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Abstract

Motivation: Frequency-domain analysis of biomolecular
sequences is hindered by their representation as strings
of characters. If numerical values are assigned to each of
these characters, then the resulting numerical sequences
are readily amenable to digital signal processing.
Results: We introduce new computational and visual
tools for biomolecular sequences analysis. In particular,
we provide an optimization procedure improving upon
traditional Fourier analysis performance in distinguishing
coding from noncoding regions in DNA sequences. We
also show that the phase of a properly defined Fourier
transform is a powerful predictor of the reading frame
of protein coding regions. Resulting color maps help
in visually identifying not only the existence of protein
coding areas for both DNA strands, but also the coding
direction and the reading frame for each of the exons.
Furthermore, we demonstrate that color spectrograms
can visually provide, in the form of local ‘texture’,
significant information about biomolecular sequences,
thus facilitating understanding of local nature, structure
and function.

Availability: All software for techniques described in this
paper is available from the author upon request.

Contact: anastas@ee.columbia.edu

Introduction

The main reason that the field of digital signal processing
did not yet have significant impact on biomolecular se-
quence analysis is that the former refers to numerical se-
quences, while the latter refers to character strings. In this
paper, we demonstrate that, by assigning proper (complex,
in general) numerical values to each character, digital sig-
nal processing of biomolecular sequences provides a set
of novel and useful tools. For example, we show that color
spectrograms, like the one shown in Figure 2, visually pro-
vide information about the local nature of DNA stretches;
and color maps, like the one shown in Figure 6 predicting
the exon locations shown in Table 1, can identify exons,
including their coding directions and reading frames.

Table 1. Locations and reading frames of the five exons of the gene F56F11.4

Relative position Exon length Reading frame

929-1135 207 2
2528-2857 330 2
4114-4377 264 1
5465-5644 180 2
7255-7605 351 1

For a DNA sequence of length N, assume that we assign
the numbers a, ¢, t, g to the characters ‘A’, ‘T’, ‘C’, ‘G’,
respectively. The resulting numerical sequence is:

x[n] = aualn] + tur[n] + cucln] + guglnl,
n=0,1,2,...,N—1 (1

in which uy[n], ur[nl], uclnl, and ug[n] are the binary
indicator sequences, which take the value of either 1
or 0 at location n, depending on whether or not the
corresponding character exists at location n (Voss, 1992).

Any three of these four binary indicator sequences are
sufficient to determine the DNA character string, because

ualnl +urn]+ucln] +ugln] =1, foralln. (2)

A proper choice of the numbers a,t,c and g for a
DNA segment can provide potentially useful properties to
the numerical sequence x[n]. For example, if we choose
complex conjugate pairs ¢t = a™ and g = c*, then the
complementary DNA strand is represented by:

X[n]=x*[-n+ N —1], n=0,1,...,N—1 (3)

and, in that case, all ‘palindromes’ will yield ‘conjugate
symmetric’ numerical sequences, which have interesting
mathematical properties.

Systems and methods

The main computational tool that we use is the Discrete
Fourier Transform (DFT) of a sequence x[n] of length
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N. The DFT is itself another sequence X[k] of the same
length N (Mitra, 2000; Oppenheim and Shaffer, 1999),
defined by:

N-—1 o
X[kl =" x[nle I WH",

n=0

k=0,1,....N—-1. 4)

The sequence X[k] provides a measure of the frequency
content at ‘frequency’ k, which corresponds to an under-
lying ‘period’ of % samples. It turns out that, except for
finite length effects that can be corrected (Oppenheim and
Shaffer, 1999), the square of the magnitude of the DFT
is also a scaled version of the DFT of the autocorrelation
sequence.
From equations (1) and (4) it follows that:

X[kl = aUalk] + tUrlk] + cUclkl + gUglk],
k=0,1,...,N — 1. 5)

For pure DNA character strings (i.e. without assigning
numerical values), the sequences Uglk], Urlk], Uclkl],
and Uglk] provide a four-dimensional representation of
the ‘frequency spectrum’ of the character string. The
quantity:

Skl = |Ualk]]> 4 [Ur[K1|* + |Uclk])*> + |UGlK]* (6)

has been used as a measure of the total spectral content of

the DNA character string, at ‘frequency’ k (Tiwari et al.,

1997, Silverman and Linsker, 1986; Li et al., 1994).
From equations (2) and (4) it follows that:

0, k#0
N, k=0 D

Therefore, we can reduce the ‘dimensionality’ of the
frequency spectrum representation from four to three, e.g.
by ignoring one of the four frequency components. If we
wish to reduce dimensionality in a symmetric manner
with respect to all four components, we may adopt the
technique (Silverman and Linsker, 1986) in which three
numerical sequences x,, xy, and x; are defined from
corresponding coefficients (a,, t,, ¢, gr), (ag, tg, Cg, g¢)»
(ap, tp, cp, g») by considering the four three-dimensional
vectors having magnitude equal to 1 and pointing to the
four directions from the center to the vertices of a regular
tetrahedron. For example, we can choose (a,, a,, ap) =

(03 0’ 1)’ (tratg7 tb) = (23ﬁ707 _%)9 (Cr’cgscb) =

Ualkl + Urlk] + Uclkl + Uglk] = |

ﬁ_gaé’ _%)a(gr’gg,gb) = (_ga_éa_%),
ence:

2
xp[n] = T(ZMT[n] —ucln] —uglnl)
6
Xg[n] = é(uc[n] —uglnl) (8)

1
xp[n] = §(3”A[n] —ur[n] —ucln] —ugln]

Frequency

Fig. 1. Spectrogram of a speech signal.

from which we can find the DFTs X, [k], X [k], Xp[k].
We can apply a ‘sliding window’ of small length to
a sequence, resulting in a ‘sequence of DFTs’, each
providing a ‘localized’ measure of the frequency content.
This is known as the Short-Time Fourier Transform
(STFT). The display of the magnitude of the STFT is
called a spectrogram, and it has long been used in the
analysis of speech signals. For example, Figure 1 shows
a spectrogram, created using MATLAB, corresponding to
a sampled speech signal as a time-frequency diagram, in
which image intensity is proportional to the corresponding
STFT coefficient. The appearence of the spectrogram
provides significant information, to the extent that trained
observers can figure out the words uttered in voice signals.

Algorithms and implementation
DNA spectrograms

We introduce spectrograms of biomolecular sequences
that simultaneously provide local frequency information
for all frequencies and for all four bases. To achieve
the latter, we reduce dimensionality form four to three
(retaining all information content) in a symmetrical
manner using equation (8), and we display the resulting
three magnitudes by superposition of the corresponding
three primary colors, red for x,, green for x, and blue
for x;. Thus, color conveys real information, as opposed
to ‘pseudocolor spectrograms’, in which color is used
for contrast enhancement. For example, Figure 2 shows
a spectrogram using DFTs of length 60 of a DNA stretch
of 4000 nucleotides from chromosome III of C.elegans
(GenBank accession number NC 000967).

The vertical axis corresponds to the ‘frequencies’ k from
1 to 30, while the horizontal axis shows the relative nu-
cleotide locations, starting from nucleotide 858 001. The
DNA stretch contains three regions (‘C.elegans telomere-
like hexamer repeats’) at relative locations (953-1066),
(1668—1727), and (1807-2028). These three regions are
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Fig. 2. Color spectrogram of a DNA stretch.

well depicted as bars of high-intensity values correspond-
ing to the particular frequency k = 10 (because period 6
corresponds to % = 10). Other frequencies also appear
to play a prominent, role in the whole region of the 4000
nucleotides.

In other examples, we have noted the presence of other
periodicities (including 10-11 periodicities) and features,
indicative of structural patterns. Such periodicities have
been observed before (Ioshikhes et al., 1996; Widom,
1996; Herzel et al., 1999; loshikhes et al., 1999; Stein and
Bina, 1999; Trifonov, 1998).

In developing spectrograms, we may use ‘tapered
windows’, in which central elements are assigned higher
‘weights’ compared with elements at the ends of the
windowed subsequences. The width and the shape of
the windowing operation play important roles in the
appearance of spectrograms. Furthermore, spectrograms
can be defined using the wavelet transform, rather than
the DTFT. The wavelet transform has been used to
analyze some fractal scaling properties of DNA sequences
(Arneodo et al., 1995).

Identification of protein coding DNA regions

The ‘frequency’ k = % corresponds to a period of three
samples, equal to the length of each codon. It is known
(Fickett, 1982; Chechetkin and Turygin, 1995) that the
spectrum of protein coding DNA typically has a peak at
that frequency. This property has been used (Tiwari et al.,
1997) to design a gene prediction algorithm. If we define
the following normalized DFT coefficients at frequency

N.
1 N
W=—X|—
N 3
1 N 1 N

c= Ly Y G- Ly, VY
N3 N 93

then it follows from equation (5), with k = %, that:
W =aA+1tT + cC + gG. (10)

In other words, for each DNA segment of length N
(where N is a multiple of 3), and for each choice of the
parameters a, ¢, ¢ and g, there corresponds a complex
number W = aA +tT + ¢C + gG. We have found that,
for properly chosen values of a, ¢, ¢ and g, W can be an
accurate predictor of not only whether or not the DNA
segment is part of a protein coding region, but also, in the
former case, in which reading frame it belongs, the latter
information coming from the phase ® = arg{ W}.

For each DNA segment, there corresponds a set of com-
plex numbers A, T', C and G, as defined in equation (9), in
which A+ C+T + G = 0, because of equation (7). These
quantities can be thought of as complex random variables.
They have quite different probabilistic characteristics de-
pending on whether or not the DNA sequence is part of
a protein coding region, as well as on the corresponding
reading frame. Under this interpretation, the quantity W,
as defined in equation (10), is a complex random variable
itself, and its properties depend on the particular choice of
the parameters a, ¢, ¢, and g.

To quantify the statistical properties of the random
variables A, T,C, and G for protein coding regions,
we arbitrarily chose chromosome XVI of S.cerevisiae
(GenBank accession number NC 001148). We isolated
all genes for which there were no introns, and for
which the ‘evidence’ was labeled ‘experimental’. If the
orientation of a gene was ‘complementary’, then we
properly transformed its values as if it were a ‘forward
coding’ gene (i.e. starting from the codon AT G). For
each of the chosen genes, we evaluated the corresponding
numbers A, T, C, and G, thus creating a set of statistical
samples. We found that, for that particular chromosome,
the average values of A, T, C, and G, scaled by 103,
were 8.0 — 56.3j, —84.1 + 37.4j, —46.2 — 23.2j, and
122.3+4-42.1 ;. By comparison, the magnitudes of A, T, C,
and G, for nonprotein-coding regions are much smaller,
typically between 1 and 2.

There have been many proposed ‘protein coding mea-
sures’ used for gene identification (Fickett and Tung,
1992; Claverie, 1997). In this paper, we predict whether
or not a given DNA segment belongs to a reading frame
from the magnitude of a properly defined W, i.e. after
optimizing the values of the parameters a, ¢, ¢, and g.

We wish to maximize the ‘discriminatory capability’ be-
tween protein coding regions (with corresponding random
variables A, T', C, and G) and ‘random DNA’ regions. Us-
ing a random number generator, we synthesized a random
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DNA sequence, with the same number and length as the
protein coding statistical sample, thus creating a different
set of random variables: Ag, Tg, Cg, and Gg.

Because of the factthat A+ 7 + C + G = 0, if we add
any constant value to the coefficients a, ¢, ¢, and g, then
the value of W in equation (10) remains the same. In order
to define an optimization problem with a unique solution,
we first fix one of the four coefficients (¢) to the value of
0,sothat W = aA+tT +cC+gG, and ¢ = 0. (We could
have reduced dimensionality in a symmetrical manner, but
this would not have enhanced predictive power.)

Therefore, the following problem is naturally formu-
lated once we have available a joint probabilistic model
for the complex random variables A, 7', and G (in our case
coming from our measurements from chromosome XVI
of S.cerevisiae) and for the complex random variables
AR, TR, and GRZ

Find the complex numbers «a, ¢, and g maxi-
mizing the quantity:

pla,t, g)
E{laA + (T + gG|} — E{laAg +tTr + gGRl}|

" std(jaA + T + gG|} +std(|laAg + tTg + gGRl)

(in which std stands for standard deviation)

under the constraining conditions (because W is also
invariant to rotation and scaling):

Efarg{laA +tT 4+ gG}} =0
lal + 1]+ |gl = 1.

The above mathematical problems (and similar ones
defined below) can potentially be solved yielding some
closed-form solution as a function of certain statistical
coefficients. However, there is no need for this, because
conventional optimization techniques, based on iterated
random perturbations starting from an initial guess,
immediately converge to the optimum values.

Using the resulting random variables, we found the
solution:

a=0.10+0.12j
c=0

t =—0.30—0.20;
g =0.45—-0.19/ (11)

corresponding to a value of p(a,t, g) = 2.18.

Using the coefficients in equation (11), we evaluated
the magnitude of the 351-point STFT for a DNA stretch
of C.elegans (GenBank accession number AF 099922),
containing 8000 nucleotides starting from location 7021.
The plot of its square is shown in Figure 3. The DNA
stretch contains a gene (F56F11.4) with five exons, all
identified by the peaks of the plot, at the following
positions, relative to 7021:

0 1000 2000 3000 4000 000 E000 7000 2000

Fig. 3. Plot of [aA +tT + cC + gG|2 for the five exons shown in
Table 1.

Comparison with the traditional spectral content
measure

We now compare the ‘optimized’ spectral content measure
laA + tT + cC + gG|? with the ‘traditional’ one from
equation (6), |A|> + |T|> + |C|> + |G|?, (or equivalently,
laA +1T 4+ cC + gG|and \/|A2 + T2+ |C|2 + |G|?)
in terms of their capabilities to distinguish between
coding and noncoding regions in DNA sequences. As
mentioned previously, we used all single-exon genes
with ‘experimental evidence’ from chromosome XVI
of S.cerevisiae to collect the statistics from which the
optimized values of a, ¢, ¢, and g were found.

We used these optimized values to compare the two
measures on the set of single-exon genes with ‘experi-
mental evidence’ from all remaining 15 chromosomes of
S.cerevisiae, thus avoiding any overlap. The number of
such genes from these 15 chromosomes was quite large
(3088), sufficient to create a rendition for the estimated
probability density functions (pdfs) shown in Figure 4.
The pdfs for the optimized spectral content measure
are drawn in red color; those for the traditional spectral
content measure are drawn in green color.

For comparison purpose, we generated an equal number
of ‘nongenes’ of the same length with the corresponding
genes and totally random nucleotide distribution. The pdfs
for ‘nongenes’ are drawn with dotted lines. All four curves
have identical integrals, estimating probability density
functions.

Because the traditional and optimized measures corre-
spond to different units, we did not label the horizontal
axis, but we scaled one of these pairs of pdfs so that the in-
tersection point of the red curves is vertically aligned with
the intersection point of the green curves. We note that the
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Fig. 4. Probability density functions for optimized (red) and
traditional (green) spectral content measures. Solid lines indicate
genes, dotted lines indicate ‘nongenes’.

value of the former is less than half the value of the latter,
that the solid red curve is to the right of the solid green
curve, and that the dotted red curve is to the left of the dot-
ted green curve. This indicates that the optimized measure
improves upon the traditional measure because the ‘dis-
tance’ between the red graphs is larger than the ‘distance’
between the green graphs.

The improved performance of the optimized measure
is also demonstrated numerically in Table 2, showing
that the scores p(a,t, g) of the optimized measure are
higher compared to the traditional one, in each of the 15
chromosomes.

We note that, in addition to improved performance,
the optimized measure may be computationally simpler
than the traditional one, because it only requires the
computation of one Fourier Transform of the sequence
as in equation (1); the traditional technique requires the
computation of four Fourier Transforms and of the sum of
the squares of their magnitudes.

Reading frame identification

We label the three reading frames by the number
mod(n, 3) + 1 where n is the leftmost location of any
codon triplet. According to this definition, the reading
frames corresponding to each of the five exons of the gene
are given in Table 1.

In order to distinguish forward-coding reading frames
from reverse-coding ones, we augment the notation by
including a ‘tilde’ on the numerical value assigned to a
reverse-coding reading frame. For example, the bases at
locations (0, 1, 2) form codons at either ‘reading frame

Table 2. Comparison of scores using optimized and traditional measures of
spectral content in the first 15 chromosomes of S.Cerevisiae

Number Score of Score of
of genes optimized measure traditional measure
1 56 1.82 1.37
2 256 1.81 1.52
3 87 1.71 1.20
4 444 1.72 1.32
5 163 1.84 1.56
6 67 1.79 1.36
7 306 1.73 1.44
8 147 1.56 1.30
9 113 1.93 1.54
10 209 1.76 1.37
11 187 1.73 1.41
12 277 1.68 1.41
13 255 1.78 1.44
14 219 1.80 1.44
15 302 1.67 1.34

1’ or ‘reading frame 1° depending on whether the codon
is ‘forward-coding’ or ‘reverse-coding’, respectively.
Similarly, the bases at locations (1, 2, 3) form codons
at either ‘reading frame 2’ or ‘reading frame 2’, and the
bases at locations (2, 3, 4) form codons at either ‘reading
frame 3’ or ‘reading frame 3’.

It has been known (Shepherd, 1981) that the different
reading frames exhibit different statistical characteristics.
In this paper, we use the phase ® of the complex random
variable W as the reading frame predictor, making use of
the following fact, which can be proved from the DFT
definition:

Assuming that a DNA segment is part of a
forward coding region (reverse coding will be
addressed later), we define the angles ¢1, ¢2,
and ¢3 to be expected values of the phase of
the random variable W = aA +tT + ¢C +
gG corresponding to the reading frames 1, 2,
and 3, respectively. Then, mod(¢p — ¢1) =
mod(¢s — ¢2) = mod(¢1 — ¢3) = — .

If, for example, ¢; = 34°, then ¢3 = 154° and ¢ =
274°, or, equivalently, ¢ = —86°. Therefore:

If, for a particular choice of the parameters
a,t,c, and g, the phase ® of the complex
random variable W has small variance, then
the angle ® will probably take values that will
be close to one out of three possible ones, ¢y,
¢2, and ¢3, differing from each other by 120°.

In order to maximize predictive power, it is desirable
to select the parameters a, c, t, and ¢ minimizing some

1077



D.Anastassiou

measure of the ‘variability’ (such as the statistical vari-
ance) of ©.

The definition of a unique meaningful statistical vari-
ance of the phase of a complex random variable is com-
plicated by the fact that the phase is not uniquely speci-
fied unless restricted to an interval of length 2, in which
case the two ends of the interval correspond to equiva-
lent values. Therefore, we have chosen instead the almost
equivalent task of maximizing the magnitude of the ex-
pected value of the random variable % =¢/® =cos O+
j sin®. We would like that number to be as large, and
as close to 1, as possible, because if it is only slightly
less than 1, this will imply that e/© is ‘concentrated’ on
a tiny area in the periphery of the unit circle in the com-
plex plane.

As in the previous optimization problem, we reduce the
dimensionality of the problem by setting ¢ = 0, and we
formulate the following optimization problem:

Find the complex numbers a, ¢, and g maxi-
mizing the quantity:

aA+1tT + gG

———— | (12)
laA + (T + gG|

q(a,t,g) = ‘E{

under the constraining conditions (for unique
solution):

ElargfaA +tT +gG}} =0
lal +[t] + gl = 1.

The solution of the optimization problem, for our data,
is given by:

a=0.26+0.10j
c=0

t =0.03—0.17;
¢=051-021; (13)

corresponding to a value of ¢(a,t, g), as defined in
equation (12), equal to 0.952, and to a standard deviation
of the phase ® = arg{aA+¢T +gG} of 18.2°. This means
that the probability that ® will be within, say, two standard
deviations (36.4°) from the mean (0°) is very high.

All statistical data were collected under reading frame 1,
and in that case the value of E{®} is 0°. Therefore, the
value of ® for reading frame 1 will be within 0° £ 36.4°,
with high probability. Therefore, as explained above, if
the data were corresponding to reading frame 2, then the
value of ® would have been within —120° £ 36.4°, with
high probability. Similarly, if the data were corresponding
to reading frame 3, then the value of ® would have
been within 120° + 36.4°, with high probability. There is
still a significant ‘gap’ between any two of those angular
regions.

120° 60°

R

00

A0 —60°

Fig. 5. Color coding of the Fourier Transform phase.

Table 3. Color-coded reading frame identification

RED READING FRAME 1
GREEN READING FRAME 2
BLUE READING FRAME 3

Color-coding

Because the number of primary colors (red, green and
blue) is the same as the number of possible forward coding
reading frames, we have conveniently assigned a color-
coding scheme, in which the value ® = 0° is assigned
the color ‘red’, the value ® = 120° is assigned the color
‘blue’, and the value ® = —120° is assigned the color
‘green’. In-between values are color-coded in a linear
manner, according to Figure 5, in which the three axes,
labeled R, G, and B, correspond to the primary colors red,
green, and blue, respectively.

Color maps

We use the above color coding for reading frame identi-
fication, according to Table 3. All STFT windows must
be aligned at the same reading frame. Therefore, we have
chosen for the sliding window to ‘slide’ by precisely three
locations for each DFT evaluation. Furthermore, we al-
ways make sure that the window size is a multiple of 3,
so that the frequency k = % is well defined.

Figure 3 identifies the five exons, based on the mag-
nitude of the STFT using the parameter values of
equation (11). We now use the parameter values of
equation (13) to enrich the information of Figure 3 in
the form of a color map shown in Figure 6. For each
nucleotide location in the color map, the color assigned
obeys the rule of Figure 5, and the intensity is modulated
by the square-magnitude, multiplied by 700 and clipped
to the interval (0, 1).

Note that the ‘color’ of the third exon is closer to orange
than to pure red, but the information is still sufficient to
accurately identify its reading frame to be 1.
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Fig. 6. Color map of reading frames for the exons of the gene of
Table 1.

Complementary sequences

The binary indicator sequences of the complementary
DNA strand are:

ugln] =ur[-n+ N —1]
urln]l=uasl-n+ N — 1]
uclnl=ug[—n+ N — 1]
uglnl =ucl-n+ N —1]

in which ux[nl, urln]l, ucln], and ugnl, n =
0,1,...,N — 1 are the binary indicator sequences
of the corresponding primary DNA strand.

We make use of the following fact, which can readily be
proved from the DFT definition in equation (4):

If two sequences x[n] and x[n] are related
to each other by equation (3), i.e. if X[n] =
x*[—n + N — 1], then

X [ﬂ] — o/ F x* [ﬁ} (14)
3 3

We now find the values of A, T, C, and G, as defined
in equation (9), for the numerical sequence of the comple-
mentary DNA strand, for which we will use the notation
A, T, C,and G, respectively. If we use the same choice for
a,t, c,and g for both strands, it follows from equations (9)
and (14) that:

A=el 3T T =ejo”A*,C~’ = ej%ﬂG*, G=e5cC*
(15)
in which A, T, C, and G are the corresponding values of
the primary strand. The value for W = X [%] is:

W =aA +1tT + ¢C + gG. (16)
Now, if we define:
L2 . 2 s 21

~ _2m ~ _j2m
a=e '3t  f=e'3a",

(9%}
I
Q
d
o
oq
oo
Il
Q
~
19|
o

Table 4. Locations and reading frames of six genes

Relative location Gene length Reading frame
761 — 1429 669 2
1687 — 3135 1449 1
3387 — 4931 1545 3
5066 < 6757 1692 2
7147 « 9918 2772 1
10143 < 10919 777 3

then from equations (15), (16), and (17) it follows that
W = (@A + 1T +¢C + §G)*.

In conclusion: we can simulate the processing of
the complementary strand in the reverse direction with
parameters values a, ¢, ¢, and g, by processing the primary
strand using the values of the parameters a, 7, ¢, g given
by equation (17), and taking the complex conjugate of the
resulting W.

It can easily be shown that the identical color code for
reading frame identification, shown in Table 3, applies to
reading frames I, i, and 3 as well.

Example

We have used a DNA stretch from chromosome III of
S.cerevisiae (GenBank accession number NC 001135).
Note that there is no overlap with the collected statistics.
The DNA stretch contains 12000 nucleotides starting
from location 212 041. It contains six genes (three forward
coding and three reverse coding) at the locations shown in
Table 4, relative to 212 040.

The major problem is that the color map for forward
coding will contain some ‘interference’ from reverse
coding regions, and vice versa (recall that the parameters
a,t, c,and g were optimized to distinguish forward coding
regions from noncoding regions, and not from reverse
coding regions). One way of solving this problem is to
partition the DNA segment into possible forward coding
regions and possible reverse coding regions (this approach
will fail to detect simultaneously multiple coding areas,
but these are rare occasions in most organisms).

Because of equation (17), the following optimization
problem is defined.

Find the parameters a, t, ¢, and g maximizing
the expected value of the following random
variable:

| aA+1T +cC+gG
T t*A+a*T + g*C + ¢*G |’

To assure unique solution, we may simply pose the
constraints ¢ = 0 and g = 1, in which case we found
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2000 4000 6000 8000 10000

Fig. 7. Color map for forward coding after partition for the genes
shown in Table 4.

2000

4000 6000 8000 10000

Fig. 8. Color map for reverse coding after partition for the genes
shown in Table 4.

the optimal values a = 0.049+40.149j and r = —0.122 —
0.518. The criterion for partitioning is, then, whether or
not V is greater or less than 1.

The resulting partitioning between forward and re-
verse coding is another unique feature of our proposed
approach, compared with existing Fourier analysis tools.
Figures 7 and 8 show the resulting color maps for forward
and reverse coding. Comparing with Table 3, we see that
the six genes were accurately color-coded, and we can
obtain a sense of the power and the limitations of these
tools.

In Anastassiou (2000), we provide more details and
propose a more sophisticated ‘soft partitioning’ scheme by
estimating the probabilities P(F/V) and P(R/V) that a
particular location belongs to a forward (reverse) coding
region, given that it belongs to either one, and given the
value of V for that location.

Discussion

The ‘frequency-domain’ tools introduced in this paper
are meant to synergistically complement ‘character-
string-domain’ tools. For example, they can be of help
in predicting precise splice sites in multiexonic genes
in gene prediction programs, because reading frame
identification excludes several potential splice sites due to
the requirement that consecutive exons are ‘in sync’.
Regarding visualization, there are several ‘character-
string-domain’ tools for bimolecular sequences (Hamori
and Ruskin, 1983; Mizrahi and Ninio, 1985; Cebrat and

Dudek, 1998), including ‘dot plots’ and various alignment
visualization tools. This is not true, however, for the
frequency-domain, where the only used visualization tool,
to our knowledge, is a pseudocolor rendition of the values
of the traditional spectral content measure of equation (6)
evaluated atk = % Such a bar is included, for example, in
the journal inset map recently resulted from the Genome
Annotation Assessment Project (GASP) for Drosophila
melanogaster (Reese et al., 2000).

The techniques presented in this paper provide im-
proved frequency-domain visualization tools, with use
of optimized spectral content measures, and color-coded
reading frame identification from the phase of Fourier
Transforms.

The color maps presented here were based on parameter
values that resulted from the collection of statistical data
exclusively from chromosome XVI of S.cerevisiae, as
an example. Such statistics, and the resulting optimized
parameter values, are expected to vary a cross species
and gene types. The assignment of optimized complex
numerical values to nucleotides and amino acids provides
a new computational framework (Anastassiou, 2000),
which may also result in new computational techniques
for the solution of useful problems in bioinformatics,
including sequence alignment, macromolecular structure
analysis and phylogeny (Durbin et al., 1998).

An important advantage of the proposed tools is their
flexibility. Spectrograms can be defined in many ways.
For example, depending on the particular features that we
wish to emphasize, we may wish to define spectrograms
using certain values of the parameters a, ¢, ¢, and g. Once
a visual pattern appears to exist, we have the opportunity
to interactively modify the values of these parameters in
ways that will enhance the appearance of these patterns,
thus clarifying their significance. It is hoped that visual
inspection of spectrograms will establish links between
particular visual features (like areas with peculiar texture
or color) and certain yet undiscovered motifs of biological
sequences.
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