CEHTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS

FEBRUARY 1987

Department of Music
Report No. STAN-M-55

AN INTRODUCTION TO THE PHASE VOCODER

John Gordon and John Strawn

Research sponsored by

The System Development Foundation

CCRMA
DEPARTMENT OF MUSIC
Stanford University
Stanford, California 94305-8180



An Introduction to the Phase Vocoder
John Gordon and John Strawn

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music
Stanford University
Stanford California 94305

1. Introduction

It is often desirable to obtain a time-varying spectral representation of a musical tone. One
application of such data (see Moorer 1978, 1979; Holtzman 1980 p. 167) allows the composer
to independently modify the frequency, time scale and the spectral content of recorded tones,
or even orchestral passages. A second allows composers and psychoacousticians to analyse
tones and melodic phrases from traditional musical instruments in order to gain insight into
the workings of traditional musical sound (Risset 1966; Freedman 1967, 1968; Beauchamp
1969; Grey 1975; Moorer 1978a; Strawn 1981).

The (digital) phase vocoder is a technique for converting a sampled signal into a time-
varying spectral format. It is computationally efficient when implemented using the fast
Fourier transform (FFT). If the sound is resynthesized from the analysis data, the output
will be virtually identical to the original sound if no parameters are changed. The phase
vocoder offers certain advantages over the heterodyne filter (Moorer 1973; see also Moorer
1975) used by Grey (1975) and others for time-varying spectral analysis.

This paper will attempt to present the phase vocoder on an intuitive level, so that a
musician interested in the technique can understand the key points. A rigorous treatment
of the mathematics involved can be found in the work of Portnoff (1976, 1978), on which
this paper is based.

A brief history of the phase vocoder will be followed by a description of the analysis
technique. Since the phase vocoder analyses the input into sequences of real and imaginary
numbers, we will show how to convert this format into magnitude and frequency functions
for each harmonic by using a simplified version of the conversion algorithm developed by

Moorer (19782a). Two algorithms are included to provide further conversion, should storage
" or examination of the data be desired before resynthesis. Finally, a way of resynthesizing
the sound sequence from the magnitude/frequency functions will be given.

In addition, we will provide a detailed description of these algorithms in the form of
code listings written in SAIL (Reiser 1976; Wilcox et al. 1980), which includes Algol as
a subset. These SAIL procedures have been compiled, executed, and rigorously tested.
Where possible, the code listings invoke routines included in (IEEE Digital Signal Processing

Copyright © 1987 by John Gordon and John Strawn. Draft of 9 February 1987 — do not
quote directly.



Page 2 Gordon and Strawn: Phase Vocoder

Committee 1979}, an important collection of Fortran procedures useful in many signal
processing applications. Admittedly. it is stretching the pseudo-Algol of the code listings in
this article to call a Fortran procedure directly. However, since the programs in the IJEEE
book are well-documented, carefully tested, and easily available in print and on tape, it
seems reasonable to avoid the messy details of designing the required routines independently.
Appendix B discusses some important details in the use of these Fortran routines.

2. Historical Overview

The term vocoder was coined from VOice CODER, which was the name of a device designed
to reduce the bandwidth needed for satisfactory transmission of speech over phone lines (see
Dudley 1939). The idea was to pass the speech signal through a set of contiguous bandpass
filters, such that the combined output of these filters at a given point in time would be a
rough approximation of the spectrum of the input. In theory, by transmitting a few filter
coefficients, a savings could be achieved in terms of the transmission bandwidth required to
transmit a given signal.

In practice, a savings was not possible, because too many channels were needed to
preserve speech quality. There was an additional problem, in that only the amplitude, or
magnitude, of each filter output was being transmitted; phase information was thrown out.
Thus, the speech resynthesized from the encoded version was never identical to the input,
regardless of the number of channels used.

The phase vocoder {Flanagan and Golden 1966), developed as an extension of the
original vocoder concept, preserved phase information, allowing the input and output of the
system to be identical. Schafer and Rabiner (1973b), Portnoff (1976, 1978), and Holtzman
(1980) improved the technique, with the result that the speed was increased (in terms of
computation time), while still allowing the synthesized output to be identical to the input.
This system is the basis for the implementation of the phase vocoder to be discussed in this
article.

3. The Analysis Technique

There are two parts to the phase vocoder: an analysis side and a synthesis side. As its name
implies, the analysis side accepts a digital signal as its input and produces what we will call
(among other things) analysis data; this is a (time-varying) parametric representation of the
input signal. If this analysis data is left unmodified and then fed to the synthesis side, the
output of the synthesis side will be a signal which is identical to the original signal.

Before delving into the details of how the phase vocoder works, it will be useful to
introduce an infuifive model of the process. We will then cover the many aspects of the
analysis technique, presenting the details in close coordination with the code listings.

3.1. Intuitive Models




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 3

3.1.1. The Phase Vocoder as a Bank of Filters

In many of the computer music applications to date, the phase vocoder is used to analyse
a short tone, such as a digital recording of a tone from a traditional Western acoustic non-
percussive instrument, with a frequency that does not change significantly. Assuming that
we know the fundamental frequency of the tone, we can design a low-pass filter with a cutoff
frequency between the first two harmonics. If the recording is passed through this low-pass
filter, the output of the filter will be a signal containing only the first harmonic. Similarly,
we can design a band-pass filter that would extract any particular harmonic. (We are using
the term harmonic in the sense given in (Moorer 1977).)

The phase vocoder can be seen as a bank of such filters, as shown in Fig. 1. In a
typical music-oriented application, the phase vocoder is set up so that only one harmonic
falls into each filter passband, or channel. However, the output of each filter (a horizontal
row of dots in Fig. 1) is not the harmonic that falls into the channel covered by the
filter, as one might expect. Rather, each channel produces a time-varying parametric
representation of what falls into the corresponding filter passband (a horizonal row of
dots in Fig. 1). In Portnofi’s implementation, when the tone is to be resynthesized, the
analysis data (parametric representation) from the various channels is manipulated (with
some fairly clever mathematics) to create a signal which is identical to the input, assuming
that the analysis data remains unchanged. The synthesis method (Portnoff 1976), which will
not be discussed here, has the advantage of being very efficient computationally, although
the details of the implementation are tricky. Another disad- intage is the fact that this
parametric data is difficult to relate intuitively to the traditional ways of discussing musical
sound.

3.1.2. Time-Varying Spectra

Another way of looking at the phase vocoder is to think of the analysis side as producing
an entire set of spectral data (a vertical row of dots in Fig. 1) for a very short segment of
the input signal at a given point in time. Working from this approach, we can say that the
phase vocoder thus produces a time-varying spectral representation of the signal.

In a typical musical application, this spectral data is examined to see how the respective
spectral components vary in amplitude and frequency (Dolson (1983) derives a one-to-
one correspondence between the amplitudes and frequencies of the spectral components
in the input signal and the amplitudes and frequencies produced by the phase vocoder).
Furthermore, for synthesis, this amplitude/frequency data can be used to drive a set of
sinusoidal oscillators, one for each harmonic, as is a common practice in electronic music.
When these sinusoidal components are added, the result should also be identical (within
computational accuracy) to the input. This synthesis approach {(not Portnoff’s) will be
presented later in this article.

3.2. The Bank of Filters




Page 4 Gordor and Strawn: Phase Vocoder

3.2.1. Determining the Number of Channels

In the literature on the digital phase vocoder, the number of channels is called N; we will
adopt the same convention throughout this article. N depends on the nature of the input
signal. We have already asserted that when the frequency remains more or less constant, it
makes sense to have each channel represent one harmonic (other options will be mentioned
later). This means that N\ should be set to the sampling rate sRate' divided by the
fundamental frequency of the tone:

- sRate
" fundamental’

3.2.2. Code for the Analysis Algorithm

Before examining phase vocoder theory in more detail, let's take a quick look at Fig. 2,
which shows code for the analysis side of the phase vocoder. This analysis procedure is
intended to be called from another program which takes care of such matters as keeping
track of the input signal (probably stored in a file); determining sRate, NV, and other items
to be introduced later; and receiving the output of the analysis (probably to be stuffed into
a file).

Specifically, the signal to be analyzed is stored in array input in Fig. 2, dimensioned
[0:nSamps — 1], where nSamps is the duration of the input signal in samples. For the purposes
of this introductory article, we will assume that all of the input signal is processed in one
call to the analysis procedure. In most cases, this is impractical because the input signal is
too long to fit comfortably into computer memory along with all of the other information
that the analysis procedure generates; thus the analysis procedure may have to be modified
accordingly. When the analysis is completed, arrays realPart and imagPart will be filled
with the parametric representation of the input.

3.2.3. Establishing the Bank of Filters

It turns out that the code for the analysis procedure does not have to set up an entire
bank of filters such as shown in Fig. 1. Rather, it is possible (due to some eziremely clever
mathematics given in Portnofl's article, which we will skip discussing here) to design just
one low-pass filter and then to use it for all of the channels. Due to the magic of the
mathematics, the low—pass filter effectively turns into a bandpass filter appropriate for each
successive channel.

3.2.4. Requirements on the Low-pass Filter

There are, however, some fairly stringent requirements on the low-pass filter, if the resyn-
thesized signal is to be the same as the input. Specifically, (a) the center sample (or median

1. In this article, variable names and non-reserved words from the code listings will be
printed in a typewriter-like font.




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 5

sample) of the impulse response must have the value of 1, and (b) the impulse response must
be 0 at sample numbers which are multiples of N. Such an impulse response is shown in
Fig. 4. These are precisely the constraints on the impulse response of an interpolating filter,
which is essentially a low—pass filter (Schafer and Rabiner 1973a; Crochiere and Rabiner
1981).

3.2.5. Designing the Low-pass Filter

Digital filter design is a rather complicated subject that is beyond the scope of this article.
But there is a fairly straightforward, standard method of designing filters called windowing
which is used in Fig. 2 (and elsewhere in this article); we will give a brief outline of the
process here.

The basic idea is to start with an ideal filter and to modify its impulse response as little
as possible so that the filter becomes useable but still has the desired filtering properties. An
ideal filter would allow all of the frequencies within its passband to pass through unchanged,
and would completely suppress all other frequencies; however, to achieve such a filter would
require an infinitely long impulse response. The impulse response of such an ideal low-pass
filter is given by the formula (Rabiner and Gold 1973, p. 91)

sin(27 foi)
e

(1)

where f, is the cutoff frequency divided by the sampling rate (so f. will be a real number
less than 0.5), and ¢ refers to the sample number. The low-pass filter that we want will
have a bandwidth of sRate/N, passing all frequencies within +sRate/2N. Hence, its cutoff
frequency will be sRate/2N, so that

sRate /2N
sRate
1

N

The formula for the impulse response of the ideal low-pass filter in this application is then

fc=

Nsin(ni/N)

e

{The extra factor of N is included for normalization to 1.0 at i = 0.) This formula can be
found in Fig. 2, embedded in a For loop.

3.2.8. Designing The Window

As for the rest of this For loop in Fig. 2, we can turn the impulse response into a useable
filter by multiplying it by an appropriate window, which is a kind of weighting function.
The impulse response is shortened because the window is required to be 0 after some number
of points. (This property of the window also guarantees that at any point in time we will
be looking only at a relatively short section of the input signal).

We now need to determine the appropriate window to use. There are several, but the
Kaiser window has been found to be best for our purposes. The Kaiser window allows for a




Page 6 Gordon and Strawn: Phase Vocoder

tradeofl between the width of the transition band (that is, how sharp the transition is from
the passband to the stopband) and the amount of attenuation in the stopband; this tradeoff
is controlled by a parameter called # (beta in Fig. 2). As B is increased, the transition
bandwidth increases, but the stopband suppression improves. We typically set § to 6.8,
which gives a stopband suppresion of around 71 dB. (For more information on the Kaiser
window as well as other windows, see (Rabiner and Gold 1975).)

In Fig. 2, the array win is filled with values for one-half of the appropriate Kaiser
window by the subroutine Kaiser, taken from (IEEE Digital Signal Processing Committee
1979, p. 5.2-16); Fig. 5 shows an example of such a window created by this subroutine. We
will not dwell further here on the fine points of calling the Kaiser subroutine (see Appendix
B), except to point out that since the window is symmetrical about its middle point, only
half of the window need be calculated by the subroutine {as shown in Fig. 5).

However, there is one important item which affects the Kaiser subroutine and several
other steps in the analysis — how long will the window be? For reasons discussed below
under “Time-Aliasing,” the input array is divided up into groups of N samples (thus N
turns out to be related to more than just the “number of channels™). Another parameter
passed to the analysis procedure in Fig. 2, nGroups, helps specify how many of these groups
of N samples are processed at a time in the loop called “analysis loop.” In the initialization
portion of Fig. 2, winLen (the length of the array win filled by subroutine Kaiser) is set
to N X nGroups + 1. Remember that the window is symmetrical about its middle point;
there are thus /N X nGroups points in each of the two “wings” of the impulse response, and
the +1 allows for the one point in the middle. The length of the total windowed impulse
response (called impLen in Fig. 2) is thus 2 X winLen — 1 points.

Changing the variable nGroups will ultimately affect the separation between adjacent
channels of the phase vocoder; higher values of nGroups will produce a longer filter and thus
a sharper separation between neighboring channels. On the other hand, a higher value of
nGroups means that the amount of the input signal entering into the analysis becomes longer,
which makes the resolution in time less sharp. The object is thus to make nGroups as small
as possible without losing frequency resolution. We have been able to hear the difference
between the cases in which nGroups is 3 and 4, but we have detected no differences when
nGroups is larger than 4, at least for tones from traditional musical instruments. Highly
transient sounds may require a larger nGroups in order to maintain sufficient frequency
resolution.

Now that the window has finally been designed, we can window the ideal low-pass filter
in Fig. 2 and place the result into array imp, which will hold the impulse response for what
we will call the protoiype low-pass filter for the rest of the analysis calculation. Notice in
Fig. 2 that the same value for a point in the filter is placed into imp[i] and imp|—i], thanks
to the symmetrical nature of the window and the impulse response.

3.2.7. Filtering by Convolution

Filtering is often done by convolution, which can be described as follows: The filter’s impulse
response is superimposed on the input sequence, and each sample of the impulse response
is then multiplied by the corresponding input sample, to yield a product sequence . In
Fig. 2, this product sequence will be impLen samples long. All these samples are added
together to form one sample of the filtered signal. (Note that this filtered signal is not yet
in the parametric form finally produced by the phase vocoder). The impulse response is
now shifted one sample in relation to the input sequence, and a new product sequence is




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 7

formed, again summed to yield the next output sample. (This process is explained in more
detail in (Moore 1978) and (Smith 1983)).

If the phase vocoder required a separate low-pass or band-pass filter for each channel,
then we would first have to obtain /N impulse responses. Then, for every input sample, we
would form NN product sequences (one for each channel), add each sequence together, and
obtain NV output samples, one for each harmonic at the given point in time. This would be
a lot of computation!

3.3. Implementation of the Analysis Process

Alternatively, we can start by forming a single partial product sequence, multiplying the
input signal (such as shown in Fig. 6a on a point-by-point basis with only the prototype
low-pass filter. This partial product sequence (Fig. 6b) can be multiplied further on a point-
by-point basis by a sinusoid at some appropriate frequency (determined by the channel) to
obtain one of the N product sequences. Then we can sum each partial product sequence
individually, as before, to obtain the output of the channel in question. This has the
advantage of being much more computationally efficient, while still producing the conversion
to the desired parametric representation (Portnoff 1976, Eq. 4).

Since the partial product sequence is created from samples that both precede and follow
the current input sample, we must tack on some extra samples to both ends of the array
input. The number of these samples on each end is called extra (= winlen — 1) in Fig.
2. The standard practice is to set all these points to 0, as is done in Fig. 2 (just after the
initialization). Array X holds the input signal suitably padded with zeros.

3.3.1. Filtering

We can now look at the meat of Fig. 2, which is the loop labelled “analysis loop.” The first
step is to filter the input signal in array X to form the partial product sequence mentioned
above. The first For loop inside “analysis loop” fills the array preAlias (the significance
of this name will become clear in the next sections) with the partial product sequence; the
filter in array win is used for this purpose. Figure 6a and 6b show this filtering process.

Now we meet up with the mathematical tricks that allow some of the steps outlined
in the previous section to be simplified or even skipped altogether. It is possible to form
* just one partial product sequence, and then subject it to time-aliasing and rotation. If this
is done properly, then the Fourier transform can be used to take care of multiplying the
partial product sequence by the sinusoids {one for each channel) mentioned earlier in this
section, and also the summation process. This is of course a considerable savings. We won't
explain why the math allows this (Portnoff 1976, Eq. (6) - (8)), but we will look at each
step that’s required in detail.

3.3.2. Time-Aliasing

The next step is to “fold” the array preAlias onto itself one or more times and to put
the result into the array called alias. Since the array preAlias still holds time-domain
samples, this process is called time-aliasing, analogous to aliasing in the frequency domain.




Page 8 Gordon and Strawn: Phase Vocoder

Again, this step is called for by the mathematics in Portnoff’s article, which will not be
discussed here.

This is also where the variable nGroups, already mentioned above, plays its major role.
The array alias is NV samples long; preAlias is 2N X nGroups + 1 samples long. This
means that preAlias will be folded into the alias array 2 X nGroups times. The result of
time-aliasing the filtered signal in Fig. 6b is shown in Fig. 6¢.

3.3.3. Rotation

The next step is to rotate the array alias by some appropriate amount. For clarity, a
separate array shift is provided in Fig. 2 to receive the shifted array; however, the shifting
could be performed using only the array alias (see Fig. 3). The amount of shift is given
by the variable inc, which is defined by iSampNo (the number of the current sample of the
input) modulo . When array alias in Fig. 6¢ is rotated, the result in the array shift
will appear as shown in Fig. 6d.

Again, we will ignore the mathematical reasons given in Portnoff s article for including
this step. (We are dealing here with the shifting property of the discrete Fourier transform
(DFT), as described in (Rabiner and Gold 1975) pp. 34, 57-58). However, this step helps
remove the necessity for multiplying the partial product sequence by a different sinusoid for
each channel, as outlined above.

3.3.4. Fourier Transform

The next step in the analysis is to take the discrete Fourier transform (DFT) of the array
shift.? In fact, it was Portnoff’s contribution to twist around the mathematics so that the
phase vocoder could be implemented with the fast Fourier transform (FFT). Using the FFT
offers great advantages because the FFT is computationally much more efficient than the
DFT or the brute-force filtering outlined above. Since the FFT can be used to perform the
analysis, the digital phase vocoder becomes very attractive as an analysis/synthesis tool.
(Rabiner and Gold 1975) and (IEEE Digital Signal Processing Committee 1979) both
devote an entire chapter to the Fourier transform; thus we will not dwell on the details of
Fourier analysis here. We should point out, however, that once an initial value for N is
determined (dividing the sampling rate by the fundamental frequency, as explained earlier},
it is still desirable to “fine-tune” the value to optimize the speed of the FFT. For example,
if the number of frequency bands is highly composite (i.e., if N's prime factors are small
numbers), an especially efficient version of the FFT can be used. Our standard practice is
thus to use the FFT algorithm developed by Singleton (1968) for Fourier analysis of a signal,
the length of which is a highly composite number; code for this algorithm is contained in
Section 1.4 of (IEEE Digital Signal Processing Committee 1979).> Some other routine in
Chapter 1 of (IEEE Digital Signal Processing 1979) might be chosen, depending on such

2. We are assuming here that the reader is familiar with the DFT and FFT; for an
introduction, see (Moore 1978).

3. See also Appendix B.




to appear in Computer Mugic. C. Roads and J. Strawn, Ed. Page 9

local considerations as the amount of available memory. In Fig. 2, subroutine FFT accepts
the array shift as its input and produces as its output arrays A and B, filled with real and
imaginary parts, respectively, of the parametric representation produced by the analysis.

3.3.4.1. Saving the FFT Output

We have almost reached the end of the analysis procedure. In Fig. 2, the procedure analysis
creates as its output the arrays realPart and imagPart, dimensioned [0:N /2, 0:nAnalPts—1].
We will ignore the meaning of nAnalPts for the moment, and look instead at the last For
loop in Fig. 2, where these two arrays are filled. The first point to be mentioned is that
the succesive samples from arrays A and B are copied into these realPart and imagPart
arrays: the first sample from A becomes the analysis datum for channel number 0 in array
realPart; the second sample from A becomes the analysis datum for channel number 1; and
so on. Array B is likewise copied into imagPart. One invocation of the FFT routine thus
provides a complete set of outputs for all of the channels 0 through N~1.

However, since the sound sequence is a sequence of rea! numbers, the FFT will be
conjugate symmetric. This means that the analysis data in arrays A and B will be duplicated
in channels 1 and N—1, 2 and N—2, and so on. Thus we can throw away half of the
analysis points (i. e. the analysis data for channels (V/2)+1 through N—1) with no loss
of information. Note, however, that even though one-half of the information in arrays A
and B is thus superfluous, these arrays must still be dimensi ned [0:N—1] to satisfy the
requirements of the FFT routine used here.

The other important feature of this last For loop in Fig. 2 is the scaling of the A and
B arrays by 1/(N/2). When the Fourier transform of an N-point signal is used as the
basis for analysis/synthesis to form an identity system, scaling by 1/N is required in one
of two places: (1) the analysis points must be scaled by 1/N; or (2) each point of the signal
resynthesized on the basis of the analysis data must be scaled by 1/N. In the FFT routine
given in (IEEE Digital Signal Processing 1979), the scaling is performed automatically for
the inverse transform (i.e. for the resynthesis from the analysis data; the code in question
is the DO 20 loop on p. 1.4-11 of (IEEE Digital Signal Processing 1979)). However, in the
implementation of the phase vocoder given here, this inverse transform will not be called.
Thus, this scaling must be done explicitly, and we choose to take care of this in Fig. 2.
Furthermore, the correct scaling in this case is not by 1/N, but rather by 1/(N/2), as
shown in Fig. 2 — for resynthesis, only N /2 + 1 channels will be added together, so that
scaling by 1/N in this case would produce a signal at half the expected magnitude.

To summarize: the analysis side of the phase vocoder as formulated by Portnoff requires
that the input signal be filtered with some appropriate filter. The filtered sequence is
subjected to time-aliasing and shifting. The FFT of the shifted signal produces a series of
analysis points, one for each channel.

3.3.5. The Meaning of R

At this juncture we should examine more closely the nature of the data contained in the
arrays realPart and imagPart . For a given channel, the absolute frequency of the analysis
data will be lost as part of the analysis process; what will remain is information about
the difference between the absolute frequency and the channel's center frequency. (This
will become clearer when we examine Figures 9 and 10). This is why we call the analysis




Page 10 : Gordon and Strawn: Phase Vocoder

data produced by the phase vocoder a paremetric representation. An important point here
is that the output of each channel is effectively bandlimited by the analysis process to lie
within the frequency range [~sRate/2N, sRate/2N]. This is significant because, due to
the sampling theorem, the output of a given channel no longer needs to be sampled at
the original sampling rate. Theoretically, a sampling rate as low as sRate/N would be
adequate. In other words, in storing the outputs of the channels, as many as N samples
might be skipped. If some of the points to be stored can be skipped, then they do not need
to be calculated at all! Appropriate interpolation during re-synthesis (as will be given in
Figures 7 and 11) should recover the intermediate samples. '

In practice, the phase vocoder is implemented with the variable R, which specifies the
number of points to skip in calculating and storing the analysis data. R is required to be
less than or equal to N. However, since the filters aren’t ideal in practice, and since the
interpolation won't be ideal in practice, R should be somewhat less than V. We have found
that N /2 is a suitable value for R.

3.3.5.1. iSampNo, nSamps

With this information, we can tie up the remaining loose ends in Fig. 2. Examination of
the “analysis loop™ will reveal that only every Rth point in the input signal is analyzed; the
others are simply skipped, although they play a role in the analysis, thanks to the nature
of the filtering process.

If the array input is dimensioned [0:nSamps—1], and only every Rth point is analyzed,
then the arrays realPart and imagPart can be dimensioned [0:N/2, O:nAnalPts — 1], where
nAnalPts is given by (nSamps — 1)/R + 1. The arrays realPart and imagPart thus hold
analysis data sampled at the reduced sampling rate.

3.3.5.2. Data Reduction and the Phase Vocoder

One final point to consider is the immense increase in data that the analysis could conceiv-
ably produce. There are N complex numbers in the output for every input sample analyzed
(the input samples are presumed to be real, not complex, numbers). This means a file con-
taining the analysis data could be as large as 2 X N times as big as the input sound file. We
have already seen that only half of the analysis points need to be retained, since the FFT
is conjugate symmetric. Since every Rth point will be skipped in performing the analysis,
the increase in data is equal to [(2 X N)/2]/R, which simplifies to N/R. We have already
seen that it is reasonable to set N /R to 2. This doubling of the amount of data is usually
acceptable.

3.4. Summary of Analysis

The analysis portion of the phase vocoder thus produces time-varying real and imaginary
outputs for each of N/2+ 1 channels. The analysis is performed every R points. In the
next section, we will explore how these real and imaginary values can be changed to the
musically more useful quantities of amplitude and frequency.




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 11

4. Conversion to Amplitude and Frequency

In musical applications, it is useful and sometimes necessary to convert the real and imagi-
nary terms provided by the phase vocoder analysis into intuitively more appealing amplitude
and frequency data. This section will be devoted to a discussion of the conversion process in
Fig. 7, which is mathematically equivalent to the one formulated by Moorer (1978a), though
somewhat more efficient computationally. This conversion procedure accepts as its input
the arrays realPart and imagPart filled by the analysis procedure of Fig. 2. As for the
other inputs to this procedure, the reader should recognize N and R, and the rest (along
with the output arrays) will be discussed below.

Converting the real and imaginary components to amplitude is accomplished with the
standard formula from Fourier analysis:

amplitude(n) = \/a?(n) + b2(n), (2)

where a and b are the real and imaginary components, respectively, at sample n.

On the surface, the frequency conversion process might appear to be equally simple.
Recall that the frequency of a sinusoidal component can be thought of as the derivative of the
instantaneous phase of the component. Since in standard Fourier analysis the instantaneous
phase 8 can be calculated as

6(n) = atan [g%%] , @)

it might be possible to calculate the frequency value by taking the derivative of 6 with
respect to time, yielding

db(n) da(n)
a(n) — b(n)
frequency = d(id(tn) = azd(tn)+ b2(n) - )

4.1. The Meaning of @

There are several difficulties in using these formulae, however. The first is that both of
them are non-band-limited, which means that the bandlimited signals in arrays realPart
and imagPart cannot be plugged directly into these formulae without potentially causing
some significant distortion if the resulting data are to be used to resynthesize the original
signal. Part of the solution is to interpolate the data in arrays realPart and imagPart back
to the original sampling rate (the alternative would be to apply the analysis system at each
point in time, i. e. set R = 1 for Fig. 2). Of course this would represent a large increase
in the amount of analysis data, which should be avoided if possible. Furthermore, the
interpolation must be accomplished using the same sort of low-pass interpolating filter found
in the analysis procedure, which is computationally more expensive than linear interpolation.

Our experience has shown a compromise can often be reached without affecting the
quality of the phase vocoder synthesis output: perform part of the interpolation with the
filtering method, and use linear interpolation for the rest. This is the reason for introducing
the parameter Q as one of the inputs to the procedure in Fig. 7. Ideally, we should interpolate
from the sample rate sRate/R of Fig. 2 back to sRate itself; instead, we will interpolate




Page 12 Gordon and Strawn: Phase Vocoder

back to sRate X Q/R in Fig. 7, where @ must divide evenly into R. Our current practice
is to set @ so that the interpolated data is at a sampling rate which is about 1/4 or 1/8 of
the original sample rate.*

The outputs of the conversion procedure, then, are the two arrays freqInterm and
maglnterm, dimensioned [0:N/2,0:nIntermPts—1], where nInternPts is given by (nAnalPts—
1)X @+1 (i.e. the number of analysis points at the intermediate sampling rate sRate X Q/R).
Of course, it is possible to force the conversion procedure to interpolate back to the original
sampling rate simply by setting @ = R.

4.2. Interpolation with a Low-pass filter

If @ is an integer {which is a valid assumption for our purposes), we could perform the
interpolation simply by inserting @—1 zero-valued samples between every adjacent pair of
samples in the real and imaginary analysis data for a given channel, and then pass this
new sequence through an appropriate low-pass filter. We could use the same filter that was
described above for Fig. 2, with f. = 1/2Q. However, it is more efficient to design a special
interpolating filter which takes advantage of the fact that (Q — 1)/Q of the input samples
are 0.

Again, we use the same sin(27f.7)/7¢ function given in Eq. (1), but this time with
fe = 1/(2Q). This function will be windowed with a Kaiser window designed by the same
subroutine Kaiser which was called in Fig. 2. The subroutine calls are identical, except that
the length of the interpolating filter in Fig. 7 is called intLen. One of the inputs to Fig. 7,
nQ@s, functions like nGroups in Fig. 2, except that no time-aliasing occurs in the conversion
procedure; n@s is thus involved only in establishing intLen.

The low-pass filter needs to be calculated only once. After this is completed, Fig.
7 enters a long For loop called “channel loop”, stepping through each channel. The
original real and imaginary data for the current channel are padded with zeroes in the
arrays tempReal and tempImag. Each of these arrays is interpolated using the filter in the
array interp to produce the arrays intermReal and intermImag containing analysis data
for a given channel at the intermediate sampling rate sRate X Q/R.

4.3. Frequency Conversion

The interpolation has solved the problem of Eq. (2) and (4) not being band-limited processes.
Eq. (2) can now be used to convert the data to amplitude, as shown in Fig. 7. There are
still other difficulties, however, with Eq. (3). One is that special filters known as linear-
phase band-limited differentiators must be designed to calculate db(n)/dt and da{n)/dt. (The
first-order approximation db(n)/dt ~ Ab(n) = b(n) — b(n — 1) is not adequate.) Another is
that phase information is lost, which can cause problems in the resynthesis when there are
discontinuities in the input signal or in its first derivative. Here, phase information needs

4. For the purposes of this article, we are operating under the assumption that it is more
efficient to do the analysis with the largest possible R and then to interpolate by a factor
of @ before doing the conversion. However, if N happens to be a power of 2, it may be
more efficient to make R smaller (such as in the range of R/Q), thereby eliminating the
interpolation step prior to conversion.




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 13

to be carefully preserved; otherwise, the discontinuity will be smeared in an unpredictable
way. Also, phase information needs to be preserved if one wishes to have the resynthesized
output signal identical to the input.

It is more appropriate for our purposes, therefore, to use the first-order approximation
df(n)/dt ~ Af(n) = 8(n)—6(n —1). This allows phase to be easily reconstructed by simply
accumulating Af(n). We thus have

Af(n) = atan [Z—((%))] - atan [z:—z—z—i—)) , (5)

which is the algorithm used in Fig. 7. (For a more detailed comparison of conversion-to-
frequency algorithms, see Appendix A.) In Fig. 7, the variables thisReal and thisImag
contain a{n) (=internReal[n}) and b(n) (=intermImag[n]), respectively. Likewise, this-
Theta holds #(n) and lastTheta holds 6(n — 1). Eq. 5 is applied on a channel-by-
channel, sample-by-sample basis to produce frequency information. After appropriate values
for magnitude and frequency have been calculated for the given channel, the results are
" stored in the output arrays magInterm and freqlnterm at the intermediate sampling rate
sRateX Q/R.

The procedure Atan2 in Fig. 7 calculates the quotient of its two arguments and returns
the inverse tangent of the quotient, with the sign of the inverse tangent (and thus quadrant
information) determined from the signs of the arguments. The result is stored in array
freqlnterm in Fig. 7. The Sail procedure Atan2 is not universally available, and so the
proper sign for the inverse tangent may have to be explicitly calculated by the conversion
software. One last important detail. we assume the initial conditions are set so that §(~1) =
0; for each pass through the “channel loop” in Fig. 7, 1astTheta is set accordingly. These
initial conditions reflect the assumption that each channel starts at its center frequency.

4.3.1. The Meaning of the Data in freqInterm

A few words of explanation should be given concerning the array freqinterm. This aspect
of the conversion can be tricky to explain and understand. To simplify matters, let us
assume here that the analysis output of a given channel represents a single time-varying
sinusoidal component of a more or less harmonic signal. Remember that for a given channel,
the phase vocoder provides information about the difference between the center frequency
of the channel, and the frequency of the component found in that channel. Moreover, for
o given channel (and this is the potentially confusing part), the data in array freqIntern
will represent the amount of change in the difference in phase between adjacent samples of
the signal analyzed in that channel.

To make this clearer, let us invoke the analogy of wavetable lookup for generating a
(sinusoid) waveform. The increment in wavetable lookup corresponds to the difference in
phase between successive samples just mentioned. The larger the increment, the higher
the frequency produced in wavetable lookup. The nominal increment for generating a
signal at exactly the center frequency of the channel is determined from the wavetable
length (corresponding to 27 radians), the sampling rate, and the frequency to be generated
(Mathews 1969). If the increment is changed between two successive samples to produce
some frequency other than the center frequency of the channel, that amount of change in the
increment would be contained in the array freqlnterm. The “increment” at a given point
in time for a given channel can thus be found by starting with the increment implied by




Page 14 Gordon and Strawn: Phase Vocoder

the center frequency of the channel and adding to it all of the “change in increment” values
in freqInterm, as will become apparent when we discuss Fig. 11. So long as freqIntern
contains only O for a given channel, then the frequency of that channel will revert to the
center frequency of the channel. Also, if freqInterm is constant but not 0 over several
samples of a given channel, then the frequency of the component in that channel will be
constant, but different from the center frequency of the channel.

One final point: for both the “change in increment” values (Af8(n) in Eq. 5) and the
“increment” itself, the units are radians per sample, but at the intermediate sample rate
sRate X Q/R. When calculating the values for the freqIntern array, it is thus necessary
to divide by R/Q (as is done in Fig. 7) to change the units to radians per sample at the
original sampling rate sRate.

4.3.2. Refinements to the Conversion Process

Some further refinements to the conversion procedure are needed, and they will be outlined
here. These require the introduction of the Boolean variables saved and magInvert in Fig.
7, and the real variables tempMag, lastMag, and saveTheta.

The first step in the conversion process of Fig. 7 is still to load the variables thisReal
and thisImag with values from the arrays intermReal and intermImag. Then we calculate
tempMag, the magnitude at the current sample number, according to the formula of Eq. (2).

If tempMag is exactly 0.0, then there is no point in taking the inverse tangent of the real
and imaginary parts according to Eq. (5); the Atan2 routine in Fig. 7 simply returns 7 /2
when thisReal = 0, regardless of the value of thisImag. If we accept this value, in most
cases a large phase jump will be introduced into the array freqIntern. Remember that
freqInterm contains data in radians per sample at the original sampling rate sRate, data
corresponding to the difference in “increment” between successive samples. If this difference
is suddenly slammed to /2, a significant jump in phase can occur when the component
for that channel is resynthesized; and meanwhile the frequency trace for that component
will suddenly skip in frequency (in fact, the component will skip by sRate/4). Since the
magnitude of the component coming from the channel is 0, it is reasonable to assume that
the frequency of the component in that channel has not changed. As shown in Fig. 7, this
is implemented by setting the appropriate location in freqInterm to 0. In Fig. 11, it will
become more apparent why this works.

Another source of spurious glitches in the frequency data for a given channel arises
when the amplitude envelope of the channel signal changes sign. Although natural sounds
are likely to have only positive envelopes, the analysis filtering can induce a change in sign
in the amplitude, especially if there are discontinuities in the signal. To help clarify this
problem and its solution, consider Fig. 8. If we assume that 8(n) (Eq. (3)) is a band-limited
signal, then Af(n) from Eq. (5) should lie within the bounds {—sRate/2N, +sRate/2N},
as indicated by point A in the figure. Of course, as was mentioned above, the arctangent
function isn’t band-limited; however, the assumption will hold in general unless the signal’s
amplitude is discontinuous or approaches 0. For points B and C in Fig. 8, this assumption
doesn’t hold; in these cases the change of phase is close to the maximum possible (7 or —x).
However, points B and C can be thought of as having a very small phase change (represented
by points D and A, respectively), but with “negative magnitude.” (Points B and C are drawn
on the unit circle in Fig. 8 for simplicity; but such behavior usually happens only when the
magnitude is much less than 1.0.)




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 15

If we leave the signal analyzed by the channel at point B or C, then a “glitch” will be
produced in the frequency trace. The solution is to move point C back to point A (or B
back to D). To compensate for this change, the sign of the magnitude produced by Eq.
(2) must also be changed. This is done in Fig. 7 by bringing thetaDiff within the bounds
{—n, 7}, and toggling the Boolean magInvert. In effect, point C is not moved, but the
representation of point C is changed to make things more convenient for the user. When
the signal hovering around point C eventually switches back to hovering around within the
“normal” bounds (7. e. within [-sRate/2N, +sRate/2N]), magInvert in Fig. 7 is toggled,
and the conversion procedure returns to producing “normal” outputs until the next phase
shift larger than 90° happens. An added bonus of this method becomes apparent when one
is working with artificially generated signals: if an amplitude modulator goes negative, the
negative modulator will be followed exactly by the phase vocoder analysis! However, when
displaying the amplitude traces from the phase vocoder analysis, in many applications it
will be sufficient to display only the absolute magnitude of the amplitude.

4.4. Converting to Hertz and Back

The arrays freqInterm and maginterm produced by the conversion procedure of Fig. 7 are
now ready for resynthesis, which will be presented in Fig. 11, or for modification, to be
discussed at the end of this article. Since the early days of computer music, composers and
researchers have found it useful to create displays of magnitude .nd frequency functions, the
latter expressed in Hertz, not radians per second. It might also make sense to first convert
the values in freqInterm to Hertz if these values are to be stored on disk and perhaps
accessed by other programs. (Conversion of the data in magIntern to decibels will not be
discussed here).

In Fig. 9, the procedure toHz fills the array outFreq with frequency values, in Hertz,
calculated from the values in the array freqIinterm. The other inputs N, R and sRate
should be familiar to the reader by now.

The procedure presented in Fig. 10 unravels the work done by Fig. 9. The array freq-
Intern filled by Fig. 10 should be identical in every respect to the array produced by the
conversion procedure of Fig. 7.

Both of the “channel loop” For constructs in Figures 9 and 10 should clarify the nature
of the data contained in the array freqIntern. In Fig. 9, the values in freqInterm must be
multiplied by the sampling rate and divided by 27 in order to keep the units straight. To
this we add the center frequency (in Hertz) for the current channel. The process is reversed
in Fig. 10. Thus, it is necessary to program explicitly what we have been claiming all along:
that the values in freqInterm specify a signal which represents the difference between the
signal coming out of the channel, and the center frequency for that channel.

5. Synthesis

We have now reached the final stage in the phase vocoder: resynthesizing the signal from
the analysis data. Synthesis is performed by the procedure synthesize given in Fig. 11. By
now, all of the inputs to this procedure should be familiar to the reader, except for freqMult,
which we will assume to be set to 1 until we reach the discussion of modification, below.
The procedure synthesize uses the values in magInterm and freqIntern to fill the array
sound, dimensioned [0:n0Samps — 1], where n0Samps is equal to (nIntermPts—1) X R/Q+1.




Page 16 Gordon and Strawn: Phase Vocoder

Note that if R does not divide evenly into nSamps (Fig. 2), the array sound may be one or
more samples shorter than the original array input of Fig. 2. At the sample rates typically
used for digital audio applications, however, this discrepancy should cause no problems.

The first step in synthesis, then, is to recover the analysis data at the original sam-
pling rate. As was discussed before, in most applications straightforward linear interpola-
tion, which is computationally much more efficient than interpolation with filters, will be
sufficient. R/Q — 1 samples must be inserted between adjacent samples in the arrays freq-
Interm and maglntern. In the implementation of Fig. 11, we choose to fill two arrays mag
and freq with data at the original sampling rate for only one channel at a time.

After these two arrays have been properly filled, some important initialization must be
performed for the current channel. In Fig. 11, centerFreq is assigned the center frequency
of the current channel, this time in radians, not Hertz.

The variable scale is a multiplier which must be included because N /2 — 1 of the
analysis channels were dropped at the end of the analysis procedure. This means that
almost all of these channels represent not one but {fwo channels, and for these channels the
variable scale remains at 1.0. The exceptions are the channels numbered 0 and N /2, for
which scale is set to be 0.5.°

For each sample (at the original sampling rate) of the current channel, a phase value
is calculated and stored in the variable phase; recalling the wavetable lookup analogy,
phase represents the current location in the wavetable. In the first line under “additive
synthesis” in Fig. 11, the true meaning of the data contained in the freqlntern and freq
arrays is again underscored: to shift the data in these arrays to their proper positions in the
frequency space, the center frequency must be included. In terms of the analogy of wavetable
lookup, the quantity freq|sampNo] + centerFreqin Fig. 11 represents an “increment.” This
“increment” is added to oldPhase to produce the value of phase which is the “location”
in the “wavetable.” Looking at this step in the synthesis process from a different point of
view, the “location” in a “wavetable” is advanced by centerFreq, and then adjusted by
freq[sampNo], for every sample. At the bottom of Fig. 11, phase is stored in 01dPhase for
the next pass. When the value in the freq array is 0, then the “increment” is equal to
centerFreq alone; this means that the channel produces a signal at its center frequency, as
has been repeatedly asserted.

As for oldPhase, it must be initialized to —freqiult X centerFreg, as shown in Fig.
11. The reasons for this are intimately connected with the initialization of 1astReal and
lastImag to [1,0] in Fig. 7. We assume that for all time before sampNo = 0, the input
signal is such that each analysis channel finds a sinusoidal component with amplitude of
1.0. These sinusoids are arranged such that the component in a given channel reaches 1.0
{corresponding to a phase of 0 for a cosine waveform) at a time corresponding to sampNo =
—1. Recalling the meaning of the data in freqInterm, freqIntern|0] contains the change
in phase necessary to go from 0 to the appropriate phase of the signal in a given channel at
time sampNo == 0. If we model the sinusoidal component as cos(w + ¢), then freqintern|0]
represents ¢. For this reason, phase in Fig. 11 should be set to freqInterm|0] without
adding in centerFreq. Since centerFreq is added during every pass through the “additive
synthesis” loop of Fig. 11, o1dPhase must be initialized so that centerFreq is effectively
cancelled out for that first sample.

5. scale could be set to 2 and 1, respectively, but then the outputs of the analysis
procedure in Fig. 2 would have to be scaled by 1/N rather than 1/(N/2).




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 17

The rest of the synthesis procedure in Fig. 11 is meant to be straightforward. The value
of phase, still in radians, is passed to the Cos routine, and the value returned is multiplied
by the current magnitude of the channel, contained in array mag.

5.1, Testing the Analysis/Synthesis System

If the phase vocoder is indeed an identity system, when the analysis data are not changed
before resynthesis, then the implementation should be tested with some suitable input signal.

Figure 12 shows the response to two input signals of the phase vocoder as implemented
in the code listings here. Although we will not discuss the details here, a system can be said
to be an identity system if the response to an impulse is likewise an impulse, or something
very close.

5.2. Other Synthesis Systems

Converting the phase vocoder analysis outputs to amplitude and frequency form is ap-
pealing to the musician and psychoacoustician because it makes it possible to discuss the
analysis results in intuitive and accessible form. Some of the other available time-varying
spectral analysis systems provide a precedent for this step. However, this is somewhat of
an aberration in the history of the phase vocoder. It turns out to be computationally much
more efficient to resynthesize the final output signal directly from the analysis data in its
real/imaginary form. Schafer and Rabiner (1973) give a “direct” form for doing so. Portnoff
(1978, p. 32, Eq. 2.39) derives a generalized synthesis equation which includes that of (Allen
1977) as a special case, and gives a more efficient implementation, again based on the FFT.
Holtzman (1980) improved upon Portnoff’s synthesis method even further. None of these
synthesis systems will be discussed here, as it would exceed the bounds of this article.

8. Applications of the Phase Vocoder

. 8.1. Compositional Applications

The phase vocoder, by itself and in concert with other signal processing techniques, can
be used in a compositional context to provide independent control of amplitude, frequency,
and spectrum. Although it has not been extensively explored in such applications to date

it promises to remain part of the computer musician’s repertory well into the foreseeable
future.

6.1.1. Modification of Frequency

The freqMult input to the synthesize routine of Fig. 11 has not yet been discussed. If
fregMult is set to 1.0, no frequency modification will be carried out. Other numbers can be
used, however: setting freqMult to 1.5 will transpose the sound up a fifth, and so on. Note
that freqMult affects both the data contained in array freq as well as the centerFreq
value calculated in Fig. 11. With freqdult not equal to 1.0, both the frequency of the




Page 18 Gordon and Strawn: Phase Vocoder

original signal as well as its spectrum are shifted together; alterations in timbre are thus to
be expected.

8.1.2. Time-Scale Modification

It is also possible to stretch or compress the sound in time, without altering its frequency or
spectrum. This is a modification that has been completely ignored in this paper; however,
the process is fairly straightforward. By way of handwave, to make the signal slower, simply
interpolate even more points in Fig. 11 (change @ to 2 X @, for example), and make other
modifications to the code -— array bounds, and so on — as necessary. To speed up the
signal, simply “leave out” every nth sample of the interpolated analysis data in the arrays
mag and freq in Fig. 11, and adjust the length of array sound accordingly.

The theses by Portnoff and Holtzman mentioned earlier were actually aimed at produc-
ing time-scale modifications of speech. Holtzman extended Portnoff's work to allow for
lime-varying time-scale modification (with the analysis data in the real/imaginary form).
Holtzman applied his system to the time-scale modification of two music passages: Etude
No. 2 in b by Fernando Sor, and part of the “Promenade” from Pictures af an Ezhibition
by Moussorgsky. Of particular interest is his observation that “...[d]uring compression, the
timbre of the instruments changed slightly. This is due to the fact that the resonating time
of the instruments was compressed by the same scale factor as the overall signal” (Holtzman
1980, pp. 167-168). Acceptable but noticeable changes were apparently also produced in
the timbres of signals subjected to time-varying time-scale modification (Holtzman 1980, p.
168). Time-varying time-scale modifications have, to our knowledge, not yet been tested
with the phase vocoder data in the amplitude/frequency form given here.

8.1.3. Spectral Modification

Since the phase vocoder produces a time-varying spectral representation of the input signal,
it would seem reasonable to attempt to filter the input signal by modifying the analysis data.
This can in fact be done; Portnoff (1978, pp. 38-43 and 60-65) discusses the limitations.
Briefly, not every arbitrary filter can be directly implemented in this manner. If arbitrarily
detailed changes in time and/or frequency are to be achieved, the analysis and synthesis
filters (in Portnoff's synthesis implementation) must be carefully designed.

8.1.4. Applications with Linear Prediction

Moorer (1978a) suggested that the phase vocoder be combined with the linear predictor
(Markel and Gray 1976; Makhoul 1976) to provide independent control of frequency and
spectrum. Briefly, the linear predictor is a signal processing technique originally inspired,
like the phase vocoder, by research into models of speech. In simplistic terms, the linear
predictor will “split” a signal into something like an “excitation” function (such as produced
by the human vocal cords, or the motion of a bowed string) and a set of time-varying
resonances (such as the human vocal tract, or the body of a violin), or filters. I the
original “excitation” /filter pair is combined for synthesis, the output of the linear predictor
is identical to the input. Tracy Lind Petersen, Charles Dodge, and James A. Moorer have
exploited the compositional possibilities of the linear predictor in the form of a synthesis




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 19

technique called cross-synthesis: if, for example, the “mouthpiece” of a clarinet as an
“excitation” source is grafted onto the “vocal tract” of a speaker, the result can be a talking
clarinet.

As Moorer (19782) has pointed out, the phase vocoder can be teamed with the linear
predictor such that the “excitation” signal alone can be modified in time or frequency, or
both. When this modified “excitation” signal is used for resynthesis with the linear predictor,
the resulting signal has been shifted in time and/or frequency, but the spectral envelope of
the signal has not been changed.

This can, however, have unexpected effects; Moorer (1978a, p. 45) warns: “When
pitch changes are made by blindly multiplying all the frequency traces [of the “excitation”
function] by a fixed factor, we sometimes get a very strange ‘choral’ effect. Although this
may be useful, it is not what we expected...”

In summary, the phase vocoder (perhaps with the linear predictor) promises to provide
powerful compositional tools that point beyond the “chipmunk” effect produced by blindly
speeding up or slowing down a signal.

8.2. Applications in Psychoacoustic Research

* Since the phase vocoder can produce analysis data in the intuitively appealing form of
amplitude and frequency functions, it and its predecessors have already proven useful for
the analysis of tones produced by traditional musical instruments. Earlier analysis systems
such as the heterodyne filter (Moorer 1973; Beauchamp 1969) suffered from a variety of
disadvantages. One major problem with time-varying spectral representations of a signal
lies in the enormous amount of data produced by the analysis. A long tradition of research
(Risset 1966; Beauchamp 1969; Grey 1975; Strawn 1980; Charbonneau 1981) indicates that
methods can be found to reduce this data by several orders of magnitude without any
significant modification in the timbre of the signal.

8.3. Other Applications and Related Systems

Channel vocoders have been found useful in suppression of additive noise such as the cockpit
noise transmitted with an airplane pilot’s voice. A discussion of this work or even a complete
list of references is beyond the scope of this article; (Gold, Blankenship and McAulay 1981)
provide an interesting introduction.

In his doctoral thesis, Petersen (1980) points out that the traditional channel vocoder by
its very nature contradicts the nature of human hearing, especially in light of research into
critical bands. In place of the constant-bandwidth filters such as shown in Fig. 1, Petersen
discusses in some detail the constant-Q transform, which features a frequency-dependent
filter bandwidth. When properly formulated, the constant-Q transform and its inverse
represent an identity system. Petersen presents some applications, especially in the area of
masking, perception of loudness, and noise suppression.

Gish (1978) seems to have developed a time-varying analysis/synthesis system which
seems to be better able explicitly to incorporate non-harmonic components. The details of
his method remain unpublished, however.




Page 20 Gordon and Strawn: Phase Vocoder

7. Using the Phase Vocoder

The amplitude and frequency plots produced by the phase vocoder cannot always be taken
at face value. Figure 12b shows a test signal consisting of a sinusoid at 440 Hz, which we
will call the carrier, modulated by another sinusoid at 18 Hz (the modulator). Figure 12d
shows the output of the synthesis routine of Fig. 11. Figure 13 shows individual amplitude
and frequency traces produces by the analysis of Figures 2, 7, and 9.

With a sampling rate of 4800 Hz and N set to 12, the carrier appears in channel
no. 1 (Fig. 13b and 13i). Note that the conversion procedure is able to properly track
the amplitude modulator below 0 in Fig. 13b. In testing the implementation of the phase
vocoder presented here, we found it necessary, as explained earlier, to retain the sign of the
magnitude. For display purposes, however, it may be more appropriate in many situations
to display simply the absolute value of the magnitude curves.

It must be emphasized that the wild frequency traces in parts of Fig. 13 are merely
an artifact of the extremely low amplitudes. When the amplitude for a given channel
approaches 0, the frequency trace goes wild.

At first glance, one might expect that only channel no. 1 would produce a non-zero
amplitude trace. Due to the vagaries of the Fourier process, however, non-zero amplitudes
appear in the other channels. Note that the maximum amplitudes in these other channels
are significantly smaller than the amplitude of channel no. 1; the outputs for these channels
should be interpreted accordingly.

This does not mean, however, that they are completely insignificant and can be dis-
carded. Moorer (1975) and Gish (1978) point out that the noise-like aberrations in amplitude
and frequency traces may well include essential information about rapidly fluctuating or in-
" harmonic components, information which is otherwise not explicitly captured by the phase
vocoder. At CCRMA, we are in the process of attempting to determine on the basis of
psychoacoustic tests how much of this micro-detail can be omitted from the phase vocoder
without any perceptible deterioration of the synthesis output side. Given Grey's results
(Grey 1975), a significant amount of data reduction should be possible (Strawn 1981).

If the sound is not harmonic, or it is more like a musical phrase with different pitches,
the number of channels may be increased. The use of the phase vocoder for analyzing whole
musical phrases is only beginning to be explored (see (Strawn 1981, 1983; Dolson 1983)).

Also, bear in mind that the bandpass filters of Fig. 1 are not ideal. Thus, if a certain
partial happens to be right at the edge of one passband, it will probably be passed by the
adjacent band as well. Therefore, one may want to make N large so that, in effect, “dummy”
channels accumulate this “crosstalk” phenomenon. Of course, one can design the filter’s
impulse response to have an arbitrarily steep rolloff, but then the amount of computation
is increased. Hence we have the common trade-ofl of accuracy versus computation time.

Conversely, if N is too small, it can happen that two spectral components with significant
amplitudes will fall into one channel. In this case, the amplitude trace will show “beats”
with a frequency corresponding to the difference between the two spectral components in
the channel.

We usually force N to be a multiple of 4, just to make sure that the prime factors stay
small. However, one could resample the input signal so that the new sampling rate divided
by the fundamental frequency (in other words, N) would be a power of 2; then an even
more efficient FFT could be used in the phase vocoder (see IEEE Digital Signal Processing
Committee 1979).




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 21

8. Summary and Conclusion

In this article, we have attempted to provide a general introduction to the phase vocoder,
in particular for musical applications, and also to place the phase vocoder into the context
of signal processing methods for time-varying spectral analysis. The algorithms presented
in the code listings here should enable the brave reader to implement the phase vocoder
on a wide variety of computer installations. However, in all fairness, we should not deny
that a full understanding of the phase vocoder requires a thorough understanding of the
mathematical basis for the technique. The extensive discussions in the theses by Portnoff
{1978) and Holtzman (1980) should help smooth the admittedly difficult steps to such an
understanding; this is mystical math at its finest.

The phase vocoder is currently the most refined technique for producing a time-varying
spectral representation of a musical signal; until further refinements come along, it promises
to be a valuable compositional and research tool.

9. Acknowledgments

The phase vocoder was originally implemented at Stanford by James A. Moorer. We are
also grateful to him for never failing to answer our many, sometimes confused questions.
Furthermore, we would like to thank Winken, Blinken, Nod, and ******* for their careful
reading of this manuscript and many useful suggestions.

10. Appendix A. Conversion-to-Frequency Algorithms

Section 4.3 and Fig. 7 show one algorithm for converting the real and imaginary phase
vocoder outputs to frequency. Since there are several ways to do this conversion, it is
useful to compare their advantages and disadvantages in regard to computational efficiency,
accuracy, and ability to provide or preserve certain desired information.

Let us use as a point of departure Eq. {4), reproduced here for convenience:

db(n) da(n)
n)  oln)— = bn)—-
frequency = did(t : = agd(tn)+ b%(n) e ®

This equation implies that the continuous function d6(t)/dt is first obtained and then
sampled to yield frequency(n). To realize this formula in a computer, we would have to start
with a sampled-data function (whether it be 6(n) or a formula involving a{n) and b(n)) and
design a linear-phase digital differentiator to calculate df(n)/dt with some desired accuracy.

/e have not determined how high an order is necessary to obtain proper accuracy, but
clearly a first-order diflerentiator is not sufficient. There is also the possibility of getting
huge spikes when the magnitude approaches 0.

In terms of computation, the number of multiplies for the differentiator is 1 plus its
order. If §(n) is first obtained using Eq. (3) and then differentiated, there will also be the
calculation of the arctangent function (which is on the order of seven multiplies at Stanford).
If the right-hand side of Eq. (4) is used, both a(n) and b(n) have to be differentiated, not
to mention the two multiplies needed to form the numerator and the divide to form the
final quotient. (The denominator is presumably available from the magnitude calculation.)
These calculations need to be done for every sample n.




Page 22 Gordon and Strawn: Phase Vocoder

As was mentioned in the text, however, the real problem with using this algorithm
for our purposes is not in the computational problems so much as in the loss of phase
information (or the difficulty in reconstructing phase). Why is phase so important? The
main reason has to do with resynthesis. Practically every implementation of sine-summation
synthesis (whether in hardware or software) is done by accumulating frequency into a phase
angle term, which is used in turn to address a sine table. Thus, especially if an identity is
to be maintained between input and output signals, the original phase for each sample (and
for each harmonic) must be reconstructed. If Eq. (4) is used to compute frequency, it might
be necessary to design a digital integrator to recover the instantaneous phase.

Even if the end goal is merely analysis, there is no need to compute a precise value for
instantaneous frequency (which Eq. (4) sets out to do). Indeed, “instantaneous frequency”
is a meaningless phrase for musical purposes, since the ear cannot ascertain frequency
information instantaneously. The most straightforward approach, then, is to approximate
frequency by computing “frequency-like™ values that can be used to reconstruct phase easily.
This leads to the formula Af(n) = 6(n} — 6(n — 1), which is just the inverse of the standard
sine-summation synthesis implementation.

If Eq. (5) is used to compute Af(n), we still have the seven or so multiplies it takes to
compute the arctangent function, but this is all the calculation necessary. The arctangent
routine has to be called only once per sample in Eq. (5), since 6(n) can be saved one pass
and used to calculate Af(n + 1).

The algorithm developed by Moorer (1978a) also computes Aé(r), and is mathematically
equivalent to Eq. (5), though a bit more complicated. There are four multiplies {and two
additions) involved in Moorer’s formula besides those necessary to compute the arctangent
function, and none of the partial products can be saved from one pass to the next. It is
possible that Moorer’s algorithm is numerically more stable than Eq. (5}, though we have
found both formulae to give identical results in our tests at Stanford (36-bit floating-point
arithmetic).

11. Appendix B. Using the IEEE Routines

This Appendix is included for those planning to use the Kaiser and FFT Fortran routines
from (IEEE Digital Signal Processing Committee 1979) included here in Figures 2 and
7. The casual reader should skip this Appendix; indeed, this Appendix will probably be
incomprehensible unless the reader has direct access to a copy of the IEEE book.

For the Kaiser routine, the following code is sufficient (IEEE Digital Signal Processing
Committee 1979, p. 5.2-16):

Subroutine Kaiser;
Function Ino.

This code can be lifted from the IEEE book without modification.
Using the FFT routine is slightly more complicated. In the following list, the page
numbers are taken from the IEEE book:

Subroutine FFT, pp. 1.4-10 through 1.4-11;
Subroutine FFTMX, pp. 1.4-11 through 1.4-15;
Function ISTKGT, p. 1.4-18;

Subroutine ISTKRL, p. 1.4-18; and




to appear in Computer Music. C. Roads and J. Strawn, E4. Page 23

the BLOCK DATA initialization on p. 1.4-9.

Note that none of the initialization routines in the “Standards” section of (IEEE Digital
Signal Processing 1979) need to be included.

For code given in this article, we found it necessary to use an interface routine (written
by Julius O. Smith III) for the actual Sail call to the Fortran subroutines. The interface
routine, written in PDP-10 assembly language, unravels the arguments passed by Sail and

packages them in a form which can be accepted by the Fortran subroutines.
' Furthermore, the Sail compiler produces object code which requires a Saikspecific I/O
environment. The standard DEC Fortran compiler will include the Fortran IO environment
if any Fortran IO statements are included in the Fortran source code. As we found out,
this includes even the STOP command in the error message in Subroutine ISTKGT. Other
amusing problems like these will probably crop up at other installations when loading these
procedures into code created by compilers other than Fortran.

12. References

Beauchamp, James W. 1969.  “A Computer System for Time-Variant Harmonic Analysis
and Synthesis of Musical Tones.” In H. von Foerster and J. W. Beauchamp, eds. 1969.
Music by Computers. New York: Wiley, pp. 19-62.

Charbonneau, G.R. 1981. “Timbre and the Perceptual Effects of Three Types of Data
Reduction.” Computer Music Journal 5(2):10 - 19.

Crochiere, R. E., and L. R. Rabiner.  1981.  “Interpolation and Decimation of Digital
Signals — A Tutorial Review.” Proceedings of the IEEE 69(1):300-331.

Dolson, Mark Barry. 1983. A Tracking Phase Vocoder and its use in the Analysis

of Ensemble Sounds. Ph. D. Dissertation. Pasadena, California: California Institute of
Technology.

Dudley, H. 1939. “The Vocoder.” Bell Labs Record 17:122-126.

Flanagan, J. L., and R. M. Golden.  1966. “Phase Vocoder.” Bell System Technical
Journal 45:1493-1509.

Freedman, M. D. 1967.  “Analysis of Musical Instrument Tones.” Journal of the Acous-
tical Society of America 41:793-806.

Freedman, M.D. 1968. “A Method for Analysing Musical Tones.” Journal of the Audio
Engineering Society 16:419-425.

Gish, W. C. 1978. “Analysis and Synthesis of Musical Instrument Tones.” Audio
Engineering Society, 61st Convention, New York, Preprint No. 1410(J-3).




Page 24 Gordon and Strawn: Phase Vocoder

Gold, B, P. E. Blankenship, and R. J. McAulay. 1981. “New Applications of Channel
Vocoders.” IEEE Proceedings on Acoustics, Speech, and Signal Processing 29:13-23.

Grey, John M.  1975.  “An Exploration of Musical Timbre.” Ph. D. Dissertation, Dept.
of Psychology, Stanford University. Department of Music Report STAN-M-2.

 Holtzman, Samuel.  1980.  “Non-Uniform Time-Scale Modification of Speech.” M. Sc.
and E. E. Dissertation, Department of Electrical Engineering and Computer Science, MIT.

IEEE Digital Signal Processing Committee, [IEEE Acoustics, Speech and Signal Processing
Society. 1979. Programs for Digital Signal Processing. New York: IEEE Press.

Makhoul, John. 1975. “Linear Prediction: a Tutorial Review.” Proceedings of the
IEEFE 63:561-580.

Markel, J.D., and A. H. Gray Jr. 1976. Linear Prediction of Speech. New York: Springer.

Mathews, Max V., with J. E. Miller, F. R. Moore, J. R. Pierce, and J.-C. Risset.  1969.
The Technology of Computer Music. Cambridge, Mass.: The MIT Press.

Moore, F. R. 1978.  “An Introduction to the Mathematics of Digital Signal Processing.”
Part 1, Computer Music Journal 2(1):38-47. Part I, Computer Music Journal 2(2):38-
60. Reprinted in C. Roads and J. Strawn, eds. 1983. Computer Music. Cambridge,
Massachusetts: The MIT Press.

Moorer, James A.  1973. The Heterodyne Filter as ¢ Tool for Analysis of Transient
Waveforms. Report No. STAN-CS-73-379. Stanford University: Department of Music.

Moorer, James A. 1975.  “On the Segmentation and Analysis of Continuous Musical
Sound by Digital Computer.” Doctoral Dissertation, Department of Computer Science,
Stanford University. Department of Music Report STAN-M-3.

Moorer, J. A. 1977. “Signal Processing Aspects of Computer Music - A Survey.”
Proceedings of the IEEE 65(8):1108 - 1137. Revised and updated version in C. Roads and
J. Strawn, eds. 1983. Computer Music. Cambridge, Massachusetts: The MIT Press.

Moorer, James A. 1978a. “The Use of the Phase Vocoder in Computer Music Applica-
tions.” Journal of the Audio Engineering Sociely 26:42-45.

Moorer, James A. 1978b.  “The Use of the Linear Predictor in Computer Music Ap-
plications.” Journal of the Audio Engineering Society 27:134-140.

Petersen, T.L. 1980. “Acoustic Signal Processing in the Context of a Perceptual Model.”
Ph. D. Dissertation, Computer Science Department, University of Utah.

Portnoff, Michael R. 1976. “Implementation of the Digital Phase Vocoder Using the
Fast Fourier Transform.” IEEE Proceedings on Acoustics, Speech, and Signal Processing
24:243-248.




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 25

Portnoff, M. R.  1978.  “Time-Scale Modification of Speech based on Short-Time Fourier

Analysis.” Doctoral Dissertation, Department of Electrical Engineering and Computer
Science, MIT.

Rabiner, L. R., and G. Gold.  1975. Theory and Application of Digital Signal Processing.
Englewood Cliffs, New Jersey: Prentice-Hall.

Reiser, J., ed. 1976. “SAIL.” Report STAN-CS-574. Stanford: Stanford University Artificial
Intelligence Laboratory Memo.

Risset, Jean-Claude. 1966. Computer Study of Trumpet Tones. Murray Hill, N. J.: Bell
Telephone Laboratories.

Schafer, R. W., and L. R. Rabiner.  1973a.  “A Digital Signal Processing Approach to
Interpolation.” Proceedings of the IEEE 61:692-702.

" Schafer, R. W., and L. R. Rabiner.  1973b. “Design and Simulation of a Speech Analysis-
Synthesis System Based on Short-time Fourier Analysis.” IEEE Transactions on Audio and
Electroacoustics AU-21:165-174.

Singleton, Richard C. 1968. “An Algol Procedure for the Fast Fourier Transform with
Arbitrary Factors.” Communications of the ACM 11:776-779.

Smith, J. O. IIl.  1983.  “Introduction to Digital Filter Theory.” In C. Roads and J.
Strawn, eds. 1983. Computer Music. Cambridge, Massachusetts: The MIT Press.

Strawn, John M.  1981. “Approximation and Syntactic Analysis of Amplitude and
Frequency Functions for Digital Sound Synthesis.” Computer Music Journal 4(3):3-24.

Strawn, John M. 1983. “Research on Timbre and Musical Contexts at CCRMA.” In T.
Blum and J. Strawn, ed. Proceedings of the 1982 International Computer Music Conference,
Venice, Italy. San Francisco, California: Computer Music Association, 1983, pp. *** - **¥,

Wilcox, C. R.,, M. L. Dageforde, and G. A. Jirak. 1980. “Mainsail Language Manual.”
Report STAN-CS-80-791. Stanford: Computer Science Department.




Page 26 Gordon and Strawn: Phase Vocoder

Captions for Figures

Fig. 1. The phase vocoder analysis {left) works like a set of band-pass filters spaced equally
from 0 Hz to one-half of the sampling rate f,. Each rectangle on the left corresponds to
an analysis channel, with one filter per channel. Each channel produces a time-varying
parametric representation (real and imaginary parts) of whatever segment of the input
signal’s spectrum falls within the filter passband. If the analysis data remains unchanged,
then it can be used to synthesize a signal y(t) identical to the input signal z(t).

Fig. 4. Impulse response of the prototype lowpass filter (see Section 3.2.4), as calculated by
the expression SIN(pi*i/N)/(pi#i) in Fig. 2. :

Fig. 5. The Kaiser window as returned in array win by subroutine Kaiser in Fig. 2.

Fig. 6. Effects of the processing in the “analysis loop” of Fig. 2. a). An input signal,
contained in array X of Fig. 2. b}). The input signal is multiplied by the windowed low-pass
filter contained in array imp of Fig. 2; the product shown here is stored in array preAlias.
¢). The signal in Fig. 6b is time-aliased and stored in array alias. d). Array shift in Fig.
2 holds the signal of Fig. 6¢, shifted here by inc samples.

Fig. 8. Spurious glitches in the frequency outputs of the phase vocoder can be avoided. The
point at [1,0] (not shown explicitly in the figure) corresponds to the center frequency for
the channel. As the frequency analyzed by the channel moves from the center frequency,
Point A moves up or down from the z axis along the circle. Point A should lie within the
bounds [—f,/2N, +fs/2N] shown in the figure. Spurious phase shifts (larger than 90°) are
shown at points B and C. In the code of Fig. 7, point B is moved temporarily to point D,
and point C is moved to point A to avoid large phase jumps in the output.

Fig. 12. (a) and (b) are test signals input to the phase vocoder. The signal in (a) is a
series of positive- and negative-going impulses. (b) is a sine wave with sinusoidal amplitude
modulation. {c) and {d) show the output of the phase vocoder for the analysis/synthesis
system. Note the small glitches in (c), which we ascribe to numerical inaccuracies. Figure
13 gives the individual amplitude and frequency traces for the sine wave in (b).

Fig. 13. Individual channel outputs for analysis of the signal of Fig. 12b. The amplitude
values in the left-hand column are stored in array magInterm by Fig. 7. The right-hand
column shows the frequency output of Fig. 9, as contained in array freqlnterm. With
N = 12 and sRate=4800 Hz, N/2+1 = 7 channels are shown here, numbered 0 through
6 starting at the top. Note the varying scales for the different plots.




Page 27

Gordon and Strawn: “Phase Vocoder”

Figure 1

Hl2

o Hz

1]

y (3

S




Page 28

Gordon and Strawn: Phase Vocoder (Figures)

procedure ana
real array

begin

comment
Inputs:

lysis(real array input; Integer nSamps,N,R,nGroups;
realPart, imagPart) ;

array input, dimensioned [0:nSamps—1]

N

R
nGroups
nSamps

Qutputs:

number of phase vocoder channels (see text)
--- N assumed to be even

compression ratio --- see text

number of groups of N samples in 1/2 of ImpLen

length of original signal to be analyzed

arrays realPart, imagPart, dimensioned [0:N/2, 0:nAnalPts—1]

integer
impLen,

extra,
wvinLen,
inc,
iSampNo,
oSampNo,
i, k;
real
beta;

real array

real array

real array

real array

real array

vhere nAnalPts is the largest integer in (nSamps—1)/R + 1

comment length of impulse response of prototype lowpass filter
(2 + N * nGroups + 1);
comment there are this many extra zeros at each end of array X;
comment Size of positive half of window;
comment number of samples to rotate Alias;
comment index for input points in array X at original sampling rate;
comment index for output points in arrays realPart, imagPart
at sampling rate SRate/R;
comment miscellaneous indices;

comment parameter for Kaiser window;

X[—N+nGroups : nSamps+N+nGroups—1};

comment holds input signal surrounded by zeros;

vin[0 : nGroups#N];

comment vin holds positive half of window for windowing
low-pass filter;

imp,preAlias[—nGroups*N : nGroupssN];

comment imp holds impulse response of windowed low-pass filter,
preAlias holds vindowed signal before time-aliasing;

alias, shift[0:N-1]; .

comment alias holds windowed signal after time-aliasing,
shift holds rotated alias array;

A,B[0O:N-1];

comment A and B will be returned from the FFT with the cosine and
sine coefficients for frequencies between 0 and pi;




to appear in Computer Mussc. C. Roads and J. Strawn, Ed. Page 29

comment initialization;

extra := N*xnGroups;

winLen := NsnGroups + {;

impLen := 2+winlen — 1;

beta = 6.8; comment This makes stopband for each filter about 71 dB down;

comment stuff array win with half of the symmetric Kaiser window;
Kaiser(implen,win,winlen,1,beta); comment "1* means that impLen is odd;

comment window impulse response of prototype lowpass filter. imp is symmetric
about the Oth (middle) sample;
imp[0] := winl0];
for i := 1 step 1 until N+nGroups do
imp(i] := imp[—i] := N+win[i]+SIN(pi*i/N)/(pi=*i);

comment set up array X;

for i := —extra step 1 until —1 do X[i] := 0;

for i := 0 step 1 until nSamps—1 do X[i] := input[i];
for i := nSamps step 1 until nSamps+extra—1 do X[i] := 0;
oSampNo := 0;

for iSampNo := 0 step R until nSamps—1 do
begin "analysis loop"

comment filter input signal;
for i := —extra step 1 until extra do
preAlias[i] := X[iSampNo + i} #* imp[i];

comment time-aliasing;
for i:=0 step 1 until N—1 do
begin
alias[i] := 0;
for k := —nGroups step 1 until nGroups—1 do
alias[i] := alias[i] + preAlias[kN + i];
end;

comment rotate time-aliased array;

inc := iSampNo mod N;
for i := 0 step 1 until inc—1 do
shift[i] := alias[N + i—inc];

for i := inc step 1 until N—1 do
shift[i] := alias[i—inc];

comment take FFT of the values stored in array shift;
for i:=0 step 1 until N—1 do
begin comment set up arrays for FFT;
Ali]:=shift[i);
B[i]:=0;
end;
FFT(A, B, 1, N, 1, —-1);
comment The "1® and "—1" are explained on p. 143 of (Digital Signal
Processing Committee 1979) and should not be changed.;




Page 30 Gordor and Strawn: Phase Vocoder (Figures)

comment For realPart and imagPart, FFT determines N/2+1 values at oSampNo;
for i := 0 step 1 until N/2 do

begin comment see text for explanation of scaling;

realPart[i,oSampNo] := A[il/(N/2);
imagPart[i,oSampNo] := B[il/(N/2);
end;

oSampNo := oSampNo+1;
end "analysis loop”;
end;

Fig. 2. Phase vocoder analysis of a digital signal using the Fast Fourier
Transform (FFT). as given in Portnoff (1976). The algorithms in this article
are given in SAIL, although we have attempted to make the code resemble
Algol as much as possible. Throughout these code listings, we assume the
existence of a globally available real variable pi initialized to 3.14159265.
The arrays alias and A are superfluous, as explained in the text, but are
included for additional clarity. The routines Kaiser and FFT are taken from
(IEEE Digital Signal Processing Committee 1979). The operator ¢ mod b
calculates @ modulo b (i. e. the remainder after a/b). See also Fig. 3.




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 31

inc := iSampNo mod N;
for i := 0 step 1 until N—1 do
begin
shift [(N+i+inc) mod N] := 0;
for k := —NGroups step 1 until NGroups—1 do
shift [(N+i+inc) mod N] := shift[(N+i+inc) mod N] «
X[isampNo + k«N + i] * Imp[ksN + i];
end;

Fig. 3. In most of the code listings in this article, we will not be concerned
with paring down the code to its tightest possible state. For example, we
have not bothered to define a variable pi2 to hold the value 27, which is
needed in several different places. However, we should point out that both

the filtering, time-aliasing and rotation of Fig. 2 can be accomplished inside
one loop, as is shown here.




Gordon and Strawn: “Phase Vocoder”

Figure 4




Gordon and Strawn: *Phase Vocoder” Figure 5







to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 35

procedure convert(real array realPart,imagPart; Integer nAnalPts,N,R,Q.nQs;
real array maglnterm,freqlnterm);

begin "convert*

comment
INPUTS

realPart,imagPart dimensioned [0:N/2,0:nAnalPts—1), containing real and
imaginary parts of analysis output at sRate/R

nAnalPts the largest integer in (nSamps—1)/R + 1
N.R see text
Q interpolation factor for intermediate sampling rate sRate/Q
Q must divide evenly into R!
nQs number of groups of § samples in 1/2 of intLen (defined below)
OUTPUTS:

maglnterm, freqlnterm

integer

dimensioned [0:N/2, 0:nIntermPts], containing magnitude
and frequency values (calculated as angle difference
values) for each analysis channel at intermediate
sampling rate sRate/Q. nlntermPts is defined below.

ROverQ, comment R/Q, used to interpolate to intermediate sampling rate;

intLen, comment
winLen, comment

length of impulse response of interpolating filter;
length of positive half of window, including the sample
in the middle of the window;

nlnternPts, comment no. of points in current channel at intermediate sampling rate;

offset, inc,
comment

chanNo, comment

sampNo, comment

indices for interpolation to intermediate sampling rate;
index for channel number;
index for sample number;

m; comment index for convolution;
boolean
maglnvert, comment For tracking 180-degree phase shifts;
saved; comment For skipping over consecutive (0,0) points;
real
thisReal, thisImag,
thisTheta, comment 6(n);
lastTheta, comment 6(n —1);
saveTheta, comment For skipping over consecutive (0,0) points;
thetaDiff, comment df/dt;
tempMag, comment magnitude at n --- might be inverted;
lastMag, comment magnitude at n-1 --- might be inverted;
intMult, comment multiplier used in interpolating to intermediate
sampling rate;
beta; comment parameter for Kaiser window;




Page 36 Gordon and Strawn: Phase Vocoder {Figures)

real array tempReal,tempImag[—nQs : nAnalPts+nQs—1];
comment real and Imag for current channel at sampling rate sRate/R,
padded on both ends with nQs zeros;

real array win[0 : Q+nQs);

real array interp[—Q+nQs : Q+nQs];
comment win holds positive half of window and interp holds
impulse response for interpolating filter;

real array intermReal,intermImag{0:(nAnalPts—1)+Q];
comment intermReal and intermImag hold realPart and imagPart,
respectively, interpolated to intermediate sampling rate sRatesQ/R;

beta := 6.8; comment about 71 dB down;
winLen := Q#nQs+i;

intLen := 2*Q%nQs + 1;

ROverQ := R/Q;

nIntermPts := (nAnalPts—1)=*Q+1;

comment stuff array win with half of the symmetric Kaiser window;
Kaiser(intlen,win,winlLen,1,beta); comment "1* means that impLen is odd;

comment windqw impulse response of interpolating lowpass filter;
interp[0] := win[0]};
for sampNo := 1 step 1 until Q*nQs do
interp[sampNo] := interp[—sampNo] := Q+win[sampNol+SIN(pissampNo/Q)/(pi*sampNo);

for chanNo := 0 step 1 until N/2 do
begin "channel loop*

comment fill tempReal and tempImag with realPart and imagPart surrounded

by zeros;

for sampNo := —nQs step 1 until —1 do
begin
tempReal [sampNo] := 0;
tempImag([sampNo] := 0;
end;

for sampNo := 0 step 1 until nAnalPts—1 do
begin
tempReal [sampNe] := realPart[chanNo,sampNo];
tempImag([sampNo] := imagPart[chanNo,sampNo];
end;

for sampNo := nAnalPts step 1 until nAnalPts+nQs—1 do
begin
tempReal [sampNo] := 0;
tempImag[sampNo] := 0;
end;

for sampNo := 0 step 1 until nInternPts—1 do
begin "interpolate to intermediate sampling rate®




to appear in Compuler Music. C. Roads and J. Strawn, Ed. Page 37

offset := sampNo mod Q;

inc := (sampNo div Q); comment inc := largest integer in sampNo/q;
intermReal [sampNo] := 0;
intermImag[sampNo] := 0;
for m := —nQs+1 step { until nQs do
begin comment perform the interpolation as a convolution;
intMult := interp[m*Q — offset];
intermReal [sampNo] := intermReal [sampNo] + tempReal[m + inc] * intMult;
internImag[sampNo] := intermImag[sampNo] + tempImag[m + inc] * intMult;

end;
end "interpolate to intermediate sampling rate®;

comment Convert to magnitude and angle difference (frequency) at
intermediate sampling rate;

lastMag := 1.0;

lastTheta := 0.0;

saved := maglnvert := false;

for sampNo := 0 step ! until nlIntermPts—1 do
begin
thisReal := intermReal [sampNo];
thisImag := intermImag{sampNo];
tempMag := (thisReal#thisReal ¢ thisImag+thisImag)t0.5;




Page 38 Gordon and Strawn: Phase Vocoder (Figures)

if tempMag = 0 then
begin comment Don’'t let angle change;
if not saved then
begin "Savenm"
saveTheta := lastTheta;
saved := true;
end "Saven*;
FreqInterm[chanNo,sampNo] := 0;
end
else begin *Get Angle"
if lastMag = 0 then
begin comment Ignore the previous zero point in calculating
current angle;
lastTheta « saveTheta;
saved + false;
end;
thisTheta «+ ATAN2(thisImag,thisReal);
thetaDiff « thisTheta - lastTheta;
while thetaDiff > pi/2 do
begin
thetaDiff + thetaDiff - pi;
magInvert « not maglnvert;
end;
while thetaDiff < -pi/2 do
begin
thetaDiff « thetaDiff + pi;
nmaglnvert +« not maglnvert;
end;
FreqInterm[chanNo,sampNo] « thetaDiff/ROverQ;
end "Get Angle";

magInterm[chanNo,sampNo] + (if magInvert then -tempMag else tempMag);
lastMag +« tempMag;

lastTheta + thisTheta;

end;

end "channel loop*;

end “convert®;

Fig. 7. Conversion of data from real-imaginary form to amplitude-frequency
form. The operator a div b calculates the number of times b divides into
a. ATAN2(a,b) takes the arc tangent of a/b, preserving sign (and thus
quadrant) information (see text). Note that the arc tangent function supplied
with many compilers does not preserve this sign information.




Gordon and Strawn: “Phase Vocoder” Figure 8

«

4% /2N
B IRV
. ~—,

——‘—
ce~” D
-£/2N




Page 40 Gordon and Strawn: Phase Vocoder (Figures)

procedure toHz(real array freqlnterm; integer nIntermPts,N,R,sRate;
real array outFreq);

begin

comment

INPUTS

freqInterm dimensioned [0:N/2, O:nlntermPts—1],
containing {frequency values for each analysis channel at
intermediate sampling rate in radians per sec.

nintermPts length of freqlnterm and ocutFreq at intermediate sampling
rate sRatexQ/R.

N. R see text

sRate original sampling rate

OUTPUTS

outFreq storage/examination array dimensioned [0:N/2, O:nlntermPts—1]

containing frequency values in Hz.

’

integer chanNo, comment index for channel number;
sampNo; comment index for sample number;
real centerFreq, comment center frequency of channel in Hz;
radToHz; comment convert radians per sec to cycles per sec (Hz);

radToHz := sRate / (2%pi);

for chanNo := 0 step 1 until N/2 do
begin "channel loop"
centerFreq := sRatexchanNo/N;
for sampNo := 0 step 1 until nIntermPts—1 do
cutFreq[chanNo,sampNo] := freqInterm[chanNo,sampNo] * radToHz + centerFreq;
end *“channel loop*®;

end;

Fig. 9. Changing the format of the frequency information from radians per
second to Hertz for storage or examination.




to appear in Computer Mugic. C. Roads and J. Strawn, Ed. Page 41

procedure fromHz(real array outFreq; Integer nIntermPts,N,R,sRate;
real array freqlnterm);

begin

comment

INPUTS

outFreq storage/examination array dimensioned [0:N/2, 0:nIntermPts—1]
containing frequency values in Hz.

nlntermPts length of freqlnterm and outFreq at intermediate sampling
rate sRate*Q/R.

N, R see text
sRate original sampling rate
OUTPUTS

freqInterm dimensioned [0:N/2, O:nIntermPts—1],
containing frequency values for each analysis channel at
intermediate sampling rate in radians per sec.

,

integer chanNo, comment index for channel number;
sampNo; comment index for sample number;

real centerFregq, comment center frequency of channel in Hz;
hzToRad; comment convert Hz to radians per sec;

hzToRad := 2%pi / sRate;

for chanNo := 0 step 1 until N/2 do
begin "channel loop*
centerFreq := sRatexchanNo/N;
for sampNo := 0 step 1 until nInternPts—1 do
freqlnterm[chanNo , sampNo] :=
(outFreqlchanNo , sampNo] — centerFreq)*hzToRad;
end “channel loop”;

end;

Fig. 10. Changing the format of the frequency information from Hertz back
to radians per second for synthesis.




Page 42

Gordon and Strawn: Phase Vocoder {Figures)

procedure synthesize(real array maginterm,freqlntern; integer nlntermPts,N,R,Q;
real freqMult; real array sound);

begin

comment
INPUTS

maglnterm, freqlnterm dimensioned [0:N/2, O0:nIntermPts—1}
containing magnitude and frequency values for each
analysis channel at intermediate sampling rate

nIntermPts at intermediate sampling rate sRate*Q/R

N. R see text

Q compression ratio for intermediate sampling rate
freqMult frequency multiplier --- see text

QUTPUTS:

sound output sound file at original sampling rate,

dimensioned [0:n0Samps—1], with nOSamps defined below

integer
n0Samps, comment
chanNo, comment
sampNo, comment
m; comment
real
centerFreq, comment

oldPhase, phase, comment
scale, comment
ROverQ, comment
freqSlope, magSlope;

number of samples in resynthesized output;

index for channel number;

index for sample number;

index for linear interpolation to original sRate;

for determining absolute frequency for each
channel, in radians/sample;

for determining instantaneous phase angle;

to accomodate for chanNo = 0 and N/2;

R/Q, used for linear interpolation to sRate;

comment for linear interpolation to sRate;

real array mag,freq[0 : (nIntermPts—1)s*R/Q];

ROverQ := R/Q:

comment To hold a channel'’'s mag and freq

arrays interpolated to sRate;

n0Samps := (nIntermPts—1)+R/Q + 1;

comment Make sure that array sound is empty;
for sampNo := 0 step 1 until n0Samps—1 do

sound [sampNo] := 0;

for chanNo := 0 step 1 until N/2 do

begin "channel loop®




to appear in Computer Music. C. Roads and J. Strawn, Ed. Page 43

for sampNo := 1 step 1 until nIntermPts—1 do
begin comment interpolate linearly to original sampling rate;
fregSlope := (freqInterm{chanNo,sampNo] — freqlnterm[chanNo,sampNo—1])/ROverq;
magSlope := (maglnterm[chanNo,sampNo] — maglnterm[chanNo,sampNo—1]) /ROverqQ;
for m := 0 step 1 until ROverQ—1 do
begin "interpolation loop®

mag[(sampNo—1)+ROverQ + m] := magInterm[chanNo,sampNo—1] + magSlopesnm;
freq{(sampNo—1)*R0Overq + m] := freqlnterm[chanNo,sampNo—1] ¢ freqSlopesm;
end;

end;

comment Set last points;
mag[(nInternPts—1)*«R0verQ] := magInterm([chanNo,nIntermPts—1];
freq[{(ninternPts—1)+R0OverQ] := freqInterm[chanNo,nIntermPts—1];

comment initialization for current channel;
centerFreq := 2#pixchanNo/N;
scale := (if (chanNo = 0 or chanNo = N/2) then 0.5 else 1.0);
comment All channels represent both positive and negative frequenc1es
except channels numbered 0 and N/2;
oldPhase := —centerFreq * FreqlMult;

for sampNo := 0 step i1 until n0Samps—1 do
begin "additive synthesis®
phase := oldPhase + freqMult*(freq[sampNo] + centerFreq):
sound [sampNo] := sound[sampNo] + scale * mag[sampNo] * COS(phase);
oldPhase := phase;
end "additive synthesis"®;

end *channel loop";

end;

Fig. 11. Resynthesis from the analysis data, with possible transposition of
original frequencies.




a.
1.0
]

Gordon and Strawn: “Phase Vocoder”

Figure 12

,'01

0.0

0 -

10
]

I.H

g0

-3 ‘_'! !"

”{. !-.l

AR
.-;-fhl. IR ARREES




Gordon and Strawn: *Phase Vocoder” ' " Figure 13

0.06S5 - Q) 1o h)
0.0 A A
-0.01S ¥ 0.0

9

\/‘ 0
0.0 100§ -
(o) 1 J)
Soo
-~ 006 0
00307 4 17001 )
| w4
Q.0 - ~y 0
0.02 e) ; za.oo-z)
0.0 b ‘d
o o
0.0, - wo‘ml \ , IF "
;) ‘1 2000 1
)
-002 ‘ 0
Y00
.0 ‘q ")
!

-002 .




