-display-box
PWGL-display-box can be used to visualize a wide range of information. This patch
gives a simple example how the display-box can be used to draw graphics in the patch.
Double-click the box to view and edit the code.

94 2. TUTORIAL

circle

1.0

x-zoom
1.0

y-zoom
0.0

x-offset
0.0

y-offset

Figure 2.61: 02-using-variables

2.4.1.3.3 Macros

The collection of macros/primitives

2.4. SPECIAL-BOXES 95

Macros

POINTS LINES LINE-STRIP LINE-LOOP

TRIANGLES TRIANGLE-STRIP TRIANGLE-FAN QUADS

QUAD-STRIP POLYGON

b
b

b
b b

b

text

Figure 2.62: 03-macros

2.4.1.3.4 Lorenz-Attractor

See: http://en.wikipedia.org/wiki/Lorenz attractor

96 2. TUTORIAL

Lorenz Attractor

circle

Figure 2.63: 05-lorenz-attractor

2.4.2 Shell

2.4.2.1 Introduction

The PWGL SHELL library provides a collection of boxes to interface with the UNIX shell.
The SHELL library allows the user to call virtually any shell program, to redirect and
pipe commands, and to input the results back to be used as a part of a normal PWGL
patch. The SHELL library currently implements 4 main boxes:

(1) pwgl-shell-box

(2) pwgl-shell-redirect-box

(3) pwgl-shell-pipe-box

(4) pwgl-shell-execute-box

The documentation for the SHELL library API can be found here:

2.4. SPECIAL-BOXES 97

2.4.2.2 Basic-Principles

2.4.2.2.1 Basics

Editing
(1) The empty box by default does not have any shell commands assiciated to it. To
enter the command you can either:
(a) double click the ”?” button, or
(b) type ’+’, and enter the shell command name in the dialog.
In the dialog you have several options: you can write the name by hand, browse the file
system, or use the menus on the rigth to access /usr/bin and /usr/loca/bin folders.
(2) When the box has a shell command it is also possible to extend/remove inputs with
by typing ”+” or ”-” respectively. If you explicitely need to add an empty option use the
’=’ key.
(3) The options can be removed by selecing the option input box and typing ”Cut” or
”Delete”.
(4) The inputs can be rearranged with the arrow keys (up/down)
(5) An option can be replaced with another one by double-clicking on the option input
box and typing a new option name.
Getting Help
When a box has a shell command associated to it you can type ’h’ to see the UNIX
manual page.

98 2. TUTORIAL

2

1

3

exe pipe

> ls

exe pipe

> ls

-a

exe pipe

Figure 2.64: 00a-basics

2.4.2.2.2 Managing-Options

Some of the shell commands can include dozens of options and it is usually impossible
to remeber them all.
By default the shell boxes are not aware of the applicable options.
If you select the ’ls’ box (1) and type ’+’ to add an option you’ll notice that an empty
option input box is added. There is however, a simple way of creating databases for the
shell commans.
(2) Shows a string that is copy pasted from the output of ’man ls’ (the options section
to be precise). By evaluating the box at (3) a database is automatically generated from
the ’man’ output. Now, if you again try to add an option to the ’ls’ box shown at (4) you
should be able to notice that things behave a little different.
Note, that it is possible to make a multiple selection. So, if you want the directory listing
to display both the number of file system blocks actually used by each file as well as to
show if a particular pathname names a file of a directory (e.g., ls -F -s) you can choose
both options at the same time.
This makes it easier to manage the options and it also acts documentation to the boxes
as well

2.4. SPECIAL-BOXES 99

text-box

E

" -A List all entries except for . and ... Always set for the super-
 user.

 -B Force printing of non-printable characters (as defined by
 ctype(3) and current locale settings) in file names as \xxx,
 where xxx is the numeric value of the character in octal.

 -C Force multi-column output; this is the default when output is to
 a terminal.

 -F Display a slash (`/') immediately after each pathname that is a
 directory, an asterisk (`*') after each that is executable, an at
 sign (`@') after each symbolic link, an equals sign (`=') after
 each socket, a percent sign (`%') after each whiteout, and a ver-
 tical bar (`|') after each that is a FIFO.

 -G Enable colorized output. This option is equivalent to defining
 CLICOLOR in the environment. (See below.)

 -H Symbolic links on the command line are followed. This option is
 assumed if none of the -F, -d, or -l options are specified.

 -L If argument is a symbolic link, list the file or directory the
 link references rather than the link itself. This option cancels
 the -P option.

 -P If argument is a symbolic link, list the link itself rather than
 the object the link references. This option cancels the -H and
 -L options.

 -R Recursively list subdirectories encountered.

 -S Sort files by size

 -T When used with the -l (lowercase letter ``ell'') option, display
 complete time information for the file, including month, day,
 hour, minute, second, and year.

 -W Display whiteouts when scanning directories.

 -a Include directory entries whose names begin with a dot (.).

 -b As -B, but use C escape codes whenever possible.

 -c Use time when file status was last changed for sorting or print-
 ing.

 -d Directories are listed as plain files (not searched recursively).

 -e Print the Access Control List (ACL) associated with the file, if
 present.

 -f Output is not sorted.

 -g This option is only available for compatibility with POSIX; it is
 used to display the group name in the long (-l) format output.

 -h When used with the -l option, use unit suffixes: Byte, Kilobyte,
 Megabyte, Gigabyte, Terabyte and Petabyte in order to reduce the
 number of digits to three or less using base 2 for sizes.

 -i For each file, print the file's file serial number (inode num-
 ber).

 -k If the -s option is specified, print the file size allocation in
 kilobytes, not blocks. This option overrides the environment
 variable BLOCKSIZE.

 -l (The lowercase letter ``ell''.) List in long format. (See
 below.) If the output is to a terminal, a total sum for all the
 file sizes is output on a line before the long listing.

 -m Stream output format; list files across the page, separated by
 commas.

 -n Display user and group IDs numerically rather than converting to
 a user or group name in a long (-l) output.

 -o Include the file flags in a long (-l) output.

 -p Write a slash (`/') after each filename if that file is a direc-
 tory.

 -q Force printing of non-graphic characters in file names as the
 character `?'; this is the default when output is to a terminal.

 -r Reverse the order of the sort to get reverse lexicographical
 order or the oldest entries first (or largest files last, if com-
 bined with sort by size (-S) flag).

 -s Display the number of file system blocks actually used by each
 file, in units of 512 bytes, where partial units are rounded up
 to the next integer value. If the output is to a terminal, a
 total sum for all the file sizes is output on a line before the
 listing. The environment variable BLOCKSIZE overrides the unit
 size of 512 bytes.

 -t Sort by time modified (most recently modified first) before sort-
 ing the operands by lexicographical order.

 -u Use time of last access, instead of last modification of the file
 for sorting (-t) or printing (-l).

 -w Force raw printing of non-printable characters. This is the
 default when output is not to a terminal.

 -x The same as -C, except that the multi-column output is produced
 with entries sorted across, rather than down, the columns.

 -v Force unedited printing of non-graphic characters; this is the
 default when output is not to a terminal.

 -1 (The numeric digit ``one''.) Force output to be one entry per
 line. This is the default when output is not to a terminal.
"

simple-parse-options

"ls" x

add-shell-command-database

db

1
2

3

4
> ls

exe pipe

> ls

exe pipe

Figure 2.65: 00b-managing-options

2.4.2.2.3 Error-Handling

The shell-boxes read the return value of the executed program(s) and visually show if
the execution resulted in an error.
Here, we use the UNIX command ’man’ to try to locate the UNIX manual page for a
program called ’foobar’. Evaluation of the box should - hopefully - result in an error.
When a shell box is in an uresolved (error) state a visual indication is shown. Now
when moving the mouse over the failing box the UNIX error string and/or number is
displayed the message area located at the bottom of the patch window.
Uresolved boxes will reset automatically when evaluate the next time (note that this
may result in an error again). The box can be reset manually by selecting it and typing
’r’.
NOTE: this behavior cannot be observed in a tutorial patch! You need to open the patch
in a separate window...

100 2. TUTORIAL

value-box

"foobar"

> man

exe pipe

Figure 2.66: 01a-error-handling

2.4.2.2.4 Output

The shell-boxes can do some post-processing to the output. This patch shows the cur-
rently available post-processors:
(1) The default, returns the result as a string.
(2) :read-from-string calls the lisp read-from-string function to the result string. This is
useful if you need to return numbers, for example.
(3) :list, takes the output line by line, returning a list of strings
(4) :void, just returns NIL. This is useful when the result is not interesting and also helps
to avoid cluttering the PWGL output window with unimportant information.
(5) :boolean returns either NIL or the data returned by the system call.
The post-process can be set by typing ’p’ on a shell-box.

2.4. SPECIAL-BOXES 101

() :read-from-string :list :void

1 2 3 4

> ls

exe pipe

> ls

[R]exe pipe

> ls

[L]exe pipe

> ls

[V]exe pipe

:boolean

5

> ls

[B]exe pipe

Figure 2.67: 01b-output

2.4.2.3 Examples

2.4.2.3.1 Simple-Io-Example

This is a simple example demonstrating how shell boxes can pass information to PWGL.
Here, the ’cal’ command is used to calculate the calendar for a given year. The result is
stored in the ’text-box’ at the bottom of the patch.

102 2. TUTORIAL

> cal

-y

exe pipe

text-box

(E)

 1970

 January February March
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 6 7
 4 5 6 7 8 9 10 8 9 10 11 12 13 14 8 9 10 11 12 13 14
11 12 13 14 15 16 17 15 16 17 18 19 20 21 15 16 17 18 19 20 21
18 19 20 21 22 23 24 22 23 24 25 26 27 28 22 23 24 25 26 27 28
25 26 27 28 29 30 31 29 30 31

 April May June
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
 1 2 3 4 1 2 1 2 3 4 5 6
 5 6 7 8 9 10 11 3 4 5 6 7 8 9 7 8 9 10 11 12 13
12 13 14 15 16 17 18 10 11 12 13 14 15 16 14 15 16 17 18 19 20
19 20 21 22 23 24 25 17 18 19 20 21 22 23 21 22 23 24 25 26 27
26 27 28 29 30 24 25 26 27 28 29 30 28 29 30
 31
 July August September
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
 1 2 3 4 1 1 2 3 4 5
 5 6 7 8 9 10 11 2 3 4 5 6 7 8 6 7 8 9 10 11 12
12 13 14 15 16 17 18 9 10 11 12 13 14 15 13 14 15 16 17 18 19
19 20 21 22 23 24 25 16 17 18 19 20 21 22 20 21 22 23 24 25 26
26 27 28 29 30 31 23 24 25 26 27 28 29 27 28 29 30
 30 31
 October November December
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5
 4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12
11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19
18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26
25 26 27 28 29 30 31 29 30 27 28 29 30 31

num-box

1970

Figure 2.68: 01-simple-IO-example

2.4.2.3.2 Opening-and-Viewing

This patch demonstrates how the shell-box can be used display and examine the con-
tents of a file.
in (1) we define a pathname pointing to a sampled sound file.
(2) open the file with user definable application – the application can be selected with
the ’menu-box’ shown in (3).
In (4) we use quicklook to preview the contents of the sound file (quicklook is a Mac
OS X Leopard feature only).

2.4. SPECIAL-BOXES 103

pwgl-location

:samples

"mealbythesea.wav"

menu-box

"Safari"

1

2

3

4
> qlmanage

-p

exe pipe

open

-a

exe pipe

Figure 2.69: 02-opening-and-viewing

2.4.2.3.3 Executing

(1) Gives two options for locating lilypond.
In (2) the ’which’ box is used to check if the application exists. Note, that the box is in
’BOOLEAN’ output mode.
(3) ’pwgl-if’ box, depending on the value returned by the ’which’ box, either evaluates
the lilypond script and opens the resulting PDF file (4) or displays a message (5) that
the application is not found.
The patch is evaluated at (3)

104 2. TUTORIAL

value-box

"lilypond"

> which

[B]exe pipe

exe

--pdf

-o

exe pipe

pwgl-if

test

patch1

patch2

display-message

"~a not found!"

format-args

pwgl-patch-pathname

#p"test.ly"

value-box

#p"/Applications/LilyPond.app/Contents/Resources/bin/lilypond"
pwgl-patch-pathname

#p"test"

pwgl-patch-pathname

#p"test.pdf"

1

2

3

4

5

pwgl-progn

patch

patches

open

exe pipe

Figure 2.70: 02a-executing

2.4.2.3.4 Executing-Script

In this patch we use the ’exe’ box (5) to call a script written in either php or ruby.
The two ’which’ boxes (1) are first used to determine if one or both of the scripting
languages are present in the system.
(2) if both scipting languages are found preference is given to ruby. This can be changed
by changing the order of the input goin in the ’pwgl-or’ -box
(3) names the script files (test.php and test.rb)
The two ’open’ boxes (4) can be used to view and edit the scripts
Finally, by evaluating the ’text-box’ at the bottom of the patch, the result of the script can
be seen. These scripts just report the current installed version of the selected scripting
language.

2.4. SPECIAL-BOXES 105

value-box

"php"

value-box

"ruby"

pwgl-or

arg

args

pwgl-if

test

patch1

patch2

pwgl-patch-pathname

#p"test.php"

pwgl-patch-pathname

#p"test.rb"

text-box

E

1

2

3

4

5

exe

exe pipe

> which

[B]exe pipe

> which

[B]exe pipe

open

exe pipe

Figure 2.71: 02b-executing-script

2.4.2.3.5 Redirection

This example requires internet connection.
(1) ’curl’ is a tool to transfer data from or to a server, using one of the supported pro-
tocols (HTTP, HTTPS, FTP, FTPS, GOPHER, DICT, TELNET, LDAP or FILE). Here the
Wikipedia article of ’Shell computing’ is retrieved. Here, the curl call is not executed,
instead only the command line call is passed forward out of the second output.
(2) ’>>’ box implements the classic UNIX output redirection command. Here the result
of the call in (1) is redirected to a file defined by the ’value-box’
(3) is used to open the HTML document in the default browser of the system.

106 2. TUTORIAL

value-box

"http://en.wikipedia.org/wiki/Shell_%28computing%29"

value-box

#p"/tmp/wiki.html"

pwgl-progn

patch

patches

1

2

3

> curl

-s

exe pipe

 >

exe pipe

open

exe pipe

Figure 2.72: 03-redirection

2.4.2.3.6 Piping

With piping commands can be chained together.
(1) lists the contents of the users home directory
(2) the output is filtered to only contain lines which contain the string given by the
’menu-box’
(3) uses Unix sort to sort the output lexicographically
(4) the ’pipe’ or ’|’ box is used to pipe all the aforementioned command together so
that the next command uses the output of the previous command. Piping allows the
commands to to be chained together to create complex commands.
Finally (5) shows the aggregate result of the piped commands.

2.4. SPECIAL-BOXES 107

value-box

#p"~/"

text-box

(E)

()

menu-box

".mp3"1

2

4
3

5

> ls

exe pipe

> grep

exe pipe

> sort

exe pipe

 |

[L]exe pipe

Figure 2.73: 04-piping

2.4.2.3.7 Hairy-Example

This patch demonstrates how the command line tools can be used to compile and run
some C code and mix the results with ordinary Lisp boxes.
(1) If you change the c source code name given in the leftmost ’pwgl-pathname’ box,
you have to use ’touch’ to create the file.
(2) You can open the c source code file in the default C code editor (e.g., Xcode) of your
system.
(3) This box calls the UNIX C/C++ compiler and compiles the source file. The name of
the output file (the product) is given with the flag -o.
(4) The ’EXE’ box takes one mandatory argument which names the shell program to be
run. The rest of the inputs, in turn, define the arguments to the shell program.
(5) Shows the result of the call of the box in (4).
(6) A standard ’g+’ box is used to demonstrate that the output value of the shell-box
can be used in Lisp as an argument to ordinary PWGL boxes.
By default the ’switch-box’ in (7) forces the compilation of the C code every time the
patch is evaluated in (6). This can be changed by selecting the second input of the
’switch-box’.

108 2. TUTORIAL

pwgl-patch-pathname

#p"hairy.c"

g+

1 l2?

text-box

E

24

1 2 3 4

5

6

pwgl-progn

patch

patches

7

> touch

exe pipe

> cc

-o

exe pipe

exe

[R]exe pipe

num-box

3

num-box

8

merge-pathnames

#p"hairy"

default-version

pwgl-location

:tmp

open

exe pipe

Figure 2.74: 05-hairy-example

2.4.2.3.8 Scripting

Here, we use ’grep’ (1) to implement a simple file search script that displays a list of all
files whose contents match a given string.
(1) Gives the location of the current patch.
(2) ’find’ box is used to find all files in the directory that match the criteria, i.e., the file
name ends with ”.pwgl”.
The grep box (3) is then used to search the files for the string shown in (4).
Finally the results are passed to a GUI box that prompts for a file name which is then
opened for the user.

2.4. SPECIAL-BOXES 109

> grep

[B]

-H

-R

-i

-l

exe pipe

prompt-with-list

items "Open patch..."

pwgl-enum

list

pwgl-map

enum patch

value-box

"qlmanage"

remove

() sequence

open-pwgl-patches

name

> find

[L]

-name

exe pipe

value-box

"*.pwgl"

1

2
3

4

pwgl-patch-pathname

pathname-location

pathname

Figure 2.75: 06-Scripting

2.4.3 Code-Box

2.4.3.1 Introduction

This tutorial section presents a special PWGL box type, called code-box, which can be
seen as an extension to our already elaborate collection of visual boxes. The code-box
allows the user to harness the full power of the underlying Lisp language yet preserving
the visual nature and functionality of a normal PWGL box. It allows the user to effec-
tively express complex control structures, such as loops, thereby hiding those details
from the patch. While the user writes the code in a text editor, the code is simulta-
neously analysed. This analysis consists of basic syntax checks and extraction of free
variables and function names that result in a parameter list of the final Lisp expres-
sion. This scheme provides the main interface to PWGL and allows the user to access
information from the visual part of the system. The appearance of the box is calculated
automatically based on this analysis. By default the code-box is called ’code-box’. This
name can be changed by the user. In order to distinguish this box from the ordinary
ones, there is a label ’C’ at the low-right corner of the box.

110 2. TUTORIAL

2.4.3.2 MIDI-List-to-Score

The target is to convert raw midi data into a more readable form before inputting the
data into a score.
In (1) a list of chords (given as midi values) are passed to a code-box (2) ’construct-
chords’. Here, using Lisp code, we create note and chord objects using the ENP-score-
notation format. All notes that have pitch values below middle-C (60) are assigned to
the lower bass-clef. We also use a piano-staff that will be seen in the final score and
control the timing of the chords.
The result of the code-box calculation is given to the ’enp-constructor’ box (3) that
creates the final score object out of the ENP-score-notation format. The final result can
be seen in (4).

construct-chords

C

midis-ls

2.0

Score-Editor

E

&

?

00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09

œœ# œœœ#
œœœ# œ# œœœ#

œœœ# œœ
œ# œ# œœœ# œ# œ

œœœ# œ# œ#
œœœ# œ# œœœ

œœœ# œ# œ#
œ# œ# œœœ
œœ

P1

score pitches rtms/times

list

enp-constructor

:score score-notation

1

<- compare the results between raw and refined results

2

3

4

text-box

E

((36 42 47 53 58 64 69 75 80 86 91 97)
 (36 41 46 52 57 63 68 74 79 85 90 95)
 (36 41 46 51 56 62 67 73 78 83 88 93)
 (36 41 46 51 56 61 66 71 76 81 86 91))

Figure 2.76: 01-midi-list-to-score

2.4.3.3 Create-Bpfs

Here we give two simple examples how to create a bpf object using the code-box.
In (1) we create a bpf with random y-values using three arguments: no-points, and low
and high limits.

2.4. SPECIAL-BOXES 111

In (2) the y-values of a bpf (first argument) is inverted around an axis (second argu-
ment).

2D-Editor

Eobjects active

2D-Editor

Eobjects active

invert-bpf

C

bpf

0

2D-Editor

Eobjects active

random-bpf

C

24

0

10.0

1 2

Figure 2.77: 02-create-bpfs

2.4.3.4 PMC-Examples

In this tutorial we use the code-box to solve some classical combinatorial problems.
In (1) and (2) we calculate subsets using two different approaches. In (1), ’subsets1’,
we simply check that all elements in a potential subset are in an ascending order. This
scheme works if there are no duplicates in the incoming list and the elements are num-
bers (i.e. the ’list’ argument is a set consisting of numbers). In (2), in turn, we operate
with indices. This approach is more general and works even for the non-numerical
elements and the ’list’ argument can contain duplicates.
In (3) we generate all possible pitch-class (PC) supersets that contain the ’list’ argument
as a subset. This is done by generating a search-space out of all pitch-classes that are
not contained in the ’list’ argument.
Finally, in (4) we use PMC to make interval statistics out of a chord (’midis’). We collect
all 2-note combinations. After this we make the final interval statistics.

112 2. TUTORIAL

subsets2

C

3

list

value-box

(0 1 2 3 4)

value-box

(a b c d e)

subsets1

C

3

list

value-box

(0 1 2)

PC-supersets

C

6

list

sc+off

midis

count-all-ints

C

midis

value-box

(36 42 47 53 58 64 69 75 80 86 91 97)

value-box

(60 61 67)

Chord-Editor

E

&
? ˙̇# ˙̇̇

˙̇̇
˙# ˙̇̇#

chord pitches

Chord-Editor

E

&
?

˙˙#˙

chord pitches

1 2

3

4

Figure 2.78: 03-PMC-examples

2.4.3.5 Transpose-Chords-V2

This patch is equivalent to the patch given in Editors/Score-editor/transpose-chords,
except we use here the code-box to define chord sequences.
The pitches are calculated by combining two chords (’static’ and ’transp’). The static
chord is kept untransposed while the transposed one is transposed with intervals rang-
ing from 0 to 12. The user can choose (by selecting one of the options of the switch box
called ’a tempo/acc’) whether the resulting chord sequence will have static delta-time
values or whether the sequence forms an accelerando gesture. The non-mensural result
is shown in the ’Score-Editor’ box.

2.4. SPECIAL-BOXES 113

code-box

C

atempo/acc?

transp

static

Chord-Editor

static
E

&
?

˙̇̇̇#

chord pitches

Chord-Editor

transp
E

&
?

˙# ˙̇̇̇

chord pitches

Score-Editor

E

&

00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07

œ# œœœœœœ# œ
œœœœœ# œœœ# œ

œœœ# œœ# œ#
œœ# œœœœ# œ# œœ

œœœœ# œœœ# œ# œ#
œœ# œœœœ# œœ

œœœœ# œ# œœ#
œœœœœœ# œœ# œ

œœœ# œœœ# œ# œœ
œœœœœ# œœ# œ#

œœœ# œœ# œœœœ
œœœœ#
œ# œ# œ# œ#

œœœœ# œ# œœœœ
P1

score pitches rtms/times

a tempo/acc

Figure 2.79: 03a-transpose-chords-V2

2.4.3.6 Function-Argument

This patch gives a simple demonstration how to pass the Code-box a function as an
argument. Here, we construct a number of chords and sort them according to their bass
note.
The building blocks of the chord are given in (1). The note-heads define an intervall
class (relative to middle-C) so that c=0, and f#=6, for example. The default intervals
basically give the ingredients of a ’Webern Triad’.
The Code-box (2) generates a number of chords using the interval classes. The lowest
note in the chord will be inside the provided bass range. Also, the maximum number of
chords and the maximum number of notes in each chord can be defined.
The sorting function is given in the menu-box (3).
As an exercise, the minimum number of chords and notes could be added.

114 2. TUTORIAL

generate-chords

C

pitches

11

71

48

5

sort-predicate *

Score-Editor

E

&
1

14
œ#œ
œ#œ

œœ
œ#œ

œ#œœ#
œ

œœ#
œnœ
œq = 60

P1

score pitches rtms/times

enp-object-composer

beat object/s

menu-box

<

Chord-Editor

E

&
?

w# w

chord pitches

enp-object-composer

score object/s

1 2

3

Figure 2.80: 10-function-argument

2.4.3.7 Series-Filter

In this patch we use the Code-box to generate an overtone series (1) where all the
occurences of members of a given pitch-class set (2) are highlighted. Furthermore,
notes whose pitch does not belong to the given set are muted (velocity is set to 0).

2.4. SPECIAL-BOXES 115

value-box

harmonic series

(0 12 19 24 28 31 34 36 38 40 42 43 44 46 47 48 49 50 51 52 54 55 56 57 58 59 60)

sc-info

prime 6-27B

code-box

C

model

prime

Chord-Editor

E

&
? w w w w w w w# w w w w# w w# w# w w w# w w# w w# w w# w w# w w

chord pitches

g+

l1? 36

1 2

Figure 2.81: 20-series-filter

2.4.3.8 Multi-Eval

This patch demonstrates a free variable type used by the chord-box, called ’multi-eval’
variable. This variable should have a name that starts with the character ’!’. A multi-eval
variable will be re-evaluated each time it is encountered in the expression. This scheme
can be used to dynamically extract new values from PWGL boxes.
In (1), the second input, ’!rnd’, is connected to a ’g-random’ box and this box will be
evaluated ’count’ times. This will result in a list 50 random values.
In (2), the ’!ys’ input evaluates a more complex patch consisting of several PWGL boxes.
Each evaluation will generate a list of y-values that in turn will be used inside the code-
box to generate ’count’ bpfs.

116 2. TUTORIAL

generate-ys

C

50

!ys

interpolation

begin end

20 curves

g-random

0 10.0

2D-Editor

E1/50 objects active

g-random

8 10.0

g-random

0 0.1

g-random

0 100

random-list

C

50

!rnd 1 2

Figure 2.82: 30-multi-eval

2.4.4 Frame-Box

The frame-box is a special documentation/ presentation box. It does not have any
inputs or outputs. Instead, Its purpose is to mark a subsection or several subsections in
the patch. The frame-box is displayed as a rectangle that has an identity (the box string
on the upper left corner) and documentation (the user string at the bottom of the box).
When a frame-box is selected only the boxes enclosed by it remain in focus and the
others are dimmed. By typing ’n’ or ’N’ it is possible to cycle through the frame-boxes in
the order specified by its box string. The box string can be changed by typing 1-9. The
documentation string can have line-breaks and it is automatically wrapped to the width
of the frame-box.
The frame-boxes can be ’locked’ to their current position by typing ’l’ for lock.
This patch illustrates the use of the frame-box. Here, a small presentation is prepared
with the help of the frame-box. It consists of three steps (1-3). You can test the patch
by selecting the first frame-box marked as (1) and then typing ’n’ several times. You can
return to the ’normal’ display mode by deselecting the active frame-box.

2.5. CONSTRAINTS 117

1

By default the switch-box has two inputs.

2

You can add inputs by selecting the box and

typing '+' one or more times. The box is

extends to the right.

3

Finally, you connect some boxes to the inputs of the switch-box. The

active incoming connection is selected using one of buttons found inside

the switch-box.

num-box

0

num-box

1

Figure 2.83: 40-frame-box

2.5 Constraints

2.5.1 Introduction

When using a procedural programming language, such as C or Pascal, or a functional
language, like Lisp, typically the user has to solve a problem in a stepwise manner. In
many cases this approach is an adequate one, but for many types of problem it may lead
to programs that are difficult to design or understand.
Descriptive languages, such as Prolog, offer an alternative way to look at this problem:
instead of trying to solve a problem step-by-step, the user describes a possible result
with the help of a set of rules. It is then up to the language to find solutions that are
coherent with the descriptions. This approach is probably more natural for individuals
with a musical background. A typical music-theoretical writing offers a discussion on
some properties of some pieces of music, not a step-by-step description of how those
pieces were made.
PWGLConstraints (Laurson 1996, Laurson and Kuuskankare 2005) can be thought of
as a descriptive language. PWGLConstraints is written in Common Lisp and CLOS.
When using it we do not formulate stepwise algorithms, but define a search-space and

118 2. TUTORIAL

produce systematically potential results from it. Typically we are not interested in all
possible results, but filter (or, rather, constrain) these with the help of rules describing
an acceptable solution.

2.5.1.1 Main Components

The two main components of our constraint-based system are:

(1) PMC

(2) Score-PMC

There are 2 articles related to the constraint syntax:

2.5.2 Overview

2.5.2.1 Search-Space

Normally a search is defined by:

(1) a search-space and

(2) a set of rules.

This page gives some search-space examples. The results can be affected (even without
rules) by choosing an appropriate search-space (see especially 3, 4 and 5). See also the
next patch called ’search-space’ in this tutorial

2.5.2.1.1 Search-Space Examples

(1) a search-space with 3 variables each with a domain of 3 items:� �
V1 V2 V3
60 60 60
62 62 62
64 64 64� �
(2) 4*8 search-space:� �
V1 V2 V3 V4
60 60 60 60
62 62 62 62
64 64 64 64
65 65 65 65
67 67 67 67
69 69 69 69
71 71 71 71
72 72 72 72� �
(3) preference ordering (the results have a tendency to ascend):

2.5. CONSTRAINTS 119

� �
V1 V2 V3 V4
60 64 67 72
62 65 69 71
64 62 65 74
65 67 71 69
67 60 64 75
69 69 72 67
71 71 62 77� �
(4) moulding a search-space (the results are forced to ascend):� �
V1 V2 V3 V4
60
62 62
64 64 64

65 65 65
67 67 67

69 69
71 71

72
74� �

(5) constraining individual notes (all solutions will have 72 as a third element:� �
V1 V2 V3 V4
74 67 72 62
67 64 65
65 72 69
75 62 77
64 71 67
60 74 60
71 69 71
62 65 75� �
(6) 5*11 search-space with random ordering:� �
V1 V2 V3 V4 V5
74 67 74 62 74
67 64 69 65 77
65 72 67 69 60
75 62 77 77 62
64 71 60 67 65
60 74 75 60 75
71 69 72 71 67
62 65 62 75 69
69 75 64 72 64
72 60 65 74 72
77 77 71 64 71� �

120 2. TUTORIAL

2.5.2.2 Search-Space

This patch demonstrates the effect of different search-spaces when used in conjunction
with a Multi-PMC box. Note that we do not use here any rules. In all cases we calculate
all solutions (i.e. cartesian product, see the Multi-PMC box where the second input in
row three is ’:all’).
In (1) we have a simple symmetric search-space that produces (3*3*3)=27 solutions,
and in (2) we have a larger 4*8 example with (8*8*8*8)=4096 solutions.
In (3) we have search-space that has a tendency for the first solutions to produce as-
cending results. In (4) this tendency is much stronger.
In (5) the search-space contains at the third position a one-element list (72). This has
an interesting effect as all solutions will have 72 as the third element.
Finally, in (6) all search-spaces can be randomly reordered by setting the first input of
the third row to ’T’. This is often desirable-especially when using later the constraints
system with rules-as randomness has a tendency of producing solutions that differ from
each other.

3*3 (E)

(60 62 64)
(60 62 64)
(60 62 64)

4*8 (E)

(60 62 64 65 67 69 71 72)
(60 62 64 65 67 69 71 72)
(60 62 64 65 67 69 71 72)
(60 62 64 65 67 69 71 72)

preference: ascend (E)

(60 62 64 65 67 69 71)
(64 65 62 67 60 69 71)
(67 69 65 71 64 72 62)
(72 71 74 69 75 67 77)

third item constraint (E)

(74 67 65 75 64 60 71 62)
(67 64 72 62 71 74 69 65)
(72)
(62 65 69 77 67 60 71 75)

Multi-PMC

search-space

() () ()

() :all ()

1
2

6

3

5

force ascend (E)

(60 62 64)
(62 64 65 67)
(64 65 67 69 71)
(65 67 69 71 72 74)

4

random ->

reverse

sequenceeval here ->

length

sequence

Figure 2.84: 02b-search-space

2.5. CONSTRAINTS 121

2.5.2.3 PM-Syntax

2.5.2.3.1 PMC Rule Structure

A PMC rule consists of 3 main parts:

(1) a pattern-matching part (PM-part)

(2) a Lisp-code part

(3) a documentation string.

A rule uses the PM-part to extract relevant information from a potential solution. This
information is given to a Lisp test function that either accepts or rejects the current
choice made by the search-engine.
Here are the main components of the PMC syntax:

2.5.2.3.2 PM-Part

?1 = variable * = one or two wild cards i1 = index-variable ? = anonymous-variable

2.5.2.3.3 Lisp-Code Part

(?if <test>) = begins a Lisp expression l = partial solution rl = reversed partial solution
len = length of the partial solution

2.5.2.3.4 Pattern Matching Examples� �
input: (1 2 3 4 5)
pattern: (* ?1)
match: * = (1 2 3 4), ?1 = 5

input: (1 2 3 4)
pattern: (* ?1 ?2)
match: * = (1 2), ?1 = 3, ?2 = 4

input: (1 2 3 4 5 6 7)
pattern: (?1 * ?2 ?3)
match: * = (2 3 4 5), ?1 = 1, ?2 = 6, ?3 = 7

input: (1 2 3 4 5)
pattern: (i1 i2 i5)
match: i1 = 1, i2 = 2, i5 = 5

input: (1 2 3 4 5 6 7 8 9)
pattern: (i2 i3 i7 i9)
match: i2 = 2, i3 = 3, i7 = 7, i9 = 9� �

122 2. TUTORIAL

2.5.2.4 PM-Syntax

This patch shows visually how some typical PM examples match a sequence of notes.
There are six examples that are defined as scripting rules in a text-box (1). Note espe-
cially the first line of each rule (i.e. the PM-part).
This patch and several forthcoming patches in this section contain rules with the Lisp-
expression (?mark ?1 ?2 ...) which is used to temporarily store the indicated objects (?1
and ?2) so that they can later be displayed in the score. This information is not saved
or copied along with the score or the patch but needs to be generated again if needed.
First evaluate the enp-script box (2). This creates all possible matchings for each rule.
To see the matchings double-click the ’enp-script’ box. This opens a diagnostics dialog.
The upper part of the dialog contains two columns. To the left we have names of all
current scripting rules that have one or several matches.
When a rule is selected a list of all matching positions can be found in the right part
of the dialog. When one of these positions is clicked, the exact position is shown in
the input score using various drawing devices (such as circles, connected shapes, bezier
functions, etc.).

Score-Editor

E

00:00 00:01 00:02

œ œ œ œ œ œ œ œ œ œ œ œ

P1

score pitches rtms/times

enp-script

A

score

rules

()

text-box

(E)

(in-package :ccl)

(* ?1
 (?if (?mark ?1 :kind :circled))
 "(* ?1)")

(* ?1 ?2
 (?if (?mark ?1 ?2 :kind :circled))
 "(* ?1 ?2)")

(?1 * ?2 ?3
 (?if (?mark ?1 ?2 ?3 :kind :circled))
 "(?1 * ?2 ?3)")

(i1 i2 i5
 (?if (?mark i1 i2 i5 :kind :circled))
 "(i1 i2 i5)")

(i2 i3 i7 i9
 (?if (?mark i2 i3 i7 i9 :kind :circled))
 "(i2 i3 i7 i9)")

(* ?1 * ?2
 (?if (?mark ?1 ?2 :kind :circled))
 "(* ?1 * ?2)")

2

1

Figure 2.85: 03b-PM-syntax

2.5. CONSTRAINTS 123

2.5.2.5 PMC-Rule-Examples

Ordinary PMC rules always return a truth value (i.e. in Lisp terminology either ’T’ or
’()’):� �
(* ?1 ?2 ;; PM-part

(?if (/= ?1 ?2)) ;; Lisp-code part
"No equal adjacent values")

(* ?1 ?2
(?if (member (- ?2 ?1) ’(5 6)))
"Interval rule")

(* ?1
(?if (not (member ?1 (rest rl))))
"No duplicates")

(* ?1
(?if (not (member (mod ?1 12) (rest rl) :key #’mod12)))
"No pitch class duplicates")

(*
(?if (apply #’< l))

"Result in ascending order")

(i1 i2 i4 i8
(?if (eq-SC? ’(4-1) i1 i2 i4 i8))
"index rule")� �

The ’PMC’ section contains example patches that demonstrate how PMC can be used to
solve some basic combinatorial problems.

2.5.2.6 PMC-Rule-Examples

In this patch we demonstrate how the ’Multi-PMC’ solver box can be used in conjunction
with six rules (1).
You can choose the current rule with the switch-box (2). To run the patch, evaluate
the ’Multi-PMC’ box (3). For each rule case the search space is the same (see the first
input): (8* ((0 11)) or 8 times the list (0 1 2 3 4 5 6 7 8 9 10 11).
Note also that we only ask for one solution and that the search-space is in random
order (the default behavior; you can change this by extending the ’Multi-PMC’ box’ and
setting the ’rnd?’ argument to ()).

124 2. TUTORIAL

text-box

(E)

(* ?1 ?2 ;;PM-part
 (?if (/= ?1 ?2)) ;;Lisp-code part
 "No equal adjacent values")

(* ?1 ?2
 (?if (member (mod12 (- ?2 ?1)) '(5 6)))
 "mod12 Interval rule")

(* ?1
 (?if (not (member ?1 (rest rl))))
 "No duplicates")

(* ?1
 (?if (not (member (mod ?1 12) (rest rl) :key #'mod12)))
 "No pitch class duplicates")

(*
 (?if (apply #'< l))
 "Result in ascending order")

(i1 i2 i4 i6
 (?if (eq-SC? '(4-1) i1 i2 i4 i6))
 "index rule")

nth

orig-n orig-list

Multi-PMC

(8* ((0_11)))

rules () ()

pwgl-progn

patch

patches

last

list

print

object

1

2

3

Figure 2.86: 04b-PMC-rule-examples

2.5.2.7 Heuristic-Rules

The user can also define preferences by heuristic rules. These are similar to the ordinary
rules except the Lisp-code part of a heuristic rule returns a numerical value instead of
a truth value (heuristic rules never reject candidates). This scheme allows the search
to sort candidates that are accepted by the ordinary rules. The search tends to favour
candidates with high numerical values. For instance a heuristic rule that prefers large
intervals can be written as follows:� �
(* ?1 ?2

(?if (abs (- ?2 ?1)))
"prefer large intervals")� �

Or we can also prefer small intervals:� �
(* ?1 ?2

(?if (- (abs (- ?2 ?1))))
"prefer small intervals")� �

The ’Heuristic’ section contains example patches that demonstrate how the user can
shape the search result with the help of heuristic rules.

2.5. CONSTRAINTS 125

2.5.2.8 Heuristic-Rule-Examples

Here we demonstrate how the ’Multi-PMC’ solver box can be used in conjunction with
two heuristic rules (1).
You can choose the current rule with the switch-box (2). To run the patch, evaluate
the ’Multi-PMC’ box (3). For each rule case the search space is the same (see the first
input): (8* ((0 11)) or 8 times the list (0 1 2 3 4 5 6 7 8 9 10 11).

text-box

(E)

(* ?1 ?2
 (?if (abs (- ?2 ?1)))
 "prefer large intervals")

(* ?1 ?2
 (?if (- (abs (- ?2 ?1))))
 "prefer small intervals")

nth

orig-n orig-list

Multi-PMC

(8* ((0_11)))

() () heur-rules

pwgl-progn

patch

patches

last

list

print

object

1

2

3

Figure 2.87: 05b-Heuristic-rule-examples

2.5.2.9 Score-PMC-Syntax

2.5.2.9.1 Score-PMC Rule Structure

The main difference between a PMC rule and a Score-PMC rule is that in the latter case
variables refer to music notation related objects, such as note, chord, beat, measure,
and so on. Next we discuss three main additions to the rule syntax:

(1) Accessors. The type of the object (called ’accessor’) is defined in the PM-part of a
rule after the variables, wild-cards and index-variables.

126 2. TUTORIAL

(2) Selectors. The second addition to the PM-part of a rule are selectors that allow to
restrict the scope of a rule. Here the user can specify in more detail when a rule is
run.

(3) M-method. Finally, we go inside the rule to the Lisp-code part, and discuss the third
main addition to the rule system: the m-method

2.5.2.10 Accessors

The type of the score object is defined in the PM-part of a rule using accessors. A special
case is the note that requires no type specification. The note and the :score-sort (see
below) accessors are special as they refer to simple objects (i.e. notes), whereas all
other cases refer to compound objects containing one or several notes.

2.5.2.10.1 Accessors

Currently supported accessors are:

(1) :chord

(2) :beat

(3) :measure

(4) :harmony

(5) :score-sort

2.5.2.10.2 Examples

Thus in a pattern-matching part (PM-part) without any accessor specification:� �
(* ?1 ?2 ...)� �
the variables ?1 and ?2 refer to two adjacent melodic note objects.
Compare this to a rule with the accessor ’:harmony’:� �
(* ?1 ?2 :harmony ...)� �
the variables ?1 and ?2 refer to two adjacent harmonic formations.
Other possible PM-part examples are:� �
(* ?1 ?2 :chord ...)� �
the variables ?1 and ?2 refer to two adjacent chords.� �
(* ?1 ?2 :beat ...)� �
the variables ?1 and ?2 refer to two adjacent beats.� �
(* ?1 ?2 :measure ...)� �
the variables ?1 and ?2 refer to two adjacent measures.� �
(* ?1 ?2 :score-sort ...)� �
the variables ?1 and ?2 refer to two adjacent notes in the score-sort ordering.

2.5. CONSTRAINTS 127

2.5.2.10.3 Accessor Test

After the accessor an optional keyword ’:accessor-test’ allows to define the criteria how
objects of the current accessor type are chosen. This results in a more dynamic behavior
of the PM-part and it can react to the current musical context in a more interesting way
than using the ordinary PM-part only.
Now the notational objects that are bound in the PM-part are for instance not necessarily
adjacent in the score even when the PM-part suggest so. Thus, in the following rule we
are interested in all two long note-pairs:� �
(* ?1 ?2 :accessor-test #’(lambda (note) (> (durt note) 1.0)) ...)� �
?1 and ?2 can be any note-pair in a melodic line as long as they share the criteria: both
notes should be longer than 1s. Furthermore there should be no long notes between
them (thus shorter notes can be found between ?1 and ?2).
In another :accessor-test’ example we look for all long harmonic pairs (the duration of
the both harmonic formations must exceed 2s):� �
(* ?1 ?2 :harmony :accessor-test #’(lambda (harm) (> (durt harm) 2.0)) ...)� �
2.5.2.11 Accessors1

The first accessor patch shows visually how PM examples with accessors match a two-
part score. There are five examples that are defined as scripting rules in a text-box (1).
Note especially the first line of each rule (i.e. the PM-part).
The five rules contain the following accessors: (1) none (i.e. melodic accessors) (2)
:beat (3) :measure (4) :harmony (5) :score-sort
Note that we do not use here the :chord accessor as it would be identical to the melodic
one (i.e. all chords are single note chords).
For all rules except the first one and the last one we use a selector test ’(m ?2 :complete?
T)’ - see the next section in the tutorial - to guarantee that all notes in the compound
structure are present.
First evaluate the enp-script box (2). This creates all possible matchings for each rule.
To see the matchings double-click the ’enp-script’ box. This opens the diagnostics dialog.

128 2. TUTORIAL

enp-script

A

score

rules

()

text-box

(E)

(in-package :ccl)

(* ?1 ?2
 (?if (?mark ?1 ?2))
 "(* ?1 ?2)")

(* ?1 ?2 :beat (m ?2 :complete? T)
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 beat)")

(* ?1 ?2 :measure (m ?2 :complete? T)
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 measure)")

(* ?1 ?2 :harmony (m ?2 :complete? T)
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 harmony)")

(* ?1 ?2 :score-sort
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 score-sort)")

2
1

Score-Editor

E

&

?

bb b b

b b b b

1

34
34

œ œ œ œ œ œ œ
q = 60

œ œ œ œn œ œ œn

œ œ œ œ œ œ œ œ œ œ

q = 60

œ œ œ œ œ œ œ œ œn œn
1
2

score pitches rtms/times

Figure 2.88: 06-Accessors1

2.5.2.12 Accessors2

The second accessor patch shows visually how PM examples with accessors match a
more complex two-part score. The main difference with this score and the previous
one is that now both parts contain multi-note chords. There are five examples that are
defined as scripting rules in a text-box (1). Note especially the first line of each rule
(i.e. the PM-part).
The five rules contain the following accessors: (1) :chord (2) :beat (3) :measure (4)
:harmony (5) :score-sort
Note that we do not use here the melodic accessor as both parts contain multi-note
chords.
For all rules except the last one we use a selector test ’(m ?2 :complete? T)’ - see the
next section in the tutorial - to guarantee that all notes in a compound structure are
present.
First evaluate the enp-script box (2). This creates all possible matchings for each rule.
To see the matchings double-click the ’enp-script’ box. This opens the diagnostics dialog.

2.5. CONSTRAINTS 129

enp-script

A

score

rules

()

text-box

(E)

(in-package :ccl)

(* ?1 ?2 :chord (m ?2 :complete? T)
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 chord)")

(* ?1 ?2 :beat (m ?2 :complete? T)
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 beat)")

(* ?1 ?2 :measure (m ?2 :complete? T)
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 measure)")

(* ?1 ?2 :harmony (m ?2 :complete? T)
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 harmony)")

(* ?1 ?2 :score-sort
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 score-sort)")

2 1

Score-Editor

E

&

b
b

b
b

b

1

4

4
‰

œ
œ œ œ

œ
œ
œ
œ

œ

œ
œ œn

œ œ
œ œ

œ
œ
œn

œ

q = 54

œ
œ œ

œ œ
œ œ

œ

œ
œ
œ

œn

œ
œ œ

œ œ
œ œ

œ

œn

œ
œ

œ

œ
œ
œ œ œ

œ
œ

œ

œn
œ

œ

œb

œ œ œ
œb
œ
œ œ

P1

&

b
b

b
b

b

4

4
œ
œ œ œ

œ
œ

œ
œ œ œ

œ
œ
œœ

q = 54

œ
œ
œ œ œ

œ
œ

œ œœ œ œ œœ œ œ œ œ œ œ œ œ œ œ
P1

¬

L

score pitches rtms/times

Figure 2.89: 06-Accessors2

2.5.2.13 Accessors3

The third accessor patch shows visually how PM examples with accessors match using
the :accessor-test keyword. Note again especially the first line of each rule (i.e. the
PM-part).
Here we have two rules (1): first, we extract two melodic note pairs that are equal or
longer than an 1/8th note; second, we extract two melodic note pairs that are shorter
than an 1/8th note.
First evaluate the enp-script box (2). This creates all possible matchings for each rule.
To see the matchings double-click the ’enp-script’ box. This opens the diagnostics dialog.

130 2. TUTORIAL

enp-script

A

score

rules

()

text-box

(E)

(in-package :ccl)

(* ?1 ?2 :accessor-test #'(lambda (note) (>= (face-value note) 1/8))
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 'adjacent' long notes")

(* ?1 ?2 :accessor-test #'(lambda (note) (< (face-value note) 1/8))
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 'adjacent' short notes")

2 1

Score-Editor

E

&

?

bb b b

b b b b

1

34
34

œ œ œ œ œ œ œ
q = 60

œ œ œ œn œ œ œn

œ œ œ œ œ œ œ œ œ œ

q = 60

œ œ œ œ œ œ œ œ œn œn
1
2

score pitches rtms/times

Figure 2.90: 06-Accessors3

2.5.2.14 Selectors

The PM-part may also contain one or more ’selectors’ which allows further to restrict the
scope of the rule. A selector is a keyword/value pair, or it can also be a Lisp expression
that returns a truth value. In the latter case the rule is run only if the Lisp expression
returns T.

2.5.2.14.1 Selector Keywords

Currently supported selector keywords are:

(1) :notes, number or a list of numbers

(2) :chords, number or a list of numbers

(3) :beats, number or a list of numbers

(4) :cont-beatnum, number or a list of numbers

(5) :measures, number or a list of numbers

2.5. CONSTRAINTS 131

(6) :parts

(7) number or string: <pnum>, <pname>,

(8) simple list: (<pnum1> <pnum2> ...), (<pname1> <pname2> ...), or

(9) a list of lists of part-voice specs: ((<pname1> <vname1>) (<pnum> <vname>),
...))

2.5.2.14.2 Examples

For instance in the following melodic rule (note that the rule does not have an acces-
sor):� �
(* ?1 ?2 :parts ’(1 3) ...)� �
the rule is applied only for notes that belong to parts number 1 or 3.
In the melodic rule:� �
(* ?1 :measures ’(1 4) :parts ’(1 2 5) ...)� �
the rule is applied only for notes belonging to measures 1 or 4 and belonging to parts
1, 2 or 5.
In the melodic rule:� �
(* ?1 :parts ’(("flute" 2) 2 (3 1) (3 3)) ...)� �
the rule is applied only for notes belonging to the second voice of a part called ”flute”,
i.e. (”flute” 2); second part, i.e. 2; and first and third voices of part 3, i.e. (3 1) and (3
3).

2.5.2.15 Selectors

This patch shows visually how PM examples with selectors match in a four-part score.
Note especially the first line of each rule (i.e. the PM-part).
The five rules contain the following selectors in various combinations (1): :parts :mea-
sures :beats :notes
First evaluate the enp-script box (2). This creates all possible matchings for each rule.
To see the matchings double-click the ’enp-script’ box. This opens the diagnostics dialog.

132 2. TUTORIAL

enp-script

A

score

rules

()

text-box

(E)

(in-package :ccl)

(* ?1 ?2 :parts '(1 3)
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 parts '(1 3))")

(* ?1 ?2 :parts '(("flute" 2) 2 (3 1))
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 parts '((flute 2) 2 (3 1)) ")

(* ?1 ?2 :parts '(1 2 4) :measures '(1 3)
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 parts '(1 2 4)) measures '(1 3)")

(* ?1 ?2 :parts 1 :beats '(1 4)
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 parts 1 beats '(1 4)")

(* ?1 ?2 :parts '(1 3) :notes '(1 2)
 (?if (?mark ?1 ?2))
 "(* ?1 ?2 parts '(1 3) notes '(1 2)")

2 1

Score-Editor

E

&

1

4

4
œ œ œ œ

q = 60 2

œ œ œ œ

3

œ œ œ œ

4

œ œ œ œ

œ œ œ œ

q = 60

œ œ œ œ œ œ œ œ œ œ œ œ

Flutes
1
2

&

4

4

œ œ œ œ

q = 60

œ œ œ œ œ œ œ œ œ œ œ œ

Oboe 1

&

4

4
œ œ œ œ

q = 60

œ œ œ œ œ œ œ œ œ œ œ œ

œ œ œ œ

q = 60

œ œ œ œ œ œ œ œ œ œ œ œ

Clarinets
(in Bb)

1
2

&

4

4

œ œ œ œ

q = 60

œ œ œ œ œ œ œ œ œ œ œ œ

Contrabass Clarinet
(in Bb)

1

¬

L

score pitches rtms/times

Figure 2.91: 06a-Selectors

2.5.2.16 M-Method

Once the PM-part of a rule has accessed the desired objects (i.e. notes, chords, beats,
measures, harmonic formations), these variables can be used within the Lisp-code
part. To access information from the variables typically the ’m-method’ (’m’ for ’multi-
accessor’) is used. Normally ’m’ returns either single midi-values from non-compound
objects (notes) or a list of midi-values from compound objects (chords, beats, measures,
harmonic formations).
For instance in a rule:� �
(* ?1 ?2

(?if (/= (m ?1) (m ?2)))
"no adjacent melodic pitch dups")� �

the variables ’?1’ and ’?2’ refer to notes. The m-method will by default return the
respective midi-values of the variables.
In a rule:� �
(* ?1 ?2 :harmony

(?if (not (equal (m ?1) (m ?2))))

2.5. CONSTRAINTS 133

"no adjacent harmonic pitch dups")� �
the m-method is used to extract two midi-value lists from two adjacent harmonic for-
mations.

2.5.2.16.1 M-Method Keywords

The m-method accepts a list of keyword arguments that allow to specify more accurately
the data that is returned. Here is an example list of supported keywords with their
possible key-values:

(1) :data-access

(), :min, :max, :int, :harm-int, #’(lambda (x) <code>)

(2) :complete?

(), T

(3) :parts

(),

number or string: <pnum>, <pname>,

simple list: (<pnum1> <pnum2> ...), (<pname1> <pname2> ...),

a list of lists of part-voice specs: ((<pname1> <vname1>) (<pnum> <vname>),
...)

(4) :object

(), T, :accessor

(5) :vl-matrix

(), <count>

(6) :attack

(), T

(7) :l, :rl

(), T, <count>

(8) :l-filter

(), #’(lambda (x) <code>), #’(lambda (x res) <code>)

2.5.2.16.2 Examples

For instance a harmonic rule that disallows any interval duplicates can be written as fol-
lows (note that we use here the :data-access :harm-int pair in order to get the harmonic
intervals from ?1):� �
(* ?1 :harmony

(?if (setp (m ?1 :data-access :harm-int)))
"no harm int repetitions")� �

134 2. TUTORIAL

2.5.2.17 Utility-Functions

This page lists some important Score-PMC utility functions used in this tutorial.

(1) Access the index number of ENP objects (the indexing starts from 1)

(2) notenum

(3) chordnum

(4) beatnum

(5) cont-beatnum

(6) measurenum

(7) voicenum

(8) partnum

(9) Metric rhythm

(10) downbeat?

(11) rtm-pattern

(12) Check whether an object is the first or last item of its kind in a part

(13) first?

(14) last?

(15) Timing information in seconds

(16) startt

(17) durt

(18) endt

(19) Timing information metric (as written)

(20) face-value

(21) Expression access

(22) e

(23) Misc

(24) grace-note-p

(25) matrix-access

(26) match-ART-rtms?

(27) PMC-imitation

2.5. CONSTRAINTS 135

2.5.2.18 Score-PMC-Rule-Examples� �
(* ?1 ?2 ;;PM-part

(?if (/= (m ?1) (m ?2))) ;;Lisp-code part
"no adjacent melodic pitch dups")

(* ?1 ?2
(?if (member (- (m ?2) (m ?1)) ’(1 -1 2 -2)))
"melodic interval")

(* ?1 :harmony
(?if (setp (m ?1)))
"no harm pitch repetitions")

(* ?1 :harmony
(?if (setp (m ?1 :data-access :harm-int)))
"no harm int repetitions")

(* ?1 ?2 :harmony
(?if (not (equal (m ?1) (m ?2))))
"no adjacent harmonic pitch dups")

(* ?1 :chord :parts ’(1 3)
(?if (let ((ints (m ?1 :data-access :harm-int)))

(if ints
(and (not (member 1 ints)) (apply #’>= ints))
t)))

"no min seconds and ascending chord ints rule , parts 1,3")� �
2.5.3 Heuristic

2.5.3.1 Profile-PMC

This patch demonstrates how to use Multi-PMC in conjunction with ordinary rules and
heuristic rules.
The heuristic rule is generated by the box ’mk-pmc-profile-rule’ that directs the search so
that the overall melodic profile tries to match the given bpf function as close as possible.
There are two options in the patch: (1) If the output of the left-most 2D-editor is con-
nected to the ’bpf’ input of the ’mk-pmc-profile-rule’ box, then the result is determin-
istic. (2) If the ’bpf’ input is connected to the right hand 2D-editor containing two
bpfs–defining a range of pitches–the result will vary for each search depending on the
ordering of the search domains.
The search results in a list of pitches, which is given to a Score-editor. The Score-editor
converts this result to a non-mensural part. The result can be played by selecting the
Score-editor and typing the ’space’ key.

136 2. TUTORIAL

Score-editor

E

&

00:00 00:01 00:02 00:03 00:04 00:05

œ œ# œ œ œ# œ# œ œ# œ œ œ# œ# œ œ œ# œ œ# œ œ# œ
P1

score pitches rtms/times

first

list

text-box

rules (E)

(* ?1 ?2 (?if (member (abs (- ?2 ?1)) '(1 2 6))))

mk-pmc-profile-hrule

bpf 20

Multi-PMC

(20* ((60_96)))

rules () heur-rules

2D-Editor

melodic profile
Eobjects active

2D-Editor

pitch range profile
E1/2 objects active

Figure 2.92: 01-profile-pmc

2.5.3.2 Heuristics-W-Menu-Box

This tutorial shows how various heuristic rules affect a result in a melodic line. A ’menu-
box’ contains several labeled heuristic rules (1). The actual definitions of the rules can
be found by double-clicking the menu input. This operation opens a text-editor window
that will show the rules and their labels in textual form.
After choosing one heuristic rule (1) the user has 2 rule options, (2) and (3), that will
be used in conjunction with the chosen heuristic rule. In (2) no ordinary (or ’strict’)
rules are used; in (3) one ordinary Score-PMC rule is used that controls the set-class
identity of each adjacent 3-note group.
To see results evaluate the ’Multi-Score-PMC’ box (4).

2.5. CONSTRAINTS 137

menu-box

favor ascending intervals

Score-Editor

E

&
1

44 œ œ# œ œ# œ œn œ œ
œ œ œ œ œ œ# œ

œ
q = 120

œ#
œ# œ œ

œn œ œ œ œ œn œ œ
œ œ œ œ

P1

score pitches rtms/times

Multi-Score-PMC

P1

in-score ()

(60_84)

rules heur-rules

text-box

(E)

(in-package :ccl)

(* ?1 ?2 ?3 (zerop (mod (1- (notenum ?1)) 3))
 (?if (eq-SC? '(3-5a 3-5b) (list (m ?1) (m ?2) (m ?3))))
 "set-classes of adjacent 3-note groups")

value-box

()

1

2 3

4

Figure 2.93: 03-heuristics-w-menu-box

2.5.3.3 Heuristics-W-Score-Bpfs

This patch demonstrates how special ENP expressions, called score-bpfs, can be used
to control search results. The 2-measure score contains a score-bpf expression, that in
turn contains 4 bpfs (break-point functions) that have different colors.
The user can choose a bpf color (1). This information is bound before the search to the
keyword ’:bpf-index’. This keyword is in turn used internally by the heuristic rule which
is defined in the ’text-box’ (3). Like in the previous example the heuristic rule is used in
conjunction with an ordinary Score-PMC rule (4).
The search can be evaluated in (5). The result will follow the chosen bpf as close as
possible.

138 2. TUTORIAL

Score-Editor

E

&
1

44
œ

/midi

œ# œ# œ œ œ# œ œ œ# œ œ œ# œ œ œ œ# œ œ œ# œn œ œ# œn œ œ œ# œ# œ œ œ# œ œn
P1

score pitches rtms/times

Multi-Score-PMC

P1

in-score ()

(0_127)

rules heur-rules

T 1 () prep-fns

text-box

(E)

(* ?1 (e ?1 :bpf :id #.'(ccl::pwgl-value :bpf-index))
 (?if (let ((ref-midi (e ?1 :bpf
 :sample
 :at ?1
 :id #.'(ccl::pwgl-value :bpf-index))))
 (- (abs (- (m ?1) ref-midi))))))

text-box

(E)

(in-package :ccl)

(* ?1 ?2 ?3 (zerop (mod (1- (notenum ?1)) 3))
 (?if (eq-SC? '(3-5a 3-5b) (list (m ?1) (m ?2) (m ?3))))
 "set-classes of adjacent 3-note groups")pwgl-value

:bpf-index

:init &key

1

2

menu-box

"red" 3

5

4

Figure 2.94: 04-heuristics-w-score-bpfs

2.5.4 PMC

2.5.4.1 Cartesian-All-Perm

This patch demonstrates some of the main concepts behind the ’Multi-PMC’ box. The
most important arguments are: (1) search-space (2) rules
The patch gives 2 basic combinatorial problems:
(1) When a search is run without rules (i.e. the rule input is ’nil’ or ’()’) and the user
requests for all solutions, the box returns the cartesian product of the search space (i.e.
all possible paths).
(2) When a search is run with rules (i.e. the rule input receives one or several rules
in textual form using the PMC syntax) and the user requests for all solutions, the box
returns all possible paths that fulfill the given rules. In this case the solution consists of
all permutations of the list: (0 1 2).

2.5. CONSTRAINTS 139

Multi-PMC

search-space

rules () ()

() :all ()

value-box

((* ?1 (?if (not (member ?1 (rest rl)))) "no dups"))

cart/all-perm

 (1) (2)

value-box

()

text-box

search-space (E)

(0 1 2)
(0 1 2)
(0 1 2)

Figure 2.95: 01-cartesian-all-perm

2.5.4.2 12-Note-Chord

The patch gives a typical search problem where the task is to find all possible 12-note
chords where:
(1) no octaves nor unisons are allowed. (2) adjacent chord intervals can be either 5 or
6 (perfect fourth or tritone).
The result (4 possible chords) is shown in the ’Score-Editor’ box. The ’construct-chords’
abstraction assigns the notes with a pitch-value below 60 to the bass clef.

140 2. TUTORIAL

Multi-PMC

search-space

rules () ()

() :all ()

text-box

rules (E)

(* ?1 (?if (not (member (mod12 ?1) (rest rl) :key #'mod12)))
 "No pitch class duplicates")

(* ?1 ?2 (?if (member (- ?2 ?1) '(5 6)))
 "Interval rule")

value-box

(11* ((36_108)))

cons

(36) cdr

Score-Editor

E

&

?

00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09

œœ# œœœ#
œœœ# œ# œœœ#

œœœ# œœ
œ# œ# œœœ# œ# œ

œœœ# œ# œ#
œœœ# œ# œœœ

œœœ# œ# œ#
œ# œ# œœœ
œœ

P1

score pitches rtms/times

construct chords

A

chords

2.0

Figure 2.96: 02-12-note-chord

2.5.4.3 PMC-PCS-Ex

This patch demonstrates how to use Multi-PMC in conjunction with a text-box that
contains 5 rules.
The search finds all solutions containing 8 pitch-classes (pcs) that form the set-class (sc)
5-34 (i.e. the solutions will have pc duplicates). The first 4 pcs should be 4-21 and the
last 4 4-27a.
The search result is analysed according to total sc contents (left) and according to subset
contents (right).

2.5. CONSTRAINTS 141

text-box

rules (E)

(in-package :ccl)

(i1 i2 i3 i4 (?if (eq-sc? '(4-21) i1 i2 i3 i4)) "SC1")
(i1 i2 i3 i4 (?if (< i1 i2 i3 i4)) "asc1")

(i5 i6 i7 i8 (?if (eq-sc? '(4-27a) i5 i6 i7 i8)) "SC2")
(i5 i6 i7 i8 (?if (< i5 i6 i7 i8)) "asc2")

(* ?1 (?if (member (sc-name l) '#.(ccl::all-subs '5-34))) "complete SC")

mapcar

result analysis

ccl::sc+off

list

mapcar

subset analysis

function

list

sc-names

La

l

Multi-PMC

search

(8* ((0_11)))

rules () ()

T :all ()

all-subs

5-34

Figure 2.97: 03-PMC-PCS-ex

2.5.4.4 All-Interval-Series

This patch calculates all possible ’all interval series’ instances using Multi-PMC. The
lowest box ’time-box’ is used to time the patch.

142 2. TUTORIAL

Multi-PMC

search-space

rules () ()

() :all ()

text-box

rules (E)

(* ?1 (?if (not (member ?1 (rest rl))))
 "no pitch-class dups")

(* ?1 ?2 (?if (unique-int? (mod12 (- ?2 ?1)) (rest rl) :key #'mod12))
 "no (modulo 12) interval duplicates 2")

length

sequence

time-box

patch

text-box

search-space (E)

(0)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(6)

Figure 2.98: 04-all-interval-series

2.5.4.5 All-Interval-Series-2-Wildcard

This patch is a variant of the previous patch that calculates all possible ’all interval
series’ instances using Multi-PMC.
Run the patch normally at (1).
In this example we formalize the two rules differently as both rules use 2 wildcards
in their PM-part. The general behavior of the 2-wildcard PM is explained in the the
’Overview’ section.
At (2), the ’enp-script’ box can be used to visualize the matches caused by the 2-wildcard
PMs.
First evaluate the ’enp-script’ box (2). This creates all possible matchings for each rule.
To see the matchings double-click the ’enp-script’ box. This opens a diagnostics dialog.
For more details see the ’Overview’ section.
The second rule is special as we use the extra keyword ’:pm-overlap’ after the normal
PM-part. This allows ?2 and ?3 to overlap (i.e. they can point to the same variable)
while the pair ?1 and ?2 is looped through the the search variables before the pair ?3
and ?4.

2.5. CONSTRAINTS 143

Multi-PMC

search-space

rules () ()

() :all ()

text-box

rules (E)

(* ?1 * ?2
 (?if (/= ?1 ?2))
 "no pitch-class dups")

(* ?1 ?2 * ?3 ?4 :pm-overlap 1
 (?if (/= (mod12 (- ?2 ?1)) (mod12 (- ?4 ?3))))
 "no (modulo 12) interval duplicates")

length

sequence

time-box

patch

text-box

search-space (E)

(0)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(1 2 3 4 5 7 8 9 10 11)
(6)

Score-Editor

E

00:00 00:01 00:02

œ œ œ œ œ œ œ œ œ œ œ œ

P1

score pitches rtms/times

enp-script

A

score

rules

()

text-box

rules (E)

(* ?1 * ?2
 (?if (?mark ?1 ?2))
 "no pitch-class dups")

(* ?1 ?2 * ?3 ?4 :pm-overlap 1
 (?if (?mark ?1 ?2 ?3 ?4))
 "no (modulo 12) interval duplicates")

1
2

Figure 2.99: 04b-all-interval-series-2-wildcard

2.5.4.6 PMC-Beats

Here a PMC search is used to generate beats. In (1) a search space is created consisting
of attacks, rests and ties. The search uses 2 rules: the beat should not begin with a
tie and the result should not contain only rests (2). After the search (3) the result is
displayed in (4) in textual form and in a score (5).

144 2. TUTORIAL

enp-constructor

:beat 1

score-notation

Score-Editor

E

&
1

14 œ ≈ œ

q = 60

P1

score pitches rtms/times

Multi-PMC

search-space

rules () ()

pwgl-repeat

3 patch

value-box

(-2 -1 1 2 1.0 2.0)

text-box

(E)

(in-package :ccl)

(i1 (?if (not (floatp i1))) "Do not start with a tie")

(i3 (?if (not (every #'minusp l))) "Not all rest")

car

E

(2 -1 1.0)

1

3

4

2

5

enp-object-composer

score object/s

Figure 2.100: 05-PMC-beats

2.5.4.7 Subsets

This is a classical combinatorial problem where our stating point is a 12-tone ’mother-
chord’ (1). We want to search all 4-note subsets of the mother-chord. This can be
formulated as a PMC search so that we first define a search-space which is 4 times a list
of indexes ranging from 0 to 11 (2).
Next, in the rules (3) we first always guarantee that the resulting indexes list is in
ascending order (see the first rule ’ascending order’). When we apply this rule alone we
get 495 subsets.
We can further constrain the search by using the ’rule-filter’ box (4) to turn on or off the
two other rule options: ’sc identity’ and symmetric chord’.
The results can be analyzed with the ’sc-name’ box (5). The final result can be inspected
in a ’chord-editor’ (6) which displays the chords as a matrix.

2.5. CONSTRAINTS 145

Multi-PMC

(4* ((0_11)))

rules () ()

() :all prep-fns

text-box

(E)

(in-package :ccl)

(*
 (?if (apply #'< l))
 "ascending order")

;try for instance one of these: '4-1 '4-z15a '4-27a
(*
 (?if (let ((subset (pw::posn-match (pwgl-value :chord) l)))
 (and (setp subset :key #'mod12)
 (member (sc-name subset) '#.(ccl::all-subs '4-1)))))
 "sc identity")

(i4
 (?if (let ((subset (pw::posn-match (pwgl-value :chord) l)))
 (sym-chord? subset)))
 "symmetric chord")

Chord-Editor

E

&
? w w w w# w w# w w# w w w# w#

chord pitches

length

sequence

pwgl-value

:chord

:init &key

posn-match

list l-nth

Chord-Editor

E1/12

&
?

˙#˙
˙̇#

chord pitches

sc-name

midis
rule-filter

2

rules

1

2

3

4
5

6

Figure 2.101: 06-subsets

2.5.4.8 Fantasiesonnightfantasies

We meditate here on the pitch-dimension of ’Night Fantasies’ by Elliott Carter. First
we calculate all the all-interval chord-classes found in the piece following David Schiff
(The Music of Elliott Carter, pp. 316-318). Then we tighten the constraints and filter
out chords with more specific properties.
Select one of the four ’filters’ with MasterSW. Then evaluate the corresponding Chord-
Editor (1-4).
1. 176 all-interval-chord-classes are filtered from 3856 in total. Because each interval
is paired symmetrically with its inversional equivalent we have 88 originals and 88
inversions. 88 - isn’t that the number of the pianokeys?
The chords are sorted in relation to the average frequency and three relatively most
bright and dark chords are chosen.
2. A few pitches may be sustained as a kind of pedal in ’Night Fantasies’ . Here we
constraint a major second between indexes 11 and 12.
3. A ref-chord (31,44,74,85) has to be found in the result. Please notice that we use
now the complete tessitura of the piano as a search-space (21-108).
4. Indexes 2,4,7,11 should form setclass 4-z15a.

146 2. TUTORIAL

(Lisp)

Multi-PMC

search-space

rules () ()

() :all ()

Chord-Editor

E1/6

&
?

˙̇#
˙̇
˙̇̇#
˙# ˙̇# ˙˙#

chord pitches

sort

sequence >

:key &key

calc-av-freq

La

(E)

(in-package :ccl)

(* ?1
 (?if (not (member (mod ?1 12) (rest rl) :key #'mod12)))
 "no pitch-class duplicates")

(* ?1 ?2
 (?if (unique-int? (mod12 (- ?2 ?1)) (rest rl) :key #'mod12))
 "no (modulo 12) interval duplicates")

(* ?1 ?2
 (?if (< (- ?2 ?1) 12))
 "intervals inside octave")

(*
 (?if (apply #'< l))
 "midis in ascending order")

(i1 i2 i11 i12
 (?if (= (+ (mod12 (- i2 i1)) (mod12 (- i12 i11))) 12))
 "complement int.pairs (indexes 1-2/11-12)")

(i3 i4 i9 i10
 (?if (= (+ (mod12 (- i4 i3)) (mod12 (- i10 i9))) 12))
 "complement int.pairs (index 3-4/9-10)")

(i5 i6 i7 i8
 (?if (= (+ (mod12 (- i6 i5)) (mod12 (- i8 i7))) 12))
 "complement int.pairs (index 5-6/7-8)")

(i1 i2 i3 i4 i5 i6
 (?if (eq-set
 '(|6-1| |6-8| |6-14A| |6-14B| |6-20| |6-32|)
 i1 i2 i3 i4 i5 i6))
 "6-card scs without tritones = tritone in the middle")

(i7 i8 i9 i10 i11 i12
 (?if (eq-set
 '(|6-1| |6-8| |6-14A| |6-14B| |6-20| |6-32|)
 i7 i8 i9 i10 i11 i12))
 "6-card scs without tritones = tritone in the middle")

(E)

(in-package :ccl)

(* ?1 (?if (let ((ref-chord '(31 44 74 85)))
 (test-ps-membership ref-chord l)))
 "ref-chord included")

(* ?1 (?if (let ((ref-chord '(31 44 74 85)))
 (?incase (= (length l) 12)
 (= (length (intersection ref-chord l)) (length ref-chord)))))
 "12-note chords")

 1 2 3 4

 1 2 3 4

 1 2 3 4

MSW

(E)

(in-package :ccl)

(i2 i4 i7 i11 (?if (eq-sc? '(4-z15a) i2 i4 i7 i11))
 "indexes 2,4,7,11 forming 4-z15a ")

Chord-Editor

E1/24

&
?

˙̇#
˙̇
˙̇̇#
˙# ˙̇# ˙˙#

chord pitches

Chord-Editor

E1/20

&
?

˙# ˙˙˙# ˙̇̇
˙# ˙̇˙# ˙

chord pitches

Chord-Editor

E1/16

&
?

˙̇#
˙˙#˙# ˙̇̇
˙̇#
˙˙#

chord pitches

(E)

(in-package :ccl)

(i11 i12 (?if (= (- i12 i11) 2)) "major second at the top")

x-append

l1?

l2?

1 2 3 4

bright-dark

A

sequence

3

3

const-value

cons

(24) (10*((24_90))(90))

 1 2 3 4

(12* ((21_108)))

()

Figure 2.102: 07-FantasiesOnNightFantasies

2.5.4.9 Fund-Suspension-Chain

In this patch we examine the interaction between components in a procedure where
a set-class (sc) structure is projected to real intervals (chord). The result is in turn
interpreted as overtones of a fundamental. Moreover, this resulting sequence of chords
is modified by making a chain of suspensions in the bass. Please notice that outcomes
can vary a lot because of a random openness in many turns of a patch.
We start by generating a symmetrical dodecaphonic ’mother-chord’ (1). The chord is
transposed randomly within one octave.
We throw the dice for a subset sc with which the ’mother-chord’ will be filtered (2). We
give a cardinality and a randomly picked subset sc is used in the ’Gen-chords’ abstraction
(3). Here we search for all possible subset chords from the mother-chord that constitute
the given subset sc.
The resulting chords are compared with a list of midis which is an equal tempered har-
monic overtone approximation (4). The output is a list of fundamentals of the chords.
The melodic contour of the fundamentals is seen in a 2D-Editor (5).
We combine the fundamentals with the corresponding chords (or overtones). The first
overtone, octave, is added to every list (6). By sustaining the lower two notes of

2.5. CONSTRAINTS 147

the chords (fundamental+octave) we create suspension sequences between subsequent
chords (7).
Our tension-release schema is not constant because we can have the same fundamentals
following one another (in this case only the brightness of the chords is changed). In the
end we make a little swing to the choral by randomizing durations between low and
high limits (8).
Evaluate the patch at (9).

Chord-Editor

E

& w w w# w w w# w#
chord pitches

pwgl-progn

EVAL ME

2

1

mapcar

ccl::pmc-find-fund

list

Gen-mother-ch

A

Chord-Editor

E

&
? ˙#˙# ˙˙# ˙˙˙# ˙˙# ˙˙̇

chord pitches

Gen-subset

A

7

combine fund/chords

A

fundamentals

chords

Fund susp.

A

fund+chords

pwgl-progn

2D-Editor

Eobjects active

sc-name

subseq

sequence

0

6

text-box

(E)

6-2b
sc-nametext-box

 (E)

7-8

4

5

7

9

random-durs

A

chs

1.5

5

Score-Editor

E

&

?
˙# ˙#
˙#
˙# ˙˙# ˙˙̇

œ# œ#
œ#
œœ# œœ# œ
œ

œ# œ#
œ#
œœ# œœ# œ
œ

˙# ˙#
˙#
˙˙˙ ˙# ˙# ˙

˙# ˙#
˙#
˙˙˙ ˙# ˙# ˙

œ# œ#
œ#
œ# œœ œ# œ
œ

˙# ˙#
˙#
˙# ˙˙ ˙# ˙
˙

˙# ˙#
˙#
˙# ˙˙# ˙˙˙

˙# ˙#
˙#
˙# ˙˙# ˙˙˙

œ# œ#
œ#
œœ# œœœ#
œ

˙̇
˙#
˙˙# ˙˙̇#
˙

˙̇
˙#
˙˙˙# ˙˙̇

˙# ˙# ˙#
˙˙˙# ˙˙̇

˙# ˙# ˙#
˙̇̇˙# ˙˙

˙̇
˙#
˙̇̇˙# ˙˙

˙̇
˙#
˙# ˙# ˙˙# ˙
˙

œœ
œ#
œ# œ# œœ# œ
œ

˙̇
˙# ˙#
˙˙# ˙˙
˙

˙# ˙#
˙# ˙#
˙˙# ˙˙
˙

˙# ˙#
˙# ˙#
˙˙# ˙˙
˙

œ# œ#
œ# œ#
œœ# œœ
œ

œ# œ#
œ#
œœœ# œœ# œ

˙̇
˙#
˙˙˙# ˙˙# ˙

P1

score pitches rtms/times

text-box

(E)(in-package :ccl)

(i1
 (?if
 (setf (staff (read-key i1 :part)) (make-instance 'piano-staff)))
 "piano-staff")

(* ?1 :chord
 (?if (when (m ?1 :complete? t)
 (dolist (n (notes ?1))
 (if (< (midi n) 60)
 (setf (clef-number n) 1)
 (setf (clef-number n) 0)))))
 "assign notes below 60 to bass clef")

enp-script

A

Gen-chords

A

subset

superset
3

6

8

Figure 2.103: 08-fund-suspension-chain

2.5.5 Score-PMC

2.5.5.1 PMC Vs-Score-PMC

This patch demonstrates some of the differences and similarities between (1) PMC and
(2) Score-PMC.
Score-PMC operates with an input-score, ’in-score’, where the notes act as search-
variables. The second input, ’res-score’, can optionally be connected to another ’Score-
Editor’ box in order to display the result of the calculation. In this simple patch example
this input is ’()’, and the result will be updated directly in the input-score.

148 2. TUTORIAL

The search-space is defined with the ’search-space’ input, which is in this case a simple
list of midi values ranging from 60 to 72.
The search aims to find pitch-values in the score that are valid according to rules. PMC
rules are quite similar than the melodic rules in Score-PMC. The main difference is that
in Score-PMC the m-method (’m’) is used access information from the notes (in this
example the rule deals with midis).

Multi-PMC

(1)

(4*((60_72)))

rules () ()

Score-Editor

E

&
1

44 œ# œ œ# œ
q = 60

P1

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1 ?2 (?if (member (- (m ?2) (m ?1)) '(1 -1 2 -2))) "mel interval")

text-box

(E)

(in-package :ccl)

(* ?1 ?2 (?if (member (- ?2 ?1) '(1 -1 2 -2))) "interval")

Multi-Score-PMC

P1

in-score ()

(60_72)

rules ()

Two similar search problems with:
(1) 'Multi-PMC'
(2) 'Multi-Score-PMC'

Figure 2.104: 01-PMC-vs-Score-PMC

2.5.5.2 3-Voice

This small 4*3 matrix score deals with some melodic, harmonic and voice-leading rules.
We have two ’Multi-Score-PMC’ boxes here: the one to the left finds one solution, and
the one to the right looks for all solutions. In the latter case our problem has 52 solutions
which can be accessed individually by selecting the ’Multi-Score-PMC’ box and using the
up/down arrow keys. The numerical information below the box displays a small label
with two numbers (e.g. 1/52): the first number points to the current solution, and the
second number gives the total number of solutions.

2.5. CONSTRAINTS 149

Score-editor

E

&

1

4

4

œ œ# œ# œn

q = 60

Instrument 1

&

4

4

œ œ œ œ#

q = 60

Instrument 1

&

4

4
œ# œ œn

œ#

q = 60

Instrument 1

¬

L

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1 ?2 :parts '(1 3)
 (?if (member (- (m ?2) (m ?1)) '(-1 -2 1 2 -3 -4 3 4)))
 "mel int rule for parts 1 and 3")

(* ?1 :harmony
 (?if (let ((ints (m ?1 :complete? t :data-access :harm-int)))
 (?incase ints (member ints '((4 4) (5 6)) :test #'equal))))
 "3 voice harm int rule")

(* ?1 ?2 :harmony
 (?if (let ((ints1 (m ?1 :data-access :harm-int))
 (ints2 (m ?2 :data-access :harm-int :complete? t)))
 (?incase ints2 (not (equal ints1 ints2)))))
 "no adjacent equal chord ints")

(* ?1 * ?2 :harmony (m ?2 :complete? t)
 (?if
 (not (equal (m ?1) (m ?2))))
 "no chord duplicates, note the 2-wildcard case")

(* ?1 :harmony
 (?if
 (every #'(lambda (n)
 (cond ((> (partnum n) (partnum ?csv)) (< (m n) (m ?csv)))
 ((< (partnum n) (partnum ?csv)) (> (m n) (m ?csv)))
 (T T))) (m ?1 :object t)))
 "no part-crossings")

(* ?1 ?2 :harmony
 (?if (?incase (m ?2 :complete? t)
 (let* ((sop1 (m ?1 :data-access :max)) (sop2 (m ?2 :data-access :max))
 (bas1 (m ?1 :data-access :min)) (bas2 (m ?2 :data-access :min)))
 (and (/= (mod12 sop1) (mod12 bas2))
 (/= (mod12 sop2) (mod12 bas1))))))
 "no sop/bas mod12 cross-relation")

Multi-Score-PMC

1/52

in-score ()

(60_84)

rules ()

T :all () ()

Multi-Score-PMC

P1

in-score ()

(60_84)

rules ()

Figure 2.105: 02-3-voice

2.5.5.3 6-Voice

Our next example is more complex and the rhythmic structure is more lively containing
overlapping notes. Again several basic melodic, harmonic, and voice-leading rules are
applied.
The patch contains also an ’enp-script’ box that performs a harmonic analysis.

150 2. TUTORIAL

Score-editor

E

&

1

6

4

œ
œ# œ œn œ# œ#

q = 30

Instrument 1

&

6

4 ˙
œ#

œ œ

œ#

q = 30

Instrument 1

&

6

4 œ# œ#
œ#

˙#
œn

q = 30

Instrument 1

?

6

4 œ#
œ œ œ#

œn œ

q = 30

Instrument 1

?

6

4 œ ˙ .
œ

œ#

q = 30

Instrument 1

?

6

4

œ

6-20
œ#
6-20

œ#

6-20

œ#

6-20

˙n

6-20
6-20

q = 30

Instrument 1

¬

L

score pitches rtms/times

sc-info

prime 6-20

Score-editor

E

&

00:00 00:01 00:02

œ œ#
œ œ œ# œP1

score pitches rtms/times

g+

l1? 60

value-box

((66_90) (60_84) (54_78) (48_72) (42_66) (36_60))

text-box

(E)

(in-package :ccl)

(* ?1 :harmony
 (?if (let ((ms (m ?1 :complete? t)))
 (if ms
 (add-expression 'group (give-bass-item ?1) :info (sc-name ms))
 ())))
 "analyse harmonic scs")

enp-script

A

score

rules

()

text-box

(E)

(in-package :ccl)
; melodic
(* ?1 ?2
 (?if (< (abs (- (m ?2) (m ?1))) 8))
 "max mel int rule")

(* ?1 * ?2
 (?if (/= (mod12 (m ?1)) (mod12 (m ?2))))
 "mel duplicate rule")

; harmonic
(* ?1 :harmony
 (?if (let ((h-midis (m ?1)))
 (and (setp h-midis :key #'mod12)
 (member (sc-name h-midis) '#.(ccl::all-subs '(6-20))))))
 "harm SC rule")

(* ?1 :harmony
 (?if (let ((ms (m ?1 :complete? t)))
 (?incase ms (sym-chord? (sort< (m ?1))))))
 "symmetric chord")

; voice-leading
(* ?1 :harmony
 (?if (every #'(lambda (n)
 (cond ((> (partnum n) (partnum ?csv)) (< (m n) (m ?csv)))
 ((< (partnum n) (partnum ?csv)) (> (m n) (m ?csv)))
 (T T))) (m ?1 :object t)))
 "no voice-crossings")

(* ?1 ?2 :harmony
 (?if (let* ((p1 1) (p2 6)
 (m11 (m ?1 :parts p1)) (m12 (m ?2 :parts p1))
 (m21 (m ?1 :parts p2)) (m22 (m ?2 :parts p2)))
 (?incase (and m11 m12 m21 m22)
 (and (/= (mod12 m11) (mod12 m22))
 (/= (mod12 m12) (mod12 m21))))))
 "no mod12 cross-relation in parts p1+p2")

(* ?1 ?2 :harmony
 (?if (?incase (m ?2 :complete? t)
 (let* ((sop1 (m ?1 :data-access :max)) (sop2 (m ?2 :data-access :max))
 (bas1 (m ?1 :data-access :min)) (bas2 (m ?2 :data-access :min))
 (sopint (- sop2 sop1)) (basint (- bas2 bas1)))
 (?incase (or (and (plusp sopint) (plusp basint))
 (and (minusp sopint) (minusp basint)))
 (or (<= (abs sopint) 1) (<= (abs basint) 1))))))
 "no jumps in parallel sop-bass movements")

Multi-Score-PMC

P1

in-score ()

search-space

rules ()

Figure 2.106: 03-6-voice

2.5.5.4 Chord

This patch demonstrates rules that deal with chords of varying density. The rules control
harmony and melodic formations of the lowest and highest pitches of the chords.

2.5. CONSTRAINTS 151

Score

E

&
1

44
œ#œ
œœ œ

œœœ#
jump

œ
œ#œn

œœ
œœ#

q = 30

œ#
œ# œ#œ

œœ#
œœ#

œ
œœn

œ
œœ

Instrument 1

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1 ?2 :chord
 (?if (let ((m1 (m ?1 :data-access :min)) (m2 (m ?2 :data-access :min)))
 (?incase (and m1 m2) (member (- m2 m1) '(0 5 6 4)))))
 "multipart bass int rule")

(* ?1 ?2 :chord
 (?if (let ((m1 (m ?1 :data-access :max)) (m2 (m ?2 :data-access :max :complete? t)))
 (?incase (and m1 m2) (member (- m2 m1) (if (e ?2 "jump") '(8) '(8 -1))))))
 "multipart top int rule")

(* ?1 :chord
 (?if (let ((ms (m ?1 :complete? t)))
 (?incase ms
í�����Ü�ÊB�á6WG��◊2�¶∂Wí�2v÷ˆC�"ê
 (member (sc-name ms) '#.(ccl::all-subs '(4-27a)))))))
 "harm rule")

(* ?1 :chord
 (?if (let ((ints (m ?1 :data-access :harm-int)))
 (?incase ints
 (and (not (member 1 ints))
 (apply #'>= ints)))))
 "no sharp int/asc harm ints rule")

Multi-Score-PMC

P1

in-score ()
(48_82)
rules ()

Figure 2.107: 04-chord

2.5.5.5 Grace

This patch deals with grace notes. The first rule, ’mel int’, controls the melodic intervals
between notes regardless of whether the notes are ordinary ones or grace notes.
In the second rule, ’grace int’, grace notes have a different set of intervals than the
ordinary ones.

152 2. TUTORIAL

Score-editor

E

&
1

44 œ# . œ# . œ.

3

œ œ œ œ. œ. œ. œ# . œ œ# œ#
q = 60

Instrument 1

score pitches rtms/times

text-box

grace ints (E)

(in-package :ccl)

(* ?1 ?2
 (?if
 (if (and (grace-note-p ?1) (grace-note-p ?2))
 (member (abs (- (m ?2) (m ?1))) '(0))
 (member (abs (- (m ?2) (m ?1))) '(1 2 5 7))))
 "grace int rule")

text-box

mel ints (E)

(in-package :ccl)

(* ?1 ?2
 (?if (member (abs (- (m ?2) (m ?1))) '(1 2 5 7)))
 "mel int rule")

Multi-Score-PMC

P1

in-score ()

(60_86)

rules ()

Figure 2.108: 05-grace

2.5.5.6 HSG

This patch has been developed in collaboration with Paavo Heininen and it is related to
the discussion of chapter 5.4 in the following text:
M. Laurson, PATCHWORK: A Visual Programming Language and some Musical Applica-
tions. Studia musica no.6, doctoral dissertation, Sibelius Academy, Helsinki, 1996.
The aim is to calculate the pitch information for the 3 topmost parts (sop, mid-voice,
bass). The melodic lowest part has been pre-composed by Paavo Heininen and acts
as a kind of cantus firmus, i.e. the pitches in part 4 are always fixed and should be
’constraint’ by the user before the search. These constraint notes are dimmed (i.e. they
are drawn in light-gray color, see part 4 in the score).

2.5. CONSTRAINTS 153

(Lisp)

lisp code

Score-editor

E

&

1

2

2

œ#

œ

œ#
J J ˙

q = 118

6

4

œ œ
œ#

œ

J

5

˙
˙#

œ

3

4

4

œ ˙#

3

˙# ˙

‰
œ

œ œ#

Instrument 1

&

2

2

œ#
œ#
œœ

œ

œ

œ

œ

œ#

œ# œ

œ

œ#

œ

œ
œœ

j j

˙

˙˙#
˙#

q = 118

6

4

œ

œœ
œ

œ#
œ#
œn œ#
œ
œ

œn œ#
œn
œn

œ
œ#
œ
œ
œ
j

5

˙

˙
˙
˙

˙

˙
˙n

˙
˙˙#
˙

œ

œ

œ# œ

œ
œ

3

4

4

œ

œ

œœ

œ
œ

˙#

˙
˙n

˙
˙
˙#

3

˙

˙
˙#

˙
˙

˙

˙
˙

˙
˙

‰

œ#

œn

œ

œ#

œ

œ

œ
œ#Instrument 1

?

2

2

œ#

œ#

œn
j j ˙#

q = 118

6

4

œ œn
œ œ

J

5

˙#

˙#
œ

3

4

4
œ ˙

3

˙ ˙
‰ œ#

œ
œ#

Instrument 1

&

2

2

œ
œ œ

j j
˙#

q = 118

6

4 œ

œ#

œ
œ
j

5

˙

˙#

œ

3 4

4

œ ˙

3

˙ ˙

‰

œ#
œ#

œInstrument 1

¬

L

score pitches rtms/times

value-box

((72_90) (52_85) (30_72) (30_67))
text-box

(E)

(in-package :ccl)

(* ?1 :chord :parts 2
 (?if (dolist (n (notes ?1))
 (setf (vel n) 30)))
 "set chord vel")

(* ?1 :parts '(1 3)
 (?if (setf (vel ?1) 60))
 "set sop/bass vel")

enp-script

A

score

rules

()

text-box

rules (E)

(in-package :ccl)
;==
;; assumes part order: 1 sop 2 rest 3 bass 4 midv
;==
; melodic
;ints
;R1
(* ?1 ?2 :parts '(1 3)
 (?if (<= (abs (- (m ?2) (m ?1))) 9)) "max 9 mel int")

;R2
(* ?1 ?2 ?3 :parts '(1 3)
 (?if (let ((disallowed-ints '((1 1) (-1 -1) ;; same dir 1s
 (5 2)(-5 -2)(2 5)(-2 -5)
 (-2 7)(2 -7)(-7 2)(7 -2)(-5 7)(5 -7)(7 -5)(-7 5)))) ;; 3-9 same dir 5 + 2
 (not (member (list (- (m ?2) (m ?1)) (- (m ?3) (m ?2))) disallowed-ints :test #'equal))))
 "disallowed-2ints")

;R3
(* ?1 ?2 ?3 :parts '(1 3)
 (?if (not (eq-sc? '(3-11a 3-11b) (m ?1) (m ?2) (m ?3))))
 "disallowed 3card mel sets")

;R4
(* ?1 ?2 ?3 ?4 :parts '(1 3)
 (?if (eq-sc?
 '(4-27a 4-21 4-24 4-27b 4-19b 4-z15a 4-3 4-9 4-23 4-13b 4-11b 4-16a 4-14b 4-4a 4-12a 4-18a 4-5b 4-4b 4-8 4-16b
 4-14a 4-10 4-z15b 4-6 4-5a 4-11a 4-12b 4-1 4-7 4-2a 4-2b 4-13a)
 (m ?1) (m ?2) (m ?3) (m ?4)))
 "allowed 4card mel sets")

;R5
(* ?1 ?2 ?3 ?4 ?5 :parts '(1 3)
 (?if (eq-sc?
 '(5-28b 5-13b 5-14a 5-33 5-26a 5-28a 5-z38b 5-9a 5-29a 5-z37 5-21b 5-30b 5-7a 5-16b 5-10a 5-23b 5-6a 5-7b 5-23a
 5-29b 5-4b 5-31b 5-2a 5-20b 5-z18a 5-4a 5-16a 5-z38a 5-9b 5-5b 5-6b 5-z12 5-20a 5-z18b 5-10b 5-14b 5-z36a 5-5a
 5-26b 5-1 5-2b 5-3b 5-3a 5-8)
 (m ?1) (m ?2) (m ?3) (m ?4) (m ?5)))
 "allowed 5card mel sets")

;============================
; repetion
;R6
(* ?1 :parts '(1 3)
 (?if (let ((size 5)) (setp (m ?1 :rl size) :key #'mod12)))
 "no pc mel repet")

;R7
(* ?1 ?2 :parts '(1 3)
 (?if (let ((size 7))
 (unique-cell2? (m ?2) (m ?1) (rest (m ?2 :rl (1+ size))))))
 "no 2 cell mel repet")

;R8
(* ?1 ?2 ?3 :parts '(1 3)
 (?if (let ((size 10))
 (unique-cell3? (m ?3) (m ?2) (m ?1) (rest (m ?3 :rl (1+ size))))))
 "no 3 cell mel repet")

;R9
(* ?1 :parts '(1 3)
 (?if (setp (m ?1 :rl t :l-filter #'(lambda (n) (>= (durt n) 1.0)))))
 "no long note (>= 1 second) dups")

;============================
; vlead
;R10
(* ?1 ?2 ?3 :harmony :parts 1
 (?if (let* ((sop1 (m ?1 :parts 1)) (sop2 (m ?2 :parts 1)) (sop3 (m ?3 :parts 1))
 (midv1 (m ?1 :parts 4)) (midv2 (m ?2 :parts 4)) (midv3 (m ?3 :parts 4)))
 (not (= (- sop1 midv1) (- sop2 midv2) (- sop3 midv3)))))
 "no exact parallel movements between sop and midv")

;R11
(* ?1 ?2 ?3 :harmony :parts 3
 (?if (let* ((mid1 (m ?1 :parts 4)) (mid2 (m ?2 :parts 4)) (mid3 (m ?3 :parts 4))
 (bass1 (m ?1 :parts 3)) (bass2 (m ?2 :parts 3)) (bass3 (m ?3 :parts 3)))
 (not (= (- mid1 bass1) (- mid2 bass2) (- mid3 bass3)))))
 "no exact parallel movements between midv and bass")

;R12
(* ?1 ?2 :harmony :parts 1
 (?if (let*((p1 1) (p2 3)
 (m11 (m ?1 :parts p1)) (m12 (m ?2 :parts p1))
 (m21 (m ?1 :parts p2)) (m22 (m ?2 :parts p2)))
 (?incase (and m11 m12 m21 m22)
 (and (/= (mod12 m11) (mod12 m22))
 (/= (mod12 m12) (mod12 m21))))))
 "no mod12 cross-relation in sop/bass parts")

;R13
(* ?1 ?2 :harmony :parts 1
 (?if (let* ((max-jump-int 1)
 (sop1 (m ?1 :parts 1)) (sop2 (m ?2 :parts 1))
 (bass1 (m ?1 :parts 3)) (bass2 (m ?2 :parts 3))
 (sop-int (- sop1 sop2)) (bass-int (- bass1 bass2)))
 (?incase (or (and (plusp bass-int) (plusp sop-int))
 (and (minusp bass-int) (minusp sop-int)))
 (not (> (min (abs bass-int) (abs sop-int)) max-jump-int)))))
 "no bass-soprano jumps in same direction")

;R14
(* ?1 ?2 ?3 :harmony :parts 1
 (?if (let* ((sop1 (m ?1 :parts 1)) (sop2 (m ?2 :parts 1)) (sop3 (m ?3 :parts 1))
 (bass1 (m ?1 :parts 3)) (bass2 (m ?2 :parts 3)) (bass3 (m ?3 :parts 3))
 (sop-int1 (- sop2 sop1)) (sop-int2 (- sop3 sop2))
 (bass-int1 (- bass2 bass1)) (bass-int2 (- bass3 bass2)))
 (not (parallel-movements? (list sop-int1 bass-int1) (list sop-int2 bass-int2)))))
 "no-3chord-parallel-movements")

;==============================
; chords
;R15
(* ?1 :harmony :parts 1
 (?if (let* ((sop (m ?1 :parts 1)) (mid (m ?1 :parts 4)) (bass (m ?1 :parts 3))
 (midis (list sop mid bass)))
 (and (setp midis :key #'mod12)
 (not (eq-sc? '(3-11a 3-11b) midis)))))
 "allowed sop-midv-bass sets")

;===================================
; harmonic rules
(* ?1 :harmony
 (?if (setp (m ?1) :key #'mod12))
 "no unis nor octaves")

(* ?1 :harmony :parts '(1 2)
 (?if (let* ((midis (sort< (m ?1)))
 (ints (m ?1 :data-access :harm-int)))
 (and (or (every #'(lambda (n) (member n '(1 3 7))) ints)
 (every #'(lambda (n) (member n '(1 3))) ints)
 (every #'(lambda (n) (member n '(5 6))) ints))
 (not (>max-cnt-int? midis '((1 1))))
 (proper-low-reg-ch? midis))))
 "harm ints")

#|
; for 'unis' case:
; replace "no unis nor octaves" and "harm ints" with following rules:

(* ?1 :harmony
 (?if (not (octaves? (m ?1))))
 "no octaves (unis allowed)")

(* ?1 :harmony :parts '(1 2)
 (?if (let* ((midis (sort< (remove-duplicates (m ?1))))
 (ints (pw::x->dx midis)))
 (and (or (every #'(lambda (n) (member n '(1 3 7))) ints)
 (every #'(lambda (n) (member n '(1 3))) ints)
 (every #'(lambda (n) (member n '(5 6))) ints))
 (not (>max-cnt-int? midis '((1 1))))
 (proper-low-reg-ch? midis))))
 "harm ints (unis allowed)")
|#
;====================================
; voice cross rules
(* ?1 :harmony :parts 1
 (?if (let* ((sop (m ?1 :parts 1)) (bas (m ?1 :parts 3))
 (chshigh (m ?1 :parts 2 :data-access :max)) (chslow (m ?1 :parts 2 :data-access :min)))
 (> sop chshigh chslow bas)))
 "chs betw sop and bass, sop highest")

(* ?1 :harmony :parts 2
 (?if (let* ((bas (m ?1 :parts 3)) (chsmin (m ?1 :parts 2 :data-access :min)))
 (> chsmin bas)))
 "chs higher than bass")

(* ?1 :harmony :parts 3
 (?if (let* ((bass (m ?1 :parts 3)) (mid (m ?1 :parts 4)))
 (<= bass mid)))
 "midv higher than bass")

#|
; HSG rules still missing
"find-chs?"
;----------- category
;R17
"not 3 adjacent chs with a single cat"
;----------- mel reduction (arc-lens, skyline)
; mel-red tolerance 0 because partial solution !

;R18
"no partial arc len dups inside window"
;R19
"no skyline dups inside window and max-skyline-jump 4"
|#

Multi-Score-PMC

P1 P5 P6 P8

in-score ()

search-space

rules ()

() ()

T 4 4 ()

final results can be displayed by ->
clicking one of the small buttons

during search partial
results can be displayed
by clicking one of the
progress sliders inside
the Multi-Score-PMC box

Figure 2.109: 06-HSG

2.5.5.7 6-Z47b-Blues

In this example a score-pmc search is applied to a non-mensural score. The one-part
score consists of chords of varying density. Thus several rules use the ’:chord’ accessor.
These rules allow for instance to control separately the voice-leading and interval con-
tent of the melodic contours that are formed out of the upper and lower notes of the
chords.
The heuristic rule comes from an abstraction that uses internally the ’mk-score-pmc-
profile-hrules’ function (see also the ’Heuristic’ section).
Finally, this patch uses also scripting to assign playback information.

154 2. TUTORIAL

arithm-ser

24
1
72

Score-Editor

E

?

00:00 00:01 00:02 00:03

œ#
œœ
œœ
œ

œ œ# œ# œ
œ œ#

œœ
P1

?

00:04 00:05 00:06 00:07

œ#
œ#

œ
œ#
œœ# œ œœ

œ
œ#
œ#

œœ# œ#
œ

œœ
œœ
œ œ

œ#
œ#

œœ# œ# œ
œ# œ

œ
P1

?

00:08 00:09 00:10 00:11

œ# œœ# œ# œ
œ
œ# œ# œ

œ
œ# œœ#

œ#
œœ
œ# œ# œ# œœ œœ#

œœ#
œ
œœ

œ# œœ# œ# œ# œ#

œ
œ
œœ#

œœ# œœ#
œ
œ#

œœ
œœœ# œ# œ

œ
P1

?

00:12 00:13 00:14 00:15

œ
œ# œ

œœ
œ#

œ# œ
œ# œœ

œ# œœ
œ#

œ
œ# œ#

œ# œ
œ# œœ

œœ
œ#

œ# œ#
œœ#

œœ œœ# œ
œ# œ

œ
œ# œ#

œœ
œœ# œ#

œœ#
œ# œ# œ œ

œœ
œ# œ# œ#

P1

score pitches rtms/times

heuristics

A

text-box

(E)

(in-package :ccl)

(* ?1 :chord
 (?if
 (let ((ms (m ?1 :complete? t)) vel)
 (when ms
 (setq vel
 (case (length ms)
 (6 127)(5 117)(4 107)(3 97)(2 87)(t 77)))
 (dolist (n (notes ?1)) (setf (vel n) vel)))))
 "set velocity")

enp-script

A

score

rules
()

text-box

(E)

(in-package :ccl)

(* ?1 ?2 :harmony
 (?if (let ((ints1 (m ?1 :data-access :harm-int))
 (ints2 (m ?2 :data-access :harm-int :complete? t)))
 (?incase ints2 (not (equal ints1 ints2)))))
 "no adjacent equal chord ints")

(* ?1 :score-sort
 (?if (let ((ms (m ?1 :rl 7)))
 (not (member (mod12 (m ?1)) (rest ms) :key #'mod12))))
 "score-sort mod12 repetition")

(* ?1 :chord
 (?if (let ((ms (m ?1 :complete? t)))
 (?incase ms
í�����Ü�ÊB�á6WG��◊2�¶∂Wí�2v÷ˆC�"ê
 (member (sc-name ms) '#.(ccl::all-subs '(6-Z47B)))))))
 "chord rule")

(* ?1 :score-sort
 (?if (let ((ms (m ?1 :rl 3)))
 (not (member (sc-name ms) '(3-10 3-11a 3-11b 3-12)))))
 "no score-sort triads")

(* ?1 :chord
 (?if (let ((ints (m ?1 :data-access :harm-int)))
 (?incase ints
 (and (every #'(lambda (int) (<= 5 int 11)) ints)
 (apply #'>= ints)))))
 "harm-int between 5 and 11")

(* ?1 ?2 ?3 ?4 :chord
 (?if (let ((m1 (m ?1 :data-access :max)) (m2 (m ?2 :data-access :max))
 (m3 (m ?3 :data-access :max)) (m4 (m ?4 :data-access :max :complete? t)))
 (?incase (and m1 m2 m3 m4)
 (member (sc-name (list m1 m2 m3 m4)) '#.(ccl::all-subs '(6-Z47B))))))
 "multipart top int rule")

(* ?1 ?2 ?3 ?4 :chord
 (?if (let ((m1 (m ?1 :data-access :min)) (m2 (m ?2 :data-access :min))
 (m3 (m ?3 :data-access :min)) (m4 (m ?4 :data-access :min :complete? t)))
 (?incase (and m1 m2 m3 m4)
 (member (sc-name (list m1 m2 m3 m4)) '#.(ccl::all-subs '(6-Z47B))))))
 "multipart bottom int rule")

Multi-Score-PMC

P1

in-score ()
search-space

rules heur-rules
() ()

T 4 1 ()

Figure 2.110: 07-6-Z47B-blues

2.5.5.8 Grace-Duetto

This patch is a one-part score where grace-note gestures of varying length alternate with
long notes. There are here three basic rules sets: (1) rules that apply only to long notes;
(2) rules that apply only to grace-notes; (3) rules that apply to all notes.
Besides typical rules that deal with pitch ranges, forbidden pitch-class repetitions and
allowed pitch-class sets, this example contains several rules that control the pitch con-
tour of the grace-note groups. These contours are marked in the score with labels like
’7/5’, ’6/2’, ’6/3’, etc. The groups that are marked with labels that begin with 7 form
contours that fan out, while the ones beginning with 6 fan in.
The patch contains also a ’enp-script’ box that is used to assign notes below middle-C to
the bass clef, to set playback information (channel and velocity) and to add color-coding
of the note-heads.

2.5. CONSTRAINTS 155

text-box

rules (E)

(in-package :ccl)

(* ?1
 (?if (if (grace-note-p ?1)
 (or (<= 23 (m ?1) 58) (<= 71 (m ?1) 102))
 (<= 59 (m ?1) 70)))
 "ranges")

(* ?1 (not (grace-note-p ?1))
 (?if (let ((ms (m ?1 :l t :l-filter #'(lambda (n) (not (grace-note-p n))))))
 (setp ms :key #'mod12)))
 "normal note setp")

#|
(* ?1 (not (grace-note-p ?1))
 (?if (let ((ms (m ?1 :l 3 :l-filter #'(lambda (n) (not (grace-note-p n))))))
 (not (member (sc-name ms) '(3-10 3-11a 3-11b 3-12)))))
 "normal note scs")
|#

(* ?1 ?2 (?if (<= (abs (- (m ?2) (m ?1))) 23))
 "max interval")

(* ?1 ?2 (and (grace-note-p ?1) (not (grace-note-p ?2)))
 (?if (<= (abs (- (m ?2) (m ?1))) 13))
 "max interval for grace-normal")

(* ?1 ?2 ?3
 (?if (not (member (sc-name (list (m ?1)(m ?2)(m ?3))) '(3-10 3-11a 3-11b 3-12))))
 "no triads at all")

(* ?1 ?2 ?3 ?4
 (?if (eq-sc? '(4-1 4-3 4-6 4-7 4-8 4-9 4-10 4-23) (m ?1)(m ?2)(m ?3)(m ?4)))
 "scs")

(* ?1 (e ?1 "6/2")
 (?if (let* ((pos (e ?1 "6/2" :pos))
 (midis (m ?1 :l pos))
 (ref-cont '(1 0)))
 (eq-subcontour? ref-cont (contour midis))))
 "6/2")

(* ?1 (e ?1 "6/3")
 (?if (let* ((pos (e ?1 "6/3" :pos))
 (midis (m ?1 :l pos))
 (ref-cont '(2 0 1)))
 (eq-subcontour? ref-cont (contour midis))))
 "6/3")

(* ?1 (e ?1 "6/4")
 (?if (let* ((pos (e ?1 "6/4" :pos))
 (midis (m ?1 :l pos))
 (ref-cont '(3 0 2 1)))
 (eq-subcontour? ref-cont (contour midis))))
 "6/4")

(* ?1 (e ?1 "6/5")
 (?if (let* ((pos (e ?1 "6/5" :pos))
 (midis (m ?1 :l pos))
 (ref-cont '(4 0 3 1 2)))
 (eq-subcontour? ref-cont (contour midis))))
 "6/5")

(* ?1 (e ?1 "6/6")
 (?if (let* ((pos (e ?1 "6/6" :pos))
 (midis (m ?1 :l pos))
 (ref-cont '(5 0 4 1 3 2)))
 (eq-subcontour? ref-cont (contour midis))))
 "6/6")

(* ?1 (e ?1 "6/7")
 (?if (let* ((pos (e ?1 "6/7" :pos))
 (midis (m ?1 :l pos))
 (ref-cont '(6 0 5 1 4 2 3)))
 (eq-subcontour? ref-cont (contour midis))))
 "6/7")

(* ?1 (e ?1 "7/2")
 (?if (let* ((pos (e ?1 "7/2" :pos))
 (midis (m ?1 :l pos))
 (ref-cont '(0 1)))
 (eq-subcontour? ref-cont (contour midis))))
 "7/2")

(* ?1 (e ?1 "7/3")
 (?if (let* ((pos (e ?1 "7/3" :pos))
 (midis (m ?1 :l pos))
 (ref-cont '(1 2 0)))
 (eq-subcontour? ref-cont (contour midis))))
 "7/3")

(* ?1 (e ?1 "7/4")
 (?if (let* ((pos (e ?1 "7/4" :pos))
 (midis (m ?1 :l pos))
 (ref-cont '(1 2 0 3)))
 (eq-subcontour? ref-cont (contour midis))))
 "7/4")

(* ?1 (e ?1 "7/5")
 (?if (let* ((pos (e ?1 "7/5" :pos))
 (midis (m ?1 :l pos))
 (ref-cont '(2 3 1 4 0)))
 (eq-subcontour? ref-cont (contour midis))))
 "7/5")

Score-Editor

E

&

?

1

44
44 œ

six

j

w

q = 60

˙
œ

six
6/2

œ œ#
œ#

seven

7/5œ
œ

œ
œ œ w œ#

six
6/3

œ# œ#
˙

œ#

seven

7/4

œ# œ
œ

˙#
P1

score pitches rtms/times

text-box

(E)

(in-package :ccl)
(* ?1 :chord
 (?if
 (when (m ?1 :complete? t)
 (dolist (n (notes ?1))
 (if (and (< (midi n) 60) (grace-note-p ?1))
 (setf (clef-number n) 1)
 (setf (clef-number n) 0)))))
 "assign midis below 60 to bass clef for grace notes")

(* ?1 (?if
 (if (grace-note-p ?1)
 (setf (color ?1) :red)
 (setf (color ?1) :blue)))
 "red for harp and blue for voice")

(* ?1 (?if
 (if (grace-note-p ?1)
 (setf (chan ?1) 1)
 (setf (chan ?1) 2)))
 "channels for intruments")

(* ?1 (?if
 (setf (vel ?1)
 (cond ((e ?1 "six") 127)
 ((e ?1 "seven") 50)
 (t 64))))
 "velocity for the groups")

gm-instrument

1 Orchestral_Harp

2 Choir_Aahs

enp-script

A

score

rules

()

Multi-Score-PMC

P2 P1

in-score ()

(23_102)

rules ()

() ()

T 4 2 () <- update score info here
 after Score-PMC result

Figure 2.111: 08-grace-duetto

2.5.5.9 First-Species-Counterpoint

In this patch, we sketch a small rule set to generate simple ’first species’ counterpoint.
In the middle of this patch (literally speaking) is one big merger box. The merger box
allows us to experiment with different combinations of the rules. It divides the whole
rule set into predefined 5 groups. By default (all the switch buttons are off) the result
of the calculation is random. By turning on the switch buttons one by one it is possible
to observe how the constraints engine gradually refines the end result. The predefined
rule groups and their approximate roles are as follows:
(1) defines some simple melodic rules; (2) defines the allowed harmonic intervals be-
tween the voices; (3) implements the ’horror vacui’ rule where a leap is balanced with
a smaller contrary movement; (4) prohibits both strict and hidden parallel movement;
(5) contains rules for the cadence
In (6) the user can add her/his own rules.

156 2. TUTORIAL

Score-Editor

E

&

1

4
4

w w w
w w

6

w

U

P1

&
4
4 w w w w

w w

U

P1

¬

L

score pitches rtms/times

Multi-Score-PMC

P1

in-score ()

(60_77)

rules ()

scale&basic mel.

(E)
(* ?1
 (?if (member (mod (m ?1) 12) '(0 2 4 5 7 9 11)))
 "use the ionian mode")

(* ?1 ?2
 (?if (<= (abs (- (m ?2) (m ?1))) 9))
 "melodic leaps smaller or equal than major sixth")

(* ?1 ?2 :parts 1
 (?if (/= (m ?1) (m ?2)))
 "no repetitions in the upper part")

(* ?1 ?2 :parts 1
 (?if (not (member (abs (- (m ?2) (m ?1))) '(6))))
 "no tritone in the upper part")

contrary motion

(E)
(* ?1 ?2 ?3
 (?if (let ((int1 (- (m ?2) (m ?1)))
 (int2 (- (m ?3) (m ?2))))
 (?incase (>= (abs int1) 6)
 (and (< (abs int2) 3)
 (not (= (signum int1) (signum int2)))))))
 "if the melody leaps more thaa augmented fourth, balance with stepwise contrary motion")

harmonic intervals

(E)
(* ?1 :harmony
 (?if (let ((int (first (m ?1 :data-access :int :complete? t))))
 (?incase int (> int 0))))
 "no unisons and voice crossings")

(* ?1 :harmony
 (?if (let ((int (first (m ?1 :data-access :int :complete? t))))
 (?incase int (member int '(0 3 4 7 8 9 12 15 16)))))
 "allowed intervals between the two voices")

parallel motion

(E)
(* ?1 :harmony
 (?if (let ((vl (matrix-access (m ?1 :vl-matrix t :complete? t) :h)))
 (?incase vl
 (destructuring-bind ((up1 up2) (down1 down2)) vl
 (?incase (> (abs (- up1 up2)) 2)
 (<= (abs (- down1 down2)) 2))))))
 "if the upper voice leaps, lower voice must use stepwise movement")

(* ?1 ?2 :harmony
 (?if (let ((int1 (first (m ?1 :data-access :int :complete? t)))
 (int2 (first (m ?2 :data-access :int :complete? t))))
 (?incase (and int1 int2)
 (?incase (= int1 7) (not (= int2 7))))))
 "no parallel fifths")

(* ?1 ?2 :harmony
 (?if (let ((int1 (first (m ?1 :data-access :int :complete? t)))
 (int2 (first (m ?2 :data-access :int :complete? t))))
 (?incase (and int1 int2)
 (?incase (= int1 12) (not (= int2 12))))))
 "no parallel octaves")

(* ?1 :harmony
 (?if (let ((vl (matrix-access (m ?1 :vl-matrix t :complete? t) :h)))
 (?incase vl
 (destructuring-bind ((up1 up2) (down1 down2)) vl
 (?incase (and (member (- up2 down2) '(7 12))
 (> (abs (- up1 up2)) 2))
 (/= (signum (- up1 up2)) (signum (- down1 down2))))))))
 "no hidden parallel fifths or octaves UNLESS the upper voice uses stepwise movement")

pwgl-apply

append arg

cadence

(E)
(* ?1 ?2 (e ?2 :fermata)
 (?if (<= (abs (- (m ?2) (m ?1))) 2))
 "the cadence must be approached with stepwise movement")

(* ?1 :parts 1 (e ?1 :fermata)
 (?if (member (mod (m ?1) 12) '(0 7)))
 "in the cadence, the upper voice must end with either C or G")

(* ?1 :parts 2 (e ?1 :fermata)
 (?if (= (mod (m ?1) 12) 0))
 "in the cadence, the lower voice must end with a C")

your own rules

(E)

1 2 3 4 5 6

Figure 2.112: 09-first-species-counterpoint

2.5.5.10 Alberti-Bass

This tutorial demonstrates how to simulate Alberti bass accompaniment for a given
melody. The right-hand part has been constrained in advance (the notes are drawn in
light-grey color), and thus will be fixed during search. The same applies also for the
first beat of the left-hand part. The patch gives the harmonic degree markings as Roman
numerals.
The rules demonstrate some advanced topics in the PMC syntax: :or rules and accessing
the plist information (here the Roman numerals are stored in the plists of the chord
objects of the right-hand part).

2.5. CONSTRAINTS 157

Score-editor

E

&

?

1

44
44

˙
I

œ œ œ .
V

œ œ ˙
I

œ œ}Right-hand
Left-hand

score pitches rtms/times

Multi-Score-PMC

P1

in-score ()

(47_65)

rules ()

T 1 () ()

text-box

(E)

(in-package :ccl)

;;; hightlights:
;;; (1) :or
;;; (2) ?1 * ?2
;;; (3) reading the plist of an expression

;***
;rules about tonality and harmonic progression
;***

(* ?1
 (?if (member (mod12 (m ?1)) '(0 2 4 5 7 9 11)))
 "Scale of C-major")

(* ?1 :harmony
 (?if (?incase (m ?1 :complete? t)
 (let ((sop (m ?1 :data-access :max :object t))
 (bass (m ?1 :data-access :min)))
 (let ((degree (e sop :group)))
 (case (getf (plist degree) :degree)
 ;; using the keyword like this is for convenience only,
 ;; we could also compare the print-symbol of the expressions
 (:I (member (mod bass 12) '(0 4 7)))
 (:IV (member (mod bass 12) '(5 9 0)))
 (:V (member (mod bass 12) '(7 11 2))))))))
 "Harmonic pitches. Degrees are written in the plist of the expressions (can be accessed with Shift+I)")

;***
; rules about the alberti bass
;***

(:or
 (?1 * ?2 :beat :parts '((1 "Left-hand"))
 (?if
 (let ((ints1 (m ?1 :data-access :int :complete? t))
 (ints2 (m ?2 :data-access :int :complete? t)))
 (?incase (and ints1 ints2)
 (every #'(lambda(x y) (and (= (signum x) (signum y)) (<= 0 (abs (- x y)) 1))) ints1 ints2))))
 "mimic the arpeggiated; max deviation = 1")

 (?1 * ?2 :beat :parts '((1 "Left-hand"))
 (?if
 (let ((ints1 (m ?1 :data-access :int :complete? t))
 (ints2 (m ?2 :data-access :int :complete? t)))
 (?incase (and ints1 ints2)
 (every #'(lambda(x y) (and (= (signum x) (signum y)) (<= 0 (abs (- x y)) 2))) ints1 ints2))))
 "mimic the arpeggiated; max deviation = 2")
"mimic the arpeggiated figure established in the first beat")

(* ?1 :beat :parts '((1 "Left-hand"))
 (?if
 (let ((ints (m ?1 :data-access :int :complete? t)))
 (?incase ints (not (apply #'= (mapcar #'abs ints))))))
 "No tremolando")

(* ?1 ?2 :beat :parts '((1 2))
 (?if (let ((m1 (first (m ?1)))
 (m2 (first (m ?2))))
 (?incase (and m1 m2) (<= 0 (abs (- m2 m1)) 4))))
 "Small intervals (<= fifth) between the first notes of consecutive figures")

Figure 2.113: 10-alberti-bass

2.5.6 RTM

2.5.6.1 Introduction

Until now all Score-PMC searches have been pitch-oriented. In this section we present
a way how to expand this scheme so that Score-PMC can be used to solve problems
that are related to other score parameters, such as rhythm, dynamics, expressions, en-
harmonics, and so on. Several parameters can also be searched simultaneously in one
search process. In this section we concentrate on the generation of rhythms.
The most important new box that is introduced here is called ’score-pmc-search-space’
that returns a list of pmc-domain objects that contain internally an association list of
property/value pairs. This box is used in conjunction with the ’multi-score-pmc’ box,
and its output is normally connected to the ’search-space’ input.
The user can choose different search properties, thus allowing to specify searches with
multiple parameters. These properties can be accessed during search in rules using the
m-method with the keyword ’:data-access’. After the search has been completed, the
result score of the ’multi-score-pmc’ box will be updated automatically. For more details
see the box documentation of ’score-pmc-search-space’.

158 2. TUTORIAL

In the following examples we use for the search-space the property/value ’:rtm’ and ’T’.
Thus this means that any note in the ’in-score’ can become either an attack, rest or tie
(’ART’). In these examples we connect a separate ’score-editor’ box to ’res-score’ in oder
to be able to build the result score.
In rhythmical rules we use in the m-method the pair ’:data-access :rtm’ to access the
RTM values, which can be either :attack, :rest, or :tie. Thus in the following rule we
force all downbeats to be attacks:� �
(* ?1 :rtm (downbeat? ?1)

(?if (eq :attack (m ?1 :data-access :rtm)))
"downbeat attacks")� �

2.5.6.2 Rnd-Mod-RTM

This patch shows how to create from a pulse of 1/16 notes: (1) random rhythms (2)
modulo rhythms.
We use here a ’score-pmc-search-space’ box to construct a search-space for the ’Multi-
Score-PMC’ box. In this case the search-space used internally is the following list: (:at-
tack :rest :tie).
In option (1) this means that any note in the pulse stream given in ’in-score’ can become
either an attack, rest or tie.
In option (2) we use a rule that operates with modulo arithmetic. We take the melodic
index ’notenum’, and check if the index modulo ’mod’ is equal to ’pos’. If this is the case
then we have an attack, otherwise a rest.
The ’mod’ and ’pos’ values can be edited in main patch.

2.5. CONSTRAINTS 159

text-box

(E)

(in-package :ccl)

(* ?1 :rtm
 (?if (if (= (mod (1- (notenum ?1)) (pwgl-value :mod)) (pwgl-value :pos))
 (eq (m ?1 :data-access :rtm) :attack)
 (eq (m ?1 :data-access :rtm) :rest)))
 "melodic notenum modulo rule")

Score-Editor

E

÷
154 œq = 60 œP1

score pitches rtms/times
Score-Editor

E

÷
154 œ . œ œ ‰ œ ≈ œ ≈ œ œ œ ≈ œ ≈q = 60 œ œ œ œ ‰ œj ‰ œ œ œ ≈ œ ≈ ≈ œ ≈ œ ≈ œ œ œ œ ≈ œ œ ‰ œj ≈ œ œ œ ≈ œ œ œP1

score pitches rtms/times

Multi-Score-PMC

P1

in-score res-score

search-space

rules ()

T 1 () prep-fns

pwgl-value

(:mod :pos)

:init &key

list

2

1

score-pmc-search-space

:rtm T

random/modulo
()

<- set here
 'mod' and
 'pos'

switch here ->

1 2

Figure 2.114: 01-rnd-mod-rtm

2.5.6.3 2-Part-RTM-Textures

This patch has a more complex 2-part input-score (to see it open the score that is con-
nected to the ’in-score’ input). The example has 5 rules that use a lot of rule selectors.
These allow to utilize rules locally resulting in 3 different texture types:
(1) measures 1-2, control of onbeat and offbeat rhythms in both parts (2) measure
3, alternating, or ’hoquetus’ like, rhythm in both parts (3) measure 4, both parts are
synchronized
There is also a rule that allows to reduce a very dense pulse (this example contains beats
that are divided upto 12 units), to more simple beat structures (see the last ’simplify
rtms’ rule). This rule utilizes the ’match-ART-rtms’ function that is optimized for RTM
search problems.

160 2. TUTORIAL

text-box

(E)

(in-package :ccl)
;===============
;(1)
(* ?1 :rtm :parts 1 :measures '(1 2) (downbeat? ?1)
 (?if
 (eq :attack (m ?1 :data-access :rtm)))
 "downbeat txattacks in part 1 in msrs 1+2")

(* ?1 :rtm :parts 2 :measures '(1 2) (downbeat? ?1)
 (?if
 (if (= (beatnum ?1) 1)
 (eq :attack (m ?1 :data-access :rtm))
 (eq :rest (m ?1 :data-access :rtm))))
 "downbeat txattacks in part 2 in msrs 1+2")

;===============
;(2)
(* ?1 :rtm :harmony :measures 3
 (?if (let ((rtms (matrix-access (m ?1 :data-access :rtm :complete? T :vl-matrix 2) :h)))
 (if rtms
 (or (equal rtms '((:attack :rest) (:rest :attack)))
 (equal rtms '((:rest :attack) (:attack :rest))))
 T)))
"hoquetus parts 1+2")

;===============
;(3)
(* ?1 :rtm :harmony :measures 4
 (?if (let ((rtms (m ?1 :data-access :rtm)))
 (if rtms
 (= (length (remove-duplicates rtms)) 1)
 T)))
 "sync rtm measure 4")

;===============
(* ?1 :rtm :beat
 (?if (match-ART-rtms? ?1 '(12 ((1 1 1 1 1 1)(-1 1 1 1 1 1)(1 1 2 1 1)(-1 1 2 1 1)(1 1 1)(-1 1 1)))))
 "simplify 12-unit rtms")

rule-filter

5

rules

Score-Editor

E

&

1

4

4

œ œ

≈

œ œ œ œ œ œ œ œ œ

6

œ

≈

œ œ

q = 60

œ .

‰

j

5

œ œ œ œ œ œ

6

œ

‰

œ œ

≈

œ œ

Instrument 1

&

4

4

œ œ œ

‰

œ œ

‰
.

œ
j
j

‰

œ œ

3

q = 60

œ .

‰

j

5 ‰

œ

≈

j
j

≈

œ œ œ œ œ

6

≈

œ œ

≈Instrument 1

¬

L

&

8

16 ≈

œ

≈

œ

≈

5

œ

≈

œ

≈

œ

5

e.= 118

3

4

œ œ

≈

œ

5

œ . œ œ

Œ

j

3

q = 60

Instrument 1

&

8

16

œ

≈

œ

≈

œ

5

≈

œ

≈

œ

≈

5

e.= 118

3

4

œ œ

≈

œ

5

œ . œ œ

Œ

j

3

q = 60

Instrument 1

¬

L

score pitches rtms/times

Score-editor

Escore pitches rtms/times

Multi-Score-PMC

P1

in-score res-score

search-space

rules ()

score-pmc-search-space

:rtm T

Figure 2.115: 02-2-part-rtm-textures

2.5.6.4 Reduce-RTM

In order to generate various tuplets out of a pulse stream, one can calculate the needed
beat division with the Lisp function ’lcm’ (’least common multiple’).
In this case we want to be able to divide a beat in either 1, 2, 3, 4, or 6 units. which
results in a beat division of 12 units. Using this information we can generate algorith-
mically an input score. (see the ’gen-score’ abstraction).
The desired beat structures are defined in the rule ’simplify rtms’. You can see the effect
of this rule by turning on or off the ’simplify rtms’ rule using the ’rule-filter’ box.

2.5. CONSTRAINTS 161

text-box

(E)

(in-package :ccl)

(* ?1 :rtm :beat
 (?if (match-ART-rtms? ?1
 (list (pwgl-value :max-division) '((1 1) (1 2 1)(1 1 1 1)(1 1 1 1 1 1)(-1 1 1 1 1 1)(1 1 2 1 1)(-1 1 2 1 1)(1 1 1)(-1 1 1)))))
 "simplify rtms")

rule-filter

1

rules

Score-Editor

E

&
1

54 ≈œœœœœ
6 ≈œœ œœ

6 ≈œœœœœ
6 ‰ œœ

3

œœœœœœ
6

q = 60

≈œœ œœ
6

œœœœœœ
6 ‰ œœ

3

œœœ œœ
6

œœœœœœ
6

P1

& œœœ œœ
6

œœœœœœ
6 ‰ œœ

3 ‰ œœ
3

œœ œ ‰ œœ
3

œœœœ ‰ œœ
3 ‰ œœ

3

œœœ œœ
6

P1

score pitches rtms/times

Multi-Score-PMC

P1

in-score res-score

search-space

rules ()

T 1 () prep-fns

gen-score

A

max-division

5

4

score-pmc-search-space

:rtm T

pwgl-value

:max-division

:init &key

pwgl-apply

lcm (1 2 3 4 6) <- calculate desired tuplets

<- after evaluating lock
the box before search

Figure 2.116: 03-reduce-rtm

2.5.6.5 8-Voice-Attack-Dens

This example has eight parts. The idea is to generate a symmetric score that starts
from the bottom parts, in the middle all parts can have notes, and at the end again only
bottom parts have notes. The same symmetric structure is applied also to the number of
simultaneous attacks: in measure 1 only 1-note attacks are allowed, measure 2 contains
2-note attacks, etc. This process evolves up to measure 4, and after this the process
proceeds backwards.

162 2. TUTORIAL

text-box

(E)

(in-package :ccl)

;===============
(* ?1 :rtm :parts '(1 2 3 4) :measures 1
 (?if (eq (m ?1 :data-access :rtm) :rest))
 "force txrests 1")

(* ?1 :rtm :parts '(1 2 3 4 5) :measures 7
 (?if (eq (m ?1 :data-access :rtm) :rest))
 "force txrests 7")

(* ?1 :rtm :harmony
 (?if
 (let ((fn (if (m ?1 :data-access :rtm :complete? T) #'= #'<=)))
 (let ((attacks (count :attack (m ?1 :data-access :rtm))))
 (case (measurenum ?1)
 (1 (funcall fn attacks 1))
 (2 (funcall fn attacks 2))
 (3 (funcall fn attacks 3))
 (4 (funcall fn attacks 4))
 (5 (funcall fn attacks 3))
 (6 (funcall fn attacks 2))
 (7 (funcall fn attacks 1))
))))
 "dynamic vertical txattack count")

rule-filter

5

rules

Score-Editor

E

÷

1

4

4
Œ Œ Œ Œ

q = 60
œ ‰ œ œ Œ œ ‰

.
j
j

‰ œ œ œ ‰
.

j
j

‰ œ
j

œ ‰j
œ œ œ œ . œ œ œ œ œ œ . œ ‰

.
j
j ≈ œ œ œ œ ≈ œ ≈

‰ œ ≈
j
j

6

Œ Œ
‰

. œ
j
j œ . ≈

j
Œ Œ Œ ŒInstrument 1

÷

4

4
Œ Œ Œ Œ

q = 60
Œ

‰ œ œ Œ
‰ œ

j ‰ œ œ œ ‰
.

j
j œ ‰

.
j
j Œ œ œ œ ‰ œ œ œ œ œ œ ≈ œ œ œ ≈ œ ≈ ≈ œ œ ≈ œ œ ≈ œ ‰j

Œ Œ
‰

. œ
j
j ≈ œ ‰j

j Œ Œ Œ ŒInstrument 1

÷

4

4
Œ Œ Œ Œ

q = 60
≈ œ ‰j

j Œ ≈ œ ≈
j ‰

. œ
j
j œ . ≈

j
œ ‰

.
j
j ≈ œ ‰j

j
‰

. œ
j
j œ . œ ‰ œ ≈

j
j œ œ œ ≈ œ œ ≈ ≈ œ .

j
Œ œ œ ‰

≈ œ œ œ œ ‰j
Œ

‰ œ ≈
j
j Œ Œ Œ ŒInstrument 1

÷

4

4
Œ Œ Œ Œ

q = 60
‰ œ ≈

j
j

‰ œ
j

Œ ≈ œ ≈ œ œ ‰j
œ ‰

.
j
j œ œ œ œ œ ‰

. œ
j
j œ œ ‰ ‰ œ ≈

j
j œ . œ œ œ œ ‰

. œ
j
j Œ œ œ ≈ œ ‰j

Œ Œ Œ Œ Œ Œ ŒInstrument 1

÷

4

4
Œ Œ

‰ œ œ ‰ œ
j

q = 60
œ ‰

.
j
j Œ

‰ œ œ ‰ œ ≈
j
j ≈ œ œ œ œ œ ≈

‰
. œ

j
j ≈ œ œ ≈ œ œ ≈ œ ‰j

j œ ‰ œ ‰ œ ≈
j
j Œ

‰ œ ≈
j
j

‰ œ œ ≈ œ ‰j
j ≈ œ œ œ ‰j

≈ œ œ ≈ œ .
j

Œ Œ Œ ŒInstrument 1

÷

4

4
‰ œ

j
œ œ ‰

Œ
‰

. œ
j
j

q = 60
‰

. œ
j
j œ œ . œ œ œ ≈ œ ‰

.
j
j ≈ œ ≈

j
≈ œ ≈ œ œ . œ œ œ œ œ œ œ œ œ œ œ œ . ≈

j
œ œ ≈ œ ≈ œ ≈ œ ‰

.
j
j œ œ ≈

‰
. œ

j
j œ œ . œ œ œ Œ œ ≈ œ œ ≈ œ ≈ œ œ ≈ œ ≈ œ ‰ œ ŒInstrument 1

÷

4

4
œ ‰j ‰

. œ
j
j Œ Œ

q = 60
≈ œ œ œ œ œ œ . œ œ œ ‰

.
j
j ≈ œ œ œ œ œ œ ≈ œ œ œ ≈ œ œ ‰

≈ œ œ œ œ ≈ ≈ œ œ œ œ ≈ œ œ œ ‰ œ œ ≈ œ œ ≈ œ ‰ œ œ ≈ œ œ œ œ œ . œ ‰j
Œ

‰
. œ

j
j

‰ œ
j

œ œ œInstrument 1

÷

4

4 ≈ œ ≈ œ œ œ ≈ œ œ ≈ œ œ ‰

q = 60
Œ œ ‰

.
j
j Œ ≈ œ .

j
œ œ ≈ œ ‰ œ œ ‰ œ ≈

j
j œ ≈ œ ≈ œ ≈

j
œ ‰ œ œ œ œ ‰ œ œ ≈ œ ≈ œ œ œ ‰ ‰

. œ
j
j

‰ œ œ ‰
. œ

j
j œ œ ‰ œ œ ‰

. œ
j
j œ ≈ œ ≈ ≈ œ ‰j

j ≈ œ .
j

œ œInstrument 1

¬

L

score pitches rtms/times

Score-editor

Escore pitches rtms/times

Multi-Score-PMC

P1

in-score res-score

search-space

rules ()

score-pmc-search-space

:rtm T

Figure 2.117: 04-8-voice-attack-dens

2.5.6.6 RTM-Simulation

Our next example demonstrates how Score-PMC can be used as a kind of textural ’anal-
ysis/resynthesis’ tool. A musical excerpt is analysed by the user and the rhythmical and
textural features are converted to rules. After this the search is run in order to repro-
duce the original musical texture. Typically the result is not an exact replicate of the
original.
The example shows one result using 9 RTM rules (the original musical excerpt comes
from the first part of Gyrgy Ligeti’s ’Ten pieces for wind quintet’).
Two rules define important characteristics of our example. The first rule states that
there should be no downbeat attacks after measure one. The second rule, in turn, states
that only single-note attacks are allowed after measure one.
Other rules control the exceptional status of measure one, the density of attacks and
how rests are positioned in the resulting texture.

2.5. CONSTRAINTS 163

text-box

(E)

(in-package :ccl)

;===============
; first measure
(?1 :rtm
 (?if (eq :attack (m ?1 :data-access :rtm)))
 "attack begin")

(* ?1 :rtm (and (= (measurenum ?1) 1) (> (notenum ?1) 1))
 (?if (eq :tie (m ?1 :data-access :rtm)))
 "first msr ties")

;===============
; attack density + downbeat attacks
(* ?1 :rtm :harmony (> (measurenum ?1) 1)
 (?if (<= (count :attack (m ?1 :data-access :rtm)) 1))
 "atmost one harm attack")

(* ?1 :rtm (and (> (measurenum ?1) 1) (downbeat? ?1))
 (?if (not (eq :attack (m ?1 :data-access :rtm))))
 "no downbeat attacks")

;===============
; avoid nearby beat duplicates
(* ?1 ?2 ?3 ?4 :rtm :beat (>= (measurenum ?4) 4)
 (?if (let ((rtms1 (m ?1 :data-access :rtm))
 (rtms2 (m ?4 :data-access :rtm)))
 (if (or (every #'(lambda (x) (eq x :tie)) rtms1)
 (every #'(lambda (x) (eq x :tie)) rtms2))
 T
 (not (equal (subseq rtms1 0 (length rtms2)) rtms2)))))
 "no eq beats distance = 4")

;===============
; articulation
(* ?1 ?2 :rtm (> (measurenum ?1) 1)
 (?if (if (eq :rest (m ?1 :data-access :rtm))
 (eq :attack (m ?2 :data-access :rtm))
 t))
 "after rest an attack")

(* ?1 ?2 :rtm (> (measurenum ?1) 1)
 (?if (if (eq :attack (m ?2 :data-access :rtm))
 (eq :rest (m ?1 :data-access :rtm))
 t))
 "before attack a rest")
;===============
; distribution rules producing an accelerando
(* ?1 :rtm (> (measurenum ?1) 1)
 (?if (let* ((attack? (eq :attack (m ?1 :data-access :rtm)))
 (lowlimit (nth (1- (measurenum ?1)) '#.(pw::interpol 9 24 6)))
 (highlimit (nth (1- (measurenum ?1)) '#.(pw::interpol 9 38 16)))
 (p-attack (first (m ?1 :data-access :rtm :l (if attack? 2 1) :object T
 :l-filter #'(lambda (n) (eq :attack (m n :data-access :rtm))))))
 (dpos (1- (- (notenum ?1) (notenum p-attack)))))
 (if attack?
 (>= dpos lowlimit)
 (<= dpos highlimit))))
 "distance betw mel attacks")

(* ?1 :rtm :harmony (> (measurenum ?1) 1)
 (?if (let* ((attack? (eq :attack (m ?csv :data-access :rtm)))
 (attharm (m ?1 :data-access :rtm :object :accessor :l (if attack? 2 1)
 :l-filter #'(lambda (h) (member :attack (m h :data-access :rtm))))))
 (if attharm
 (let* ((lowlimit (if (>= (measurenum ?csv) 4)
 0
 (nth (- (measurenum ?csv) 2) '#.(pw::interpol 3 1.00 0.10 t)))) ; only for msrs 2-3!
 (highlimit (nth (- (measurenum ?csv) 2) '#.(pw::interpol 9 5.00 0.80)))
 (prev-startt (startt (first attharm)))
 (delta-time (- (startt ?1) prev-startt)))
 (if attack?
 (>= delta-time lowlimit)
 (<= delta-time highlimit)))
 T)))
 "time distance betw harm times")

rule-filter

9

rules

Score-editor

Escore pitches rtms/times

Multi-Score-PMC

P1

in-score res-score

search-space

rules ()

Score-editor

E

÷

1

4

4
w

q = 60
≈œ

+

6

˙ . œ œ≈œ

j
j

6

˙ œ ≈œ
+

6

˙ œ ≈œ

j
j

6

˙ .

6

œ ≈œ
+

6

œ œ . ≈œ

6

œ œ ≈œ .

6

œ œ≈œ

j
j

6

œ œ≈œ

j
j

6

œ œ≈œ

j
j

6

œ œ ≈œ

j
j

6

œ œ ≈œ

j
j

6

Instrument 1

÷

4

4
w

q = 60
˙ . œ ≈œ w œ≈œ ˙ . œ œ ≈œ˙ œ œ≈œ ˙ ˙ ≈œ .

j
œ œ œ ≈œ˙ œ ≈œ .

j
œ œ . ≈

j
Instrument 1

÷

4

4
w

q = 60
˙ œ ≈œ

5

œ ˙ œ . ≈œ

5

œ ˙ œ≈œ .

5

œ ˙ œ≈œ .

5

œ ˙ ≈œ

5

œ œ ≈œ

5

˙ . ≈œ

5

œ ≈œ

5

œ œ ≈œ

5

˙ ≈œ . ≈
j

5

Instrument 1

÷

4

4
w

q = 60
œ œ≈œ

j
j

6

˙ ˙ ≈œ
+

6

œ œ œ≈œ

j
j

6

˙ ≈œ
+

6

œ œ ≈œ

j
j

6

œ œ œ≈œ

j
j

6

œ œ ≈œ

j
j

6

˙ œ ≈œ .

6

œ œ ≈œ .

6

œ œ ≈œ

j
j

6

œ œ ≈œ

j
j

6

˙ œ . ≈œ≈

6

Instrument 1

÷

4

4
w

q = 60
w œ≈œ ˙ . œ œ≈œ ˙ œ œ≈œ ˙ œ œ ≈œ˙ œ ≈œ .

j ˙ œ ≈œ˙ . ≈œ .
j

œ ≈œ .
j

œInstrument 1

¬

L

score pitches rtms/times

score-pmc-search-space

:rtm T

Figure 2.118: 05-RTM-simulation

2.5.6.7 RTM-Imitation1

The rules in the next two examples utilize a generic function called ’PMC-imitation’
that generates canon-like textures in the result score. The input score contains group
expressions that have a label string such as ’imit1’. The imitation rules in turn use this
string, and two part numbers, ’p1’ and ’p2’, in order to constrain these groups within
the given parts according to a lisp function ’fn’.
In these patch examples we use ’PMC-imitation’ for RTM imitations (hence the optional
argument ’:rtm’). ’PMC-imitation’ can also be used for other parameters such as pitch.

164 2. TUTORIAL

Score-Editor

E

÷

1

4

4
œ

imit1

œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

q = 60
œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œP1

÷

4

4
œ œ œ œ œ

imit1

œ œ œ œ œ œ œ œ œ œ œ

q = 60
œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œP1

÷

4

4
œ œ œ œ œ œ œ œ œ

imit1

œ œ œ œ œ œ œ

q = 60
œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œP1

¬

L

score pitches rtms/times

Multi-Score-PMC

P1

in-score res-score

search-space

rules ()

score-pmc-search-space

:rtm T

Score-Editor

E

÷

1

4

4
œ

imit1

œ œ œ ‰ œ ‰ œ ≈
j
j ≈ œ œ œ

q = 60
œ œ ≈ œ œ œ ≈ ≈ œ œ œ œ ≈ œP1

÷

4

4
œ . ≈
j

œ

imit1

œ œ œ ‰ œ ‰ œ ≈
j
j

q = 60
œ . ≈
j

œ ‰ œ œ ≈ œ ≈ œ ≈ œP1

÷

4

4
‰ œ

j
œ œ œ ≈ œ

imit1

œ œ œ ‰ œ

q = 60
‰ œ ≈

j
j Œ œ œ ≈ œ ‰ œ œP1

¬

L

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1 :rtm :harmony
 (?if (PMC-imitation ?1 1 2 "imit1"
 #'(lambda (n1 n2)
 (eq (m n1 :data-access :rtm) (m n2 :data-access :rtm)))
 :rtm))
 "rtm imit1 12")

(* ?1 :rtm :harmony
 (?if (PMC-imitation ?1 2 3 "imit1"
 #'(lambda (n1 n2)
 (eq (m n1 :data-access :rtm) (m n2 :data-access :rtm)))
 :rtm))
 "rtm imit1 23")

Figure 2.119: 06-RTM-imitation1

2.5.6.8 RTM-Imitation2

This example has an input score that has RTM pulses of 1/16-, 1/8- and 1/4-notes.
This patch demonstrates that ’PMC-imitation’ can also be used in contexts where the
imitating part has a different speed has than the reference part.

2.5. CONSTRAINTS 165

Score-Editor

E

÷

1

4

4
œ œ œ œ œ œ œ œ œ œ œ œ œ

imit2

œ œ œ

q = 60
œ œ œ œ œ œ œ œ œ

imit2

œ œ œ œ œ œ œP1

÷

4

4
œ œ œ œ œ

imit2

œ œ œ

q = 60
œ œ œ œ œ œ œ œP1

÷

4

4
œ

imit2

œ œ œ

q = 60
œ œ œ œP1

¬

L

score pitches rtms/times

Multi-Score-PMC

P1

in-score res-score

search-space

rules ()

score-pmc-search-space

:rtm T

Score-Editor

E

÷

1

4

4
‰ œ

j
œ œ œ œ . ≈

j
≈

imit2

œ œ œ

q = 60
‰ œ ≈

j
j œ œ ‰

≈

imit2

œ œ œ ‰ œ ≈
j
jP1

÷

4

4
‰ œ

j
œ œ ‰

imit2

œ
j

œ œ

q = 60
Œ œ ‰j

Œ ŒP1

÷

4

4
Œ

imit2

œ œ œ

q = 60
Œ Œ œ ŒP1

¬

L

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1 :rtm :harmony
 (?if (PMC-imitation ?1 1 2 "imit2"
 #'(lambda (n1 n2)
 (eq (m n1 :data-access :rtm) (m n2 :data-access :rtm)))
 :rtm))
 "rtm imit1 12")

(* ?1 :rtm :harmony
 (?if (PMC-imitation ?1 2 3 "imit2"
 #'(lambda (n1 n2)
 (eq (m n1 :data-access :rtm) (m n2 :data-access :rtm)))
 :rtm))
 "rtm imit1 23")

Figure 2.120: 07-RTM-imitation2

2.5.7 Expression-Access

2.5.7.1 Basic-Expression-Access

This is a basic example demonstrating how to access with the rule syntax expression
information attached in the input score. Different kinds of profiles are defined with the
help of accents and slurs. The textures are given contrasting profiles. Slurred texture
uses small intervals and the accented texture, in turn, uses large leaps. Furthermore,
we use a collection of supplementary rules where, for example, each group of four notes
(i.e., each beat) uses the same set class, namely 4-7.

166 2. TUTORIAL

Multi-Score-PMC

P1

in-score ()

(55_90)

rules ()

text-box

(E)

(* ?1 ?2 (and (e ?1 :accent) (e ?2 :accent))
 (?if (> (abs (- (m ?1) (m ?2))) 12))
 "use big leaps when accented")

(* ?1 ?2 (and (e ?1 :slur) (e ?2 :slur))
 (?if (<= 1 (- (m ?1) (m ?2)) 4))
 "use small descending intervals when slurred")

(* ?1 ?2 (or (and (e ?1 :accent) (e ?2 :slur)) (and (e ?1 :slur) (e ?2 :accent)))
 (?if (<= 1 (abs (- (m ?1) (m ?2))) 2))
 "when going from one texture to another use stepwise movement")

;; additional rules governing the set identity of the notes

(* ?1 :measure
 (?if (apply #'/= (m ?1)))
 "no repetitions inside measures")

(* ?1 :beat
 (?if (let ((complete? (m ?1 :complete? t)))
 (if complete?
 (eq-SC? '(4-7) complete?)
 (eq-SC? #.'(all-subs '(4-7)) (m ?1)))))
 "beats must form the set 4-7")

(* ?1
 (?if (setp (m ?1 :l 9) :key #'mod12))
 "no pitch-class duplicates inside a window of 9 consecutive pitches")

Score-Editor

E

&
1

44 œ#
ƒ
> œ#>

œn> œ> œ#
p

œn œn œ# œn œ œ# œn œ
ƒ

> œ#>
œ#> œ>

œ>
œ>

œ>
œ#> œn

p

œ# œ# œn œ# œn

ƒ

>
œ>

œ>
œ>

œ#>

œ#>
œ>

P1

score pitches rtms/times

Figure 2.121: 01-basic-expression-access

2.5.7.2 Advanced-Expression-Access

Next, we give an advanced example of the use of ENP-expressions to define different
kinds of melodic contours and textures. The two bpfs found in the score (1) are used
in the rules to create melodic contours. The group named ”repetition” (2) is used to
indicate the span of a repetitive gesture.
Note also that we use a micro tonal scale (see the search space definition) and a har-
monic series (see the rules) to create more interesting tonal landscape.

2.5. CONSTRAINTS 167

Multi-Score-PMC

P1

in-score ()

(36_100s0.25)

rules ()

text-box

(E)

(in-package :ccl)

(* ?1
 (?if (member (m ?1) '(36.0
 48.0 55.0
 60.0 63.75 67.0 69.75
 72.0 74.0 75.75 77.5 79.0 80.5 81.75 83.0
 84.0 85.0 86.0 87.0 87.75 88.75 89.5 90.25 91.0 91.75 92.5 93.0 93.75 94.25 95.0 95.5
 96.0 96.5 97.0 97.5 98.0 98.5 99.0 99.5 99.75)))
 "Use the pitches derived from a harmonic series")

(* ?1 ?2 (e ?1 :bpf :id "scale")
 (?if (let ((ref-midi1 (e ?1 :bpf :sample :at ?1 :id "scale"))
 (ref-midi2 (e ?2 :bpf :sample :at ?2 :id "scale")))
 (?incase (and ref-midi1 ref-midi2)
 (<= (- (m ?1) (m ?2)) (- ref-midi1 ref-midi2)))))
 "Use a sinlge bpf to set the range of motion for the melodic segment")

(* ?1 (e ?1 :bpf :id "zigzag")
 (?if (let ((ref-midi (e ?1 :bpf :sample :at ?1 :id "zigzag")))
 (<= (- ref-midi 3) (m ?1) (+ ref-midi 3))))
 "Let another melodic segment to roughly follow the countour of the 'zigzag' bpf")

(* ?1 ?2 (e ?2 "repetition")
 (?if (= (m ?1) (m ?2)))
 "Create a repetitive gesture when inside group named 'repetition'")

(* ?1 (not (e ?1 "repetition"))
 (?if (setp (m ?1 :l 15)))
 "Avoid using the same exact pitch within a window of 15 notes (unless inside group 'repetition')")

Score-Editor

E

&

1

4

4

œ

1

/midi

œ

œ

œ
3

8

œ#
3

8

œ
3

8

œ
1

4

œ# œ#
1

4

5

œ#
3

8

œ
1

4

.

/midi

œ

. œ
1

4

.

œ#
3

8

.

œn

.

œ

.

7

œ#

.

œ#
1

4

.
œ

3

8

.

œn

.

œ#
1

4

.

œn

. œ

.

œ#

.

2

4

œ#
>

repetition

œ
>
œ
>
œ
>

œ
>

œ
>

œ
>

œ
>

œ

2

>

H
P1

score pitches rtms/times

Figure 2.122: 02-advanced-expression-access

2.5.7.3 Sample-Score-BPF

The two break-point functions inside the Score-bpf (1) are used to define an area in-
side which the passage of three note chords must reside. The individual break-point
functions are named (”high” and ”low” and also colored in red and blue respectively).
Furthermore, a ’switch’ box (2) can be used to change the pitch class set identity of the
chords. This, in turn, is passed to the ’Multi-Score-PMC’ using the ’pwgl-value’ box (3).

168 2. TUTORIAL

Score-Editor

E

&
1

44
œ# œ#œ

1

/midi

œœn œn œœœ œ# œœ œœœ
œœœ# œ#œœ œœœ œœ#œ œœ#œ

œ#œ# œn œœnœ œœ#œ
œ#œ
œn

œœœn œ#œ
œ

œœœ œ#œœ#
œ#
œœ#

œ#
œ#œ

œœœ
œœœ# œœœ#

œœn œn œœœ
œœ#œ

œœ#œ#
œ#œ# œ œ#œœ

œ#œ# œ
œœ# œ

œœœ#

P1

score pitches rtms/times

Multi-Score-PMC

P1

in-score ()

(0_127)

rules ()

T 1 () prep-fns

text-box

(E)

(* ?1 :chord
 (?if (let* ((max-pitch (e ?1 :bpf :sample :id "high" :at ?1))
 (min-pitch (e ?1 :bpf :sample :id "low" :at ?1)))
 (when (and min-pitch max-pitch)
 (every #'(lambda(x) (<= min-pitch x max-pitch)) (m ?1)))))
 "Each note in the chord must fall inside the range defined by the two break-point functions named 'high' and 'low'")

(* ?1 :chord
 (?if (let ((midis (m ?1)))
 (if (m ?1 :complete? t)
 (eq-SC? #.'(ccl::pwgl-value :sc) midis)
 (eq-SC? #.'(all-subs (ccl::pwgl-value :sc)) midis))))
 "The 'pwgl-value' box in the patch window is used to define a variable ':sc' that can be accessed in the rules.")

(* ?1 ?2 :chord
 (?if (not (equal (m ?1) (m ?2))))
 "no repetitions between two adjacent chords")

pwgl-value

:sc

:init &key

value-box

(3-5a 3-5b)

value-box

(3-12)

value-box

(3-6 3-8a 3-8b)

2

3

Figure 2.123: 03-sample-score-bpf

2.6 PC-Set-Theory

2.6.1 Exploring-ICV

Here we explore the ICV (interval-class vector of set-classes) to filter set-classes (SC)
with specific interval-class properties. E.g. we could ask for all hexachords that exclude
interval-class 6 (tritone).
’scs/card’ gives us all SCs according to given cardinality (1). Then we choose the
interval-class from 1 to 6 to be explored (2) in relation to the number of interval-classes
to be found in the vector (3).
The results are represented here as SC-names (4) and corresponding prime forms as
midis (5) starting from middle C (60).

2.6. PC-SET-THEORY 169

scs/card

6 pwgl-enum

list

pwgl-map

enum patch

test

sc-info

prime sc-name

Chord-Editor

E1/6

& w w# w w# w w

chord pitches

chord-class

60 pcs

pwgl-enum

list

pwgl-map

enum patch

 1 2 3 4 5 6

num-box

0

sc-name

midis

1

2

3

4

5

filter-scs

La

sc

pos

ic-cnt

Figure 2.124: 01-exploring-icv

2.6.2 Subsets-Distribution

Here our PC-set-theoretical package is used in combination with the Multi-PMC search
engine. A search is used to find the subset distribution of a given superset (1). The
cardinality of the desired subsets is given in (2). The search (3) looks for all possible
permutations based on the pitch-class contents of the prime-form of the superset (see
the ’search-space’ input). In order to avoid redundant solutions a rule is given that
forces all solutions to be in ascending order (’rules’ input).
The result is processed and sorted according to the subset distribution in the abstraction
’build-statistics’ (4). The final result is found in the ’text-box’ (5), where each sublist or
row gives the number of subsets found, the subset name, and modulo 12 transposition
offsets as a list.

170 2. TUTORIAL

sc-info

prime 6-18B

pwgl-repeat

count patch

text-box

(E)

(* ?1
 (?if (apply #'< l))
 "pcs in ascending order")

scs/card

card

text-box

(E)

((3 3-5a (0 6 7))
 (2 3-4b (3 8))
 (2 3-5b (1 7))
 (2 3-8a (1 6))
 (2 3-9 (1 6))
 (1 3-1 (6))
 (1 3-2a (0))
 (1 3-3b (3))
 (1 3-4a (7))
 (1 3-7a (1))
 (1 3-7b (3))
 (1 3-10 (0))
 (1 3-11a (0))
 (1 3-11b (8))
 (0 3-2b nil)
 (0 3-3a nil)
 (0 3-6 nil)
 (0 3-8b nil)
 (0 3-12 nil)
)

Multi-PMC

search-space

rules () ()

T :all ()

num-box

3
1

2

3

4

5

const-value

patch

build-statistics

A

scs

pcs

Figure 2.125: 02-subsets-distribution

2.6.3 Supersets-Distribution

This patch is similar to the previous one. This time we look for all possible supersets that
contain a given subset (1). The cardinality of the desired supersets is given in (2). The
search (3) uses as a search-space that consists of pitch-classes that are not found in the
original prime-form (see the ’set-difference’ box). We also remove redundant solutions
by forcing the results to be in ascending order.
In (4) we append the prime-form to the search results which results in all possible
supersets that contain the given subset. The final result (6) is built in the ’count-scs’
abstraction (5). This result contains sublists that give the number of transpositions of a
found superset containing the subset, the superset name, and modulo 12 transposition
offsets.

2.7. SYNTH 171

sc-info

prime 3-11B

set-difference

(0_11) list2

pwgl-repeat

count patch

num-box

6

length

sequence

-

num

args

append

list1

lists

Multi-PMC

search-space

rules () ()

() :all ()

text-box

(E)

(* ?1
 (?if (apply #'< l))
 "pcs in ascending order")

pwgl-enum

list

pwgl-map

enum patch

text-box

(E)

((3 6-31a (4 7 11))
 (2 6-27b (7 10))
 (2 6-z46b (7 10))
 (2 6-33b (0 10))
 (2 6-32 (0 7))
 (2 6-z46a (3 10))
 (2 6-z47a (0 3))
 (2 6-z49 (0 3))
 (2 6-z19b (0 11))
 (2 6-z44b (7 11))
 (2 6-z50 (0 3))
 (2 6-z44a (7 10))
 (2 6-z40a (4 11))
 (2 6-14a (4 11))
 (2 6-z19a (0 4))
 (2 6-z25a (4 11))
 (2 6-z26 (4 11))
 (2 6-16b (0 4))
 (2 6-14b (0 4))
 (2 6-15b (0 4))
 (1 6-z36a (0))
 (1 6-z11a (0))
 (1 6-z12a (0))
 (1 6-z17a (0))
 (1 6-z45 (10))
 (1 6-z10a (0))
 (1 6-z13 (0))
 (1 6-15a (11))
 (1 6-5b (0))
 (1 6-z29 (4))
 (1 6-z43a (11))
 (1 6-z17b (0))
 (1 6-30b (4))
 (1 6-18a (11))
 (1 6-z28 (7))
 (1 6-z42 (10))
 (1 6-8 (0))
 (1 6-z10b (0))
 (1 6-z47b (0))
 (1 6-9b (0))
 (1 6-z24b (0))
 (1 6-22b (0))
 (1 6-34b (10))
 (1 6-z48 (7))
 (1 6-34a (7))
 (1 6-33a (7))
 (1 6-z36b (0))
 (1 6-16a (11))
 (1 6-27a (3))
 (1 6-20 (3))
 (1 6-31b (3))
 (1 6-z37 (4))
 (1 6-z41a (4))
 (1 6-z38 (4))
 (1 6-z24a (4))
 (1 6-18b (4))
 (1 6-z39a (4))
 (1 6-21a (4))
 (1 6-z23 (4))
 (1 6-z25b (4))
 (1 6-z43b (4))
 (1 6-z39b (4))
 (1 6-z40b (4))
)

count-scs

A

scs

const-value

patch

1

2

3

4

5

6

Figure 2.126: 03-supersets-distribution

2.7 Synth

2.7.1 Introduction

A PWGL synth patch is a is a graph structure consisting of boxes and connections. Boxes,
in turn, can be categorized in two main box types from a synthesis point of view.

2.7.1.1 Synth Boxes

The first box type consists of ordinary PWGL boxes. These boxes can be found at the
leaves of a synthesis patch and they are typically evaluated once before the synthesis
patch is run. A special case of this category are sliders which can dynamically change
the current value while the synthesis is running.
The second box type consists of boxes, marked with an ’S’, that represent synthesis
boxes that are used for the actual sample calculation. ’S’ boxes support vectored inputs
and outputs. Mono signals are only a special case where the vector length is equal to 1.
A synthesis patch always contains a special ’S’ box, called ’synth-box’, at the root of the
graph, which represents the output of the sample calculation. This output can either be

172 2. TUTORIAL

sent to audio converters in real-time, or the output can be written to a file.

2.7.1.2 Multichannel Signals

Several tutorial sections (for example ’Vector’ and ’Copy-synth-patch’) demonstrate how
multichannel signals are represented in our system. The patches give a visual clue that
helps to distinguish between mono signals (vector length is equal to 1) and vectored
signals. The connections between vectored boxes are drawn using a thicker line width
and a stipple pattern that contains holes. The vector length is specified by the inputs at
the leaves (i.e. inputs which are not connected to a ’S’ box) of the patch. These inputs
can be Lisp expressions (typically lists) or slider-banks which allow a separate real-time
control of each individual vector element. If the lengths at the inputs differ, then the
shortest vector determines the current vector length.

2.7.1.3 Developer Tools

Two programming tools allow the user to extend PWGLSynth with new C++ modules,
Extension Developer Kit and Visual Patch Compiler. In the first one the user operates
with ordinary textual C++ programming. The system also allows to reuse in the code
any existing synthesis modules. The Extension Developer Kit plus its documentation
can be found in:
In the second tool, Visual Patch Compiler, the user first defines visually a synthesis patch
with the help our abstraction scheme. The abstraction is then automatically translated
to a binary file that represents the new synthesis box. An example patch is given in this
tutorial.

2.7.2 Basic

2.7.2.1 Sine

This is a basic real-time synthesis patch with a ’sine’ module and a ’synth-box’. A synthe-
sis patch must have a ’synth-box’ which represents the output. The inputs of the ’sine’
module are static after the synthesis engine has started. For a dynamic case see the next
tutorial.
When the synthesis engine is running the current synth status information is shown in
the lower part of the ’PWGL output’ window.

2.7. SYNTH 173

synth-box

S

patch

sine

S

440.0 0.1

(1) select 'synth-box' ->
(2) to start synth press 'v'
(3) to stop synth press 's'

By default the output of a synth-box is played
in real-time through the current audio in/out
device (see the 'Audio MIDI Setup Preferences'
option in the 'PWGL' menu).

A synthesis patch always contains a synth-box which represents the output.

Figure 2.127: 01-sine

2.7.2.2 RT-Sliders

In this patch sliders are used to control in real-time the ’freq’ and ’amp’ inputs of the
’sine’ box.
All synth box inputs can be connected automatically to a slider using the input-box
popup menu-item ’add-slider’. This will assign the title, range-values, the current value,
etc. of the slider according to the database provided by the synth input-box.

174 2. TUTORIAL

synth-box

S

patch

sine

S

freq amp

440.0

freq
0.1

amp

linear-ip

S

sig 0.1

Parameters can be controlled in real-time using sliders

Figure 2.128: 02-rt-sliders

2.7.2.3 Vibrato

This example contains two ’sine’ modules where the upper one adds a vibrato to the
lower ’sine’ module. There are four real-time sliders that control: vibrato frequency
and amplitude (upper ’sine’ module); the main frequency and amplitude (lower ’sine’
module).

2.7. SYNTH 175

synth-box

S

patch

sine

S

freq amp

0.0173

vamp
5.83

vfreq

sine

S

freq amp

0.04

amp

*+

S

mul1

mul2

add3

440.0

freq

linear-ip

S

sig 0.1

A vibrato patch with rt-sliders

Figure 2.129: 03-vibrato

2.7.2.4 File-Mode

This example is a non real-time patch where the ’synth-box’ has been extended so that it
contains four inputs. The last two specify: (1) the output mode–in our case ’:file’–which
means that the output is written to a file; (2) the last input has the value ’0.2’, which
gives the length of the resulting sound file in seconds. Other options dealing with the
sound file, such as file format, bit-width, sample rate, etc., can be given in the box-editor
(the box-editor can be opened by a double-click or with the box popup menu).

176 2. TUTORIAL

2D-Editor

E/Aobjects y

impulse

S

1.0 0.2

reson-bank

S

sig 520.0

0.1 10.0

accum

S

vector

synth-box

S

patch

:patch

:file

0.2

sine

S

220 0.2

rand1

S

0.2

randi

S

-0.5

0.5

50.0

randh

S

-0.5

0.5

50.0

impulse

S

50.0 0.2

load-default-sample

2d-editor

path

The synth-box is in 'file' mode
and generates when evaluated a sample
lasting for 0.2s.
The resulting sample is displayed in
the upper 2D-editor box.

<- evaluate here

select one option ->

Figure 2.130: 04-file-mode

2.7.2.5 Envelope

This patch demonstrates how envelopes can be realized in our system using the
’envelope-trigger’ box. There are two options: (1) a static list of x-y values; (2) a
visual break-point function where the points can be edited directly in the patch.
This patch differs from the previous ones as it does not generate any output when the
’synth-box’ is started. To get sound the user must trigger the envelope either by clicking
on the second input, called ’<<trig>>’, or by pressing ’1’ from the keyboard.
In PWGL the numerical keys 1-5 are reserved for triggers. All boxes with a trigger–
typically these boxes have a button called ’<<trig>>’–can be assigned a number that is
given as a user-string in the box-editor.

2.7. SYNTH 177

sine

S

440.0 amp

synth-box

S

patch

envelope-trigger

1

S

envelope <<trig>>

2D-Editor

Eobjects active

rt-envelope

1
bpf <<trig>>

1 1

value-box

x-y-valyes

(0.0 0.0 1 0.5 0 1)

(1) (2)

*

S

number

0.05

(1) (2)

MSW-Trig

linear-ip

S

sig 0.001

A numerical and static envelope definition
consisting of a flat list of x-y or time/value
pairs.

A visual and dynamic envelope definition using a 2D-editor
and a rt-envelope box. The envelope can be edited
and scaled directly in the patch.

<- trigger here or press '1'

Figure 2.131: 05-envelope

2.7.2.6 Sample-Load

Samples can be loaded to PWGL using lisp code, using the ’2D-constructor’ box, or in
the 2D-editor. This example utilizes the ’2D-constructor’ box (note that the first input of
the ’2D-constructor’ box is here’:sample’). There are two options: (1) the second input
is (), and thus the system opens a file-dialog where the user can choose the file to be
loaded; (2) the second input contains a pathname, which is used to load the file.

178 2. TUTORIAL

2D-Editor

Eobjects active

2D-constructor

:sample

filename

2D-constructor

:sample

()

(1) Evaluate the 2D-constructor box,
a dialog will appear, choose a soundfile,
the path will be printed in PWGL output.

(2) Use an existing path to load a sample.

To play a sample from a patch:
select the 2D-editor box and press 'space'
To play a sample in a 2D-editor:
open the 2D-editor and press 'space'

(3) A sample can also be loaded inside
a 2D-editor: open the 2D-editor and choose
the 'sample...' option from the 'Add object'
menu.

1

2

3

pwgl-location

:samples

"mealbythesea.wav"

Figure 2.132: 06-sample-load

2.7.2.7 Sample-Play

In this example a sample is first loaded into the system. In order to play this sample from
a patch we use typically the ’sample-player’ box having four required inputs: ’sample’ is
the unique ID number that is assigned to every sample when it is loaded (here we use
’2D-sampleid’ to access this ID), ’fscaler’ is a scalar that determines the playback speed
(1.0 is the original speed, negative values reverse the signal); ’amp’ scales the amplitude
of the sample; ’<<trig>>’ is used to trigger the playback. The optional input ’offset’
gives the start position in seconds where the playback should start when the sample is
triggered.

2.7. SYNTH 179

2D-constructor

:sample

filename

sample-player

1

S

sample fscaler

0.5 <<trig>>

-1.0

1.0
-1.0

fscaler

2d-sampleid

objects

accum

S

vector

synth-box

S

patch

linear-ip

S

<- the signal can be reversed
 using a negative 'fscaler'.

<- trigger here or press '1'

pwgl-location

:samples

"mealbythesea.wav"

Figure 2.133: 06b-sample-play

2.7.2.8 Interpolation

This patch demonstrates the various interpolation methods you can use to smooth
control data. First, a step response is generated using an impulse oscillator, delay and
an integrator (1). Interpolator boxes (2) respond to signal changes, which are detected
in this case by the detect-steps box. The step response is patched directly to output,
along with three interpolated responses. These are combined into a vectored signal
which you can see in 2D-Editor once you evaluate ’load-default-sample’ (3).
You can then visually see the different response curves:
- No interpolation - Exponential interpolation - Linear interpolation - Parabolic interpo-
lation

180 2. TUTORIAL

2D-Editor

Eobjects active

synth-box

S

patch

:patch

:file

0.5

load-default-sample

2d-editor

path

<- evaluate here

impulse

S

0.1 1

integrator

S

delay

S

combiner

S

patch

patches

patches

patches

exp-ip

S

sig lag

linear-ip

S

sig lag

parab-ip

S

sig lag

0.16

detect-steps

S

1

2

3

Figure 2.134: 07-interpolation

2.7.3 Vector

2.7.3.1 Basic-Vector

2.7.3.1.1 Slider-Bank-Drummer

A bank of 4 resonators (’reson-vector’) is excited with a bank of 4 impulse generators
(’impulse-vector’). The frequency input of the ’impulse-vector’ box is controlled with a
slider-bank, and the amplitudes of the impulses are controlled with a bank of sine wave
oscillators (’sine-vector’). The slider-bank input of the ’freq’ input of the ’impulse-vector’
is of special interest as it allows to control in real-time the frequency of each impulse
generator individually. The other inputs of the ’reson-vector’ box (i.e. frequencies,
amplitudes, and bandwidths) are given as static Lisp lists, each containing 4 elements.
The output of the ’reson-vector’ box is connected to an ’accum-vector’ box that accepts
as input any vectored signal and mixes it to a signal that has the length that is given
by the second input (here it is 2) The accumulator iterates through the elements in the
input vector, adding each one to the corresponding element of the output vector. When
the length given by the second input is reached, the accumulator starts again from the
first element of the output vector. Thus in this case the final output is a stereo signal,

2.7. SYNTH 181

impulse generators 1 and 3 are heard on the left while generators 2 and 4 are heard on
the right.

impulse-vector

S

freq amp

reson-vector

S

sig (220 490 1230 1300)

(0.01 0.01 0.01 0.01) (6 3 20 12)

sine-vector

S

(0.1 0.2 0.3 0.4) (2 1 1 1)

synth-box

S

patch

1 2 3 4

1.0 3.0 5.0 16.0

accum-vector

S

vector 2

A patch demonstrating vectored signals. Here the vector length of the signals is 4.

<- The connections between vectored boxes
are drawn using a thicker line width
and a stipple pattern that contains holes.

The accum-vector box mixes the
incoming 4 channel signal to
a stereo signal. ->

select one rhythm pattern

Figure 2.135: 01-slider-bank-drummer

2.7.3.1.2 Randi-Bell

This patch example demonstrates how the PWGL environment can be used to cal-
culate input values for vectored ’S’ boxes. The two first inputs, ’low’ and ’high’, of
the ’randi-vector’ box contain special PWGL shorthand expressions, ’(14*(0.995))’ and
’(14*(1.005))’, for generating lists (here we get 2 lists of 14 elements consisting of
the values 0.995 and 1.005). The third input of the ’randi-vector’ box, called ’freq’, is
connected to an ’interpolation’ box, that returns a list of 14 values (the result of inter-
polating values from 5.0 to 20.0). Thus the vectored output of the’randi-vector’ has 14
elements which are fed to the first input of a ’mul-vector’ box. The second input of the
latter box is connected to a standard PWGL ’value-box’ that returns a list of 14 frequency
values. The output of the ’mul-vector’ box consists of 14 frequency values where each
value is individually modulated by an interpolating random number generator. This out-
put is connected to the ’freq’ input of a ’reson-bank’ module. Like ’reson-vector’ given in
the previous example, ’reson-bank’ is a bank of resonators. The first input is different,
however, as it accepts only a mono signal (here a simple impulse) instead of a vectored

182 2. TUTORIAL

input. The other inputs of the ’reson-bank’ module, amplitudes and bandwidths, are
lists of 14 values. Finally, the output of the ’reson-bank’ box is mixed to a mono signal
with a ’accum’ box.

read-mor-db

1 14

synth-box

S

patch

reson-bank

S

sig freq

(0.03662 0.02301 0.03677 0.02419 0.25367 0.20026 0.08409 0.0496 0.04237 0.02253 0.10444 0.03944 0.05834 0.02467)(0.1653 0.10974 0.16628 1.447 0.20021 0.28088 0.66817 0.81227 2.13013 2.90861 1.75738 1.57913 1.63382 2.90238)

impulse

S

0.2 0.01

accum

S

vector

randi-vector

S

(14*(0.995)) (14*(1.005))

freq

interpolation

5.0 20.0

14 1

mul-vector

S

vector1 vector2

value-box

(25.12487 58.03947 469.8199 837.29144 915.04755 1486.2831 1955.708 2162.578 2901.787 2912.455 2923.242 3754.854 3929.059 5954.563)

A bell simulation consisting of 14 resonators, where each frequency value
is individually modulated by an interpolating random number generator.

The accum box mixes the
incoming 14-channel signal
to a mono signal. ->

Figure 2.136: 02-randi-bell

2.7.3.1.3 Combiner

Vectors can be combined to a single vector using a box called ’combiner’, that can have
an arbitrary number of inputs. A typical application of this box is when the user wants
to combine several mono boxes so that the resulting vector can be fed to a vectored box.
Thus in this example a ’combiner’ box combines two mono random number generators,
and the resulting vector is fed to an ’impulse-vector’ box. This vector is in turn mixed to a
mono signal resulting in a stream of 7 impulses per second where every seventh impulse
is strongly accented (see the first ’freq’ input of the ’impulse-vector’ box containing the
list ’(1 7)’).

2.7. SYNTH 183

reson

S

sig freq

0.01 5.0

synth-box

S

patch

impulse-vector

S

(1 7) amp

accum

S

vector

rand2

S

0.3 0.9

rand2

S

0.05 0.08

combiner

S

patch

patches

602.57

freq

A combiner box allows to combine signals to a vectored signal.

play every 7th note louder

Figure 2.137: 03-combiner

2.7.3.1.4 Indexor

Our next example shows how vectors can be split into sub-vectors by using the ’indexor’
box. This box has 3 inputs, ’vector’, ’index’, and ’len’. The starting point is a bank of
29 resonators. The vectored output is split into two sub-vectors so that vector elements
0-15 (the indexing starts from 0) form the first sub-vector (see the ’indexor’ box to the
left), and the remaining elements form the other sub-vector (the ’indexor’ box to the
right). After this both sub-vectors are mixed to 2 mono signals, which are in turn fed to
2 spatialization boxes, called ’stereo-pan’.

184 2. TUTORIAL

reson-bank

S

sig freq

0.1 1.0

impulse

S

0.3 0.03

synth-box

S

patch

accum

S

vector

accum

S

vector

add-vector

S

value1 value2

sine

pan S

1.5 1

value-box

((4.29385 9.7692 14.75323 20.47063 23.88494 28.64383 47.9731 58.8988 69.07393 88.45827 94.12305 221.1944 442.7411 522.4774
 633.9546 883.8557 2290.023 2732.478 3357.681 3358.918 4033.453 4041.978 5223.43 5224.849 5792.898 6125.478 7226.858
 7545.881 12674.05)
 (0.00631 6.0E-4 5.8E-4 1.5E-4 3.0E-4 8.5E-4 0.00867 3.3E-4 0.0022 0.00113 2.2E-4 0.06618 3.3E-4 6.0E-4 0.00319 0.10773
 0.27095 0.02179 0.015 0.02484 0.16475 0.22934 0.01077 0.01087 0.00831 0.00642 0.00805 0.02843 0.00109)
 (1.24534 0.36349 1.23216 0.11408 0.42491 0.5743 1.48503 0.61946 3.41878 1.46642 0.62288 0.11012 1.02826 1.20983 7.998
 0.33764 1.42095 3.77073 1.05313 1.53615 9.83956 6.78825 3.39702 27.21683 6.51866 6.24488 8.23984 7.82403 5.61372))

indexor

S

vector

15

14

indexor

S

vector

0

15

k-rate

S

sig 1000

An indexor box allows to access subvectors from a vectored signal.

stereo-pan

S

sig

0.0

stereo-pan

S

sig

pan

Figure 2.138: 04-indexor

2.7.3.1.5 Envelope-Vector

This example shows how the ’envelope-trigger’ box can have a vectored output (an
evelope-trigger’ box tutorial is also found in the previous section). This output can be
connected to boxes that require vectored inputs.
There are two options here: (1) Envelopes that are collected from 2D-Editors are
merged to a vector using the box ’combiner’. (2) The envelope data can also be given as
a Lisp list. The master switch ’comb/list’ can be used to switch between these options.

2.7. SYNTH 185

2D-Editor

Eobjects active

2D-Editor

Eobjects active

combiner

S

patch

patches

patches

envelope-trigger

1

S

envelope <<trig>>

sine-vector

S

(330 440 550) amp

synth-box

S

patch

rt-envelope

1
bpf <<trig>>

1.0 0.2

rt-envelope

1
bpf <<trig>>

1.0 0.2

2D-Editor

Eobjects active

rt-envelope

1
bpf <<trig>>

1.0 0.2

accum

S

vector

append

list1

lists

lists
comb/list

comb/list

MSW-Trig

<- trigger here or press '1'

1 2

Figure 2.139: 05-envelope-vector

2.7.3.2 Multichan

2.7.3.2.1 Multichan-Drummer

The number of channels at the output depends on the synth box that is connected to
the input of the ’synth-box’. This is a basic test patch where the number of channels can
be controlled directly using the top-most ’num-box’. This changes the vector length of
all the inputs of the ’reson-vector’ box.

186 2. TUTORIAL

impulse-vector

S

freq amp

reson-vector

S

sig freq

amp bw

g-random

100 377

pw-repeat

g-random

0.01 0.02

pw-repeat
pw-repeat

g-random

10 20

g-random

2 8

pw-repeat

num-box

num of chans

8

synth-box

S

patch

create-list

count 1

<- Change here the number of output channels.

Figure 2.140: 01-multichan-drummer

2.7.3.2.2 VBAP2D

This is another test patch where the output can be switched between: (1) mono output;
(2) stereo output; and (3) quad output. In the two latter cases the multi-channel output
is created using two ’vbap2d’ boxes (see also the ’indexor’ example in the previous
section).
The number of channels that are output from this box and also the global speaker setup
is determined by a companion box called ’vbap2d-conf’. This box must be called once
just before the synthesis starts as it creates all necessary data structures that will be
used by the vbap2d’ boxes while the synthesis is running. In order to guarantee that
the configuration is done in a proper order the patch is started here with a ’pwgl-progn’
box that evaluates its inputs sequentially (thus the synth will start always after the
configuration).
There are here two speaker configurations. In the stereo case the speaker setup is -45
and 45 degrees or (-45 45), and in the quad case the four speakers are positioned at
(-35 35 145 -145). Note that stereo is a special case where the speakers must always be
positioned at -45 and 45 (in multichannel cases there are no such restrictions).
The patch contains two pan sliders–one for the stereo case and one for the quad case–

2.7. SYNTH 187

that are connected to the azimuth inputs. The sliders can be used to pan the sound
source which is here a noise generator.

synth-box

S

patch

mono stereo quad

-180 1800.0

azim

linear-ip

S

-45 450.0

azim

linear-ip

S

mono stereo quad

MSW-Trig

vbap2d

S

sig azim

vbap2d-conf

spkrangles

pwgl-progn

patch

patches

vbap2d

S

sig azim
mono stereo quad

(-45 45) (-35 35 145 -145)()

rand1

source S

0.5

This patch demonstrates how to use the VBAP2D box for stereo and quad panning.

<- evaluate here

*

S

Noise

A

freq

6.01

Figure 2.141: 02-VBAP2D

2.7.3.2.3 Combine-Stereo-Signals

In this patch we use two sources that are panned individually with two ’stereo-pan’
boxes. The stereo outputs are combined to a 4-channel signal (see the ’combiner’ box).
Finally the output is mixed down to stereo signal (see the second input of the ’accum-
vector’ box which is = 2).

188 2. TUTORIAL

synth-box

S

patch

combiner

S

patch

patches

accum-vector

S

vector 2

sine

S

0.1 1

sine

S

1 1

impulse

S

6.0 0.1

reson-bank

S

sig 440.0

0.05 10.0

impulse

S

5.23 0.1

reson-bank

S

sig 880

0.1 10.0

This patch demonstrates how to combine two signals that are panned individually.

Mix the 4-channel signal to a stereo signal.

Combine 2 stereo signals resulting in a 4-channel signal.

stereo-pan

S

sig

pan

stereo-pan

S

sig

pan

Figure 2.142: 03-combine-stereo-signals

2.7.3.2.4 Distance

This patch simulates with mouse x-y movements a stereo panning/distance effect with
the help of a synth box called ’vbap-2d-dist’ (the mouse x - see the ’mouse-x’ box - move-
ment simulates the panning, while y - see the ’mouse-y’ box -movement the distance).
This box has two extra inputs when compared to a ’vbap2d’ box: ’dist’ that approximates
the distance of the source, and ’revsc’ that can be used to scale the additional reverb
signal. ’vbap2d-dist’ scales the output signal according to the ’dist’ parameter, and it
returns an extra channel that can be used as a mono reverberation output.
The output signals (the stereo signal and the reverb signal) are accessed with 2 ’in-
dexor’ boxes. The reverb signal is in turn fed to a ’Reverb’ abstraction that contains a
reverberation sub-patch definition.
This patch is roughly based on the ideas that were originally presented by John Chown-
ing during the 70s.

2.7. SYNTH 189

synth-box

S

patch

indexor

S

vector

0

2

indexor

S

vector

2

1 Reverb

A

sig

2

-0.02

-0.05

output

linear-ip

S

sig 0.1

linear-ip

S

sig 0.1

add-vector

S

vector1 vector2

2D-Editor

Eobjects active

sample-player

1
S

sample 1.0

1.0 <<trig>>

pwgl-progn

patch

patches

vbap2d-conf

(-45 45)

vbap2d-dist

S

sig azim

dist 0.15

2d-sampleid

objects

g/

1 12.5

mouse-y

distance S

1

15

2

mouse-x

pan S

-45

45

1.0

trigger

S

freq 0.2

Figure 2.143: 04-distance

2.7.3.3 Vector-Applications

2.7.3.3.1 Intpol-Filterbank

This patch calculates algorithmically all incoming data (i.e. frequencies, amplitudes
and bandwidths) for a ’reson-bank’ box. The 25 resonators are excited with a noise
generator. There are two options: (1) ’interpolation’ boxes are used to calculate the
data; (2) the frequencies are calculated with a random number generator. These options
can be chosen with the master switch box ’intpol/random’.
The resulting signal is modulated–see the ’mod-delay’ abstraction–with a delay module
where the delay-time input is controlled with a ’sine’ box. Finally the original signal
from the resonators and the scaled modulated signal are mixed together.

190 2. TUTORIAL

synth-box

S

patch

reson-bank

S

sig freq

amp bw

interpolation

300 5000

samples 2.0

interpolation

0.01 0.001

samples 2

interpolation

5.2 0.2

samples 2

rand1

source S

0.003

accum

S

vector

1.0

fscale

0.22

bwscale

num-box

25

*+

S

0.15

mul2

add3

g-random

300 (1000_3000s100)

intpol/random

intpol/random

MSW-Trig

mmul-vector

S

mono vector

mmul-vector

S

mono vector

mod-delay

A

sig

1

Figure 2.144: 01-intpol-filterbank

2.7.3.3.2 Reson-Mix

This example differs from the previous one as we use here data that has been analyzed
from instrument samples. The two cases used are: (1) a piano string, ’pianoA0’; (2) bell,
’rclova-s2’. Both models are excited with a noise source. The balance of the resonators
can be controlled with a slider called ’Mixer’.
We give here the data to the ’reson-bank’ boxes in a slightly unorthodox form which can
be handy in some cases. The data consists of a list of three sub-lists thus defining all
the required information for the resonator banks. Thus in this case the inputs ’amp’ and
’bw’ are ignored

2.7. SYNTH 191

reson-bank

S

sig freq

0.1 1.0

accum

S

synth-box

S

patch

value-box

rclova-s2

((18.92999 27.9852 37.82323 51.35265 237.3739 253.7153 630.0469 904.98785 1172.903 1191.508 1616.132 1840.843 2483.763 2523.788 2872.4993 3001.958 3153.095 3276.934 3479.507 3543.2273 3857.371 4285.818 4323.703 4628.321 5384.9883 6125.086 6251.5015 6791.712 7962.8154 8876.043 9578.035 10342.88 10539.33 11128.2705) (6.9000006E-4 2.8E-4 0.00243 4.2999998E-4 0.08275 0.02418 0.0251 0.01004 0.06235 0.02134 0.01858 0.04954 0.07938 0.01531 0.02004 0.02289 0.13558 0.09197 0.02746 0.02335 0.02644 0.02378 0.07381 0.04087 0.01372 0.0153 0.01547 0.02716 0.01145 0.01598 0.00419 0.00612 0.00415 0.00787) (0.13872 0.38034 0.52412 0.2819 0.15275 0.07497 0.08009 0.99713 0.24625 0.19696 0.28976 0.44073 1.16982 1.02899 2.73147 1.87555 2.98991 3.51373 2.22002 2.33577 4.52096 2.62253 1.8219 2.61874 3.3338 4.47297 5.43238 7.1162 5.87161 7.45073 5.5707 6.6986 6.49961 7.15641))

rand1

S

0.0002value-box

pianoA0

((80.8703 107.8636 134.3972 162.287 243.9092 271.4856 299.0796 382.81552 411.18033 468.58453 496.84784 526.2876 555.7212 585.0602 614.4756 614.9535 767.6792 799.33954 995.16034 1028.924 1097.822 1351.7842 1384.1991 1427.675 1467.272 1669.3031 1858.932 1924.395 1975.598 2017.117 2344.701 2392.022 2399.308 2757.823 2868.216) (0.0986 0.04945 0.05026 0.0269 0.01992 0.02494 0.01633 0.03976 0.04395 0.02868 0.03629 0.04117 0.01788 0.0241 0.01565 0.02358 0.02039 0.03046 0.01595 0.016 0.01915 0.01701 0.03677 0.01801 0.024 0.02286 0.03011 0.03092 0.02796 0.01918 0.02413 0.03291 0.02397 0.01655 0.01622) (0.08347 0.07022 0.88021 0.16753 0.09111 0.34008 0.09344 0.0489 0.6402 0.69698 0.12853 0.63501 0.56864 0.59238 0.12959 0.59064 0.57908 0.61103 0.55955 0.55982 0.36279 0.88776 6.67751 3.03578 0.43402 0.74208 1.63106 0.61222 1.89806 0.99873 2.25025 1.43499 2.22971 1.81572 2.39686))

reson-bank

S

sig freq

0.1 1.0

accum

S

sub

S

1.0 value2

*

S

*

S
+

S

linear-ip

S

0.0 1.00.5

Mixer

Figure 2.145: 02-reson-mix

2.7.3.3.3 Masterswitch

This is a companion patch with the previous one. The main difference is that here the
user can choose the excitation source (either impulse or noise) with the master switch
box ’i/n’. Furthermore in the second option the frequencies are multiplied with 2.

192 2. TUTORIAL

reson-bank

S

sig freq

0.1 1.0

accum

S

synth-box

S

patch

value-box

rclova-s2

((18.92999 27.9852 37.82323 51.35265 237.3739 253.7153 630.0469 904.98785 1172.903 1191.508 1616.132 1840.843 2483.763 2523.788 2872.4993 3001.958 3153.095 3276.934 3479.507 3543.2273 3857.371 4285.818 4323.703 4628.321 5384.9883 6125.086 6251.5015 6791.712 7962.8154 8876.043 9578.035 10342.88 10539.33 11128.2705) (6.9000006E-4 2.8E-4 0.00243 4.2999998E-4 0.08275 0.02418 0.0251 0.01004 0.06235 0.02134 0.01858 0.04954 0.07938 0.01531 0.02004 0.02289 0.13558 0.09197 0.02746 0.02335 0.02644 0.02378 0.07381 0.04087 0.01372 0.0153 0.01547 0.02716 0.01145 0.01598 0.00419 0.00612 0.00415 0.00787) (0.13872 0.38034 0.52412 0.2819 0.15275 0.07497 0.08009 0.99713 0.24625 0.19696 0.28976 0.44073 1.16982 1.02899 2.73147 1.87555 2.98991 3.51373 2.22002 2.33577 4.52096 2.62253 1.8219 2.61874 3.3338 4.47297 5.43238 7.1162 5.87161 7.45073 5.5707 6.6986 6.49961 7.15641))

rand1

S

0.0002

value-box

pianoA0

((80.8703 107.8636 134.3972 162.287 243.9092 271.4856 299.0796 382.81552 411.18033 468.58453 496.84784 526.2876 555.7212 585.0602 614.4756 614.9535 767.6792 799.33954 995.16034 1028.924 1097.822 1351.7842 1384.1991 1427.675 1467.272 1669.3031 1858.932 1924.395 1975.598 2017.117 2344.701 2392.022 2399.308 2757.823 2868.216) (0.0986 0.04945 0.05026 0.0269 0.01992 0.02494 0.01633 0.03976 0.04395 0.02868 0.03629 0.04117 0.01788 0.0241 0.01565 0.02358 0.02039 0.03046 0.01595 0.016 0.01915 0.01701 0.03677 0.01801 0.024 0.02286 0.03011 0.03092 0.02796 0.01918 0.02413 0.03291 0.02397 0.01655 0.01622) (0.08347 0.07022 0.88021 0.16753 0.09111 0.34008 0.09344 0.0489 0.6402 0.69698 0.12853 0.63501 0.56864 0.59238 0.12959 0.59064 0.57908 0.61103 0.55955 0.55982 0.36279 0.88776 6.67751 3.03578 0.43402 0.74208 1.63106 0.61222 1.89806 0.99873 2.25025 1.43499 2.22971 1.81572 2.39686))

reson-bank

S

sig freq

0.1 1.0

accum

S

sub

S

1.0 value2

*

S

*

S

+

S

linear-ip

S

0.0 1.00.5

Mixer

impulse

S

1.0 0.01

i/n

i/n

MSW-Trig

i/n

g*

l1? (2 1 1)

i/n

g*

l1? (2 1 1)

Figure 2.146: 03-MasterSwitch

2.7.4 Copy-Synth-Patch

2.7.4.1 Copy-Synth-Patch

The ’copy-synth-patch’ scheme in conjunction with the vectored signal representation is
one of the corner stones of our system.
This patch introduces this scheme that allows to combine any collection of mono or
vectored boxes. The collection can be copied and the output of the result will be one or
several vectored signals. We use for this purpose a special box called ’copy-synth-patch’
with 2 required inputs, ’count’ and ’patch’. A third, optional, input can be given for a
name string. A ’copy-synth-patch’ box duplicates a patch connected to the patch input
’count’ times. The output of the box is a vector having the length which is determined
by the ’count’ input (internally the system uses the ’combiner’ box).
Here we copy a ’sine’ module twice (’count’ = 2). This results in a bank of sine oscilla-
tors. In order to be able to distinguish between different ’sine’ instances we connect the
’freq’ input to a ’synth-plug’ box that generates automatically pathnames (e.g. ’:1/freq’
and ’:2/freq’) that are used to by the ’update-plug-value’ boxes. Initial values can be set
using the ’copy-patch-index’ box (here the ’amp’ inputs get the values 0.03 and 0.02).

2.7. SYNTH 193

synth-box

S

patch

sine

S

freq amp

copy-synth-patch

S

2 patch

accum

S

vector

synth-plug

symbolic pathnames

:freq 440

update-plug-value

2
:2/freq

505

update-plug-value

1
:1/freq

500

copy-patch-index

default values

(0.03 0.02)

evaluate/triggr these boxes
to update 'freq' values

copy a patch 2 times ->
this results in a 2-channel
signal

mix the 2-channel signal
to a mono signal

Figure 2.147: 01-copy-synth-patch

2.7.4.2 CSP-Bells

This patch duplicates the ’randi-bell’ example given in the ’Basic-vector’ section N (1-4)
times using the copy-synth-patch (CSP) scheme. The master switch box ’1 2 3 4’ gives
the current number of bells. The abstraction ’stereo bell’ contains the bell definition.
The ’copy-synth-patch’ box returns a vector that has a length equal to N*2 (thus if N = 4,
then the vector length is = 8). The final result is a stereo signal (see the ’accum-vector’
box).

194 2. TUTORIAL

synth-box

S

patch

copy-synth-patch

S

count patch

accum-vector

S

vector 2

stereo-bell

A

1 2 3 4

1+

1 2 3 4

MSW-Trig

<- returns a stereo signal

Choose here the number of bells.

copy a stereo bell N times ->
this results in a 8-channel (N*2)
signal

mix the N-channel signal
to a stereo signal

Figure 2.148: 02-csp-bells

2.7.5 Synthesis-Methods

2.7.5.1 Additive

This section presents some common synthesis techniques (e.g. additive, subtractive, fm,
formant and granular).
In the first patch a bank of 10 oscillators(see the ’sine-vector’ box) is used to generate
harmonic series examples. The amplitudes of the individual harmonics can be con-
trolled with a ’slider-bank’ box.
There are here two cases: (1) all adjacent harmonics are present (upper row of the
’slider-bank’ setups); (2) only even harmonics are present (lower row of the ’slider-
bank’ setups).
Note that this is a non real-time patch (the synth-box’ is in ’:file’ mode). The resulting
signal is shown in the ’2D-Editor’.

2.7. SYNTH 195

sine-vector

S

freq amp

value-box

(1_10)

mmul-vector

S

mono vector

40.0

base-freq

linear-ip

S

A

Harmonic Series
1 2 3 4 5

6 7 8 9 10

1.0

a0
0.5

a1
0.33

a2
0.25

a3
0.2

a4
0.17

a5
0.14

a6
0.12

a7
0.11

a8
0.1

a9

2D-Editor

Eobjects active

synth-box

S

patch

:patch

:file

0.1

load-default-sample

2d-editor

path

accum

S

vector

*

S
<- evaluate here

<- slider setups

Figure 2.149: 01-additive

2.7.5.2 Subtractive

This patch gives a subtractive synthesis example. A geometrical sawtooth wave is gen-
erated by applying a leaky integrator to a band-limited impulse signal (’bl-impulse’).
This source signal is then filtered with a ’moog-ladder’ filter. The ’q’ input is controlled
with an envelope that can be triggered by clicking the ’<<trig>>’ button or by pressing
’1’.

196 2. TUTORIAL

1 2 3 4

110.0

Pitch

synth-box

S

patch

integrator

S

signal leak

moog-ladder

S

sig

freq

q

linear-ip

S

g/

0.5 l2?

*

S

+

S

2D-Editor

Eobjects active

3249.75

Filter Envelope Amount

796.48

Filter Base Frequency

linear-ip

S

linear-ip

S

0.9

Resonance

eval-box

SR

envelope-trigger

S

envelope <<trig>>

rt-envelope

1
bpf <<trig>>

2 y-scale

bl-impulse

S

freq 0.1

0.0 <<trig>>

<- trigger here or press '1'

Figure 2.150: 02-subtractive

2.7.5.3 Fm

This patch is based loosely on some fm instrument examples that were originally pre-
sented by John Chowning. There are three instruments: (1) trumpet; (2) clarinet; (3)
bell. The current instrument can be selected using the master switch box ’trump clar
bell’. In order to trigger the envelopes press ’1’.

2.7. SYNTH 197

synth-box

(1)
S

patch

sine

modulator S

freq amp

sine

carrier S

freq amp

0.0

800.0
341.85

freq

*

S

linear-ip

S

sig 0.001

*

S

number

0.05

*

S

number

args

args

trump clar bell

(2)
MSW-Trig

*

S

+

S

number

args

mod index

A

pitch corr

A freq ratio

A

envelope

A

rt-envelope

1
bpf <<trig>>

3.0 1.0

envelope-trigger

S

envelope <<trig>>

<- trigger here or press '1'

Figure 2.151: 03-fm

2.7.5.4 Formants

This example is based on formant synthesis where we simulate some basic vowels. The
source is a ’bl-impulse’ box which is filtered by two resonators (’reson-bank’) that aim
to simulate the two lowest formants of the human voice. The frequency input of the
resonators are controlled with the current mouse x-y position. The labels of the vowels
’I’, ’E’, ’U’ and ’A’ represent the approximate mouse x-y positions for these vowels.

198 2. TUTORIAL

bl-impulse

S

freq 0.05

0.0 <<trig>>
reson-bank

S

sig freq

(0.1 0.2) (40 100)

mouse-x

S

200

800

1.0
mouse-y

S

800

3000

1.0

combiner

S

patch

patches

synth-box

S

patch

linear-ip

S

linear-ip

S

140.21

Fundamental

linear-ip

S

A

E

U

I

Figure 2.152: 04-formants

2.7.5.5 Granular

The ’granular-player’ module plays a grain stream based on a loaded sample. ’range-
start’ and ’range-end’ represent points in the loaded sample between which the start
of each grain is randomly chosen. Value 0 represents the beginning of the sample
waveform and value 1 represents the end.
In this example, the range length is zero, thus exactly specifying the grain location inside
the waveform. This location is driven by the ’line-trigger’ box which, when triggered,
emits a continuous signal ranging from 0 to 1 in a specified time interval.
In this application, granular synthesis is used to perform a rudimentary time stretch and
pitch shift.

2.7. SYNTH 199

2D-Editor

Eobjects active

granular-player

S

sample 3

range-start range-end

30 grain-amp-env

grain-pitch-env0.9

1.0

Speed

accum

S

vector

synth-box

S

patch

div

S

2D-Editor

Eobjects active

*

S

0.46

Master Volume

1.0

Pitch

linear-ip

S

rt-envelope

bpf <<trig>>

1 1

2d-sampleid<- trigger here or press '1'

line-trigger

1

S

0.0 1.0

dur 1.0

<<trig>>

Figure 2.153: 05-granular

2.7.6 MIDI

2.7.6.1 MIDI-Membrane

This is a basic test patch that demonstrates two modules that are related to MIDI control:
’midi-trigger’ and ’midi-cc’.
’midi-trigger’ sends a trigger event and produces a scaled impulse upon receiving MIDI
data within specified note number and velocity limits.
’midi-cc’ (Control Change) follows a MIDI controller according to the desired MIDI chan-
nel and control change number and outputs a signal that is bound by the ’min’ and ’max’
inputs. The ’curve’ input defines the response curve. Note that the MIDI pitch bend con-
troller is represented here with a controller number 129.

200 2. TUTORIAL

reson-bank

S

sig freq

amp bw

mmul-vector

Circular Membrane Harmonics S

constant vector

linear-ip

S

synth-box

S

patch

accum

S

*

S

number

0.05

mmul-vector

S

linear-ip

S

midi-cc

Pitch Bend S

channel 129

40 200

1 0.0

midi-cc

Mod Wheel S

channel 1

2 10

1 0.0

num-box

MIDI Input Channel

1

(0.1 0.05 0.03 0.02 0.01 0.005 0.004 0.003 0.002 0.001 0.001)

(1 1.59 2.14 2.3 2.65 2.92 3.16 3.5 3.6 3.65 4.06 4.15)

This is a virtual drum you can play with a MIDI controller.
Hit the keys and play with Pitch Bend and Mod Wheel.midi-trigger

Key Trigger S

0.0 channel

0.0 127.0

0.0 127.0

Figure 2.154: 01-midi-membrane

2.7.7 Compiler

2.7.7.1 Stereo-Bell

Currently this example works only in OS X Also you must have the Xcode development
environment installed in your system.
This is an advanced example that demonstrates how visual PWGL abstraction boxes
can be compiled to C code in order to define new synthesis boxes. Here an abstraction
(1) called ’stereo-bell’, having 4 inputs, contains internally a synthesis patch. In order
to compile the abstraction choose the ’compile synth patch’ option from the box menu
of the abstraction. A dialog will appear where the user can edit various information,
such as box-name, documentation and menu-name. The compilation produces in the
background a new bundle file, that can be found in the ’PWGL-user/PWGLSynth/osx/’
folder. The contents of this folder will be loaded automatically when launching PWGL.

2.7. SYNTH 201

stereo-bell

complile this box A

1

()

()

0

1

Figure 2.155: stereo-bell

2.7.8 RT-Sequences

2.7.8.1 Introduction

2.7.8.1.1 RT-Sequences and Compositional Sketches

This section demonstrates how the code-box can be used to calculate synthesis control
information directly using Lisp code. The idea is to generate algorithmically typically
relatively short musical textures. The user can improvise with various compositional
ideas, adjust parameters, and listen to the results in real-time either individually or
interleaved. This is achieved by utilizing a special code-box scheme that allows any
textual Lisp expression to be interfaced to the visual part of the PWGL system. This
scheme can also be used for score-based synthesis control.

2.7.8.1.2 With-Synth Macros

All code examples are wrapped inside the ’with-synth’ and ’with-synth-instrument’
macros that will send any synth events to the running synthesis patch. The ’with-
synth-instrument’ macro takes three arguments: (1) ’instrument’, a pointer to a visual

202 2. TUTORIAL

abstraction box containing the instrument definition (2) ’max-poly’, maximum number
of voices required by the texture realization (3) ’body’, the actual lisp code containing
synth-events and synth-triggers.
A typical example using these macros would look like this:� �
(with-synth

(with-synth-instrument ins 1
<insert your code here >))� �

You can use several instruments inside the main ’with-synth’ macro):� �
(with-synth

(with-synth-instrument ins1 1
<insert ins1 code here >)

(with-synth-instrument ins2 1
<insert ins2 code here >))� �

2.7.8.1.3 Synth-Events and Synth-Triggers

The synth events are created using the ’synth-event’ and ’synth-trigger’ methods.
’synth-event’ has three required arguments: (1) ’time’, a float, gives the delay before the
event is sent; (2) ’name’, a keyword, must match one of the ’synth-plug’ names (the first
input) of the running synth patch. (3) ’value’, a float or a list of floats.
’synth-trigger’, in turn, is used for simple trigger events, and it has two required argu-
ments: (1) ’time’ (2) ’name’
For example, we could trigger immediately a resonator (see the first example patch)
using the following code:� �
(with-synth

(with-synth-instrument ins 1
(synth-trigger 0 :trig)))� �

Or, we could trigger the resonator after 2s:� �
(with-synth

(with-synth-instrument ins 1
(synth-trigger 2 :trig)))� �

We could also change the ’:freq’ input of the resonator:� �
(with-synth

(with-synth-instrument ins 1
(synth-event 0 :freq 200)))� �

2.7.8.1.4

Optional keyword arguments can be given changing the behavior of the methods. The
’:id’ keyword is used to automatically rename the ’name’ parameter. This feature is
used in conjunction with polyphonic instrument definitions. In the first patch all cases
are strictly monophonic thus we are not using the ’:id’ keyword there. However, the

2.7. SYNTH 203

second patch uses the ’:id’ keyword in order to distinguish different box instances in
a polyphonic situation. Furthermore an optional type specifier, ’:type’, can be given
if the event is not a normal one. This can be used for instance to send MIDI events
instead of ordinary synth events (the midi event list here consists of port, status, key,
and velocity):� �
(with-synth

(with-synth-instrument ins 1
;; send a midi note-on event (144) , port 0, key 60, vel 100

(synth-event 0 () ’(0 144 60 100) :type :midi)))� �
2.7.8.1.5 Triggering RT-Sequences

The ’synth-trigger’ method can also be used to trigger code-boxes that define RT-
sequences. This can be done with the help of the trigger-string of the code-box. This
string will be used to find the correct code-box from the current patch. Thus the follow-
ing expression will trigger the code-box having the trigger-string ”2” at 1.0s (note that
in the previous synth-trigger examples the second argument was always a keyword and
not a string):� �
(synth-trigger 1.0 "2")� �
The ’synth-trigger’ accepts a keyword argument called :input-values. This allows one to
override the named input values of a code-box (these are normally given at the patch
level) without modifying the graphical representation of the patch. Each input-value
is a list forming a name/value pair. Thus the following code will trigger the code-box
having the trigger-string ”1” at 0s, and the input values for the ”low” input will be 60
and the value for ”high” will be 100:� �
(synth-trigger 0 "1" :input-values ’(("low" 60)("high" 100)))� �
2.7.9 RT-Seq1

This patch contains an abstraction box (1), called ’Reson-patch’, that defines a resonator
that can be controlled using the entry-points that are defined by the four ’synth-plug’
boxes. The ’synth-plug’ boxes are labelled with keywords (e.g. :pan, :freq, :amp, :trig)
that are used by the synth-event and synth-trigger methods inside the five code-boxes.
Instrument inputs of the code-boxes must be connected to a pointer to an instrument
definition patch, thus we need a special box, called ’pwgl-box-ptr’, between the abstrac-
tion and the instrument inputs of the code-boxes.
All five code-boxes use here the same instrument definition. The code-boxes in turn
define simple texture types. These textures can be modified either by editing the top-
level inputs of a code-box, or by changing the actual code that is situated inside the
code-box.
First start the synth (1). While the synth is running you can trigger any sequence (2-6)
by evaluating one of the code-boxes. The five code-boxes have trigger-strings from 1 to
5, and thus they can be triggered with keyboard short-cuts using the keys from 1 to 5.

204 2. TUTORIAL

Finally the patch at (7) contains a special code-box that can trigger any of the normal
code-boxes (2-6) found in the patch. Internally it uses the ’synth-trigger’ method that
can also be used to trigger other code-boxes containing RT-sequence information. For
more details see the Introduction page of this tutorial section.

synth-box

S

patch

code-box

3

C

ranges

0.05

ins

60.2 100.0

code-box

2

C

60

100

3

0.1

T

ins

code-box

5

C

rev?

ins

2D-Editor

Eobjects active

code-box

4

C

bpfs

0.05

3

ins

2D-Editor

E1/2 objects active

Reson-patch

A

1

2

3

4

5

6

pwgl-box-ptr

2D-Editor

E2/2 objects active

code-box

1

C

100

90

1

0.1

ins

code-box
6

C

7

Figure 2.156: 01-rt-seq1

2.7.10 Poly-Seq

This patch defines a polyphonic instrument, called ’Reson-patch’, and it utilizes the
’copy-synth-patch’ box scheme to copy the synth patch 10 times (see the contents of the
’Reson-patch’ abstraction).
In the code-box we use now the optional keyword argument ’:id’ in order to distinguish
different box instances in this polyphonic situation. The current id number can be
accessed automatically by calling the ’get-next-id’ function.

2.7. SYNTH 205

code-box

1

C

rev?

midis

5

indices2

ins

2D-Editor

E1/2 objects active

pwgl-box-ptr

Reson-patch

A

10

indexor

S

vector

2

1 Reverb

A

sig

2

-0.02

-0.05

output

indexor

S

vector

0

2 add-vector

S

vector1 vector2

synth-box

S

patch

Chord-Editor

E1/2

&
?

˙˙
˙#˙#
˙˙

chord pitches

Abs1

A

Figure 2.157: 02-poly-seq

2.7.11 Score1-Sine

This simple patch demonstrates how to control a sine module from a monophonic score.
We have here three main entities: an instrument abstraction, a score and a code-box
that translates the score information into synth events..
(1) The patch contains an instrument abstraction, ’Sine’, which in turn contains a sine
wave generator. A ’synth-plug’ box controls the frequency of the ’sine’ module. Note
that the first input of the synth-plug’ box is labelled as ’:freq’.
In (2) we have a score, that contains a monophonic melodic line.
Finally, in (3), a code-box loops through the notes of the score. At each iteration the
’:freq’ parameter is updated.
To listen to the score first start the synth-box (4). After this you can trigger the code-box
calculation by either evaluating it or by pressing ’1’ from the keyboard.

206 2. TUTORIAL

Sine

A

synth-box

S

patch

Score-Editor

E

&
1

34
˙ œbq = 100 œ œ œb ˙ œ œ œb œ œ œ œ

P1

score pitches rtms/times

1

2

3

code-box

1

C

score

ins

pwgl-box-ptr4

Figure 2.158: 10-score1-sine

2.7.12 Score2-Envelope

This patch is similar to the previous one except here we demonstrate how to control a
sine module with an amplitude envelope. This patch can also handle polyphonic scores.
The abstraction in (1) contains a sine wave generator with an amplitude envelope. This
sub-patch is duplicated internally by a ’copy-synth-patch’ box count times (count = 3)
so we can realize polyphonic scores. We have here three ’synth-plug’ boxes that allow us
to control the frequency and the amplitude parameters of each individual ’sine’ module.
For more explanation see the ’Copy-synth-patch’ tutorials.
In (2) a ’Score-Editor’ box contains a sequence of three-voiced chords.
In (3) the code-box is used to convert the score information to synth-events. Now
the code is somewhat more complex than in the previous case as we deal here with
amplitude envelopes and polyphony. We loop through the notes and for each note we
update the ’:freq’ and ’amp’ parameters. After this we trigger the amplitude envelope
using ’synth-trigger’. Each synth event uses now the ’:id’ keyword parameter in order to
be able to control each ’sine’ module individually.

2.7. SYNTH 207

Sine

A

synth-box

S

patch

1

2

4
pwgl-box-ptr

code-box

1

C

score

ins

Score-Editor

E

&
1

44 Œ œœœ# œ#œ# œ# œœbœn
64 ˙̇̇14 Œ œœ#œ œ# œ# œ# œœn œn 24 ˙b ˙b ˙bP1

score pitches rtms/times

3

Figure 2.159: 11-score2-envelope

2.7.13 Score3-Expressions

This is a more advanced patch that shows how expression markings can be used to
control a synthesis instrument.
The instrument abstraction (1) contains contains several ’synth-plug’ boxes that both
trigger and feed envelope information to the amplitude and frequency inputs of a sine-
wave oscillator.
This patch contains two scores, (2) and (3), that contain different expression markings
(staccato. slur, accent).
The code-box box (4) calculates amplitude envelope information according to the ex-
pression information found in the score. The code checks whether the current note
belongs to a slurred group or not. In case of a slur the amplitude level does not drop
to 0 thus producing a continuous sound during note transitions. Also the duration of a
note is shortened if the note has a staccato expression. The 10-point frequency envelope
contains a slight jitter around the fundamental frequency.

208 2. TUTORIAL

Sine

A

max-points

synth-box

S

patch

Score-Editor

E

&
1

34 œ. œ. œ.
q = 100 ˙ œb œ œ œb .̇ œ

P1

score pitches rtms/times

2

3
Score-Editor

E

&
1

44 œ#
ƒ
> œ#>

œn> œ> œ#
p

œn œn œ# œn œ œ# œn œ
ƒ

> œ#>
œ#> œ>

œ>
œ>

œ>
œ#> œn

p

œ# œ# œn œ# œn

ƒ

>
œ>

œ>
œ>

œ#>

œ#>
œ>

P1

score pitches rtms/times

code-box

1

C

score

max-points

ins

pwgl-box-ptr

value-box

10

1

4

Figure 2.160: 12-score3-expressions

2.7.14 Score4-Vector

This patch demonstrates the use of vectored boxes (see the previous tutorial sections
’Vector’ and ’Copy-synth-patch’). It shows how to control the amplitude and frequency
envelopes of a ’sine-vector’ module using a code-box.
The ’sines’ abstraction (1) contains two vectored boxes (’envelope-trigger’ and ’sine-
vector’). We have also a ’stereo-pan’ module which gets its pan position from the ’:pan’
synth-plug box.
The top-level patch (2) contains an ’accum-vector’ box that mixes down the signals
from the ’copy-synth-patch’ box to a stereo signal. We have also a global reverb box
(the reverb is as well a synthesis abstraction). The reverb output is mixed with the
original dry signals by the ’add-vector’ box.
The example contains two scores, (3) and (4). In (3) the pan is controlled by the
midi-channel information of the notes. In (4), however, we have a break-point function
expression (5) in the score, which allows the user to specify the pan parameter visually.
Each note has 10 independent 10-point envelopes for amplitude and frequency. These
envelopes are calculated by the code-box (6). Of special interest is also the panning of
each note that is based either on midi-channel information, score (3), or on a panning

2.7. SYNTH 209

break-point function that is found in the score (4).

Sines

A

synth-box

S

patch

Score-Editor

E

&

1

3

4

œ œ œ

q = 100
˙ œb œ œ œb ˙ œ

P1

&

3

4
Ó .

q = 100

Ó .
œ œ œ

˙
œ

P1

&

3

4
Œ Œ Œ

q = 100

œ œ œ

˙ œ
˙ œ

P1

¬

L

score pitches rtms/times

Score-Editor

E

&

1

4

4

œ

5

œ

œ

œ3

8

œ#
3

8

œ3

8

œ1

4

œ# œ#
1

4

5

œ#
3

8

œ1

4

. œ
. œ1

4

.

œ#
3

8

.

œn

.

œ
.

7

œ#
.

œ#
1

4

.
œ3

8

.

œn

.

œ#
1

4

.

œn

. œ
.

œ#
.

2

4

œ#
>
œ
>
œ
>
œ
>

œ
>

œ
>

œ
>

œ
>

œ
>

H
P1

score pitches rtms/times

accum-vector

S

vector 2

Reverb

A

sig

2

-0.02

-0.05

output

add-vector

S

vector1 vector2

*

S

number

0.5

3

4

6

1

2

pwgl-box-ptr

code-box

1

C

score

10

10

ins

Figure 2.161: 13-score4-vector

210 2. TUTORIAL

Box Reference

*

arglist: (&rest args)

package: COMMON-LISP
menu: SynthImath
no documentation

*+

arglist: (mul1 mul2 add3)

package: PWSYNTH
menu: SynthImath
Calculates the sum of input 3 and the product of inputs 1 and 2.

+

arglist: (&rest args)

package: COMMON-LISP
menu: SynthImath
no documentation

2d-sampleid

arglist: (objects &optional index)

package: SYSTEM
menu: SynthImisc
returns 2D sampleID of a PWGL-sample-function ’objects’. ’objects’ can be an atom or a
list objects. In the latter case the the optional parameter ’index’ (by default = 0) will be
used to select the desired PWGL-sample-function object.

absolute

arglist: (num1)
package: PWSYNTH
menu: SynthImath
Calculates the absolute value of the input.

accum

arglist: (vector)
package: PWSYNTH
menu: SynthIvector
Accumulates all elements of vector and outputs a single element.

2.7. SYNTH 211

accum-vector

arglist: (vector len)

package: PWSYNTH
menu: SynthIvector
No documentation available

add-vector

arglist: (vector1 vector2)

package: PWSYNTH
menu: SynthIvector
Calculates the sum of two vectors.

all-subs

arglist: (sc-name)
package: SYSTEM
menu: PC-set-theory
returns all subset classes of the given SC (SC-name), accepts also a list of SCs in which
case all subset classes of the given SCs are appended (all duplicates are removed from
the result). The first input is a hierarchical menu-box, where the user selects the SC-
name. When the input is scrolled, it displays all SC-names of a given cardinality. The
cardinality can be changed by dragging the mini-scroll view in the right-most part of
the input.

allpass

arglist: (sig delay coef)

package: PWSYNTH
menu: SynthIfilters
An allpass filter with a specified delay time (in seconds) and feedback coefficent.

allpass-vector

arglist: (sig delay coef)

package: PWSYNTH
menu: SynthIfilters
Vector of allpass filters with specified delay (in seconds) and feedback coefficents.

allpasscasc1

arglist: (sig count coef)

package: PWSYNTH
menu: SynthIfilters

212 2. TUTORIAL

First order allpass filter cascade. Count specifies the number of filters whose coefficents
are given as a vector.

allpasscasc2

arglist: (sig count a1 a2)

package: PWSYNTH
menu: SynthIfilters
2nd order allpass filter cascade. Number of filters is specified by count and their coeffi-
cents are given as vectors a1 and a2.

append

arglist: (&rest lists)

package: COMMON-LISP
menu: Lisp
Construct a new list by concatenating the list arguments.

approx-midi

arglist: (midis approx &optional ref-midi)

package: PATCH-WORK
menu: Conversion
approx-m takes a midi value, midi ;and returns an approximation to the nearest division
of the octave as defined by the user, approx. The value of resolution determines the
resolution of approximation. An argument of 1, results in an output where all values
are rounded to the nearest whole tone; 2, to the nearest semitone; 4, to the nearest
quartertone; 4.5, to the nearest 4.5th of a tone, etc. When approx = 1, the optional
argument ref-m in midi specifies the frequency resolution of the approximation. A value
of 1.00 specifies semitone resolution, 0.50 specifies quartertone resolution, and so on.

arithm-ser

arglist: (begin step end)

package: PATCH-WORK
menu: Num series
Returns a list of numbers starting from begin to end with increment step. For example:
(pw::arithm-ser 0 1 12) returns: PWGL->(0 1 2 3 4 5 6 7 8 9 10 11 12)

atan2

arglist: (x y)

package: PWSYNTH
menu: SynthImath
Calculates the power of two inputs

2.7. SYNTH 213

band-filter

arglist: (list val &optional pass?)

package: PATCH-WORK
menu: List
<band-filter> passes or rejects all elements from <list> that fall inside a band of speci-
fied values of <val> . The range of values <val> is given either as a list of two numbers
or as a list of lists of two numbers. Each pair of numbers define an interval. If <pass?>
(the optional argument) is one (the default) only the element in list falling inside one
of these intervals (of <val>) is selected. If <delete> is zero, elements in <list> not
falling inside one of those intervals is selected. Intervals are defined by values inside
list. For example, if <list> is (2 4 6 8 10 12 14 16 18 20) and <val> is ((1 3) (7 9)),
<band-filter> returns (2 8), (the default is one). On the other hand (if the third input
is open), if <list> is (2 4 6 8 10 12 14 16 18 20), <val> is ((1 3) (7 9)) and <pass?>
is 0 (zero), <band-filter> returns (4 6 10 12 14 16 18 20). The argument list can be a
list of lists. In this case the described behavior applies to each sublist.

biquad

arglist: (signal a1 a2 b0 b1 b2)

package: PWSYNTH
menu: SynthIfilters
Generid IIR biquad filter. Feedback coefficents are a1 and a2, while b0, b1 and b2 are
feedforward coefficents.

bl-impulse

arglist: (freq amp phase trig)

package: PWSYNTH
menu: SynthIosc
Band limited impulse oscillator suitable for audio rates. Freq specifies fundamental
frequency, amp scales the amplitude, phase offsets the train within cycle (0-1) and
<<trig>> retriggers the oscillator.

butlast

arglist: (list &optional n)

package: COMMON-LISP
menu: Lisp
Returns a new list the same as List without the N last elements.

cartesian

arglist: (l1? l2? fun)

package: PATCH-WORK
menu: Function

214 2. TUTORIAL

Applies the function fun to elements of l1? and l2? considered as matrices. Like g-oper
;fun may be a Lisp function (list, +, *, cons, etc.) or a function object created by the
make-num-fun ;box . The result is a cartesian product of l1? by l2?.
(pw::cartesian 5 5 ’+) will return PWGL->((10)) , (pw::cartesian ’(1 2 3 4) ’(5 6 7 8) ’+)
will return PWGL->((6 7 8 9) (7 8 9 10) (8 9 10 11) (9 10 11 12)) and (pw::cartesian
’(1 2 3 4) ’(5 6 7 8) ’list) will return PWGL-> (((1 5) (1 6) (1 7) (1 8)) ((2 5) (2 6) (2
7) (2 8)) ((3 5) (3 6) (3 7) (3 8)) ((4 5) (4 6) (4 7) (4 8)))

clipper

arglist: (signal max min)

package: PWSYNTH
menu: SynthIwaveshaping
Limits input signal between min and max by hard clipping.

code-box

arglist: ()
package: SYSTEM
menu: Data
The code-box allows the user to express in textual form complex Lisp expressions and
it is one of the most important tools (along with the Lisp-code-box and the text-box) to
interface Lisp with the graphical part of our system.
The user can open a text-editor by double-clicking the box. In the text editor, while
the user writes the code, the text is simultaneously analysed. This analysis consists of
basic syntax checks and extraction of free variables and function names that result in a
parameter list of the final Lisp expression. This scheme provides the main interface to
PWGL and allows the user to access information from the visual part of the system. The
appearance of the box is calculated automatically based on this analysis.
If a free variable name starts with a ’!’, then it will have a special status in the Lisp
expression. This variable type, called ’multi-eval’, will be re-evaluated each time it is
encountered in the expression (this scheme will also apply every iteration step in a
loop). This can be used to dynamically extract new values from PWGL boxes (a typical
box example would be ’g-random’).
By default the code-box is called ’code-box’. This name can be changed by the user. In
order to distinguish this box from the ordinary ones, there is a label ’C’ at the low-right
corner of the box.

collect-enp-objects

arglist: (object type &key no-rest-p no-tied-p only-selected-p)

package: SYSTEM
menu: Editors
collect-enp-objects is used to collect enp-objects (i.e. notes, chords, beats, measures,
voices, parts) from ’object’. The ’type’ input determines the type of the collected enp-
objects.

2.7. SYNTH 215

The result can be filtered using the keyword arguments ’no-rest-p’, ’no-tied-p’ and ’only-
selected-p’.

comb-allpass

arglist: (sig delay maxdelay coef)

package: PWSYNTH
menu: SynthIdelay
A building block for reverberation algorithms. Features a delay line fed into a first order
allpass filter. Delay is given in seconds and can’t exceed the specified maximum. Coef
specifies the allpass filter coefficent

comb-allpass-vector

arglist: (sig delay maxdelay coef)

package: PWSYNTH
menu: SynthIfilters
A vector of building block for reverberation algorithms. Features a delay line fed into
a first order allpass filter. Delay is given in seconds and can’t exceed the specified
maximum. Coef specifies the allpass filter coefficent.

combiner

arglist: (patch &rest patches)

package: PWSYNTH
menu: SynthIvector
Combines an arbitrary number of elements into a vector. It is possible to make multiple
connections to the input.

cons

arglist: (car cdr)

package: COMMON-LISP
menu: Lisp
no documentation

const-value

arglist: (patch &optional loopmode)

package: SYSTEM
menu: Control
keeps the value coming from the ’patch’ input constant even when the output of ’const-
box’ is connected to several other PWGL-boxes (i.e. ’const-box’ is evaluated only once
and after this the box returns the previously calculated value). By default ’const-box’

216 2. TUTORIAL

will re-evaluate at each top-level evaluation of a patch. When inserted in a loop, ’const-
box’ will behave depending on the optional input ’loopmode’. If ’loopmode’ is: - ’:once’,
(the default) the value is kept constant during looping - ’:loopinit’, ’const-box’ will be
re-evaluated at each loop start
and after this the value will be constant - ’:eachtime’, ’const-box’ will be re-evaluated at
each loop iteration
cycle.
See ’PWGL Help’ for more details.

copy-patch-index

arglist: (&optional list)

package: SYSTEM
menu: SynthIcopy synth patch
returns the current copy-patch-index (an integer ranging from 0 - count-1, where count
is given by the current copy-synth-patch box) when evaluating the patch. If the optional
arg list is given then the nth element of the list arg is returned according to the current
copy-patch-index

copy-synth-patch

arglist: (count patch &optional name extra-vector)

package: SYSTEM
menu: SynthIcopy synth patch
copies a sub-patch given in ’patch’ ’count’ times

create-list

arglist: (count elem &optional list-fill)

package: PATCH-WORK
menu: List
Returns a list of length <count> filled with repetitions of element <elem>

db->lin

arglist: (dbs)
package: PATCH-WORK
menu: Conversion
<dB->lin> takes a number <dbs> in decibels and converts it to linear. The input can
be a list of numbers. In this case a list of linear values is returned.

dc

arglist: (sig)
package: PWSYNTH

2.7. SYNTH 217

menu: SynthIfilters
No documentation available

delay

arglist: (sig time max-delay)

package: PWSYNTH
menu: SynthIdelay
A simple delay without interpolation. Works well when no modulation of delay time or
sub-sample accuracy is needed. Delay time is given in seconds.

delay-prime

arglist: (sig delay)

package: PWSYNTH
menu: SynthIdelay
A static delay line that can’t be modulated. Delay time is rounded to the nearest prime
number (in samples).

delay-prime-vector

arglist: (sig delay)

package: PWSYNTH
menu: SynthIdelay
Vector of static delay lines that can’t be modulated. Delay time is rounded to the nearest
prime number in samples.

detect-steps

arglist: (sig treshold)

package: PWSYNTH
menu: SynthIcontrol
When input signal ’sig’ changes by more than ’treshold’ during one sample frame, emits
both a trigger and a refresh event. Signal is passed through unchanged.

differentiator

arglist: (signal)
package: PWSYNTH
menu: SynthIfilters
Differentiator: a high bias filter with 6dB/oct slope.

218 2. TUTORIAL

disk-writer

arglist: (sig path)

package: PWSYNTH
menu: SynthImisc
disk-writer streams in real-time the audio input ’sig’ to disk. The pathname of the
resulting file can be given in the second input, if it is () then the default synth pathname
will be used instead.

div

arglist: (value1 value2)

package: PWSYNTH
menu: SynthImath
Calculates the quotinent of the two inputs

div-vector

arglist: (vector1 vector2)

package: PWSYNTH
menu: SynthIvector
Calculates the quotinent of two vectors element by element.

duplicate-instance

arglist: (object)
package: SYSTEM
menu: UtilitiesImisc
duplicates object

dx->x

arglist: (start dxs)

package: PATCH-WORK
menu: Num series
Constructs a list of numbers from <start> with the consecutives intervals of <dxs>.
<dxs> can also be a list of lists of intervals. For example
(pw::dx->x 0 ’(0 4 5 9 6 2 3 3)) will return PWGL->(0 0 4 9 18 24 26 29 32)
and (pw::dx->x 8 ’(0 4 5 9 6 2 3 3)) will return PWGL->(8 8 12 17 26 32 34 37 40)

enp->synth

arglist: (score rules &optional macro-notes out-format)

package: SYSTEM
menu: SynthIENP interface
calculates a global ENP control list

2.7. SYNTH 219

enp-object-composer

arglist: (type object/s)

package: SYSTEM
menu: Editors
Converts any enp object or a list of enp objects into the object indicated by ’type’.

enp-score-notation

arglist: (score incl/excl keywords)

package: SYSTEM
menu: Editors
Collects ENP-score-notation list.

enp-script

arglist: (score rules selection? &optional prepare-fns+args out-type)

package: SYSTEM
menu: Constraints
’ENP-script’ box can be used to produce various side-effects (such as adding expressions,
analytical information, etc.) to an input-score. The position and type of the side-effects
are defined by the ’rules’ input. For more details see ’PWGL Help’ and ’ENP Help’.
The ’selection?’ input determines whether these side-effects are applied to the whole
score or only to the selected areas in the input-score.
The ’prepare-fns+args’ input can be used to customize the scripting process.
The ’out-type’ input determines the result type of the ’ENP-script’. If it is equal ’:string’,
then the output consists of all side-effects in textual form. If it is ’:object’, then the
output consists ENP-objects that were created during the scripting process.
The side-effects can be undone using the ’enp script history...’ option in the ’ENP-script’
box popup-menu.

envelope-trigger

arglist: (envelope trig)

package: PWSYNTH
menu: SynthIcontrol
No documentation available

eval-box

arglist: (value)
package: SYSTEM
menu: Data
returns (eval <value>)

220 2. TUTORIAL

eval-when-load

arglist: (patch &rest patches)

package: SYSTEM
menu: Data
evaluate inputs when loading a patch

exp-ip

arglist: (sig lag)

package: PWSYNTH
menu: SynthIcontrol
Smooths input signal with exponential interpolation. Can’t interpolate between positive
and negative values or zero and nonzero. Response lag is given in seconds.

expand-lst

arglist: (list)
package: PATCH-WORK
menu: List
Expands a list by one (or both) of the following:
1. Repeating each item number times following a pattern
of the form: number*
2. Creating a sequence of numbers going from n to m by steps of k, indicated by the
pattern n-m s k. A step of 1 can be omitted.
For example the list (3* (2 4) 0 8), returns
(2 4 2 4 2 4 0 1 2 3 4 5 6 7 8),
and the list (2* (a z 2*(4 12) (1 5)) 0 16s2) returns
(a z 4 12 4 12 (1 2 3 4 5) a z 4 12 4 12 (1 2 3 4 5) 0 2 4 6 8 10 12 14 16).

f->m

arglist: (freqs &optional approx ref-midi)

package: PATCH-WORK
menu: Conversion
Converts frequency ;to midi. It takes a frequency (Hz) or list of frequencies and returns
corresponding midi values. The optional approx argument lets one limit returned values
to a given approximation (see approx- m). When approx = 1, the optional argument
ref-m in midi specifies the frequency resolution of the approximation. A value of 1.00
specifies semitone ;;; resolution, 0.50 specifies quartertone ;resolution, and so on.

fft

arglist: (sig frame-size step window zero-pad)

package: PWSYNTH
menu: SynthIanalysis

2.7. SYNTH 221

No documentation available

fft-partials

arglist: (fft)
package: PWSYNTH
menu: SynthIanalysis
No documentation available

fibo-ser

arglist: (seed1 seed2 limit &optional begin end)

package: PATCH-WORK
menu: Num series
Returns a list of numbers in the Fibonacci series ;where the first element is seed and the
additive factor is seed2. The limit parameter is the limit of this list. It is also possible to
specify two parameters begin and end which delimit the calculation of the series. For
example:
(pw::fibo-ser 0 1 337) returns
PWGL->(0 1 2 3 5 8 13 21 34 55 89 144 233),
(pw::fibo-ser 0 4 337) returns PWGL->(0 4 8 12 20 32 52 84 136 220) and
(pw::fibo-ser 0 4 337 3 6) returns PWGL->(12 20 32 52)

first

arglist: (list)
package: COMMON-LISP
menu: Lisp
no documentation

flat

arglist: (lst)
package: PATCH-WORK
menu: List
Takes off every parenthesis. There should be no dotted pair.

flat-low

arglist: (list)
package: PATCH-WORK
menu: List
Flattens lowest level sublists. Ex: ’(((1 2 3) (4 5 6)) ((7 8 9) (10 11 12))) becomes:
((1 2 3 4 5 6) (7 8 9 10 11 12))

222 2. TUTORIAL

flat-once

arglist: (list)
package: PATCH-WORK
menu: List
flattens the first level of a list of lists.Ex: ’(((1 2 3) (4 5 6)) ((7 8 9) (10 11 12)))
becomes: ((1 2 3) (4 5 6) (7 8 9) (10 11 12))

funcall

arglist: (function &rest arguments)

package: COMMON-LISP
menu: Lisp
Calls Function with the given Arguments.

g*

arglist: (l1? l2?)

package: SYSTEM
menu: Arithmetic
PWGL version of *. Both arguments can be numbers/bpfs or lists of any depth

g+

arglist: (l1? l2?)

package: SYSTEM
menu: Arithmetic
PWGL version of +. Both arguments can be numbers/bpfs or lists of any depth

g-

arglist: (l1? l2?)

package: SYSTEM
menu: Arithmetic
PWGL version of -. Both arguments can be numbers/bpfs or lists of any depth

g-abs

arglist: (l?)
package: SYSTEM
menu: Arithmetic
PWGL version of abs. The argument can be number/bpf or list of any depth

2.7. SYNTH 223

g-alea

arglist: (list percent)

package: PATCH-WORK
menu: Num series
Add a uniform random function to the list <list> of some depth according to a percent-
age <percent> indicated.

g-average

arglist: (xs weights?)

package: PATCH-WORK
menu: Arithmetic
average value of <xs>, weighted by linear <weights> or 1. <xs> and <weights> may
be trees. Trees must be well-formed. That is, the children of a node must be either all
leaves or all nonleaves.

g-ceiling

arglist: (l?)
package: SYSTEM
menu: Arithmetic
PWGL version of g-ceiling. The argument can be number/bpf or list of any depth

g-div

arglist: (l1? l2?)

package: SYSTEM
menu: Arithmetic
Integer division of two numbers or trees, Euclidean division. Both arguments can be
numbers/bpfs or lists of any depth

g-exp

arglist: (l?)
package: SYSTEM
menu: Arithmetic
PWGL version of exp. The argument can be number/bpf or list of any depth

g-floor

arglist: (l?)
package: SYSTEM
menu: Arithmetic
PWGL version of floor. The argument can be number/bpf or list of any depth

224 2. TUTORIAL

g-log

arglist: (l?)
package: SYSTEM
menu: Arithmetic
PWGL version of log. The argument can be number/bpf or list of any depth

g-max

arglist: (list)
package: SYSTEM
menu: Arithmetic
PWGL version of max. The argument can be number or list of any depth

g-min

arglist: (list)
package: SYSTEM
menu: Arithmetic
PWGL version of min. The argument can be number or list of any depth

g-mod

arglist: (l1? mod)

package: SYSTEM
menu: Arithmetic
PWGL version of mod. Both arguments can be numbers/bpfs or lists of any depth

g-oper

arglist: (fun obj1? &optional obj2?)

package: PATCH-WORK
menu: Function
Applies fun to leaves of trees of obj1? and (optionally) obj2?. fun may be a Lisp function
(list, +, *, cons, etc.) or a function object created by the make-num-fun box.
For example: (pw::g-oper ’+ 4 5) will return PWGL->9 , (pw::g-oper ’list 4 5) will
return PWGL->(4 5) ,
(pw::g-oper ’+ ’(1 2) ’(3 4)) will return PWGL->(4 6) and
(pw::g-oper (pw::make-num-fun ’(f(x y)= (+ (* x 2) (* y 3)))) ’(1 2) ’(3 4)) will return
? PW->(11 16)

g-power

arglist: (l1? power)

package: SYSTEM
menu: Arithmetic

2.7. SYNTH 225

PWGL version of expt. Both arguments can be numbers/bpfs or lists of any depth

g-random

arglist: (low high)

package: SYSTEM
menu: Arithmetic
Returns a random value between val1 and val2 inclusive. Both arguments can be num-
bers or lists of any depth

g-round

arglist: (l1? &optional decimals l2?)

package: PATCH-WORK
menu: Arithmetic
Rounds a number or tree. This module allows many operations, since it is extendible.
The input decimals sets the choice of number of decimal places to round to. I2? specifies
division before rounding.

g-scale%

arglist: (l1? l2?)

package: SYSTEM
menu: Arithmetic
Divides by 100 the product of <l1?> and <l2?>. Both arguments can be numbers or
lists of any depth

g-scaling

arglist: (vals? minout maxout &optional minin maxin)

package: PATCH-WORK
menu: Num series
Replaces all the <vals?> considered between the minimum value of the list and the
maximum value of the list, by the values proportionally placed between <minout> and
<maxout>. If the list in question is a part of a larger list, or <vals?> is a variable that
takes a value within a known interval, one can specify the minimum and maximum
values.

g-scaling/max

arglist: (list max)

package: PATCH-WORK
menu: Num series
scales <list> (may be tree) so that its max becomes <max>. Trees must be well-formed:
The children of a node must be either all leaves or all nonleaves.

226 2. TUTORIAL

g-scaling/sum

arglist: (list sum)

package: PATCH-WORK
menu: Num series
scales <list> (may be tree) so that its sum becomes <sum>. Trees must be well-formed.
The children of a node must be either all leaves or all nonleaves.

g/

arglist: (l1? l2?)

package: SYSTEM
menu: Arithmetic
PWGL version of /. Both arguments can be numbers/bpfs or lists of any depth

geometric-ser

arglist: (seed factor limit &optional begin end)

package: PATCH-WORK
menu: Num series
The geometric-ser module returns a geometric series ;of numbers in which the first
element is seed and the multiplicative coefficient is factor. The limit parameter is the
limit of this list. It is also possible to specify two parameters begin and end which
delimit the calculation of the series. For example:
(pw::geometric-ser 10 2 2000) will return PWGL->(10 20 40 80 160 320 640 1280)
and if one sets begin to 2 and end to 5
(pw::geometric-ser 10 2 2000 2 5) one obtains: PWGL->(40 80 160 320)

gm-instrument

arglist: (chan ins)

package: SYSTEM
menu: UtilitiesIMIDI
set GM instrument on channel(s), chan can be a number or a list.

granular-player

arglist: (sample voices range-start range-end freq grain-amp-env

grain-pitch-env grain-dur)

package: PWSYNTH
menu: SynthIsamplers
Plays a grain stream based on a loaded sample. Chooses a grain out of the given sample
from between range-start and range-end, which are normalized to 0..1. You can assign
amplitude and pitch envelopes to individual grains. In these envelopes, envelope time
is normalized to 0..1 for the grain duration.

2.7. SYNTH 227

group-lst

arglist: (list group-lens)

package: SYSTEM
menu: List
groups list into subsequnces, where group-lens indicates the length of each sublist.
group-lens can be a number or a list of numbers. If list is not exhausted by group-lens,
the last value of group-lens will be used as a constant until list has been exhausted.

hps

arglist: (partials min-freq max-freq num-partials subtone num-products

miss-coef)

package: PWSYNTH
menu: SynthIanalysis
No documentation available

impulse

arglist: (freq amp)

package: PWSYNTH
menu: SynthIosc
An oscillator that emits an impulse train. Frequency is freq rounded to the nearest
integer period in samples. Amp is the amplitude of the impulse.

impulse-trigger

arglist: (amp trig)

package: PWSYNTH
menu: SynthIcontrol
Emits an unit impulse when triggered. The impulse amplitude is specified by the amp
parameter.

impulse-vector

arglist: (freq amp)

package: PWSYNTH
menu: SynthIosc
A vector of oscillators that emit an impulse train. Frequency is freq rounded to the
nearest integer period in samples. Amp is the amplitude of the impulse.

included?

arglist: (lst1 lst2 &optional test)

package: PATCH-WORK
menu: SetsICombinations

228 2. TUTORIAL

This box compares two lists, returning true if all the elements in the first are also ele-
ments of the second. If the optional <test> argument is added, it is used as a predicate
to detect equality between elements. Default value for <test> is the function ’equal.

indexor

arglist: (vector index len)

package: PWSYNTH
menu: SynthIvector
Accesses a subvector of the input, staring at element number specified by index for a
number of elements specified by len.

integrator

arglist: (signal leak)

package: PWSYNTH
menu: SynthIfilters
The box implements a leaky integrator. With leak value 0 the integrator doesn’t leak,
with value 1 it doesn’t retain anything.

interpolation

arglist: (begin end samples curves &optional format)

package: PATCH-WORK
menu: Num series
Interpolates two lists of the same length. (If the lists are not the same length, the
operation produces only the number of terms equal to the shorter list.) begin and end,
in samples steps (i.e., samples is the number of steps). curve is an optional value that
selects the type of interpolation:
1 = straight line,
< 1 = convex
> 1 = concave
If format is ’:incl’ the two extremes are included in the output. If format is ’:excl’ they
are excluded.

inverse

arglist: (xmin xmax value fun)

package: PATCH-WORK
menu: Function
binary searches x in the interval [xmin,xmax] , such that fun(x)=value. fun must be
either increasing or decreasing in the interval

2.7. SYNTH 229

k-rate

arglist: (sig rate)

package: PWSYNTH
menu: SynthIcontrol
Using k-rate, you can locally override the global control rate of the system. Connect the
control signal into sig-input and use rate-input to specify the control rate for that input.
The box you connect krate to will perform its control rate actions with the rate specified
here.

lagrange-fun

arglist: (l-x-y)
package: PATCH-WORK
menu: Function
Retourne un polynome de Lagrange dfini par les points de liste <l-x-y>.

last-elem

arglist: (list)
package: PATCH-WORK
menu: List
returns the last element of <list>

length

arglist: (sequence)
package: COMMON-LISP
menu: Lisp
Returns an integer that is the length of SEQUENCE.

lin->db

arglist: (amps)
package: PATCH-WORK
menu: Conversion
<lin->db> takes a number <amps> and returns the corresponding value expressed in
decibels. The input can be a list of numbers. In this case a list of db values is returned.

line

arglist: (start end dur curve-expt rptme)

package: PWSYNTH
menu: SynthIosc

230 2. TUTORIAL

A line oscillator that produces an envelope segment from ’start’ to ’end’ in ’dur’ seconds.
The curve is a line segment raised to the power if ’curve-expt’, with value 1 correspond-
ing to linear segments, 2 corresponding to parabolic segments etc.

line-trigger

arglist: (start end dur curve-expt trig)

package: PWSYNTH
menu: SynthIcontrol
A line oscillator that interpolates between ’start’ and ’end’ in ’dur’ seconds when trig-
gered. Dur can be changed in real time, also during line segments. The curvature is
defined by ’curve-expt’. Value of 1 corresponds to a linear segment, 2 to a parabolic
segment and so on.

linear-fun

arglist: (x0 y0 x1 y1 &optional print)

package: PATCH-WORK
menu: Function
Calculate the parameters of the equation y = a x + b as a function of the two points
(x0,y0) (x1,y1). The optional parameter print lets one print the function.

linear-ip

arglist: (sig lag)

package: PWSYNTH
menu: SynthIcontrol
Smooths input signal with linear interpolation. Response lag is given in seconds.

list

arglist: (&rest args)

package: COMMON-LISP
menu: Lisp
no documentation

list-explode

arglist: (list nlists)

package: PATCH-WORK
menu: List
list-explode divides a list into <nlist> sublists of consecutives elements. For example,
if list is (1 2 3 4 5 6 7 8 9), and ncol is 2, the result is ((1 2 3 4 5) (6 7 8 9)), if list
is (1 2 3 4 5 6 7 8 9), and ncol is 5, the result is: ((1 2) (3 4) (5 6) (7 8) (9)). If the
number of divisions exceeds the number of elements in the list, the remaining divisions
are returned as nil.

2.7. SYNTH 231

list-filter

arglist: (test val list)

package: PATCH-WORK
menu: List
list-filter removes elements from a <list> according to a predicate <test>. If the pred-
icate is ’eq’, all instances of <val> are removed from the list, regardless of their level.
If, for example, the predicate is >, all elements of list which are greater than <val> are
removed. Note that <val> can be a string, but only if the predicate <test> can handle
a string. (list-filter ’= 5 ’(5 7 3 5 11 5 16 3 1 7 15 5 8 10 0 7 5 4 5 10)) will return
PWGL->(7 3 11 16 3 1 7 15 8 10 0 7 4 10) , with test.

list-modulo

arglist: (list ncol)

package: PATCH-WORK
menu: List
<list-modulo> groups elements of a list that occur at regular intervals, and returns these
groups as lists. <ncol> defines the interval between group members. For example, if
we take the list (1 2 3 4 5 6 7 8 9) and give 2 for ncol, the result is ((1 3 5 7 9) (2
4 6 8)). In other words, every second element starting with the first, and then every
second element starting with the second. If the number of <ncol> exceeds the number
of elements in the list, the remaining lists are returned as nil. In effect, list-modulo
divides <list> into <ncol> sublists containing elements modulo <ncol> according to
their position in the list.

load-default-sample

arglist: (2d-editor &optional path)

package: SYSTEM
menu: SynthImisc
Loads the default synth sample (given in the ’Synth Preferences’) into 2D editor, If the
optional argument ’path’ is given then the sample is loaded from the path indicated by
this input

m->f

arglist: (midis)
package: PATCH-WORK
menu: Conversion
Converts a midi pitches <midis> to frequencies (Hz).

madd-vector

arglist: (mono vector)

package: PWSYNTH

232 2. TUTORIAL

menu: SynthIvector
Adds a mono signal to all vector elements.

make-num-fun

arglist: (fexpr)
package: PATCH-WORK
menu: Function
Creates a lisp function object from the ”functional” expr <fexpr> which is basically
an infixed expression (see prefix-expr and prefix-help). When <fexpr> begins with
something like (f(x)= ...), the formal arguments are taken from the given list, otherwise
they are deduced from the body of <fexpr> and collected in the order they appear
in it. Local variables are automatically handled. The resulting function is compiled
when the value of *compile-num- lambda* is T (default). <make-num-fun> has the
following syntax: the standard Lisp syntax, i.e., (f(x) = (- (* x x) x))). The variable
name definition at the beginning of the function (f(x)= ...) is optional. If it is not
included by the user, the program figures out which variables are involved.

mapcar

arglist: (function list &rest more-lists)

package: COMMON-LISP
menu: Lisp
Applies fn to successive elements of lists, returns list of results.

mat-trans

arglist: (matrix)
package: PATCH-WORK
menu: List
<mat-trans> transposes a matrix. That is, it interchanges rows and columns. Thus for
example, (mat-trans ’((1 2) (5 7))) returns the list ((1 5) (2 7)), or if <matrix> is ((1
2) (3 4) (5 6) (7 8) (9 10)) <mat-trans> returns ((1 3 5 7 9) (2 4 6 8 10)). <mat-
trans> behaves as if the sublists of matrix where arranged vertically. Then a sublist is
constructed for each column resulting from this arrangement. the result is the list of all
these sublists.

math-cos

arglist: (phase1)
package: PWSYNTH
menu: SynthImath
Calculates the cosine of an angle. 2 Pi represents a period of this function.

2.7. SYNTH 233

math-sin

arglist: (phase1)
package: PWSYNTH
menu: SynthImath
Calculates the sine of an angle. 2 Pi represents a period of this function.

matrix-constructor

arglist: (labels data &optional key-data)

package: SYSTEM
menu: Editors
construct out of labels and data a matrix-object that can be given to the first input of a
matrix-editor box

mdiv-vector

arglist: (constant vector)

package: PWSYNTH
menu: SynthIvector
Divides each vector element by the mono signal.

merge-partials

arglist: (partials output-len)

package: PWSYNTH
menu: SynthIanalysis
No documentation available

mf->chord-seq

arglist: (&optional filename tempo-modif? time-resol)

package: SYSTEM
menu: UtilitiesIMIDI
converts a midi file to a list of chord-sequences. ’filename’ is the path of the midi file to
be loaded. If ’filename’ is equal to (), then an open-file dialog appears. If ’tempo-modif?’
is T then the tempo function in the midi file track 0 is used to modify the start-times
and durations of the resulting chords.

mf->score

arglist: (&optional filename scopes time-sign tempo ignore-rests-p

time-resol min-dur min-rest-dur)

package: SYSTEM
menu: UtilitiesIMIDI

234 2. TUTORIAL

converts a midi file to a list of parts. ’filename’ is the path of the midi file to be loaded. If
’filename’ is equal to (), then an open-file dialog appears. ’scopse’ defines the complexity
of the quantification of beats. This input can b a number (from 1 to 8), or a list of scope
specs. The scope spec list consists of sublists that consist of: (1) a duration of the beat
(1 = 1/4 note), (2) a list of allowed subdivisions, (3) a subdivision list of a beat into
two halves. Thus a scope spec sublist: (1 (2 3 4) ()) allows subdivisions of a 1/4 note
of 2,3 and 4, but disallows subdivision of the beat into two halves (i.e. (3) = ()).
’tempo’ can be either a metronome value or a list of metronome values. In the first
case the metronome value is used globally for all measures. In the latter case values are
assigned to measures one by one. If the tempi list is exhausted before the measures then
the last metronome value is kept constant for the remaining measures. Note that this
input has no effect on the quantizing and it is used only to set the metronome values of
the measures of the result. If ’tempo’ is = (), then the tempo of the midi file is used.
’ignore-rests-p’ controls whether rests are used in the result: if () then all rests are
quantized, if T then rests are ignored. The latter case can be useful to simplify the
result of the quantizing process.

midi->notename

arglist: (midis)
package: PATCH-WORK
menu: Conversion
midi->notename takes a midi value <midis> or list of midi values, and returns corre-
sponding symbolic (ASCII) note names. Symbolic note names follow standard notation
with middle c (midi 60) being C4. Semitones are labeled with a ’#’ or a ’b.’ Quartertone
flats are labeled with a ’ ’, and quartertone sharps with a ’+’. Thus, C4 a quartertone
sharp (midi 60.50), would be labeled ’C+3’. Gradations smaller than a quartertone are
expressed as the closest quartertone + or - the remaining cent value (i.e., midi 81.76
would be expressed as Bb5-24).

midi-cc

arglist: (channel cc-num min max curve-expt port)

package: PWSYNTH
menu: SynthIinput
MIDI Control Change follower. Choose desired MIDI channel and control change num-
ber to output signal bound by min and max, mapping the 7-bit MIDI value 0 to ’min’
and 127 to ’max’. The values in between are on a continuous linear segment raised to
the power of ’curve-expt’ with 1 corresponding to linear response.

midi-controller

arglist: (chan cc val)

package: SYSTEM
menu: UtilitiesIMIDI

2.7. SYNTH 235

set MIDI controller values on channel <chan>, chan and val can be numbers, chan and
val can be lists, or chan can be a list and val a number

midi-trigger

arglist: (port channel key-lo key-hi vel-lo vel-hi)

package: PWSYNTH
menu: SynthIinput
MIDI key trigger. Sends a Trigger event and produces an impulse upon receiving MIDI
data within specified note number and velocity limits.

mmul-vector

arglist: (mono vector)

package: PWSYNTH
menu: SynthIvector
Multiplies each vector element with the mono signal.

mmuladd-vector

arglist: (vector mul add)

package: PWSYNTH
menu: SynthIvector
Multiplies each vector element by the scale input, then adds the add input.

mod-delay

arglist: (sig dtime &optional maxdtime)

package: PWSYNTH
menu: SynthIdelay
Delay line with modulation and linear interpolation. Delay is given in seconds and can’t
exceed the specified maximum.

mod-delay-bank

arglist: (sig time max-delay)

package: PWSYNTH
menu: SynthIdelay
Bank of modulated delay lines with linear interpolation. Delay times are given as a
vector whose width determines the number of delay lines in the system.

236 2. TUTORIAL

mod-delay-lg3

arglist: (sig dtime &optional maxdtime)

package: PWSYNTH
menu: SynthIdelay
An interpolating delay line with 3rd order lagrange interpolation. Offers improved
sub-sample accuracy. Delay time is given in seconds, and can’t exceed the specified
maximum.

moog-ladder

arglist: (sig freq q)

package: PWSYNTH
menu: SynthIfilters
Implementation of a digital model of the classic Moog filter

mouse-x

arglist: (min max curve-expt)

package: PWSYNTH
menu: SynthIinput
Scales the current mouse x-position according to min-max and curve. Mouse cursor
located at the left edge of the active window results in value ’min’ wile the right edge
corresponds to value ’max’. ’Curve’ allows you to specify a polynomial response. ’Curve’
1 corresponds to a linear response, while 2 corresponds to a parabolic response.

mouse-y

arglist: (min max curve-expt)

package: PWSYNTH
menu: SynthIinput
Scales the current mouse y-position according to min-max and curve. Mouse cursor
located at the top edge of the active window results in value ’min’ wile the bottom edge
corresponds to value ’max’. ’Curve’ allows you to specify a polynomial response. ’Curve’
1 corresponds to a linear response, while 2 corresponds to a parabolic response.

msub-vector

arglist: (mono vector)

package: PWSYNTH
menu: SynthIvector
Substracts the mono signal from all vector elements.

2.7. SYNTH 237

mtx-mul

arglist: (input-vector matrix)

package: PWSYNTH
menu: SynthIvector
Multiplies input vector with another vector representing a n x n matrix

mul-vector

arglist: (vector1 vector2)

package: PWSYNTH
menu: SynthIvector
Calculates the product of two vectors element by element.

multi-trigger

arglist: (trigg)
package: SYSTEM
menu: SynthImisc
trigger all connected trigger inputs

num-box

arglist: (num)
package: SYSTEM
menu: Data
returns num; num must be a number

onepole

arglist: (sig coef gain)

package: PWSYNTH
menu: SynthIfilters
First order IIR filter component with unit delay feedback specified by coef and gain.

onepole-vector

arglist: (sig coef gain)

package: PWSYNTH
menu: SynthIfilters
Vector of first order IIR filter components with unit delay feedback specified by coef and
gain.

238 2. TUTORIAL

ort16-mtx

arglist: (vector)
package: PWSYNTH
menu: SynthIvector
Multiplies input vector by an 16x16 orthogonal matrix to create output vector.

ort8-mtx

arglist: (vector)
package: PWSYNTH
menu: SynthIvector
Multiplies input vector by an 8x8 orthogonal matrix to create output vector.

pad-vector

arglist: (vector length)

package: PWSYNTH
menu: SynthIvector
Truncates or zero-pads the incoming vector to match the specified number of elements.

parab-ip

arglist: (sig lag)

package: PWSYNTH
menu: SynthIcontrol
Smooths input signal with 2nd order polynomial interpolation. Response lag is given in
seconds.

param-eq

arglist: (sig freq gain q type)

package: PWSYNTH
menu: SynthIfilters
A band of parametric EQ. Freq is the center frequency in Hertz, gain is a multiplier
where applicable (0.5 is approximately -6dB) and Q specifies filter quality or sharpness.
Various types of equalizer shapes can be accessed by the type parameter.

permut-circ

arglist: (list &optional nth)

package: PATCH-WORK
menu: SetsICombinations
Returns a circular permutation of a copy of <list> starting from its <nth> element,
(<nth> is the argument of the second optional input) (which defaults to 1) , (<nth>
= 0 means the first element of <list>, <nth> = 1 means the second element of <list>,

2.7. SYNTH 239

and so on) For example, if <list> is (1 2 3 4 5 6 7 8 9 10) <permut-circ> returns (2 3
4 5 6 7 8 9 10 1), (the default is one). On the other hand (if the second input is open,
<nth>), if <list> is (1 2 3 4 5 6 7 8 9 10), and <nth> is 3 (zero) , <permut-circ>
returns (4 5 6 7 8 9 10 1 2 3)..

permut-random

arglist: (list)
package: PATCH-WORK
menu: SetsICombinations
Returns a random permutation of list.

poly-shaper

arglist: (signal coefs-pos coefs-neg)

package: PWSYNTH
menu: SynthIwaveshaping
Shapes positive and negative parts of signal with two polynomials specified by vectors
of coefficents. The polynomial coefficent vectors should be given in an ascending order.

posn-match

arglist: (list l-nth)

package: PATCH-WORK
menu: List
<posn-match> can be a number or a list of numbers. Returns a copy of <l- nth> where
each number is replaced by the corresponding element in the list <l>. For example,
if <list> is (a b c d) and <l-nth> is (2 (0) 1) the box returns (c (a) b), where the list
returned has the same structure as <l-nth>

posn-order

arglist: (list funct)

package: PATCH-WORK
menu: SetsICombinations
This module returns a list of positions of <list> ordered according to <funct>

pow

arglist: (mantissa exponent)

package: PWSYNTH
menu: SynthImath
Calculates the power of two inputs

240 2. TUTORIAL

power-fun

arglist: (x0 y0 x1 y1 &optional x2 y2 print)

package: PATCH-WORK
menu: Function
Calculate the parameters of the equation y = a xb + c or y = a xb as a function of the
points (x0,y0) (x1,y1) and (optional) (x2,y2) and create the corresponding function,
either y = axb (for two pairs of points) or y = a xb + c (for three pairs of points).

prime-factors

arglist: (number)
package: PATCH-WORK
menu: Num series
Returns the prime decomposition of <number> in the form (... (prime exponent) ...)
Primes known to the system are the 1230 primes ranging from 1 to 9973. They are
in the global variable *prime-numbers*. You can change This variable by typing (setf
prime-numbers (epw::gen-prime <max>)) where <max is an upper bound.

prime-ser

arglist: (max)
package: PATCH-WORK
menu: Num series
Returns the set of prime-numbers ranging from 0 upto max

prime?

arglist: (n)
package: PATCH-WORK
menu: Num series
Tests if n is a prime number. n must be smaller than 99460729.

pwgl-and

arglist: (arg &rest args)

package: SYSTEM
menu: Control
similar to the lisp macro ’and’. Evaluates the inputs in order. If any eval returns nil, quit
and return nil. Else, return the value of the last input.

pwgl-circ

arglist: (reset evalreset clist &rest clists)

package: SYSTEM
menu: Control

2.7. SYNTH 241

circulates the contents of ’clist’ and the optional arguments ’clists’. The circular lists can
either be reset (1) manually by clicking the ’reset’ button or by (2) evaluating a patch.
In the latter case the reset option is active only if the second menu input-box contains
’:yes’. The box is always reset when loading a patch or when the box is edited either
by adding or removing inputs or when editing the contents of one of the inputs. The
circular list inputs can contain atoms and lists - such as (1 2 3), (2 10s2), (1 (1 2 3) 3),
(a (2 7) b) or (a s d f g) - and/or lisp expressions that are evaluated each time the lists
are recirculated. This box is still under development.

pwgl-cond

arglist: (testfn input test1 val1 else)

package: SYSTEM
menu: Control
PWGL-cond tests pairwise - using ’testfn’ as a test function - the second input, ’input’,
with ’test1’, ’test2’, etc. (left column of input-boxes) until the test function succeeds.
The corresponding value input-box, ’val1’, ’val2, etc. (right column of input-boxes) is
returned. If the test function fails then the ’else’ input is returned.

pwgl-if

arglist: (test patch1 patch2)

package: SYSTEM
menu: Control
PWGL if, if ’test’ returns T, then the box returns ’patch1’, otherwise ’patch2’

pwgl-or

arglist: (arg &rest args)

package: SYSTEM
menu: Control
similar to the lisp macro ’or’. Evaluates the inputs in order. If any eval returns non-nil,
quit and return that value. Else, return nil.

pwgl-pop-circ

arglist: (circ-list)
package: SYSTEM
menu: Control
circulates a circ-list object

pwgl-pprint

arglist: (obj)
package: SYSTEM

242 2. TUTORIAL

menu: UtilitiesImisc
pretty-prints obj in the PWGL output browser

pwgl-print

arglist: (obj)
package: SYSTEM
menu: UtilitiesImisc
prints obj in the PWGL output browser

pwgl-progn

arglist: (patch &rest patches)

package: SYSTEM
menu: Control
evaluates each input in turn and returns the value of the last evaluation

pwgl-repeat

arglist: (count patch)

package: SYSTEM
menu: Control
PWGL repeat loop that evaluates ’patch’ input ’count’ times. It collects the results and
returns them as a list.

pwgl-sample

arglist: (object no-of-points &optional include-x?)

package: SYSTEM
menu: Editors
sample following 2D-objects: bpf, bezier, sound-sample and scrap collection. pwgl-
sample first calculates an internal sampling interval according to the min and max x
values and the ’no-of-points’ argument of the 2D-object in question. After this a train
of sampling pulses are generated and the respective y values are read at each pulse (x)
value. Normally, if ’include-x?’ is ’nil’, the box returns y values; if it is ’T’ then the box
returns x-y value lists.
- bpf returns a list of y values
- bezier returns a list x-y values
- sound-sample returns a list of y values (an approximation of an envelope of the sound
sample).
- scrap collection returns a list that contains sublists for each scrap-box (a polygon)
contained in the scrap collection. Each scrap-box sublist, in turn, contains a list where
the first item is the name string of the scrap-box, the second item is a list where the first
item is a x value followed by a list of all y values of the polygon at that specific x value,
for instance: ((’S1’ ((0.165 (0.451 0.678)) (0.248 (0.4439 0.672)) ..) (’S2’ ((0.3319
(0.227 0.341)) (0.41491032 (0.227 0.34))))

2.7. SYNTH 243

pwgl-value

arglist: (value-key &key init write)

package: SYSTEM
menu: Control
’pwgl-value’ allows to use pseudo-local variables or functions in PWGL. The values are
stored in a hash table and they can be accessed anywhere in a patch. Note that the hash
table is cleared with every top-level patch evaluation.
The ’value-key’ parameter is a keyword. If the ’init’ or the ’write’ input is not given then
the value stored under ’value-key’ is returned.
An initial value can be stored under ’value-key’ using the optional argument ’init’. After
this the value can be accessed by other ’pwgl-value’ boxes or from textual code in a
patch (for instance in scripting or constraints rules). If the initial value needs to be
updated after the initialization then use the ’write’ argument.
The ’init’ or ’write’ input can be any lisp value (i.e. number, list, etc.). or it can be also
a lisp lambda expression (i.e. ’ #’(lambda () (random 1.0))’), or a lisp closure (in this
case use the expression ’#.’ before the expression to force evaluation, i.e.: ’ #.(let ((x
0)) #’(lambda ()(prog1 x (incf x 2))))’)
If ’value-key’ is a list of keywords and ’init’ or ’write’ is a list of values then all keywords
and values are stored pairwise.
If ’value-key’ is a list of keywords then the stored values given by the ’value-key’ list are
returned as a list.

qt-controller

arglist: (chan ctrl val)

package: SYSTEM
menu: UtilitiesIMIDI
only for mac, set QT controller values on channel <chan>, chan and val can be num-
bers, chan and val can be lists, or chan can be a list and val a number

rand1

arglist: (amp1)
package: PWSYNTH
menu: SynthIosc
Outputs white noise ranging from -amp to +amp.

rand2

arglist: (low high)

package: PWSYNTH
menu: SynthIosc
Outputs white noise between the specified low and high boundaries.

244 2. TUTORIAL

randh

arglist: (low high freq)

package: PWSYNTH
menu: SynthIosc
A noise generator with output ranging from low to high combined with a sample and
hold operation. Freq specifies how often the output changes. At these intervals, a noise
generator is sampled for the next output value.

randi

arglist: (low high freq)

package: PWSYNTH
menu: SynthIosc
A noise generator with output ranging from low to high combined with an interpolating
sample and hold operation. Freq specifies how often the noise generator is sampled.
The output consists of linear segments between these points.

randi-vector

arglist: (low high freq)

package: PWSYNTH
menu: SynthIosc
A vector of noise generators with output ranging from low to high combined with an
interpolating sample and hold operation. Freq specifies how often the noise generator
is sampled. The output consists of linear segments between these points.

range-filter

arglist: (list posn &optional delete)

package: PATCH-WORK
menu: List
<range-filter> selects from a list <list> all elements falling inside a range of given po-
sitions <posn>. The range of positions <posn> is given either as a list of two numbers
or as a list of lists of two numbers. Each pair of numbers define an interval. If <delete>
(the optional argument) is zero (the default) any element in list falling inside one of
these intervals is selected. If <delete> is one, elements in <list> not falling inside one
of those intervals is selected. Intervals are defined by position inside list. For example,
if <list> is (4 7 2 3 1 8 5) and <posn> is ((4 5) (0 2)), <range-filter> returns (4 7 2 1
8). On the other hand (if the third input is open), if <list> is (4 7 2 3 1 8 5), <posn>
is ((4 5) (0 2)) and <delete> is 1, <range- filter> returns (3 5). The argument list can
be a list of lists. In this case the described behaviour applies to each sublist.

read-mor-db

arglist: (tr-factor max-cnt)

2.7. SYNTH 245

package: SYSTEM
menu: SynthIdatabase
reads a database-file in Lisp (or ’LL’) format and returns a list consisting of freqs, amps
and bandwidths (= !/ring-times). tr-factor gives the multiplication factor of the freqs-
list. max-cnt gives the length of the result lists. the database is sorted according to
amplitude and the first max-cnt amplitudes are scaled so that their sum is equal to 1.0.
The final result is sorted according to ascending freqs.

rem-dups

arglist: (lst &optional test depth)

package: PATCH-WORK
menu: List
<rem-dups> removes repetitions of elements in <lst>, according to <test> (if the sec-
ond input is open by clicking on ’E’). <test> must be commutative. For example, the
list (this this is my list list) returns (this is my list). Note that the last occurrence of
a repeated element in a list is preserved; thus, the list: (1 2 3 1 4) returns (2 3 1 4).
Returns a copy of <lst>.

remove

arglist: (item sequence &key from-end test test-not start end count key)

package: COMMON-LISP
menu: Lisp
Returns a copy of SEQUENCE with elements satisfying the test (default is EQL) with
ITEM removed.

reson

arglist: (sig freq amp bw)

package: PWSYNTH
menu: SynthIfilters
A two pole digital resonator. Freq (frequency) and bw (3dB bandwidth) are given in
Hertz. Output is scaled by the amp parameter.

reson-bank

arglist: (sig freq amp bw)

package: PWSYNTH
menu: SynthIfilters
A bank of two pole digital resonator. Freq (frequencies) and bw (3dB bandwidths)
are given as vectors in Hertz. Output is scaled by the amp parameter. The number of
resonators is specified by the width of parameter vectors.

246 2. TUTORIAL

reson-vector

arglist: (sig freq amp bw)

package: PWSYNTH
menu: SynthIfilters
A vector of two pole digital resonators. Freq (frequency) and bw (3dB bandwidth) are
given in Hertz. Output is scaled by the amp parameter.

rest

arglist: (list)
package: COMMON-LISP
menu: Lisp
no documentation

reverb-block

arglist: (signal delay max-delay filter-coef filter-gain allpass-coef

allpass-delay allpass-maxdelay)

package: PWSYNTH
menu: SynthIdelay
No documentation available

reverse

arglist: (sequence)
package: COMMON-LISP
menu: Lisp
Returns a new sequence containing the same elements but in reverse order.

ripple-delay-lg3

arglist: (sig delay ripple ripdepth maxdelay)

package: PWSYNTH
menu: SynthIdelay
An interpolated delay line with an additional ripple comb filter. Delay is given in seconds
and can’t exceed the specified maximum. Ripple specifies the second comb filter as a
fraction of delay time, while rippledepth specifies its depth.

ripple-slide-delay-lg3

arglist: (sig delay ripple ripdepth maxdelay)

package: PWSYNTH
menu: SynthIdelay

2.7. SYNTH 247

An interpolated delay line with an additional ripple comb filter. Delay is given in seconds
and can’t exceed the specified maximum. Ripple specifies the second comb filter as a
fraction of delay time, while rippledepth specifies its depth.

rt-envelope

arglist: (bpf trigg x-scale y-scale &optional x-offset y-offset)

package: SYSTEM
menu: SynthImisc
RT-envelope

rule-filter

arglist: (rules)
package: SYSTEM
menu: Constraints
The rule-filter box is used to filter PMC rules. These rules must be in textual form and
each rule should have a unique documentation string.
’rules’ input is typically connected to a text-box that contains PMC rules. The output
in turn is connected normally to a search/analysis/script box that accepts PMC rules as
input.
The incoming rules can be filtered by double-clicking the rule-filter box. This action
opens a dialog showing all the documentation strings of the incoming rules. Here the
user can select any rule subset that will be output from the box.

sample-fun

arglist: (fun xmin step xmax)

package: PATCH-WORK
menu: Function
Returns the list of values of <fun> from <xmin> to <xmax> with
<step>. For example: (pw::sample-fun ’sin 0 1 6.3) will return PWGL-
>(0.0 0.8414709848078965 0.9092974268256817 0.1411200080598672 -
0.7568024953079282 -0.9589242746631385 -0.27941549819892586) and
(pw::sample-fun (pw::make-num-fun ’(f(x)= x + 1)) 0 1 10) will return PWGL-
>(1 2 3 4 5 6 7 8 9 10 11)

sample-info

arglist: (sound-object property)

package: SYSTEM
menu: SynthImisc

248 2. TUTORIAL

sample-player

arglist: (sample fscaler amp trig &optional offset)

package: PWSYNTH
menu: SynthIsamplers
Plays the specified sample from the sample database when triggered. Playback speed
is determined by the fscaler parameter, with value 0.5 resulting in half speed playback.
Sample waveform amplitude is scaled by the amp parameter, and offset allows you to
trigger the sample from a specified location in seconds.

sc+off

arglist: (midis)
package: SYSTEM
menu: PC-set-theory
returns a list containing the SC-name and the offset (i.e. the transposition relative to
the prime form of the SC) of midis (a list of midi-values), midis can also be a list of lists
of midis in which case SC+off returns the SCs with offsets for each midi-value sublist

sc-info

arglist: (function sc-name)

package: SYSTEM
menu: PC-set-theory
allows to access information of a given SC (second input, SC-name). The type of infor-
mation is defined by the first input (function). This input is a menu-box and contains
the following menu-items:
CARD returns the cardinality of SC PRIME returns the prime form of SC ICV returns the
interval-class vector of SC MEMBER-SETS returns a list of the member-sets of SC
(i.e. all 12 transpositions of the prime form) COMPLEMENT-PCs returns a list of PCs
not included in the prime form of SC
The second input is a hierarchical menu-box, where the user selects the SC name. When
the input is scrolled, it displays all SC-names of a given cardinality. The cardinality can
be changed by dragging the mini-scroll view in the right-most part of the input. The
input accepts also a list of SC-names. In this case the SC-info box returns the requested
information for all given SC-names.

sc-name

arglist: (midis)
package: SYSTEM
menu: PC-set-theory
returns the SC-name of midis (a list of midi-values), midis can also be a list of lists of
midis in which case SC-name returns the SC-names for each midi-value sublist

2.7. SYNTH 249

score-pmc-search-space

arglist: (prop vals)

package: SYSTEM
menu: Constraints
returns a list of pmc-domain objects that contain internally an association list of prop-
erty/value pairs. This box is used in conjunction with the ’multi-score-pmc’ box, and its
output is normally connected to the ’search-space’ input of the ’multi-score-pmc’ box.
The user can choose different search properties, thus allowing to specify searches with
multiple parameters. These properties can be accessed during search in rules using the
m-method with the keyword ’:data-access’. After the search has been completed, the
result score of the ’multi-score-pmc’ box will be updated automatically.
The inputs are operated/expanded in input-pairs, where the first input is a menu-box
that allows to choose a property, and the second input is used to give different value op-
tions for this property. If a value input is (), then the respective property is disregarded
from the resulting search-space.
The following properties are supported directly:
:midi :rtm :fingering :enharmonic :vel :instrument :expression :notehead
User properties can be given by connecting a new keyword symbol to the ’prop’ input.
User properties will be stored in the ’plist’ slot of a note.
The :midi, :fingering, and :enharmonic properties accept as value ’T’. In this case the
respective value parameters are calculated automatically according to the score/instru-
ment information of the input score of the of ’multi-score-pmc’ box as follows:
:midi -> range of midis of the current instrument (:midi accepts
also directly a list of midi values) :fingering -> all possible fingerings of the current
instrument
for all midi values (this property works only for string instruments) :enharmonic -> all
possible enharmonics for all midi values
If :rtm = ’T’, then the value list will be (:attack :rest :tie)
Other properties work as follows:
:vel accepts a list of velocity values :notehead accepts a list of ENP notehead keywords
:expression accepts a list of ENP expression keywords

scs/card

arglist: (card)
package: SYSTEM
menu: PC-set-theory
returns all SCs of a given cardinality (card)

shuffle-vector

arglist: (vector indices)

package: PWSYNTH
menu: SynthIvector

250 2. TUTORIAL

Shuffles vector elements by recombining according to indices input. For example, in-
dices vector (2 1 0) reverses a three element vector.

sine

arglist: (freq amp)

package: PWSYNTH
menu: SynthIosc
A sine oscillator. Outputs a sinusoid with frequency freq and ranging from -amp to
+amp.

sine-vector

arglist: (freq amp)

package: PWSYNTH
menu: SynthIosc
Vector of sine-oscillators. Frequency is given in Hertz and output ranges from -amp to
+amp.

sort-list

arglist: (lst &optional test key)

package: PATCH-WORK
menu: SetsICombinations
This module sorts a list. By default, the order of the sort is ascending, but since the
module is extensible, you can open a second entry <test> to set the choice of order. If
<test> is ’>’ the order is ascending, ’<’ indicates descending, and ’=’ keeps the order
the same. One can also open a third input <key> for a function. The function <key>
evaluates each element of the list <lst> and the result is then sorted according to the
parameter <test>. (sort-list ’(3 13 15 17 9 10 16 3 6 7 1 12 6)) will return PWGL->(1
3 3 6 6 7 9 10 12 13 15 16 17),
(sort-list ’(3 13 15 17 9 10 16 3 6 7 1 12 6) ’>) will return PWGL->(17 16 15 13 12 10
9 7 6 6 3 3 1),
(sort-list ’((13 13 4) (3 9 3) (16 16 1) (11 13 6)) ’< ’first) will return PWGL->((3 9
3) (11 13 6) (13 13 4) (16 16 1)), and
(sort-list ’((13 13 4) (3 9 3) (16 16 1) (11 13 6)) ’< ’second) will return PWGL->((3
9 3) (13 13 4) (11 13 6) (16 16 1))

sound-in

arglist: (first-channel num-channels)

package: PWSYNTH
menu: SynthIinput
Outputs a vector of audio channels from the audio input device

2.7. SYNTH 251

stereo-pan

arglist: (sig pan &optional pan-law-db)

package: PWSYNTH
menu: SynthImultichannel
Box that turns a monophonic signal into a stereo signal using panning. Pan-law adjusts
the center image level. The range for ’pan’ parameter is -1 for extreme left and +1 for
extreme right. Pan-law corresponds to the center image level in decibels, ranging from
-6 to -3.

streaming-player

arglist: (sample fscaler amp trig)

package: PWSYNTH
menu: SynthIsamplers
Works much like sample-player, but can stream partially loaded samples from the disk.
The streaming player doesn’t support sample loops or offsets. Please note that the
performance requirements increase with ’fscaler’.

sub

arglist: (value1 value2)

package: PWSYNTH
menu: SynthImath
Calculates the difference of the two inputs

sub-vector

arglist: (vector1 vector2)

package: PWSYNTH
menu: SynthIvector
Calculates the difference of two vectors.

sub/supersets

arglist: (sc-name card)

package: SYSTEM
menu: PC-set-theory
returns all subset classes of SC (when card is less than the cardinality of SC) or superset
classes (when card is greater than the cardinality of SC) of cardinality card.. The first
input is a hierarchical menu-box, where the user selects the SC-name. When the input is
scrolled, it displays all SC-names of a given cardinality. The cardinality can be changed
by dragging the mini-scroll view in the right-most part of the input.

252 2. TUTORIAL

subseq

arglist: (sequence start &optional end)

package: COMMON-LISP
menu: Lisp
Returns a copy of a subsequence of SEQUENCE starting with element number
START and continuing to the end of SEQUENCE or the optional END.

synth-box

arglist: (patch &optional mode output time)

package: SYSTEM
menu: SynthIsynth
select box and start/restart synth by pressing ’v’. To stop synth press ’s’.

synth-connect

arglist: (boxname)
package: SYSTEM
menu: SynthIcopy synth patch
simulates a connection by using the boxname input to access the box that is expected
to give its input to the synth-connect box

synth-ctrl-bpf

arglist: (bpf &optional x-scale y-scale x-offset y-offset)

package: SYSTEM
menu: SynthIcontrol interface
scales the incoming bpf and returns a bpf ctrl expression for a synth-plug box

synth-ctrl-if

arglist: (if-exp patch1 patch2)

package: SYSTEM
menu: SynthIcontrol interface
ctrl if

synth-ctrl-mapping

arglist: (abst class &optional function)

package: SYSTEM
menu: SynthIcontrol interface
creates control methods for synth

2.7. SYNTH 253

synth-ctrl-val

arglist: (ctrl-proc time)

package: SYSTEM
menu: SynthIcontrol interface
evaluates ctrl-process (ctrl-proc) at time, if time is a list time values then the ctrl-process
is evaluated for each time value

synth-plug

arglist: (keyword initval)

package: SYSTEM
menu: SynthIcontrol interface
allows to define entry-points for symbolic parameters at the leaves of a synth patch

table-filter

arglist: (test val list numcol)

package: PATCH-WORK
menu: List
<list> is a list of sub-lists. <numcol> is an index into <list> that selects a sub-list.
<test> is a test function that is tested against each element of that sublist and <val>
(e.g. (<test> <val> <element>). Matching elements are deleted from that sublist, as
well as elements at the same position in every other sub-list. Example: (table-filter ’=
100 ’((1 2 3) (4 100 6) (7 8 9)) 1) -> ’((1 3) (4 6) (7 9))

time-box

arglist: (patch)
package: SYSTEM
menu: UtilitiesImisc
Executes patch and prints the amount of time used in execution.

trigger

arglist: (freq amp)

package: PWSYNTH
menu: SynthIosc
An oscillator that emits an impulse train. Frequency is freq rounded to the nearest
integer period in samples. Amp is the amplitude of the impulse. Each impulse is accom-
panied with a Trigger event.

254 2. TUTORIAL

update-plug-value

arglist: (keyword &optional val)

package: SYSTEM
menu: SynthIcontrol interface
update-plug-value

update-slider-banks

arglist: (index &rest slider)

package: SYSTEM
menu: SynthImisc
updates when evaluated all slider setups of all slider-banks connected from the second
input onwards according to index. If ’index’ is a list of lists: ((dtime1 index1)(dtime1
index2) ..) then the updates are scheduled until the list is exhausted

value-box

arglist: (value)
package: SYSTEM
menu: Data
returns value. value can be a number, a list, a list in expand-list notation, a symbol, a
keyword, or a string

vbap2d

arglist: (sig azim)

package: PWSYNTH
menu: SynthImultichannel
An implementation of 2D Vector Based Amplitude Panning (VBAP, by Ville Pulkki, Lab-
oratory of Acoustics and Audio Signal Processing, Helsinki University of Technology).
Pan position is given in degrees (’azim’) and a multichannel amplitude panned signal
is generated based on the current vbap speaker configuration. This configuration is
defined in a separate box called ’vbap2d-conf’. See the tutorial for more examples.

vbap2d-conf

arglist: (spkrangles)
package: SYSTEM
menu: SynthImultichannel
configure VBAP2D speaker positions in degrees. A stereo setup (which is the default
configuration) can be defined using the ’spkrangles’ list (-45 45). In this case the left-
most position is achieved with an azimuth value -45,the center position with 0, and the
right-most position with 45. A typical quad configuration is for example (-35 35 145
-145).

2.7. SYNTH 255

vbap2d-dist

arglist: (sig azim dist revsc)

package: PWSYNTH
menu: SynthImultichannel
An implementation of 2D Vector Based Amplitude Panning (VBAP, by Ville Pulkki, Lab-
oratory of Acoustics and Audio Signal Processing, Helsinki University of Technology).
Pan position is given in degrees (’azim’) and a multichannel amplitude panned signal
is generated based on the current vbap speaker configuration. This configuration is
defined in a separate box called ’vbap2d-conf’. See the tutorial for more examples.
This box has two extra inputs when compared to ’vbap2d’ box: ’dist’ that approximates
the distance of the source, and ’revsc’ that can be used to scale the additional reverb
signal. ’vbap2d-dist’ scales the output signal according to the ’dist’ parameter, and it
returns an extra channel that can be used as a mono reverberation output.

x->dx

arglist: (xs)
package: PATCH-WORK
menu: Num series
Returns the list of the intervals between the contiguous values of a list <xs>. <xs> can
also be a list of lists of values. For example (pw::x->dx ’(0 4 5 9 6 2 3 3)) will return
PWGL->(4 1 4 -3 -4 1 0)

x-append

arglist: (l1? l2? &rest lst?)

package: PATCH-WORK
menu: List
appends lists or atoms together to form a new list. This box can be extended.

x-diff

arglist: (l1? l2? &optional test key &rest list)

package: PATCH-WORK
menu: SetsICombinations
This box compares l1? to l2? and then returns all elements present in l1? but not
in l2?, as a list. If the optional <test> argument is added, it is used as a predicate to
detect equality between elements. Default value for <test> is the function ’equal. If the
optional <key> argument is added, it is used as an accessor (e.g. first, second etc.) into
the elements of the lists, prior to executing the <test> function. Additional lists can be
compared by extending the box. They have the same status as <l2?>

x-intersect

arglist: (l1? l2? &optional test key &rest list)

256 2. TUTORIAL

package: PATCH-WORK
menu: SetsICombinations
This box returns a list of elements which are common to both <l1?> and <l2?>.If
the optional <test> argument is added, it is used as a predicate to detect equality
between elements. Default value for <test> is the function ’equal. If the optional
<key> argument is added, it is used as an accessor (e.g. first, second etc.) into the
elements of the lists, prior to executing the <test> function. Additional lists can be
compared by extending the box. Beware that this operation is not commutative. For
example: (x-intersect ’(1 2 4 5 4) ’(2 4)) will return -> (2 4 4) (x-intersect ’(2 4) (1 2
4 5 4)) will return -> (2 4)

x-union

arglist: (l1? l2? &optional test key &rest list)

package: PATCH-WORK
menu: SetsICombinations
This box merges 2 lists, <l1?> and <l2?>, into a single list, with no repetitions. If the
optional <test> argument is added, it is used as a predicate to detect equality between
elements and and avoid repetition. Default value for <test> is the function ’equal. If
the optional <key> argument is added, it is used as an accessor (e.g. first, second etc.)
into the elements of the lists, prior to executing the <test> function. Additional lists
can be compared by extending the box.

x-xor

arglist: (l1? l2? &optional test key &rest list)

package: PATCH-WORK
menu: SetsICombinations
This box compares lists <l1?> and <l2?> for elements that are present in either one or
the other list (but not in both), and then returns them in a list. If the optional <test>
argument is added, it is used as a predicate to detect equality between elements. Default
value for <test> is the function ’equal. If the optional <key> argument is added, it is
used as an accessor (e.g. first, second etc.) into the elements of the lists, prior to
executing the <test> function. Additional lists can be compared by extending the box.

	Introduction
	Overview
	Quick-Start
	User-Interface
	Utilities Menu
	Mouse Operations
	Keyboard Shortcuts
	Documentation

	PWGL-Keyboard-Shortcuts
	2D-Keyboard-Shortcuts
	Main-Menus
	File
	Edit
	PWGL
	Patches
	Help
	Utilities

	Preferences
	PWGL Preferences
	Audio/Midi Setup
	Sample Paths

	Tutorials
	Programming-Interface
	Errors
	Textual Programming
	Libraries

	Libraries
	General Information about PWGL Libraries
	Where Libraries Are Installed
	Creating a PWGL Library

	Techincal Details
	Constituent Bits of a Typical Library
	The ASDF System Definition
	Defining Your Own Package
	Defining Standard Lisp Code
	Defining Boxes
	Defining Menus
	Compiling Your Library
	Tutorial Patches
	Library Properties

	Documentation
	Publications
	Credits
	Development Team
	Third-Party Libraries

	Tutorial
	Basic
	Start-Here
	Abstraction
	Extendable
	Input-Boxes
	Trigger-Boxes
	Sliderbank
	Application-Input-Boxes
	Database-Input-Boxes
	Constructor-Boxes
	Programming
	Box-Creation

	Control
	PWGL-Map1
	PWGL-Map2
	Circ
	Switch
	Const-Value
	PWGL-Value1
	PWGL-Value2
	PWGL-Value3
	Reduce-Accum

	Editors
	Introduction
	2D
	Spiral
	Interpol-Bpfs
	Bezier
	Bezier-to-BPF
	2D-Constructor
	2D-Chord-Seq
	PWGL-Sample
	BPF-Arithmetic
	Marker

	Chord-Editor
	Overtone-Arp
	Chord-Matrix
	Circ-Chords
	Constructing-ENP-Objects-1

	Score-Editor
	Transpose-Chords
	ENP-Constructor
	ENP-Constructor-Mix
	ENP-Object-Composer
	ENP-Score-Notation-Filter
	Advanced-Topics
	Adjoin-Voices
	Collect-Objects
	Constructing-ENP-Objects-2
	Constructing-ENP-Objects-3
	Canvas-Expression

	Scripting
	Scripting Syntax
	Mark-Matchings
	Analysis

	ENP-Script
	Schoenberg-Op25
	Kuitunen-Vocal-Texture
	Parallel-Fifths
	Score Manipulation

	Arpeggio-Chords
	Beethoven-Expressions
	Chopin-Octaves
	RTM-Modification
	Chopin-Layout
	Reassigning-Pitches
	Rhythm
	Basic
	Random-Rhythms
	Pulses
	Rhythm-Database

	Special-Boxes
	Display-Box
	OpenGL Macros
	Colors
	Examples

	Basic
	Using-Variables
	Macros
	Lorenz-Attractor
	Shell
	Introduction
	Basic-Principles

	Basics
	Managing-Options
	Error-Handling
	Output
	Examples

	Simple-Io-Example
	Opening-and-Viewing
	Executing
	Executing-Script
	Redirection
	Piping
	Hairy-Example
	Scripting
	Code-Box
	Introduction
	MIDI-List-to-Score
	Create-Bpfs
	PMC-Examples
	Transpose-Chords-V2
	Function-Argument
	Series-Filter
	Multi-Eval

	Frame-Box

	Constraints
	Introduction
	Main Components

	Overview
	Search-Space

	Search-Space Examples
	Search-Space
	PM-Syntax

	PMC Rule Structure
	PM-Part
	Lisp-Code Part
	Pattern Matching Examples
	PM-Syntax
	PMC-Rule-Examples
	PMC-Rule-Examples
	Heuristic-Rules
	Heuristic-Rule-Examples
	Score-PMC-Syntax

	Score-PMC Rule Structure
	Accessors

	Accessors
	Examples
	Accessor Test
	Accessors1
	Accessors2
	Accessors3
	Selectors

	Selector Keywords
	Examples
	Selectors
	M-Method

	M-Method Keywords
	Examples
	Utility-Functions
	Score-PMC-Rule-Examples
	Heuristic
	Profile-PMC
	Heuristics-W-Menu-Box
	Heuristics-W-Score-Bpfs

	PMC
	Cartesian-All-Perm
	12-Note-Chord
	PMC-PCS-Ex
	All-Interval-Series
	All-Interval-Series-2-Wildcard
	PMC-Beats
	Subsets
	Fantasiesonnightfantasies
	Fund-Suspension-Chain

	Score-PMC
	PMC Vs-Score-PMC
	3-Voice
	6-Voice
	Chord
	Grace
	HSG
	6-Z47b-Blues
	Grace-Duetto
	First-Species-Counterpoint
	Alberti-Bass

	RTM
	Introduction
	Rnd-Mod-RTM
	2-Part-RTM-Textures
	Reduce-RTM
	8-Voice-Attack-Dens
	RTM-Simulation
	RTM-Imitation1
	RTM-Imitation2

	Expression-Access
	Basic-Expression-Access
	Advanced-Expression-Access
	Sample-Score-BPF

	PC-Set-Theory
	Exploring-ICV
	Subsets-Distribution
	Supersets-Distribution

	Synth
	Introduction
	Synth Boxes
	Multichannel Signals
	Developer Tools

	Basic
	Sine
	RT-Sliders
	Vibrato
	File-Mode
	Envelope
	Sample-Load
	Sample-Play
	Interpolation

	Vector
	Basic-Vector

	Slider-Bank-Drummer
	Randi-Bell
	Combiner
	Indexor
	Envelope-Vector
	Multichan

	Multichan-Drummer
	VBAP2D
	Combine-Stereo-Signals
	Distance
	Vector-Applications

	Intpol-Filterbank
	Reson-Mix
	Masterswitch
	Copy-Synth-Patch
	Copy-Synth-Patch
	CSP-Bells

	Synthesis-Methods
	Additive
	Subtractive
	Fm
	Formants
	Granular

	MIDI
	MIDI-Membrane

	Compiler
	Stereo-Bell

	RT-Sequences
	Introduction

	RT-Sequences and Compositional Sketches
	With-Synth Macros
	Synth-Events and Synth-Triggers
	
	Triggering RT-Sequences
	RT-Seq1
	Poly-Seq
	Score1-Sine
	Score2-Envelope
	Score3-Expressions
	Score4-Vector

