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Abstract

This paper presents a new type of digital reverberator
which is based on closed networks of intersecting wave-
guides. Each waveguide is a bi-directional delay line, of
arbitrary length, and each intersection (of any number of
waveguides) produces lossless signal scattering. By creating
a closed network of waveguides, the total signal energy in
the structure is preserved. A reverberator is constructed by
introducing small losses in the network to achieve a desired
reverberation time. The inputs and outputs can be chosen
anywhere in the structure.

There are many reasons to construct reverberators (or
any recursive digital filter for that matter) from lossless
waveguide networks: (1) the scattering junctions can be
made time varying without altering stored energy, (2) an
“erector set” for lossless networks is obtained, allowing any
number of branches to be fitted together in any desired
configuration {with changes allowed in real time), (3) limit
cycles and overflow oscillations are easily eliminated, regard-
less of interconnection, (4) an exact physical interpretation
exists for all signals in the structure, and (5) the implemen-
tation is computationally efficient. '

Introduction

Digital reverberation has been a standard post-processor
for digital music synthesis since Schroeder’s original papers
in '61 and '62 [4,9]. The basic acoustics of reverberation and
the design of concert halls has a long history covering many
different approaches {1-24]. The basic goal of digital rever-
beration is to arrive at a digital filtering operation which
simulates the effect of a good concert hall or “listening
space” on the source sound. This goal is made difficult by
the fact that typical listening spaces are inherently large-
order systems which cannot be precisely simulated in real
time using commonly available computing techniques. In
architectural acoustics, the study of digital reverberation

aids in the design of concert halls with good “acoustics.”
In digitally synthesized music, the reverberator is a part of
the instrumental ensemble, providing a direct enrichment
to the sound quality. This paper is concerned with the lat-
ter application; while there is no need for a detailed physi-
cal model, it is desired to capture all musically impoftapt
qualities of natural reverberation.

Digital room simulation has been implemented by simulat-
ing specular reflection in actual concert-ball geometries or
some approximation thereto [17,10,16,8,12]. It has been
found that the diffusive scattering of sound by natural lis-
tening environments cannot be neglected in high-quality
models [16]. However, models which accomodate diffusing
reflections are beyond the reach of present computing power
when applied to listening spaces of nominal size over the
audio frequency band.

Another implementation of digital reverberation is to
record an approximation to the impulse response between
two spatial points in a real hall. The effect of the hall
on sound between these two points can be very accurately
simulated by convolving the measured impulse response
with the desired source signal [35]. Again this leads to a
prohibitive computational burden (two to three orders of
magnitude out of real time for typical mainframes).

We can easily summarize the current state of high-quality
digital reverberation: it is well understood, but too expen-
sive to compute. It would seem that much progress is pos-
sible, because there is much detail in natural reverberation
that is not important perceptually. For example, it bas
been noted that convolving an unreverberated soupd with
exponentially decaying white noise gives the best known
artificia) reverberation [16]. The key to a successful digital
reverberator design is to replace the details of a qyantita-
tive physical model by simple computations which retain
all important qualitative bebavior.




Some basic building blocks of presently pervasive digi-
tal reverberators, introduced by Schroeder [6], include cas-
caded allpass networks, recursive and noa-recursive comb
filters, tapped delay lines, and lowpass filters. The early
reflections can be exactly matched [8,16] for a fixed source
and listener position using a tapped delay line, and the
late reverberation can be qualitatively matched using a
combination of allpass chains, comb filters, and Jowpass
filters [8,16). Using a lowpass filter in the feedback loop
of a comb filter is used to simulate air absorption and non-
specular reflection [16). This overall strategy for reverbera-
tion, or some subset of it, has been the basis for rever-
beration design at CCRMA for more than a decade [13,15].
While these elements do not provide reverberation on par
with excellent natural listening environments, they do a
good job at providing some of the most essential aspects of
reverberation—especially for smoothly varying sounds at
low reverberation levels.

A New Approach

The proposed technique is to build digital reverberators
as closed networks of lossless digital waveguides [16,47].
Such a network can be constructed from any given num-
ber of multiplies, additions, and delay elements. The avail-
able multiplies and additions determine how many signal-
scattering nodes can be implemented, and the available
delay elements determine the total delay which can be dis-
tributed among the branches interconnecting the various
nodes. By choosing the number of intersecting branches
and scattering coefficients appropriately, multiplies can be
eliminated completely [46,47] (Lthe scattering coefficients are
reduced to a power of two or a simple function of powers of
two such as 3/4 = 1/2 + 1/4). There are simple rules for
connecting branches to nodes in a way which preserves sig-
nal energy. The design variables (in the lossless prototype)
are branch-connection topology, delay lengths, and $he char-
acteristic impedances of the individual waveguides: *

The lossless prototype reverberator is augmented by one
or more simple loss factors (of the form 1 —2~", typically)
to set the reverberation decay time to any desired value.
That is, Teo (the time over which the reverberation decays
60 dB) is infinite in the prototype, but arbitrary in the
final network. This decoupling of reverberation time from
structural aspects incurs no loss of generality.

Some branches can be fixed to give specific early reflec-
tions, while other branches may be chosen to provide a
desirable texture in the late reverberation. An optimality

criterion for the late reverberation is to maximize homogen-
eity of the impulse response (make it look like exponentially
decaying white noise). Waveguide networks allow every
signal path to appear as a feedback branch around every
other signal path. This connectivity richness facilitates. de-
velopment of dense late reverberation. Furthermore, the
energy conserving propertics of the waveguide networks can
be maintained in the time-varying case [16,47); this allows
the breaking up of “patterns” in the late reverberation by
subtly changing the reverberator in a way that does not
modulate the reverberation decay profile. Finally, the ex-
plicit conservation of signal energy provides an easy way to
completely suppress limit cycles and overflow oscillations.

Loasless Networks

A network is a closed interconnection of bi-directional
signal paths. The signal paths are called branches and
the interconnection points are called nodes. An example

diagram of a simple network is shown in Fig. 1. -
Node { Node 2
Node 3 Node 4

Figure 1. An example network diagram

Each signal path is bi-directional, meaning that in each
branch there is a signal propagating in one direction and
an independent signal propagating in the other direction.
When s signal reaches a node, it is partially reflected back
slong the same branch, and partially transmitted into the
other branches connected to the node. The relative strengths
of the pieces of the “scattered” signal are determined by
the relative characteristic impedances of the intersecting
waveguides.

A waveguide is defined as a lossless bi-directional signal
branch. In the simplest case, each branch in a waveguide
network is merely a bi-directional delay line. The only com-
putations in the network take place at the branch intersec-
tion points (nodes). More generally, s waveguide branch
may contain any chain of cascade allpass filters. For prac-
tical reverberator design, we also introduce losses in the
form of gain factors less than 1 and/or lowpass filters with
frequency response strictly bounded by 1.




A lossless network preserves total stored signal energy.
Energy is preserved if at each time instant the total energy
stored in the network is the same as at any other time in-
stant. The total energy at any time instant is found by
summing the instantaneous power throughout the network.
Each signal sample within the network contributes to in-
stantaneous power. The instantaheous power of a stored
sample is the squared amplitude times a scale factor, say
g. If the signal is in units of “pressure,” or equivalent, then
g = 1/2Z, where Z is the characteristic impedance of the
waveguide medium. If the signal sample instead represents
a “flow” variable, such as volume-velocity, then g = Z. In
either case, the stored energy is a weighted sum of squared
values of all samples stored in the digital network memory.

An N-port is a network in which N branches, called
ports, leave the petwork to provide inputs and outputs.
Figure 2 gives an example of a network with one port
designated for input and two ports designated for output.

our 1

ouTr 2

Figure 2. Example 3-port

Such a structure is suitable, for example, for providing
stereo reverberation of a single chanunel of sound. Note,
however, that really there are three inputs and three out-
puts. In an N-port, each branch leaving the network pro-

vides both an input and an output (because it is bi-directional).

It is common practice in digital filtering applications [36)
to use only one direction on a port branch as an input or
output and igoore the other direction.

An N-port is lossless if at any time instant, the energy
lost through the outputs (so far), equals the total energy
supplied through the inputs (so far), plus the total stored
energy. A lossless digital filter is obtained from a lossless
N-port by using every port as both an input and output.

An N-port is linear if superposition holds. Superposition
holds when the output in response to the sum of two input
signals equals the sum of the outputs in response to each
individual input signal. A network is linear if every N-
port derived from it is linear. Only linear networks can
be restricted to a large and well-understood class of energy
conserving systems.

Lossless Scattering

Consider a parallel junction of N lossless waveguides
of characteristic impedance Z; (characteristic admittance
I'i =1/2,) as depicted in Fig. 3.
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Figure 8. A junction of 2. waveguides.

If the incoming traveling pressure waves are denoted by -
+

P;,i=1,...,N, the outgoing pressure waves are given
by [46,47)
P{ =P;~P] (1)
where P, is the resultant junction pressure,
EN r P# -
Py=2&=1 4 <0 (2
:n-l -~

The series flow-junction is equivalent to the parallel pres-
sure-junction. The series pressure-junction or the parallel
flow-junction can be found by use of duality [48,47).

Equation (1) is a computationally efficient way to imple-
ment an N-port scattering junction. In the case N = 2,
the well-known one-mulliplicr lattice filter section (minus
its unit delay) is obtained immediately from (1). More
generally, an N-way intersection requires N multiplies and
N ~ 1 additions to obtain P, and one addition for each
outgoing wave, for a total of N multiplies and 2N — } ad-
ditions.

Normalized Waves

We can normalize the pressure and flow variables by the
square root of the characteristic impedance to obtain prop-
agation waves in units of root power:

P{ AP} T P.é
Ui AUIVZ, U] AU

i VT

(3)
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By restricting all waveguides to normalized waves, we ob-
tain a generalization of the normalized ladder structure for
digital filters (34,36,39]. The stored power in each section is
unchanged if the characteristic impedance is changed (the
pressure and flow variables are scaled in a complementary
fashion). The use of normalized waves yields digital filter




structures whose signal energy is not modulated by time-
varying coefficients [46,47). Signal power and “coefficient
power” are decoupled.

Energy and Power

The instantaneous power in a waveguide containing in-
stantaneous pressure P and flow U is defined as the product
of pressure and flow:

P=PU=(P"+P U +U )=P ' +P  (4)
where

P'=P'U" =20 =T(P")
-

=P U =-Z2(U F=~I(P ) (5)

define the right-going and left-going power, respectively.

For the N-way waveguide junction, we have, using Kirchoff's

node equations [26,27,46,47],

N N N
PsAY PUi=) PUi=P;) Ui=0 (§)

fma) fum] (L1

Thus, the N-way junction is lossless; no net power, active
or reactive, flows into or away from the junction.

Quantization Effects

While the ideal waveguide junction is lossless, finite word-
length effects can make exactly lossless networks unrealiz-
sble. In fixed-point arithmetic, the product of two num-
bers requires more bits (in general) for exact representation
than either of the multiplicands. If there is a feedback
loop around a product, the number of bits needed to rep-
resent exactly a circulating signal grows without bound.
Therefore, some sort of round-off rule must be included in
8 finite-precision implementation. The guaranteed absence
of limit cycles and overflow oscillations is tantamount to
ensuring that all finite-wordlength effects result in power
absorption at each junction, and never power creation. If
magnitude truncation is used on all outgoing waves, then
limit cycles and overfiow oscillations are suppressed [32].
Magnitude truncation results in greater losses than neces-
sary to suppress quantization effects. More refined schemes
are possible. In particular, by saving and accumulating the
low-order half of each multiply at a junction, energy can be
exactly preserved in spite of finite precision computations
{46,47].

Conclusions

A construction was presented parametrizing all lossless
linear networks. The construction is free of overflow oscil-
lations and limit cycles, and a valuable energy decoupling
property is obtained for time-varying networks. The added
complexity relative to the best pre-existing recursive filter
srchitectures is negligible. Therefore, these structures are
likely to become standard in the near future.

In addition to implementing robust reverberation and
digital filtering, waveguide structures can provide accurate
models of coupled vibrating strings, wind instruments, reed
instruments, and many other physical systems. In these
applications, the signals propagating in a waveguide are
coupled to a nonlinear “excitation element,” such as a reed,
bow, switching air-jet, or lips [41]. On the other side of
the excitation element, another waveguide network can be
used to model the player windway, bow assembly, or other
interacting resonating system.




Appendix—Application Notes

In this appendix, some practical tips are listed for ob-

taining good reverberation.

1000 echoes per second is considered sufficiently dense
for late reverberation [6, p. 219].

Because air absorption increases with spatial fre-
quency, lowpass filters should be used here and there
in the waveguides to give qualitatively the correct
relative time constants of decay versus frequency.

The scattering coefficients can be randomly modu-
lated to better approach an exponentially decaying
white noise impulse response. This places the signal
in a closed, randomly changing maze.

Modulating the scattering coefficients with sinusoids,
FM, or other complex waveforms, produces an ap-
pealing “undulating” reverberator. A physical anal-
ogy is time-varying absorption coefficients in the walls
of a concert hall (plus magic tunneling of absorbed
energy into vibrational modes elsewhere). Increasing
the modulation frequency to audio rates causes a
kind of “sideband” generation in the reverberated
sound, corresponding to weak amplitude modula-
tion. This can be understood by considering that as

a signal is reflecting from a junction, the amplitude
of the reflection is directly proportional to the reflection
coefficient. Therefore, all scattering coefficient modula-
tion (random or not) should occur at frequencies
below audible AM modulation rates in order to avoid
this effect. Random switching should occur at sub-
audio rates and employ proper audio fade-in/fade-
out (e.g. 100ms fade time).

The reverberation is generally less “colored” [6] when
each output of the reverberator is taken to be a
resultant pressure P, at a junction of multiple wave-
guides.

Setting branch delays to an interval of a Fibonacci
series has given good results [45].

Choosing equal reflection coefficients at a junction
leads to an even energy distribution throughout the
network. (A beam incident on the junction is scat-
tered equally in all directions.} If the scattering
coefficients are too disparate, “hot spots” or nearly
lossless sub-paths may appear in the network. A
uniform energy distribution helps to minimize the
probability of overflow.

Duality can be used to improve the dynamic range.

In high-impedance waveguides, pressure tends to be
large, while in low-impedance waveguides, flow is

large (for a given signal power). Therefore, switch-
ing between pressure and flow for the propagating
variable in each waveguide allows maximum use of
the available dynamic range. This is the same thing
as choosing the sign parameters in standard lattice
filters [36]. Use of normalized waves eliminates the
need to decide on pressure versus fiow, and the sig-
nal level is always proportional to the root-power,
independent of the characteristic impedance.

Choosing a power of two for the number of branches
of equal characteristic impedance intersecting at a
node yields a multiplier-free realization.

Physical anslogies can give considerable insight into
the operation of a waveguide network. For example,
placing a finger on the midpoint of a freely vibrat-
ing string (making the tone rise one octave) is a
physical analog to introducing a junction with rising
reflection coefficient in the middle of a single wave-
guide with reflecting terminations. Another analogy
is an optical waveguide containing beam-splitters in
the form of partially silvered partitions. Visualizing
more than two intersections is less easy; one example
is to imagine waves along many taut wires of varying

thickness welded together at a common point.

It is possible to create the effect of moving walls by
smootbly varying the delay-line lengths as well as
the scattering coefficients. The basic technique for
this is described in [44]. One way to avoid energy
modulation is to effectively “slide” a junction along
a line formed by two waveguides meeting at that
junction. The delay lost by one waveguide is given
to the other.

A desirable reverberator property is that the den-
sity of resonant modes between any input/output
point grow as the square of frequency [1]. The num-
ber of complex modes in any nondegenerate digi-
tal filter is equal to the total number of delay ele-
ments. Thus, a closed waveguide network always
has as many complex resonances as there are stored
samples. Finding exactly where the resonances are
tuned as a function of the interconnection topology
and scattering coefficients seems to be a difficult
problem. Whenever a new input or output point
is chosen, the zeros of transmission are changed.
The poles of the point-to-point transfer function,
however, are invariant under general conditions. Con-




séquently, if a realistic mode distribution is found, it
can be used with a wide variety of input and output
ports.

Picking n; in the branch loss factors g; = 1 — 27%¢
as a function of Tgo appears hard to do exactly. An
approximate formula is to choose n; so that y{“’ Dy
close to 0.001, where D; is the delay of the ith wave-
guide in seconds.

Reverberation is realistically diffuse if the steady-
state reverberator response to a sinusoidal input sig-
nal has a Rayleigh distributed amplitude throughout
the delay elements of the reverberator [20]. Equi-
valently, the intensity is exponentially distributed,
phase is uniformly distributed, and the real and im-
aginary parts of the sinusoidal response phasor are
Gaussian distributed [20]. These distributions cor-
respond physically to the excitation of many modes
of vibration in the hall, yielding plane waves travel-
ing in “all directions” with independent random phases.
See also [1,7].

Assuming a Rayleigh amplitude distribution allows
calculation of probability of overflow as a function
of the number of guard bits provided.
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WAVE.OTL SOUND EXAMPLES

Approx 18 eec. |leader

# Name Ft End DESCR

-] 108 10 DRY TOOT

1 T01 25 Unfiltered basic case

2 102 45 Heavily tiltered (-8.7) basic case

3 106 1:88 1864z FM (turns to noise)

4 TD7end 1:37 Limit cycles

s 7011 3:20 Truncated time-varying case

6 CR.SND M1: Yarious delay and input configurations
7 CR4.SND N

8 CR8.SND MTi: Backwards

Sound exampie 8:

This example plays the original saxophone toot used in later exampies
1 through S.

Sound example 1:

A very basic case consisting of only three waveguides connected tpgether
at tuo nodes. The late reverberation is very metallic bpcause there is
no lowpass filtering in the waveguides,

See vieugraph page 19 for a diagram of this structure.

Sound example 2: :

Here we add a i-pole loupass filter in each waveguide branch. The filter -
coefficient (8.7) is someunat extreme to illustrate the effect of

towpass filtering in an exaggerated manner.

See viewgraph page 19.

Sound example 3:

In this example, the branches are varied uith time as shoun on page 19 of
the viewgrapha., The principal delay loop varies sinusoidally betueen
224ms and 391ms. The variation frequency itself varies sinusoidally
betueen BHz and 188Hz uith a period of 18 seconds.

Sound example &4:

This sound exampl!e, diagrammed on page 28, shous the effect of |imit

cycles on the late reverberation. Again the original signal was the sax
toot. The sound example is a snapshot of the limit cycies, due to

rounding, which dominate the late reverberation. The limit cycles tend to
have their energy concentrated at the mode frequencies of the structure.
Because the structure ie time varying, the resonance freguencies are
changing over time. Thus, while this example is not something normally
desirable, it has the interesting property of “"tracing” the mode frequencies
of the usveguide reverberator in a manner analogous to tracing blood
circulation with radio active salts.

Sound example S:

Here the three-usveguide netuork shoun on page 268 of the vieugraphs

is used to delay and recirculate the same original sax toot. Ths network
varies sinusoidaliy as in example 3 except that the variation frequency
iteelf varies randomly instead of sinuscidailly.

>4




Sound examples 6 and 7:

CCRMA composer Mike McNabb has taken the above example 5 and adapted it

for his forthcoming piece *Invisible Cities®. Thess examples demonstrate
what can be done by carefully selecting the input signal, delay lengths,
time variation frequencies, and filter coefficients.

Sound exampie 8:
This is similar to examples 6 and 7 except that the final sound is played

backuards. The sound goes from “"gas® to "solid" instead of the other way
around. This effect can also be achieved in hardware in real tise.
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Efficient Simulation of the Reed-Bore
and Bow-String Mechanisms

Julius O. Smith

Center for Computer Research in Music and Acousties (CCRMA)

Department of Music, Stanford University
Stanford, C'alifornia 94805

Abstract

A method for simulating the reed of a wind instrument
is described which requires anly 1 muitiply, 2 additions,
and 1 (small) table lookup per sample of synthesized
sound. The table contains only a constant and a ramp
in the simplest case. An analogous method Is described
for simulating the interaction between a bow and string,
requiring 2 more additions than the reed simulator.

1. Introduction

In [20], McIntyre and Woodhouse laid the foundations for
efficient synthesis of a wide class of musical instruments, in-
cluding most winds and strings. The synthesis architecture
consists of a delay-line loop whose length is approximately
one period of sound, a lowpass filler implementing various
sources of signal loss, and a nonlinear element which con-
verts control variables into oscillations in a way very much
like a reed or bow. depending on the nonlinear function
used. A review of the virtues of this model appears in [21].
Related applications have been developed in {13.12,30.31].

In [20], it was apparently first suggested to explicitly repre-

sent the left- and right-going traveling-wave components of
a one-dimensional wave and to lump the round-trip losses

into a low-order digital filter. This enables most of the

string to be simulated with a simple delay line {or shift

register). The delay loop model (also called the “method of
the rounded corner” by Cremer {10]) is far more eflicient

than finite-element approaches employing numerical integra-
tion of the difference equations describing a system of masses
and springs.

In 1053, Friedlander [11} and Keller {17] published papers
containing the first [20] use of a successful graphical solu-
tion technique for the bow-string interaction. This tech-
nique consists of finding the interscction between two force-

versus-velocity curves, one given by the friction curve for
the bow-string contact, and the other given by the charac-
teristic impedance (radiation resistance) of the string.

The complete bowed-string model discussed in [20] consists
of a Friedlander-Keller diagram solver, a low-order lowpass
filter. and pure delay, configured as a traveling-wave loop.
The scope of this madel was later extended to single-reed
oscillators such as the clarinet. and to switching air-jets
such as flute, recorder, and organ pipe [21).

This paper presents a simplified implementation of the graphi-
cal Friedlander-Keller component of the model studied by
Mclntyre and Woodhouse. A table lookup and multiply re-
place the simultaneous solution of a linear and nonlinear
equation at each sampling instant described in [21].

In the proposed technique, the reed is regarded as producing
a time-varying reflection coefficient terminating the bore
which is modeled as an ideal lossless waveguide or transmis-
sion line. A complete single-reed instrument with ceylindri-
cal bore (clarinet) can be built using the proposed reed
mechanism together with a bore model requiring no mulii-
plies, one addition, and variable delay lines whose fength
equals the sonic period in samples.




Mouth { Reed & Bore ¢ Bell =

Figure 1. Model of a single-reed, cylindrical-bore woodwind.

A diagram of the basic clarinet model is shown in Fig.
1. The delay-lines carry left-going and right-going pres-
sure samples P; and P, (respectively) which sample the
traveling pressure-wave components within the bore (cf.
|30,12,31]). Pressure waves are chosen over velocity waves
because the main control is mouth pressure rather than
breath veloeity.

Sound pressure in the bore at any point is obtained by
adding the corresponding left-going pressure sample to the
corresponding right-going pressure sample immediately op-
posite, as indicated in the figure. Tone-hole output can
be implemented this way in the simplest case, and inter-
polating position along the bore can be accomplished using
allpass filtering, as discussed in [30,12].

The lowpass filter at the right represents the bell or tone-
hole losses as well as the round-trip attenuation lusses from
traveling back and forth in the bore. To a first order, the
bell reflects incoming pressure waves {with a sign inversion)
for wavelengths much greater than the bore diameter. and
the bell passes traveling waves having wavelengths much
shorter than the bore diameter. In other words, the bell
splits the incoming signal (like a erossover network for audio
speakers) into reflected low-frequeney and transmitted high-
frequency components. The radiated bell output is there-
fore highpass to the fiest order. The flare of the bell lowers
the reflection/transmission cutofl frequency by decreasing
the bore characteristic impedance toward the end in a non-
reflecting manner; it serves the same function as a trans-
former coupling of two electrical transmission lines.

At the far left is the reed mouthpicee controlied by mouth
pressure Py,. Another control is embouchure, changed by

so

modifying the contents of the reflection-coeflicient look-up
table p(P2/2).

Figure 1 is drawn for the case of the lowest note (all tone
holes closed); for higher notes the first few open tone holes
jointly provide a bore termination [5] analogous to the bell
(at which time the bell itself gets very little low-frequency
energy). In this situation, it is convenient to model cach
important open tone hole as a threc-port junction in the
waveguide [31]. Since the tone hole diameters are small
compared with audio frequency wavelengths, the lhrm--]mrt
reflection and transmission coellicients can be implemented
as constants rather than crossover filters.

1.2. The Bowed String

Figure 2. Baxic madel for a bowed string.

A diagram of the violin model is shown in Fig. 2. The right
pair of delay-lines carry left-going and right-going velocity
waves samples 1':, and v, . (respectively) which sample the
traveling-wave components within the string to the right
of the bow (cl. [30,12.31]). and similarly for the seetion of
string to the left of the bow, The choice of velocity waves
instead of force waves is due to the fact that bow velocity




is the primary control variable.

String velocity at any point is obtained by adding a let-
going velocity sample to the right-going velocity sample im-
mediately opposite in the other delay line, as indicated in
the figure. The lowpass filter at the right represents the
losses at the bridge, bow, nut or finger-terminations (when
stopped), and the round-trip attenuation/dispersion from
traveling back and forth on the string. To a very good
degree of approximation, the nut reflects incoming velocity
waves (with a sign inversion} at all audio wavelengths. The
bridge behaves similarly to a first order, but there are ad-
ditional (complex) losses due to the finite bridge driving-
point impedance (necessary for transducing sound from the
string into the resonating body). Techniques for estimating
the coefficients of this lowpass filter are discussed in [30].

Figure 2 is drawn for the case of the lowest note. For
higher notes the delay lines between the bow and nut are
shortened according to the distance between the bow and
the finger termination. At the bowing point is the bow-
string interface controlled by differential velocity v: which
is the bow velocity minus the current string velocity. Other
controls include bow force and angle which are changed by
modifying the contents of the reflection-coefficient look-up
table p(v:). Bow position is changed by taking samples
from one delay-line pair and appending them to the other
delay-line pair. Again, allpass filters can be used to provide
continuous change of bow position.

To provide practical insight, a step by step description of
the oscillation build-up is described.

For definiteness, consider the case of a reed woodwind.
To start the oscillation, the player applies a pressure at
the mouthpiece which “biases” the reed in a “negative-
resistance” region. (The pressure drop across the reed tends
to close the air gap at the tip of the reed so that an increase
in pressure will result in a net decrease in volume velocity—
this is negative resistance.) The high-pressure front travels
down the bore at the speed of sound until it encounters an
open air hole or the bell. To a first approximation, the high-
pressure wave reflects with a sign inversion and travels back
up the bore. (In reality a lowpass filtering accompanies the
reflection, and the complementary highpass filter shapes the
spectrum that emanates away from the bore.

As the negated pressure wave travels back up the bore, it
cancels the elevated pressure that was established by the
passage of the first wave. When the negated pressure front
gets back to the mouthpiece, it is reflected again, this tine
with no sign inversion {because the mouthpicce looks like a
closed end to a first approximation). Therefore, as the wave
travels back down to the bore, a negative pressure zone is
left behind. Reflecting from the open end again with a sign
inversion brings a return-to-zero wave traveling back to the
mouthpiece. Finally the positive traveling wave reaches the
mouthpiece and starts the second “period” of oscillation.

So far, we have produced oscillation without making any
use of the negative-resistance of the reed aperture. This
is is merely the start-up transient. Since in reality there
are places of pressure loss in the bore, some mechanism
is neceded to feed energy back into the bore and prevent
the oscillation just described from decaying exponentially
to zero. This is the function of the reed: When a traveling
pressure-drop reflects from the mouthpiece, making pres-
sure at the mouthpiece switch from high to low, the reed
changes from open to closed (to a first order). The closing
of the reed increases the reflection coefficient “seen” by the
impinging traveling wave, and so as the pressure falls it is
amplified by an increasing gain (whose maximum is unity
when the reed shuts completely). This process sharpens the
falling edge of the pressure drop. But this is not all. The
closing of the reed also cuts back on the steady incoming
pressure from the mouth. This causes the pressure to drop
even more, potentially providing effective amplificalion by
more than unity.

An analogous story can be followed through for a rising
pressure appearing at the mouthpicce. However, in the
rising pressure case, the reflection coeflicient falls as the
pressure rises, resulting in a progressive attenuation of the
reflected wave; however, the increased pressure let in from
the mouth amplifies the reflecting wave. It turns out that
the reflection of a positive wave is boosted when the in-
coming wave is below a certain level and it is attenuated
above that level. When the oscillation reaches a very high
amplitude, it is limited on the negative side by the shutting
of the reed, which sets a maximum reflective amplification
for the negative excursions, and it is limited on the posi-
tive side by the attenuation described above. Unlike clas-
sical negative-resistance oscillators [25,22], in which the
negative-resistance device is terminated by a simple resis-
tance instead of a lossy transmission line, a dynamic eque-
librium is established between the amplification of the nega-
tive excursion and the dissipation of the positive excursion.

3]




In the first-order case, where the reflection-coefficient varies

linearly with pressure drop, it is easy to obtain an exact
quantitative description of the entire process. In this case
it can be shown, for example, that amplification occurs
only on the positive half of the cycle, and the amplitude
of oscillation is typically close to half the incoming mouth
pressure (when losses in the bore are small). The threshold
blowing pressure (which is relatively high in this simplified
case) can also be computed in closed form.

2. Single-Reed Simulation

The fundamental equation governing the action of the reed
is continuily of volume velocily, i.e., Uy = Uy, where

P

Zm(Pa) t

‘m(Ps) =

is the flow out of the mouthpicce corresponding to the
pressure-drop P, = Py — Py from the bore to the mouth,
Zm(P,) is the acoustic impedance of the reed opening (whaose
size depends on the pressure drop P, across the reed), and

Py Py

UslPy, Py) = =

(2

is the volume velocity corresponding to the incoming pres-
sure wave P; and outgoing pressure wave P, . (The actual
physical pressure in the bore at the mouthpiece is Py =
P; + P,.) The characteristic impedance of the bore air-
column (equal to air density times sound speed divided by
cross-sectional area) is denoted Zp.

In operation, the mouth pressure Py, and incoming travel-
ing bore pressure P: are given, and the reed computation
must produce an outgoing bore pressure P, which satisfies
(1) and (2), i.e., such that

P, P, - P, .-
= , P,AP, +P, —Pn (3)
Zm(Ps) Zp . b b

Such a solution for I’; is not immediately trivial because
of the dependence of Zy, upon Py which, in turn, depends
upon P, . A graphical solution technique has been proposcd
[11.17.20] which, in effect, consists of finding the intersee-
tion of the two sides of the equation as they are plotted
individually on the same graph, varying P, . It is helplul
to normalize as follows: Defining G(Py) = Zplll,) =
Py Zy) Zu(Ps), and noting that Py — Py = 205 = P -
(Py + Py = Pn)= PY - Py, where PT 2 2P, = P, (3)
can be written

G\P,)=P,-P,, PLA2P,-P, (1)

where a solution for P, is required given l’:. The solution
is obtained by plotting G(P,) and P} — P, on the same
graph, finding the point of intersection G(17%), and taking
Pb— = P —1’; + Py as the desired outgoing pressure wave,

2.1. A Table Lookup Technique

One approach to reducing the computational burden is to
prepare a table containing PL(PL/2) = l':\(l'; =1y /2).
This reduces the total computations to three additions and
the table lookup.
fast, the table may be prohibitively large. For example,
if P; and P, are 16-bit signal sample. the table would
contain on the order of 64K 16-bit 1’5 samples. Clearly,
some compression of this table would be desirable. Sinee
P:(PZ/‘!) is smoothly varying, significant compreé_siml is
in fact possible. However, beecause the table is directly in
the signal path, comparatively little compression can be
done while maintaining full audio quality (such as 16-Lit

Wihile such a technique can be very

accuracy).

2.2. A Scattering Theory Approach

From (3) we can write
m (5)

o o L=ptl)
Py —p(l’_\)lb-i———T—A—

where

1-r{P,)

Z
—_ ) ) A ‘b
14+ (P !

a
p(PA)= Q= Zm(PA)

We can interpret p(F’,) as a signal-dependent refleclion covf-
ficienl. Let h denote half-pressure F2/2, e.g., hy = 1 /2
and h = PL/2. Also let
) ’*
)= praeln = D20s) oy
'.\

. .. . +
denote the reflection coeflicient stored as a function of A ;.
Then (5) can be written

Py o= ph) by +hy, {6)

This is the equation proposed for implementation.  The
+

. . +
control variable is mouth half-pressure by, and hy = Py —

32




hyyn is computed from the incoming bore pressure using only
a single subtraction. The table is indexed by L, and the
result of the lookup is then multiplied by h:. Finally, h,,
is added to the result of the multiplication. Because the
table contains a coeflicient rather than a signal value, it
can be more heavily quantized both in address space and
word length. The total complexity is only two additions,
one multiply, and a simplified table lookup.

Good results have been obtained at CCRMA using

1, AL < kg

(7)
1—m{ky — k), kL > K

p(h%) ={

where hS is the pressure difference corresponding to reed
closure. Embouchure and reed stiffness correspond to the
choice of AS and m.

3. The Bow-String Mechanism

An analogous derivation is possible for the simulation of
the bow-string interaction. The final result is as follows.

- + o+
Vor =g+ p(v3) vy (8)

- + 4+
Vg i =0y, +p(v,) v,

where v,, denotes transverse velocity on the segment of

the bowed string to the right of the bow, and v, denotes

velocity waves to the left of the bow. In addition we have
+ + + . .

v, = vy~ (v,, + v, ), where v is bow velocity, and

Loy _rva(v}))
Alva) = 1+ r{va(vy))

The impedance ratio is defined as r(v,) = 0.25Zy(v,)/Z,,
where v, = vy —v, is the velocity of the bow minus that of
the string, v, = v:_,+v:, = v, +v,, is the string velocity
in terms of traveling waves, Z, is the characteristic impe-
dance of the string {equal to the geometric mean of tension
and density), and Zp{v,) is the friction coefficient for the
bow against the string, i.e., bow force Fy(v,} = Zy(v,)-va.
(Force and velocity point in the same direction when they
have the same sign.)

=3

Nominally, Zp(v,) is constant (the so-called static coeffi-
cient of friction) for jv,| < v4, where v4 is the break-away
differential velocity, and for |v,| > v, Zy(vs) falls quickly
to a low dynamic coefficient of friction.
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Elimination of Limit Cycles and Overflow Oscillations

mn

Time-Varying Lattice and Ladder Digital Filters

Julius O. Smith*

Systems Control Technology
1801 Page Mill Rd., Palo Alto CA, 94303, Tel: (415)494-2233

Abstract

A construction is presented which shows that limit cycles and overflow oscil®

lations can be eliminated in all prevalent forms of lattice and ladder digital filter
structures, whether or not they are time varying, and whether or not the input
signal is zero. In particular, the computationally efficient one-multiply lattice sec-
tion can be made free of limit cycles and overflow oscillations in the time-varying,
nonzero-input case. These results derive from a simplified formulation of digital

filters in terms of cascade transmission-line segments.

Another byproduct of the formulation is a new normalized ladder filter (NLF)
structure which has only three multiplies per section instead of four. The new NLF

is, in principle, a transformer-coupled one-multiply section.

* Work supported in part by the Rome Air Development Foundation under contract
no. F30602-84-C-0016 and (at CCRMA, Stanford University) by the System Development

Foundation.
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1. Introduction

Nonlinear effects of numerical roundoff error and overflow have plagued many
applications of digital filters, including, for example, signal acquisition and con-
ditioning systems. Artifacts can be particularly severe in the case of recursive filters.
For example, overflow can cause a “chain reaction” of overflows due to the presence
of feedback (an overflow oseillation), and roundoff error can result in a persistent,
non-decaying “buzz” or “whistle” which lasts forever after the input signal ceases
(a limit cyele). '

Limit cycles and overflow oscillations can be suppressed by ensuring that the
effects of overflow and roundoff error do not increase “signal power” relative to that-
of the ideal (infinite-precision) signal. Defining signal power and energy density(
on the level of individual signal samples is possible by following closely the basic

physics of waves [2] or classical network theory [1].

The key point of this paper is that when digital filters are implemented in the
form of classical cascade transmission line networks, a one-to-one correspondence
can be found between each signal sample within the filter and a physical voltage or
current level in an ideal transmission-line. In this context, it is quite clear how to
define signal power for each delay register and for each sampling instant everywhere
within the filter network. From there, ensuring “passive” computations. is quite
simple, even under arbitrary time-varying conditions. The only remaining task is
then to show that all lattice and ladder filter structures can be obtained from the
cascade transmission-line structure using network transformations which preserve
exactly the signal power associated with each sample in spite of roundoff error and

possible overflow.

The essential argument in eliminating limit cycles and overflow oscillations
is as follows. Once finite-precision computations are adjusted to avoid increasing
signal power on roundoff or overflow, the signal power in the digital filter becomes
bounded above by the signal power in the corresponding infinite-precision filter.
In this way, the infinite-precision signal power at each internal node serves as a
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Lyapunov function for each internal node of the finite-precision filter. This means
that the signal power at each delay element for each sampling instant within the
finite-precision filter can never be larger than in the ideal case. Consequently, we can
interpret all numerical artifacts as attenuating distortion of the original signal—no
signal can persist beyond the ideal output as is characteristic of limit cycles and

overflow oscillations.

2. Background

One of the earliest treatments connecting the scattering formulation of classical
network theory to digital filter theory was carried out by Fettweis [3,4,5,7]. He
has used the term “wave digital filters” (WDF) for the filter structures obtained
by carrying classical continuous-time “wave variables” associated with networks of
capacitors, inductors, and resistors, into the discrete-time domain. Wave variables
are typically defined as z = v + Ri and y = v — Ri, where v and ¢ decnote the
voltage and current at 2 terminal of an N-port network, and R is an arbitrary
“reference impedance.” In wave digital filter theory, the analog frequency variable
is mapped to the digital frequency variable via the bilinear conformal mapping
s = (2 — 1)/(z + 1). In this formulation, it is not obvious to what extent the well-
known physical properties of the analog prototype filters have been carried over to
the discrete-time domain, particularly in the time-carying case. However, Fettweis
[5] and Meerkotter [9] have made use of “pseudo-passivity” conditions to develop
digital filter structures which are guaranteed to be free of limit cycles and overflow

oscillations in the time-invariant, zero-input case.

The well-known ladder and lattice filters used in speech modeling and spectrum
estimation [8,10,11,13,16] and the more recent “orthogonal filters” deriving from
state-space and Nerode projection techniques [14,15] can also be derived from clas-
sical scattering theory. Gray [10,13] has used a type of pseudo-passivity (Lyapunov)
theory to demonstrate that the major existing ladder and lattice filter structures
can be made free of limit cycles and overflow oscillations, in the time-invariant,

“?
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zero-input case, by using extended internal precision within each section and us-
ing magnitude truncation for the final outgoing pair of samples [6,13]. Moreover,
Gray proved [13] that the normalized ladder filter (NLF) is free of limit cycles and

overflow oscillations even in the ¢time-varying, zero-input case.

In this paper, we extend the results of Fettweis, Meerkotter, Gray, and others to
include all of the well-known ladder and lattice filter structures in the time-varying,
nonzero-input case. Analogous results have been obtained also for generalized multi-
input, multi-output lattice filter structures [17]. These results are immediate from
a reformulation of the basic theory at the most fundamental level. The formulation
is closely related to the classical scattering theory, except that (1) the wave vari-
ables are pure voltage or current on a transmission-line—not linear combinations~
of the two, and (2) scattering points are formed by coupling transmission-line sec-
tions rather than “adapting” two RLC networks of differing “reference impedance”
together. The resulting filter structure is termed a waveguide filter (WGF), and the
WGF can be transformed into common ladder and lattice structures by network
equivalence operations. The advantage of working with the WGF structure is that
it corresponds czactly to a physical interconnection of uniform transmission-lines.
This enables immediate determination of true passivity, as opposed to “pseudo-
passivity.”

3. The Waveguide Filter Structure

A single waveguide section between two partial sections is shown in Fig. 1. The
sections are numbered 1 through 3 from left to right. For definiteness, suppose that
the waveguide is acoustic, and that the signal variables are pressure and volume
velocity. A more elaborate treatment of the acoustic tube can be found in [11].
Each waveguide section is characterized by a real, positive characteristic impedance
Z;(t) which is allowed to vary with time, but which is constant across a waveguide
section at any given instant. In the ith section, there are two pressure traveling

waves: P:-' traveling to the right at speed c and P; traveling to the left at speed c.
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Figure 1. A waveguide section between two partial sections.

a) Physical picture indicating traveling waves in a continuous medium whose charac-
teristic impedance changes from Z; to 2; to'Zg.

b) Digital simulation diagram for the same situation. The section traversal delay is
denoted as z~T. The behavior at an impedance discontinuity is characterized by forward

and reverse transmission (7;, 7;) and reflection (i, k;) coefficients.
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For minimization of dynamic range requirements, we may sometimes choose instead
left- and right-going velocity waves, U, ,U :, respectively, as the signal variables.

The fundamental equations relating the traveling waves and characteristic im-
pedance in the sth section are '

P} =Z;U}
- - (1)
P; =-2U;

These will be referred to below as Ohm’s law for unidirectional traveling waves.—
More precisely, P:(z, t) = Z,(z, t)U:'(:r, t) and P; (z,t) = —Z(z, t)U; (z, t), where
z is horizontal position along the waveguide axis and ¢ is time. However, since (1)
holds at any fixed point in space and time within each section, the arguments ‘(z, ¢)’
can be dropped in the general case for simplicity of notation.

If the characteristic impedance Z; is constant, the shape of a traveling wave
is not altered as it propagates from one end of a section to the other. In this case
we need only consider P; and P at one end of each section as a function of time.
As shown in Fig. 1, we define P¥(t) as the pressure at the eztreme left of section i.
Therefore, at the extreme right of section ¢, we have the traveling waves P:(t -7
and P; (¢ + T), where T is the travel time from one end of a section to the other.

When the characteristic impedances are time-varying, a number of possibilities
exist which satisfy Ohm's law (1). For the moment, we will assume the traveling
waves at the extreme right of section ¢ are still given by P:(l —1T)and P; (t+T).
This definition, however, implies the velocity varies inversely with the characteristic
impedance. As a result, signal energy is “pumped” into the waveguide by a changing
characteristic impedance. The appendix describes normalization strategies which
holds signal power fixed in the time-varying case.

The physical instartaneous pressure and velocity in section ¢ are obtained by
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summing the left- and right-going traveling wave components:
P;=P] +P;
U;=U; +U;
Again this relationship is instantaneous with respect to space and time. Let Pi(z, t)
denote the instantaneous pressure at position z and time ¢ in section ¢, where z is
measured from the extreme left of section ¢ (i.e., 0 < z < ¢T). Then we have, for

example, P;(0,t) A P} (t) + P; (t) and Pi(cT,t) & P{(t - T)+ P (t + T) at the
boundaries of section 1.

Conservation of energy and mass dictate that the instantaneous pressure and

velocity must be continuous across an impedance discontinuity, i.e.,
I)I'-I(CTa t) = R(O’ t)
U 1 ()
i=1(eT, ) = Uy(0,¢)

Equations (1,2,3) imply the following scattering equations:

P} (t) = 1+ k(0)]|P7_, (¢ = T) = ki(8)P; (1)

PiLy(t+T) = ki()Pi_y(t = T) + [1 = k()] P; () “
where Zdt) = Zoy (1)
I\~ Li—1
“0 2 20+ 2,0 ®

is called the sth reflection coefficient.

The scattering equations are illustrated in Fig. 2.* This scattering configuration
is used in the Kelly-Lochbaum acoustic tube model [11].

* In the case of traveling velocity waves, the forward and reverse transmission coeffi-
cients are interchanged. However, we cannot mix pressure and velocity sections in the
time-varying case unless we interject a “transformer” when changing from pressure to

velocity as discussed in the appendix.

$3
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Figure 2. The Kelly-Lochbaum scattering junction.

By factoring out k;(t) in each equation of (4), we can write

P} (t)=P;_y(t=T) + Pa(t)

po - (6)
i—1(t+T) = P; (t) + Pa(t)

where

Pa(t) = k.-(t)[P?_,u—T)—P.-‘(t) @)

Thus, only one multiplication is actually necessary to compute the reflected waves
from the incoming waves in the Kelly-Lochbaum junction. This computation is
shown schematically in Fig. 3, and it is known as the one-multiply scattering junc-
tion [11). In fixed-point implementations, the only source of error would typically
be in single multiplication within the computation of P,.

Another one-multiply form is obtained by organizing (4) as

s%
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Figure 8. The one-multiply scattering boundary.

PI(t) = P7(t)+ as(t)PA(0)
Pi_y(t+T)=P;(t)- Pa(t) ®)

where
ai(t) A1+ ki(t)

P,() AP.,(t-T)- P} (1) ©)

As in the previous case, only one multiplication and three additions are required
per junction.

It is easy to show using the formulas of the next section that for junction
passivity, the single section parameter k; of (6) must lie between —1 and 1, while
in (8), the parameter a; must lie between 0 and 2.

S5
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4. Signal Power

The snstantaneous power in a waveguide section containing instantaneous pres-

sure P;(z, t) and velocity Uj(z,t) is defined as the product of pressure and velocity:
Ii(z,t) = Pi(z, )Uj(z, 1) (10)

An analogous definition (using the para-Hermitian conjugate of P;) works out
very well for the generalized case in which P¥ and U# are ¢ by m matrices of

meromorphic transfer functions [17}.

The right-going and left-gosing power at the extreme left of the ith waveguide
section are defined, respectively, by

+ + + P (t)?
1w =pwvin= "0
- (11)
~ ()12
176 =riwui=-S00

From (10), we have I;(0,¢) = I :(t) + I, (t) for the net power flow into the ith
waveguide section from the left. The power equation completes the basic picture of
interconnected waveguide sections.

5. Junction Passivity

A junction is passive if the power flowing away from it does not exceed the
power flowing into it. Referring to equations (4) and (11), the total power flowing

away from the ¢th junction is bounded by the incoming power if

[PIOR [P, (t+ TN _ [P (t=T) [P (9]
Z(t) Zialt) = Zia() Zi(1)

(12)

§¢
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which is true if and only if J;_,(cT,t) > I;(0,t). Let P denote the finite-precision
version of P. Then a sufficient condition for junction passivity is

|Pi] < | Pl

jp.-‘_,(:+n| <[P+ "

Thus, if the junction computations do not increase either of the output pressure
amplitudes, no signal power is created. An analogous conclusion is reached for
velocity scattering junctions.

8. Passive Arithmetic

In a finite-precision implementation, only the junction output signals P (8
and P,_,(t + T) need to be examined as possible sources of increased signal power.
Quantized reflection coefficients k,(t) (between 0 and 1) can be regarded as error-free
(insofar as passivity is concerned) because to each sequence of quantized reflection
coefficients, k;(t),i =1,..., M , there corresponds a sequence of exact characteris-
tic impedances Zi(t) = Z;_, ()1 + k;(8)]/[1 - kft)],i =1,..., M +1, where Zois
arbitrary and Z s, , is infinity. The quantized input signals }":_ 1(t—=T) and P,-_(t)
are simply delayed outputs from adjoining junctions, and the intervening delay lines
introduce no further quantization.

In view of the previous paragraph and equation (13), a general means of
obtaining passive junctions is to compute exact results internally using extended
precision, and apply saturation and magnitude truncation to the final outgoing

waves. Let
n A Number of bits per signal sample

. . . (14)
m A Number of bits per reflection-coefficient

We assume fractional two’s complement arithmetic is used, although analogous
results exist for other number systems. Both the signal variables P¥ and the
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Figure 4. Bit allocations in the passive, finite-precision, Kelly-Lochbaum junction.

reflection coefficients k; are assumed to lie between —1 and 1 so that the binary

point is at the far left in every case.

7. The Passive Kelly-Lochbaum Junction

Figure 4 shows the number of bits needed to implement a passive Kelly-
Lochbaum junction. The forward and reverse transmission coefficients each require
m + 1 bits in order that 1+ i:,-(t) be represented exactly relative to lAc.-(t). When an
n-bit value is multiplied by an m-bit value, the complete product contains n+m bits,
in general. Similarly, an n-bit value added to an m-bit value requires 1+max{n, m}
bits to represent exactly all possible results.

The error-free junction outputs occupy 2 + n + m bits. The 2 most-significant
bits (MSB'’s) and the m least-significant bits (LSB’s) must be discarded. When the
3 MSB's are not equal, overflow has occurred. The 2 MSB's can simply be discarded
(resulting in “wrap-around” on overflow), or they can be used replace the output
value by the maximum-magnitude number in n-bit two's complement having the
correct sign (“saturation” on overflow). The 3 MSB's determine the appropriate

SE
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Figure 5. Bit allocations in the passive, finite-precision, one-multiply junction.

action to take in a saturating adder. With either overflow-handling strategy, the
signal amplitude is reduced upon overflow. Consequently, by (13), signal power is
always decreased by output adder overflow, even in the otherwise disastrous case

of two's complement “wrap-around.”

The magnitude truncation function discards the low-order (least significant) m
bits of the result if it is positive. The low-order m bits are also discarded if they
are all zero. If the extended-precision result is negative and any of the m low-order
bits is nonzero, then the smallest positive number (2="+!) is added to the value
obtained by discarding the low-order m bits. Thus, the number is always truncated
toward zero.

A simpler magnitude truncation scheme which loses the LSB with probability
2-™ js to simply discard the low-order m bits in all cases, and always add 2—"+!
to the n-bit result if it is negative.

8. The Passive One-Multiply Junction

Figure 5 shows the number of bits needed to implement a passive one-multiply

junction. The adder before the reflection coefficient increases the signal width by

S7
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one bit, and the reflection coefficient itself adds m bits, for a total of 1 + n + m
bits going into each of the two final adders. The final output signal again occupies
2 + n + m bits. Output overflow considerations are exactly the same as in the
Kelly-Lochbaum junction. However, the magnitude truncation is less expensive
in the present case. Notice in Fig. 5 that every adder has at least one operand
consisting of only n bits. Consequently, the low-order m bits at the input to the two
output adders will be summed with zeros and passed through unchanged. Hence,
the adders need not accept the low-order m bits. The logical OR of all of the
m LSB’s of the multiplier output (denoted s in Fig. 5) can be fed directly to the
magnitude truncation unit, without increasing the adder complexity at all. In the
simplified magnitude truncation scheme, the low-order m bits from the multiplier
can be ignored completely. With some multiplier chips, the low-order product must
be extracted on a separate output tri-state enable; in this situation, the simplified
magnitude truncation scheme may double throughput.

cO
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Figure 8. Waveguide digital filter structure.

9. Reduction to Standard Forms

The basic WGF we have been considering is shown in Fig. 8. Each box enclosing
the symbol ki(t) denotes a scattering junction characterized by k;(t). While we
have mentioned only the Kelly-Lochbaum and one-multiply junction, any type of

Fass: Ve Jossless junction will drtj\\!b(en
ladder scattering junctions [11] can appear in these boxes.*The WGF employs delays

" particular, the two-multiply lattice and normalized

between each scattering junction along both the top and b’c\bttom signal paths, unlike
conventional ladder and lattice filters. Reduction to the standard forms is merely a
matter of pushing delays along the top rail around to the bottom rail, so that each
bottom-rail delay becomes 2T seconds instead of T seconds. Such an operation is
possible because of the termination at the right by an infinite (or zero) characteristic

impedance.

In the time-varying case, pushing a delay through a multiply results in a
corresponding time advance of the multiplier coefficient, as shown in Fig. 7.

*  According to lore, when the diagram within each jnneti.n box is a planar graph, as
in the Kelly-Lochbaum and normalized ladder junction, the resulting system is called a
ladder filter. When the junction scattering diagrams are nonplanar, as in the one-multiply
or two-multiply cases, the term lattice filter is used. However, this definition appears not

to be universal.
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k@

x() ___.D_p Z.T & kOT)x (D

b) k(-T)

x() > T - — P

Figure 7. Commuting a delay with a multiplier coefficient in the time-varying case.

Imagine each delay element in Fig. 6 being divided into halves, and let ¢ denote
a delay of T/2 seconds. Then any WGF can be built from sections such as shown
in Fig. 8a.

The series of transformations shown in Fig. 8 push the two input-signal delays
through the junction to the two output delays. A similar sequence of moves pushes
the two output delays into the two input branches. Consequently, we can replace
any WGF section of the form shown in Fig. 9a by a section of the form shown in
Fig. 9b or c.

By alternately choosing the structure of Fig. 9b and c, the filter structure of
Fig. 10 is obtained. This structure has some advantages worth considering: (1) it
consolidates delays to length 2T as do conventional lattice/ladder structures, (2)
it does not require a termination by an infinite characteristic impedance, allowing
it to be extended to networks of arbitrary topology (e.g., multiport branching,
intersection, and looping), and (3) there is no long delay-free signal path along the
upper rail as in conventional structures—a pipeline segment is only two sections
long. This structure, termed the “half-rate waveguide filter” [17], appears to

£2
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Figure 8. Equivalent waveguide filter sections.
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‘4—_ Lower Rail Portion of Pipeline ——-—-b‘

Flgure 10. Pipelineable, physically extendible, consolidated-delay, waveguide filter.

have better overall characteristics than any other digital filter structure for many
applications. Advantage (2) makes it especially valuable for modeling pkysical
systems.

Finally, successive substitutions of the section of Fig. 8b and reapplication of
the delay consolidation transformation lead to the structure of Fig. 11. This is
the conventional ladder or lattice filter structure. The termination at the right by
a total reflection is required to obtain this structure. Consequently, conventional
lattice filters cannot be extended on the right in a physically meaningful way. Also,
creating network topologies more complex than a simple series (or acyclic tree)
of waveguide sections is not immediately possible because of the delay-free path
along the top rail. For example, the output cannot be fed back to the input.
Nevertheless, the conventional structure enjoys the same physical interpretation as
the more general WGF structures, including the same simple passivity conditions
in the time-varying, nonzero-input case.
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Figure 11. Conventional ladder/lattice filter structure.

10. Appendix — Power-Normalised Waveguide Filters

Above, we adopted the convention that the time variation of the characteristic
impedance did not alter the traveling pressure waves P¥. In this case, the power
represented by a traveling pressure wave is modulated by the changing character-
istic impedance as it propagates. The actual power becomes invsersely proportional

to characteristic impedance:

[P} (z, ]2 — [P} (z, )]

Iz, t) = I} (z,8) + I (z,8) = 710

(15)

This power modulation causes no difficulties in the Lyapunov theory because it
occurs identically in both the finite-precision and infinite-precision filters. However,
in some applications (e.g. [18]), it may be desirable to compensate for the power
modulation so that changes in the characteristic impedances of the waveguides do
not affect the power of the signals propagating within.

Consider an arbitrary point in the sth waveguide at time ¢ and distance z = c7
measured from the left boundary, as shown in Fig. 12. The right-going pressure
is P,f(z, t) and the left-going pressure is P; (z,t). In the absence of scaling, the

4
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Figure 12. Traveling pressure waves at a general point within a waveguide section.

waveguide section behaves (according to our definition of the propagation medium
properties) as a pressure delay line, and we have P:(z, t) = P'.-'(O,t — 1) and
P (z,t) = P;(0,t + 7) = P; (cT,t — T + 7). The left-going and right-going com-
ponents of the signal power are [P} (z, £)]2/Z;(t) and [P; (z,t)]?/ Z(t), respectively.

Below, three methods are discussed for making signal power invarsiant with
respect to time-varying branch impedances.

10.1. Normalized Waveguides

Suppose we are willing to scale the traveling waves as the characteristic impe-
dance changes in order to hold signal power fixed. We can choose any position as
a reference, but perhaps it is most natural to fix the power of each wave to that
which it had upon entry to the section. In this case, it is quickly verified that the

€7
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proper scaling is

. @M \M? .
P‘(z’t)=(ﬁz;(:)_f)) P"(O,t—f), T=cT
- . 1z _ (16)
P (z.t) = (‘z‘(:‘%) P;(cT,t=T+1)

In practice, there is no need to perform the scaling until the signal actually reaches

a junction. Thus, we implement

P} (T, t) = g{t)P} (0,t - T)

o _ (17)
P;(0,8) = g;(t)P; (cT,t - T)
where
PR / Zi(t)
) gl(t) - Z,'(t — T)
Jitnce
In the single-argument notation used earlier, (17) becomes
-+ +
P;(t=T)=gi()P; (t-T)
(18)

P; ()= gi()P7 ()

A diagram of this normalization strategy is shown in Fig. 13. It has the property
that the time-varying waveguides (as well as the junctions) conserve signal power.
If the scattering junctions are implemented with one-multiply structures, then the
number of multiplies per section rises to three when power is normalized. There
are three additions as in the unnormalized case. In some situations (such as in
the two-stage structure of Fig. 10), it may be acceptable to normalize at fewer
points; the normalizing multiplies can be pushed through the scattering junctions
and combined with other normalizing multiplies, much in the same way delays were
pushed through the junctions to obtain standard ladder/lattice forms. In physical

68
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Figure 18. Normalized-waveguide digital filter structure.

modeling applications, normalization can be limited to opposite ends of a long

cascade of sections with no interior output “taps.”

To ensure passivity of a normalized-waveguide with finite-precision calcula-
tions, it suffices to perform magnitude truncation after multiplication by g,(¢).
Alternatively, extended precision can be used within the scattering junction.

10.2. Normalized Waves

Another approach to normalization is to propagate rms-normalized waves in
the waveguide. in this case, each delay-line contains

p:(,, t)= P (z, t)/\/ Zi(t)
Pi (e = i) [ VED

(19)

.+
We now consider P (instead of P#*) to be invariant with respect to the character-
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istic impedance. In this case,

The scattering equations (4) become

VZD P} (0,8) = (14 k(O Ziy () Pi_y(cT, ) - ki) Z D P; (0, 1)
V2 PLLy(eT, ) = kil Ziy( Py (et, T) + 1 = KAOIVZRD P; (8

. (20)
or, solving for i’,' ,
=t _ . a—l(t) b
P (0,8) = [1 + ki(t)] Z) Pi_(eT,t) = k(t)P; (0, 1)
7. (21)
PLA(eT, ) = K(OPLA(ct )+ L= k0l [ A L7 ()
But, from (5),

Zi(t) — 1+kt)

whence

e kol 2t = -k [ AL = iR )

The final scattering equations for normalized waves are

P;(0,) = ci()P1_y(cT, 8) — s(0)P; (0, 1)
- + - 24
Pi_y(eT, ) = si(t)P;_y(ct, T) + ci(t)P; (1) 4

where

8i(t) & ki(t)

sl & \/I- B 9
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F)
\/1-k.(t)
]

Figure 14. Wave-normalized waveguide junction.

can be viewed as the sine and cosine, respectively, of a single angle 8;(¢) = sin™[k,(¢)]
which characterizes the junction. Figure 14 illustrates the Kelly-Lochbaum junc-
tion as it applies to normalized waves. This time we cannot factor out k;(t) to
obtain a one-multiply structure. The four-multiply structure of Fig. 14 is used in
the normalized lacder filter (NLF) suggested by Gray and Markel [10,11,13].

Note that normalizing the output of the delay lines (as discussed in the previous
subsection) saves one multiply relative to the NLF which propagates normalized
waves. However, there are other differences to consider. In the case of normalized
waves, duals are easier; i.e., changing the propagation variable from pressure to
velocity or vice versa in the sth section requires no signal normalization, and the
forward and reverse reflection coefficients are unchanged. Only sign-reversal is
required for the reverse path. Also, in the case of normalized waves, the rms signal
level is the same whether or not pressure or velocity is used. While a:ppealil'!g
from a “balance of power” standpoint, normalizing all signals by their rms level
can be a disadvantage: In the case of normalized delay-line outputs, dynamic range
can minimized by choosing the smaller of pressure and velocity as the variable of

propagation.

I}
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10.3. Transformer-Coupled Waveguides

Still another approach to the normalization of time-varying waveguide filters
is perhaps the most convenient of all. So far, the least expensive normalization
technique is the normalized-waveguide structure of I'ig. 13, requiring only three
multiplies per section rather than four in the normalized-wave case. Unfortunately,
in the normalized-waveguide case, changing the characteristic impedance of section
t results in a changing of the reflection coefficients in both adjacent scattering
junctions. Of course, a single junction can be modulated in isolation by changing
all downstream characteristic impedances by the same ratio. But this does not
help if the filtering network is not a cascade chain or acyclic tree of waveguide
sections. A cleaner local variation in characteristic impedance can be obtained using
transformer coupling. A transformer joins two waveguide sections of differing char-
acteristic impedance in such a way that signal power is preserved and no scattering
occurs. It turns out that filter structures built using the transformer-coupled
waveguide are equsvalent to those using the normalized-wave junction described in
the previous subsection, but one of the four multiplies can be traded for an addition.

From Ohm'’s law (1) and the power equation (11), we see that to bridge an im-
pedance discontinuity with no power change and no scattering requires the relations

[Pi1? _ 1P,
Z{) ~ Ziaa(9

- - (26)
P2 _IP il
Zit)  Zi(Y)
Therefore, the junction equations for a transformer [1] can be chosen as
P} = g{P;_,
(27)

P, =g\ (P;

2




10 APPENDIX — POWER-NORMALIZED WAVEGUIDE FILTERS Page 27
+ N *
P e > » P
i-1 v '

Z o /9. zi(t)
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Figure 15. a) Transformer junction.

(depicted in Fig. 15) where, from (22),

Zi(t) _ [1+k{()
6l & Z.--.u)“\[l—k.-(t) 8

The choice of a negative square root corresponds to the gyrator [1]. The gyrator
is equivalent to a transformer in cascade with a dualizer [17]. A dualizer is a direct
implementation of Ohm’s law (1) (to within a scale factor): the forward path is
unchanged while the reverse path is negated. On one side of the dualizer there
are pressure wave, and on the other side there are velocity waves. Ohm's law is a
gyrator in cascade with a transformer whose scale factor equals the characteristic
admittance.

The transformer-coupled WGF junction is shown in Fig. 16a. We can now
modulate a single junction, even in arbitrary network topologies, by inserting a
transformer immediately to the left or right of the junction. Conceptually, the
characteristic impedance is not changed over the delay-line portion of the waveguide
section; instead, it is changed to the new time-varying value just before (or after) it
meets the junction. When velocity is the wave variable, the coefficients g; and g'-_l

in Fir. 16a are swapped (or inverted).
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b)

P t+T) @4———o
i-1

Figure 18. a) Transformer-coupled waveguide digital filter section, for transformer on

left of junction. b} Normalized ladder filter section. The two are equivalent.
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So, as in the normalized waveguide case, for the price of two extra multiplies
per section, we can implement time-varying digital filters which do not modulate
stored signal energy. Moreover, transformers enable the scattering junctions to be
varied independently, without having to propagate time-varying impedance ratios
throughout the waveguide network.

It is interesting to note that the transformer-coupled WGF and the wave-
normalized WGF (shown in Fig. 16b) are equivalent. One simple proof is to start
with a transformer 2nd a Kelly-Lochbaum junction, move the transformer scale
factors inside the junction, combine terms, and arrive at Fig. 16b. The practical
importance of this equivalence is that the normalized ladder filter (NLF) can be
implemented with only three multiplies and three additions instead of four multi-
plies and two additicns.

11. Conclusions

It has been shown that limit cycles and overflow oscillations are easily eliminated
in a waveguide filter (WGF) structure, which precisely simulates a sampled inter-
connection of ideal transmission line sections. Furthermore, the V/GF can be trans-
formed into all well-known ladder and lattice filter structures simply by pushing
delays around to the bottom rail in the special case of a cascade, reflectively ter-
minated WGF network. Therefore, aside from some time skew in the signal and
filter coefficients, the samples computed in the WGF and the samples computed in
other ladder/lattice filters are identical.

The WGF structure gives a precise implementation of physical wave phenomena
in time-varying media. This property may be valuable in its own right for simulation
purposes. It was shown how to delay or advance time-varying coefficient streams in
order to obtain physically correct time-varying waveguide (or acoustic tube) simula-
tions using standard lattice/ladder structures; also, the necessary time corrections
for the traveling waves, needed to output a simulated pressure or velocity, were
shown.

7S
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A reduction in the required number of multiplies per section was obtained for
the well-known normalized ladder filter (NLF). While the three-multiply structure
can be obtained from the four-multiply structure using network equivalence opera-
tions, its discovery is due to the simplified theoretical formulation presented in this

paper.
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LIMIT CYCLE £ Nonterminating

response to a terminating input signal.

o Typical cause is "rounding”

o Not defined for periodic or
otherwise nonterminating input
signal

IDEAL IMPULSE RESPONSE ACTUAL

A~ \/\/‘\/‘

A T
//S

NO DECAY

AT VERY END
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A FIRST-ORDER LIMIT-CYCLE
EXAMPLE

« vy(n)=g.vy(n-1)+zx(n)
x(n)=1,0,0, ...

Assume 3-bit arithmetic with rounding

g = 3/4 (decimal) =0.1 1 O (binary)

0 1 2 3 4 > 6 7
0.101{0.100|0011| 0010|0010|00I0

n

(binary)y(n)| 1.000|0.110

4

8/? 6/8 /

(m) &
¢ Li/" 403 LIMIT CYCLE
‘\z‘/f__z./ﬂ_;/s N BEGINS IN IMPULSE
N I RESPONSE
| 1 3 ¢ 5 6 7
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OVERFLOW OSCILLATION =

"Chain reaction" of overflows in a recursive
filter

EXAMPLE: TYPICAL 2'S COMPLEMENT
WRAP-AROUND

AT AN AN AN
RVARVAIRVIZLE

0.
MIN T T -

- e -

WRAP-AROUND UPON
OVERFLOW PRODUCES
INCREASED SIGNAL
POWER. FED-BACK EXTRA
POWER CAN CAUSE
FURTHER OVERFLOW.
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Digital Cascade Waveguide Network Simulation

Impedance Discontinuity
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Digital Simulation of Waveguide Section
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Abstract

Digital filters are derived by sampling lossless propagation through a network of ideal
“waveguides.” Sampled waveguide networks provide numerically robust time-varying filter
structures which we call “WaveGuide Filters” (WGF'). After demonstrating the numerous
desirable properties of WGF structures, widely used filter structures (such as lattice and
ladder filters used in speech modeling) are derived as a special case. It is then clear under

what conditions prevalent filter structures inherit these desirable properties.

One desirable property of waveguide filters is that signal power can be decoupled from
changes in the filter parameters. WGF structures can be “balanced” such that decoupling
between signal power and time-varying filter coefficients is maintained for each individual
section in the structure. (A “section” is a length of ideal waveguide material with a single

characteristic impedance.)

Numerical round-off effects are easily controlled in WGF structures. For example, it
is simple to suppress limit cycles and over flow oscillations, even in the time-varying case.
This is accomplished by using “passive” arithmetic; the exact physical interpretation of
signals in a WGF makes it clear how define passive arithmetic.

Finally, WGF structures can be interconnected in cascade or in parallel without
disturbing the signal/coefficient decoupling, signal power balance, or roundofl passivity
properties. Thus, waveguide filters are very useful for modeling physical systems, and the
exactness of their physical interpretation enhances their suitability for the time-varying
case. These more elaborate physical modeling networks do not reduce to presently well-

known filter structures.
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The WGF structures are derived in the MIMO case (multiple inputs and multiple
outputs).

1. Introduction

Digital filtering techniques have often been derived from classical or “analog”
techniques [33]. Classical filter design has its roots in “network theory” for describ-
ing linear time-invariant systems accessed by means of “ports” [11]. Network theory
itself is a body of mathematics built upon certain assumptions [7,14] which become
true in the limit at low-frequencies according to Maxwell's equations for electromag-
netic propagation [9]. Thus, the theory of filters grew originally out of the scalar
theory of wave propagation.

Since the emergence of digital techniques, little attention has been paid to
the close correspondence between filter computations and physical law. In signal
processing applications, we normally approximate directly some desired transfor-
mation of the signal spectrum, and a true physical modeling is irrelevant. This
paper will show that much can be gleaned from taking a physical point of view
with respect to digital filtering computations.

Most filtering applications have employed time-invariant filters which approximate

an ideal amplitude response such as low-pass, high-pass, band-pass, or band-reject
characteristics, or which provide a desired phase response such as in equalizers for
communications channels {33]. In the time-invariant case, the amplitude response
and phase response completely determine a linear filter [33]. For time-varying filters,
there is no longer a simple description in terms of amplitude and phase response.
(A frequency response requires time-invariance.) In many cases, time-varying filters
have been developed in an ad hoc manner, being regarded as “quasi-static” in most
cases. Such extensions require the assumption that the filter coefficients vary slowly
relative to the impulse-response duration of the filter. When the coefficients change
too rapidly, unnatural artifacts can occur due to the incompatibility between the

(1l
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filter state (a function of all prior time in a recursive filter) and the new filter
coefficients. The physical formulation of this paper allows precise accounting of

stored signal energy even under time-varying conditions.

This Paper

This paper derives the class of linear, finite-order, recursive digital filters
starting from structures which exactly simulate physical wave propagation in ideal
linear media. We call them “Waveguide Filters” (WGF), because they can be
interpreted as networks of intersecting waveguides or transmission lines. The WGF
structures are closely related to the “wave digital filters” developed principally
by Fettweis [19,32], the lattice filter structures arising in geoscience and speech
modeling [54,36], and the “normalized ladder filter” discussed by Gray [34,47].
Waveguide filters have the following characteristics:

e The correspondence to physical wave-propagation systems is exact even though
time is discrete. No bilinear transformation is necessary to connect digital
quantities with physical quantities as is usual in the wave digital filter (WDF)
context [19]. This allows a priori choice of filter structure to obtain precise
models for physical proceéses.

e The instantaneous power anywhere in the filter structure can be made in-
variant with respect to time-varying filter coefficient variations.

o Generalized versions of the “Normalized Ladder,” “One-Multiplier Lattice,”
and other ladder/lattice filters are derived, all having the provision for
invariant instantaneous power in the time-varying case. The normalized one-
multiplier lattice section turns out to be equivalent to the normalized ladder
section yet less expensive computationally.

e The structures can be coupled at a junction, cascaded, looped, or branched,
to any degree of network complexity, and the desirable properties such as

stability and power decoupling are retained. Prevalent ladder and lattice

{2
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filter are a small special case in the sense that they involve only cascaded

waveguide sections.

A synthesis procedure exists for realizing any digital filter transfer function
by means of a WGF.

There is an identification method for determining the coefficients of the WGF
structure from measured input/output data. Similarly, there are “linear
prediction” modeling techniques for these WGF’s which provide ARMA models
for time series.

No overflow oscillations can occur, even in the time-varying case.

No limit cycles (also called “granularity oscillations”) can occur if one of
many “passive” numerical round-off strategies is employed, even in the time-
varying case. In the simplest case, the passive round-off strategy reduces to
magnitude truncation (or truncation toward zero).

As in the scalar lattice filter and WDF cases, sensitivity of coefficient quan-

tization can be minimized by properly scaling the network to deliver “maximum

power transfer” at frequencies where low sensitivity is required {62].

The desirable structural properties are derived for multi-input, multi-output
(MIMO) transfer-function matrices. ’

The derivation of the WGF is made exceedingly simple by using three simple

principles of wave propagation in an ideal linear medium. While such a derivation
is highly classical in spirit, its use for deriving present-day digital filter structures
appears to be new. We feel that this fundamental reformulation of digital filters is
important for its tutorial value and for its impact on numerical issues, time-varying

filters, and physical modeling.

ES
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2. Related Prior Work

This section reviews some of the most closely related work on digital filter struc-
tures. These include the orthogonal-polynomial filters of Szego [2], the “lumped-
distributed” filters analyzed by Youla et al. [23,24], the “wave digital filters” of
Fettweis [18,19,22,32], the “ladder and lattice filters” of Markel and Gray [27,34,36,47],
the “lossless bounded-real” formulation of Vaidyanathan [62,64,65,67], and the
“orthogonal filters” of Dewilde [41,49,51]. Naturally, there are many more related
lines of development, in view of the first law of signal processing.* These represent
only the major recent areas closest to our point of view.

In the following subsections, some of the closest connections between the above

work and waveguide formulation presented here are examined.

2.1. Wave Digital Filters

The wave digital filter (WDF) approach of Fettweis [18,19,22,32] comes closest
to the point of view taken in this paper. Fettweis obtains a similar class of structures
by use of the classical notion of wave variables [14].

For example, if v and ¢ denote the voltage and current at a terminal of an N-
port network, the wave variables are defined by z = v+ Ri and y = v — Ri, where
R is an arbitrary “reference impedance” [39]. These wave variables are logically
equivalent to the left-going and right-going “pressure traveling waves” considered

in this paper, and R plays the role of characteristic impedance in the associated
transmission line.

Fettweis describes how to directly model resistors, capacitors, inductors, trans-
formers, gyrators, and circulators using the WDF approach, and he describes the
necessary rules for connecting ports together [19]. The modeling of a capacitor, for
example, is accomplished by scaling the reference impedance R until the capacitor

* The first law of signal processing is “Everything is equivalent to everything else.”
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“reflectance” is exactly a unit-sample delay. (The model is parametrized in fre-
quency so that the wave variables are really phasors.) An inductor also maps to a
unit-sample delay but with a sign-change relative to a capacitor. A complete circuit
is built out of basic elements by means of “adaptors” [32] which play the role of
the junctions or scattering layers described in this paper; the adaptor accomplishes
interconnection of ports at different reference impedances.

The WDF modeling of inductors and capacitors is limited because the continuous-
time frequency variable is mapped to the discrete-time frequency variable via the
bilinear transform. If the points z == 1 and z = —1 in the complex plane are
identified with zero and infinite continuous-time frequencies, respectively, then only
one more mapping frequency (say ¢) can be chosen. Thus, the bilinear transforma-
tion provides exact modeling only at the three frequencies: 0, ¢, and oo.

The WDF formulation models a system of differential equations at three fre-
quencies, while the WGF formulation exactly models wave propagation in lossless
media having spatially discrete changes in characteristic impedance. Consequently,
in our formulation, a wave variable may be a “voltage” or “current” or a linear
combination of the two without incurring realizability problems [39]. This is a
considerable conceptual simplification for applications to physical modeling.

Another way of stating the comparison between WDF and WGF formulations
is that WDF's are derived from lumped circuit elements (R,L,C) while WGF's are
derived from distributed circuit elements (intersecting waveguide sections). Both
formulations employ a scattering theory point of view.

A general result in this paper is that overflow oscillations and limit cycles can be
suppressed in all forms of scattering-type filter structures simply by using extended
numerical precision in each scattering section, saving quantization (toward zero) for
the final outgoing waves. The basic principles involved apparently appeared first
in the WDF context [30,47]. The level of generality for these results in this paper
appear to exceed that in the literature thus far.

/15
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2.2. Ladder and Lattice Filters

For some time it has been known that lattice and ladder filtering structures
are superior to the so-called direct form in several ways. These include reduced
sensitivity to coefficient quantization, less effect of round-off noise on the filter
frequency response, ease of stability checking, reduced probability of limit cycles or
overflow oscillations, and section-wise orthogonality in the linear prediction context

[36]. For a discussion of ladder and lattice filters in adaptive estimation, see [54].

Lattice structures have been in use for decades in directly modeling layered
scattering media. The mapping of underground striations in rock density, for
example, is a basic diagnostic tool in oil exploration. The interface between two
subterranean layers of rock of different densities produces a scattering layer because
the characteristic impedance of the medium with respect to sound propagation
changes across such a boundary.

Another example of the use of lattice structures for physical modeling is the
“acoustic tube” models developed for speech analysis and synthesis. In this case,
the vocal tract is modeled as a cascade of coaxial cylindrical tubes with varying
cross-sectional areas and equal length. The change in area from one tube section
to the next provides a change in the characteristic impedance of the air column for
sound propagation, and so a series of equally spaced scattering layers is obtained.

Apparently, the filter structures developed in the above applications are only
as general as a single chain of scattering layers with one input and one output, and
the input and output sections are terminated in a non-extendable way. Little if any
work has explored branching and intersecting chains of scattering layers. In the case
of speech, the use of a separate acoustic tube branching off from the vocal tract to
model the nasal tract would obviously be very natural. Apart from branching, it is
not possible to continue the structures in common use from the output section to
a larger section. This is because the typical arrangement is to assume a perfectly
reflecting termination at the output. Such a termination cannot be followed by an

added termination in a physically meaningful way. Perfectly reflecting terminations

/(6
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also allow the delays in the scattering network to be moved around and combined
in pairs such that the required signal sampling rate is reduced by a factor of 2 (see
§3.5). We have found that the cascade scattering chains, which dominate the recent
literature, can be immediately extended to general acyclic trees with the same basic

properties.

Our formulation is more general than even the acyclic-tree extension of prevalent
lattice filters in that arbitrary networks can be constructed (i.e., cycles in the net-
work graph are allowed). Also, there does not seem to be an existing treatment
of multi-input, multi-output (MIMO) systems from the acoustic waveguide point of

view.

A particularly important antecedent to the normalized WGF in the speech
processing literature is the normalized ladder filter (NLF) developed by Gray and
Markel [27,34,47]. Gray considered only the single-input, single-output (SISO) all-
pole case. (Zeros are obtained in the NLF using “taps,” which leads outside the
class of structures considered here.) Their approach was based on orthonormal-
polynomial expansion (1,2,8] which is closely connected with linear prediction theory
[36]. They showed the following to be true:

e The NLF is optimal in the sense that each internal node has unity power
gain. This means, for example, that the response to a unit impulse cannot
overflow anywhere within a stable NLF filter. Also, if the input signal is
white noise with unit variance, the variance of the signal at each internal
node is exactly unity [34].

e The NLF is stable in the case of time-varying filter parameters [34] as long
as the “reflection coefficients” k;(t) are always less than or equal to some
K < 1 in magnitude. (Jk;(t)] < 1 is not sufficient for bounded-input,
bounded-output (BIBO) stability unless the input signal energy is finite.) It
was derived incidentally that the total energy entering the ladder eventually

“exits” through the particular delay element at the entrance to the ladder.

e The NLF has superior roundoff noise properties, especially when poles are

{7
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clustered close together and/or close to the unit circle [34].
e The NLF is free of zero-input overflow oscillations [47].

o The NLF is free of zero-input limit cycles [47] in magnitude-truncation

arithmetic.

The NLF is obtainable by transformations of a special case of the WGF struc-
tures derived here. The most significant difference is in the distribution of delay
elements. We will show that delay distribution in the usual NLF is not obtainable
from a WGF unless the waveguide is terminated by a pure reflection. This means,
for example, that an NLF cannot be connected to another NLF to build a larger
waveguide system with finite loading from one stage to the next. Also, the delay
distribution chosen for the NLF is such that creating a loop with NLF's yields a
degenerate (non-computable) structure because a delay-free loop appears. Another
limitation of the NLF is that the concept of instantaneous power becomes artificial
for individual sections (although Gray defines a non-physical but similar quantity
in [47, eq. (2))).

A disadvantage of the NLF is that it requires four multiplications per pole
of the filter transfer function. The one-multiplier lattice filter, on the other hand
[36] requires only one multiplication per pole. Conceptually, the four-multiply NLF
results from normalizing the propagated variable, say P*, to units of root-power,
P =p" /VZ. We will show how to use a (two-multiply) transformer to cancel the
signal power modulation of an ordinary one-multiplier lattice section (in the time-
varying case). By elementary graph manipulations, it is shown that the two forms
are equivalent, i.e., the normalized one-multiplier form is in fact a three-multiplier
NLF.

This paper describes how power-normalization, perfect energy conservation,
and complete suppression of limit cycles and overflow oscillations can be guaranteed
for MIMO analogues of all ladder and lattice filter structures, with extensions to

branching structures and general terminations.

It 8
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For the case of reflectively terminated, time-varying, MIMO, acyclic trees,
(which specialize to ordinary lattice/ladder structures in the SISO single-branch
case), we derive efficient equivalent structures in which the delays are moved and
combined to yield computational savings without loss of the desired power-invariance
or numerical properties.

2.3. Synthesis and Approximation

The synthesis procedure we use for the WGF is based on the Schur algorithm
which recursively computes a solution to the Nevanlinna-Pick problem [49,44,52].
The Nevanlinna-Pick problem is to interpolate a rational Schur function* through
n complex values at n points in the closed unit disk in the complex plane. The
Schur algorithm has also been called the “Nevanlinna recursion scheme” [52]. In
other contexts, a special case of the the Schur algorithm, which computes only
all-pole digital filters, has been called the “Durbin” [8] or “Levinson” 3] algorithm
[41,49,51,46,36]. The complete Schur algorithm constructs a cascade WGF realiza-
tion of a digital filter containing both poles and zeros.

The estimation problem has been addressed by DeWilde [49,51}. In this context,
the Schur algorithm provides an ARMA estimation technique in which the pole
estimates are optimal in the mean square sense for the given fixed zeros which are
chosen a priori.

3. Traveling Waves and Lossless Scattering

For concreteness of discussion, we will focus on pressure and flow waves in a
losseless, linear, acoustic tube. We could just as easily think of the electric and

magnetic components of light, voltage and current in a transmission line, or force

* A Schur function S(z) is defined as a complex function analytic and of modulus not

exceeding unity in |2| < 1

/7
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and transverse velocity on a vibrating string. An analysis of the acoustic tube is
discussed by Markel and Gray [36] and Flanagan [21] in the context of vocal-tract
modeling. Further details on the acoustics of sound in tubes can be found in Morse
[4]. The term “waveguide” will be used interchangeably with “acoustic tube.”

A derivation of traveling waves from the basic wave equation is presented in
Appendix A. The result is that in a cylindrical acoustic tube, longitudinal® pres-
sure and flow waves propagate back and forth with speed c. Let z denote distance
along the tube axis and let ¢ denote time in seconds. Then the instantaneous
pressure P(z, t) and flow U(z, t) is given by the sum of the left-going and right-going
traveling-wave components:

P(z,t) = P*(z,t) + P (z,1) (1a)
Uz, t) =U"(z,t) + U (2, 1) (1b)

3.1. Three Fundamental Constraints

The behavior of waves traveling unidirectionally in a lossless medium is governed
by three laws: (1) the pressure is proportional to flow, (2) the pressure is a continuous
function of position, and (3) the flow variable (e.g. mass or charge) is neither created
nor destroyed in the medium.

Characteristic Impedance

An ideal linear propagation medium is completely determined by its charac-

! We assume the tube radius is much smaller than the wavelength of sound in the tube,
so that pressure and flow are constant over any cross-section of the tube normal to the
axis. In other words, waves do not propagate up and down but only left and right. For

more details on the assumptions involved in acoustic tube models, see Flanagan [21].

/20
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teristic impedance? Z(z,t). The characteristic impedance is defined as the constant

of proportionality between pressure and flow in a unidirectional traveling wave:

Pt =12zU (2a)
P =-zU" (2b)

In “lumped” circuit theory (7], (2) is called Ohm’s Law. When the arguments (z, ¢)
are omitted, it is understood that all quantities are written for some constant time
t and position z. The minus sign for the left-going wave P~ accounts for the fact
that flows in opposite directions subtract while pressure waves passing through each
other add.

We will consider initially a more general situation in which Z = Z(d) is a
q by ¢ complex matrix function of the complex variable (or unit-delay operator) d.
For stability of propagation in the waveguide, we require that Z(d) be analytic for
|d] < 1. The results also extend to the case of vector 7 = [dy,...,dxg], but we
will treat only one complex argument d for notational simplicity. The pressure and
flow variables are ¢ by m matrix complex functions of d. However, keep in mind

that the physical analogy we are pursuing is for the case of real scalar Z, P, and
U.

 For an acoustic tube, the characteristic impedance is given by Z = Pocp/S =
pc/S, where p is the density (mass per unit volume) of air in the tube, ¢ is the speed
of propagation, P, is ambient pressure, 4. is the ratio of the specific heat of air at
constant pressure to that at constant volume, and S is the cross-sectional area of
the tube. In a vibrating string, Z = /Tp = pc, where p is string density (mass
per unit length) and T is the tension of the string. In an electric transmission line,
Z = \/17/‘0‘ = Lc where L and C are the inductance and capacitance, respectively,
per unit length along the transmission line. In free space, Z = \/ﬁ;)/To = pot,

where g and ¢o are the permeability and permittivity, respectively, of free space.

/2/
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For lossless propagation in the scalar case, the characteristic impedance Z
must be real. In the matrix-delay-operator case, lossless propagation will now be
characterized by the requirement that Z be para-Hermitian, i.e.,

Z.(d) = Z(d) (3)

where

Z.(d) AZ(1/3) (4)

denotes the para-Hermitian conjugate of Z(d) [14,49), (-)T" denotes transposition,
and {-) denotes complex conjugation. For d = e/?, Z.(e’%) coincides with the
Hermitian transpose of Z(e’?). The para-Hermitian conjugate is the unique analytic
continuation (when it exists) of the Hermitian transpose Z(e/?) = Z(e39)' from
the unit circle into the complex plane. Thus, a lossless medium in our framework
is defined as one in which the characteristic impedance is para-Hermitian. The
extension to vector 4 is obtained by regarding Z(d) as K functions of scalar complex
variables d;. Note that in the scalar case, Z para-Hermitian implies Z = Z which
implies Z is real. Henceforth, we assume Z denotes a para-Hermitian character-
istic impedance. For non-para-Hermitian Z, (2) should be modified to read P~ =
—~Z.U" [14], and a passive medium is one in which Z + Z, is positive semi-definite.

It is worthwhile to interpret the various levels of extension we are consider-
ing for the characteristic impedance Z. When Z is real and scalar, we obtain
exactly the ideal behavior of one dimensional traveling waves in a lossless medium.
Extending to ¢ by ¢ matrix characteristic impedances facilitates development of
multi-input, multi-output (MIMO) systems which have the desired numerical and
power-invariance properties. The extension to analytic matrix functions of a com-
plex variable provides a generalized scattering medium whose reflectance and trans-
mission coefficients are themselves rational transfer function matrices. This provides
fcr nesting of the WGF structures. The complex argument d of the characteristic
impedance is interpreted as a unit-delay operator, and the meaning of the char-
acteristic impedance is attached to its Laurent series expansion with respect to
the unit circle in the d-plane (a polynomial in the delay operator d). Additional

/22
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complex variables d; in the arguments to the characteristic impedance allow the
generalized scattering layer to perform filtering in several domains such as time
and space. Since the characteristic impedance is assumed stable and para-Hermi-
tian, all delay-operator impedance matrices must be nonrecursive and zero-phase.
Therefore, computability, stability, and nonlinear oscillation problems do not arise
in the case of multiple domains.

Pressure Continuity and Medium Conservation

We will be interested in the situation wherein the characteristic impedance
changes abruptly from one value to another, say from Z; to Z;. The impedance
discontinuity can be a sudden change along z in the acoustic tube, or it can be
a change introduced at some time ¢ (as needed for time-varying filters). Consider
changes with respect to z. Given the traveling waves impinging on the junction
between Z; and Z;, we seek formulas for the traveling waves leaving the junction.
To solve this problem, we need two laws in addition to Ohm's law (2) for an ideal

wave medium:
1) Pressure cannot change instantaneously across the junction (5a)

2) The sum of flows meeting at the junction is zero (5b)

A more general case which we call the “loaded-junction” case, is obtained by
replacing the second constraint above by

2/) The sum of flows meeting at the junction equals the exit flow

where the exit flow is used to perform work on some external dynamic system
attached to the junction.

In the context of lumped circuit theory, the constraints (5) are called “Kirchoff’s
node equations”. Equation (5b) expresses conservation of flow (the “continuity”
equation), and equation (5a) follows from (5b) and conservation of power.

122
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For changes in characteristic impedance with respect to time, (5) is not ap-
plicable. Time-varying characteristic impedances will be implemented using wave-
guide transformers, and will be used to obtain power-invariant lossless digital filters
in the time-varying case.

Kirchoff ’s constraints (5) and Ohm’s law (2) together determine what pressure
and flow waves emerge from a junction between waveguide media of differing char-

acteristic impedance, given the incoming waves.

Consider the case of NV waveguides meeting at a loaded junction. Kirchoff’s
laws state that there can be only one resultant pressure P; at the junction, and the
sum of flows entering and leaving the junction must total to the exit flow. Thus,
we have the constraints

P1=P2="‘=PN=PJ (63)
U+Uz+--+Uy=U,=T_Py (6b)

where
P,=P!+P; P;=2U;
U=U; +U; P;=-2U;
Z; = Characteristic impedance of the sth waveguide (g by ¢)

(7)

'; = Z7! = Characteristic admittance of the ith waveguide (¢ by ¢)

P:’ = Incoming pressure wave along the ith waveguide (g by m) (8)
U r = Incoming flow wave along the ith waveguide (g by m)

P; = Outgoing pressure wave along the ith waveguide (g by m)

U; = Outgoing flow wave along the ith waveguide (g by m)
P; = Instantaneous pressure wave in {th waveguide just outside junction (g by m)
U; = Instantaneous pressure wave in ith waveguide just outside junction (g by m)
P; = Resultant pressure at the junction (¢ by m)
Ur, = Resultant flow at the junction (¢ by m)

'L = Admittance of the junction load (g by g)
(9)

(2%
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Pressure Loaded versus Lossless Junctions

In most of what follows, the junction load admittance I';, will be taken to be

zero, corresponding to a lossless waveguide junction.

An example in which I'; would not be zero would be the vibrating-membrane
model consisting of a two-dimensional “mesh” of waveguides (propagating trans-
verse velocity waves like ideal strings) on which ideal masses are placed at each
mesh intersection to “load” the corresponding waveguide junction.

Note that the load admittance I'y, is regarded as a lumped driving-point admit-
tance (7], and the relation Uy = I'y Py is the usual form of Ohm's law. I'p would
normally be defined over the analog s-plane and carried into the z-plane via the
“matched-z” transformation z = ¢*7.

We should have I'; =2 0 for frequencies near and above half the sampling rate.
In other words, the dynamic response of the continuous-time junction load should
be bandlimited to within half the sampling rate. Otherwise, I}, will contain aliasing
error, and the junction response will not be true.

I’y should not vary too fast with respect to time. Time variation can cause
aliasing of signals passing through the junction even when the load admittance itself
is not aliased.

3.2. Reflection at a Junction

/25~
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Figure 1. N-way parallel waveguide junction. Each waveguide is a bidirectional signal

path (implemented by two “delay lines™).

Consider the “parallel” intersection of /N waveguides at a common junction as
shown in Fig. 1. Given a set of incoming traveling pressure waves, P:, t=1,...,N,
the constraints (2,6) determine the outgoing waves P as follows. As before, Z; and
hence I'; = Z! are para-Hermitian positive definite. Substituting (1b), (2) solved

for flow, and P; = Py — P: into (6b) yields the resultant junction pressure:

N \7!'N
P;= 2(FL+ ZI‘.-) Z F‘P:‘ (10)

f=] fem]

From now until certain applications are discussed, we will consider only the
unloaded-junction case I'y = 0. Thus, all waveguide junctions will be lossless.

Define
N N .
ryAJ Ty Z;AT7' UsA23 TP (11)
tax] f==]
define the junction admittance, junction impedance, and junction flow, respectively.
(In the extension to non-para-Hermitian Z;, U; becomes U } =Y (T; + I",-,)P:.)
Relation (10) then reads Py = Z;Uy, or,

Junction Pressure = Junction Impedance X Junction Flow
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Since F,—P: = U:, we have

N
Up=2) Ui A2U" = [Us|=|U"|+ U7 (12)
o]
where | - | denotes elementwise complex modulus. That is, the junction flow can

be interpreted as the magnitude sum of the incoming and outgoing current waves.

Now, given incoming traveling waves P?,U f and the characteristic impedance

Z; of each branch terminating at the junction, we easily find the outgoing waves
P;,U; tobe

P; =P;-P] (13a)

U; =-I;P; (13b)

Equations (13) specify the scattering at the junction of NV intersecting “waveguides,”
given the incoming waves P: (or U :) and the branch characteristic impedances Z;.

In view of relations (2), we can consider only left-going and right-going pres-
sure waves, since the flow waves can be readily computed from the characteristic
impedance of the propagation medium. At this point, we could instead choose wave
variables of the form z; = P; + Z;U; and y; = P; — Z;U; and proceed along the
lines of classical wave filtering [14]. However, such a path is less fundamental in the
present development because we are considering only discrete-time filters.

We have treated only a parallel junction of waveguides. A dual set of equations
is obtained by considering a series junection. However, pressure waves intersecting
in a parallel junction are equivalent to flow waves intersecting at a series junction.
When using flow waves as the primary variables, (13b) can be written

U; =U; -T;P; (14a)

N
Py=22;) U] (14b)

fmm]
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The series pressure junction is obtained by taking the dual of (14). That is, replace
U; by P; and T'; by Z; to obtain

P; =P; - Z;U% (15a)
N
Uy =2ryy P} (15b)
fam]
ry=2%" (15¢)
N
25=Y 2 (15d)
foml

The junction impedance for a series junction is the sum of the branch impedances,
while for a parallel junction, it is the parallel combination of the branch impedances
(inverse of the sum of admittances).

Equations (13a) and (14a) are computationally efficient ways to implement an
N-port scattering junction. In the case N = 2, the well-known one-multiplier
lattice filter section (minus its unit delay) is obtained immediately from (13a). More
generally, an N-way intersection requires /V multiplies and N—1 additions to obtain
Py, and one addition for each outgoing wave, for a total of N multiplies and 2N -1
additions. The dual junction (15) also requires N multiplies and 2N — 1 additions.
In the next section, a method for trading one multiplier for another N —1 additions
[32] is described.

3.3. a-parameters

One parametrization of all passive N-junctions is the set of N branch im-
pedances with positive-definite para-Hermitian parts (cf. §5.1). This section describes
another parametrization, analogous to that used in the WDF context [32].

Define
a; =2ZT; (16)

which is twice the junction impedance times the ith branch admittance. (In the

non-para-Hermitian case, a; = Z(I'; + I‘,-.).) Then the junction pressure can be
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written as a linear combination of the incoming pressure waves in terms of the a;

as
N
P;=Y o;P} (17)
f1
Since Zf\;l r; ATy,
N
f=1

where I is the g by ¢ identity matrix.

In the case where Z; hence «; is diagonal (or scalar), we have

0<a; <2, a; diagonal (19)

In matrix form, (13a) can be written

Pi| [ea=Iy o ... e~ 7 P}
) ay ag—1I ... aN P;
= . : . ) (20)
tPE a ag - an=Ig || P},
or
P =P (21)
where
Ii[eraz... aN]
Iy
TAA-In, A4]. (22)
I

The matrix ¥ is called the scattering matriz of the junction.
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In the general lossless case, (18) implies

Equation (23) states that lossless junction scattering is reversible. In other words, if
the output scattering due to a particular input configuration is fed to the junction as
input, the original unscattered input is obtained. For example, if all V waveguides
are the same length and are terminated with perfect reflecting “mirrors,” then the
network returns to its original initial conditions every 4T seconds, where T is the

travel time from the junction to a mirror.

An N-port network is said to be reesprocal if its scattering matrix is symmetric
[14]. We see that N-way junction is reciprocal if

si=adml, (24)

Equivalently, the characteristic impedances of all intersecting branches must be the
same in order to obtain a reciprocal network. Reciprocity is a specialized concept
in this context.

Equations (13a,17,18) combine to give

N
P; =P; + Y a;(P] - P}) (25)
e

Thus, a; can be interpreted as the fraction of the pressure differential between
branches ;7 and ¢ which is reflected back along the ¢{th branch with P:’, for any 1.
Use of this expression saves one matrix multiply but entails 3N —2 matrix additions.
If one multiply is worth N — 1 additions or more, then (25) is less expensive to
implement than (13a).
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3.4. Reflection Coefficients

Since P; = (a; — Iq)P:-' when P; = 0 for all j £ ¢, we define the reflection
coefficient at the ith port by
pila;-I (26)

Reflection coefficients are used extensively to parametrize waveguide junctions
in the special case where the waveguides are joined end to end in a cascade chain.
For more general networks, a-parameters are typically better suited for junction

parametrization.

3.5. Pure Delays and Multi-Junction Networks

Up to now we have been concerned only with the scattering of traveling waves
at a single impedance-discontinuity junction. We now allow for many such junc-
tions interconnected by lossless, reflectionless waveguide sections. Physically, an
interconnection between junctions is a length of material at a single characteristic
impedance. It is implemented digitally using a bi-directional delay line.

P+-=r e-P-
: ) 22 A
[N L —

Figure 2. Two N-way junctions joined by a bidirectional delay line.

Consider the interconnection of two N-port junctions, numbered 1 and 2. as

shown in Fig. 2. Between the two junctions is a section of pure waveguide wricxa is
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a lossless medium having characteristic impedance Zy2. Let ¢ denote the speed of
propagation in this waveguide section, and suppose the distance between the junc-
tions is L. Then the propagation time from one junction to the other is T, = L/c.
Consider a pressure wave impulse P*(z - ct) = 6(z — ct) traveling from junction
1 to junction 2 starting at time ¢ = 0. At time T, it reaches junction 2, and a
reflection P~ (z + ct) = p;26[z + ¢(t — 2T,)] starts out to the left from junction
2, heading back to junction 1. (p;3 is the reflection coefficient for a pulse incident
from junction 1 to junction 2, reflecting back toward junction 1.) A fragment of the
pulse is also sent out along all waveguides connected to junciion 2, according to the
relative branch impedances. At time ¢ = 2T,, the reflected pulse reaches junction
1, and scatters again. A portion of the scattering heads back toward junction 2,
and so on.

A section of waveguide joining two junctions by a propagation delay T, is called
a unit delay. If the speed of propagation is everywhere the same,* then all unit
delays are of the same length L = ¢T,.

Impulse-Invariant Digital Simulation

If an impulse is injected into a network constructed of length L waveguide
sections, scattering takes place every L/c & T, & 1/F, seconds. Therefore, the
network can be precisely simulated (ignoring roundoff errors) by a digital network
with sampling rate F,. In other words, a digital waveguide network ia equivalent
to a physical waveguide network in which the input presaure signals are streams of
weighted smpulses at intervals of T, seconds. This equivalence is true also in the case

* Since the characteristic impedance Z of a linear medium is the geometric mean
of the “inertia constant” m and the “stiffness constant” k, i.e., Z = Vmk (cf.
§3.1), and since the phase velocity in the medium is e = \/k/m, it is physically
possible to construct a waveguide network with varying characteristic impedances
and uniform prop-gation speeds. A characteristic impedance can only be modified

in such a network by scaling the inertia and stiffness constants equally.
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of time-varying characteristic impedances. The impulsive nature of the propagating
signals serves to sample the junction scattering coefficients at the digital sampling

instants.

Bandlimited Digital Simulation

A more natural correspondence between physical and digital waveguide net-
works is obtained by assuming the inputs to the physical networks are bandlimited
continuous-time pressure functions. The signals propagating throughout the physi-
cal network are assumed to consist of frequencies less than F,/2 Hz. Therefore, by
the well known Nyquist sampling theorem [33], if we record a sample of the pres-
sure at the midpoint of each waveguide section every T, seconds, the bandlimited
continuous pressure fluctuation can be uniquely reconstructed throughout the wave-
guide network. Saying the pressure variation is bandlimited to |F,/2| is equivalent
to saying the pressure distribution is spatially bandlimsted to less than k,/2, where
ks = 1/L, or, a single section of waveguide is no longer than half a cycle of the
shortest cycle contained in a traveling pressure wave. In summary, a digital wave-
guide network s equivalent to a physical waveguide network sn which the input
pressure signals are bandlimited to |F,/2| Hz. This equivalence is not true in the
time-varying case.

Time-Varying Digital Simulation

In the case of time-varying characteristic impedances, the bandlimited physi-
cal signal interpretation breaks down because the time-variation of the scattering
coefficients applies a continuous amplitude modulation to the continuous propagat-
ing signals, thereby generating sidebands. If the signals incident on a junction are
bandlimited to |f,| Hz and the a parameters (not the characteristic impedances!)
are bandlimited to |fz| Hz, then equation (25) shows that the signals emerging from
the junction are bandlimited only to |f; + f2| Hz. If the network is nontrivial,

a portion of the amplitude-modulated signals eventually comes back to the same
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time-varying junction, and the signal bandwidth expands to |f, + 2f2|, and so on.
A time-varying junction eventually expands the bandwidth of the signals contained
in the network to infinity! If we ignore this phenomenon in the physical network
and persist with a sampling rate of F, in the digital network, we can only construct
aliased [33] versions of the physical signals. The general result is that ¢time-varying
physical waveguide networks cannot be simulated by digital waveguide networks at
a fized sampling rate. In practice, however, we obtain good approximate digital
simulations by working with pressure waves and junction parameters bandlimited
to much less than F,/2 and by using sufficient damping in the network so that the
aliased signal energy is attenuated below significance.

In the following, we will maintain the impulse-invariant point of view, primarily
for its greater simplicity.

General Waveguide Networks

Figure 8. A more general network of waveguide sections.

Consider interconnecting many waveguide sections to form an arbitrary net-
work, as depicted in Fig. 3. In general, the impulse response of the network will be

nonzero at all multiples of T,. Such a case is called full-rate waveguide network.
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Cascade Waveguide Sections

A= 7=
‘ Z Z, Z2M 0
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Re flection

Figure 4. A cascade of waveguide sections.

Consider a linear chain of M junctions separated by unit delays, as shown in
Fig. 4. The input is defined as the pressure entering at the far left (junction 0),
and the output is defined as the pressure emerging from the far right (junction M).
This special case is the one which reduces to the prevalent ladder and lattice filter
structures [36]. Note that the impulse response of structures of this type is zero
at every other sampling instant. For this reason, we refer to the cascade chain as
an example of a half-rate waveguide network. Half-rate structures can be exactly
simulated digitally using a sampling rate F/, = F,/2.

If the input signal to a time-invariant (physical) cascade chain is bandlimited
to |F/2 = F,/4|, then the signals in each section can be sampled half as often as
in the general case.

In general, a half-rate structure cannot have a self-loop at any node (a self-loop
is defined as a waveguide section connected to the same junction on both ends),
and it must possess an even number of branches on every path from the input to
the output, plus possibly a single odd section (which causes a half-sample shift of
the output relative to the input). When there is an odd section, we do not allow
the resulting structure to be placed in a feedback loop. The principal example of

a half-rate structure is when waveguides are connected in a cascade chain. The
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cascade waveguide chain reduces in the time-invariant case to the popular ladder
and lattice filter structures, as discussed in the next section.

It appears that the more natural full-rate waveguide structures have not been
used in digital filtering or modeling applications up to now. At least it can be said
that full-rate waveguide structures are not mentioned in the prevailing textbooks

on digital filtering and system modeling.

4. Cascade Waveguides

We now specialize discussion to cascade waveguide sections. The junction
between two waveguides of differing characteristic impedance will create a scattering
junction. The stretch of pure waveguide material between scattering junctions will
provide delay lines for the propagation signal. From these structures all digital
filters can be built in such a way that they behave nicely with respect to time-varying
parameters and numerical roundoff/overflow. Almost all special properties in the
cascade case carry over to arbitrary acyclic trees. This section provides a summary
of the most important aspects of WGF's for the case of two-port sections; in later
sections, these aspects will be generalized to more general waveguide networks.

4.1. The Two-Port Junction

+

> «pt
P. 2, £, ‘
O——>—0—<—>—0
fle ->f

Figure 5. A single junction of two waveguide sections.
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If there are only two waveguides meeting at a junction, we obtain the classical
“scattering theory” in which an incoming wave is split into a “reflected” and
“transmitted” part (Fig. 5). From (16), the a-parameters are

oy =227 + Z31) 7 Z7 = 2Ty +T2)™'Ty = 2(I, + ZiT2)

- 27
az =227 + 2547 2531 = 2Ty +T2)"'Tp = 2(I, + Z,Ty) (#7)
From (25}, the reflected pressure waves are
P =0y(P; = P} )+ P{ = (01 = [))P} +azP;
(28)

P; =ay(P] = P;)+P; = &P} +(aa — Ip)P;

If P; =0, then the incidence of P: produces a reflected wave P, = (a; — Iq)P;.
Thus, we define the following reflection coefficients:

prBay—ly=(Zy—2\)(Z2+ Z))" = (T1+T3)" (T, - T2)

(29)
peBas—I=—p

It is now apparent that if the reflection coefficient at port 1 is p;, = p, then at
port 2 the reflection coefficient is —p. Another point of view is that inverting the
impedance-step ratio from Z,:Z; to Z3:Z, merely changes the sign of the reflection
coefficient. It is easy to show that for scalar Z;, exchanging pressure waves for flow
waves also toggles the sign of all reflection coefficients in the network. Thus, left is
the dual of right as pressure is the dual of flow (and parallel is the dual of series).

In the matrix-impedance case (¢ > 1), however, replacement of pressure by
flow changes p to —(I'y Zz — I3)(T'1 Z2 + I5)~! which equals —p only if Z; commutes
with Z;. Two Hermitian matrices commute if they have the same eigenvectors, i.e.,
their “principal axes of dilation” are aligned. There exists a unitary transformation

of any Hermitian matrix which commutes with any other Hermitian matrix; that is,




4 CASCADE WAVEGUIDES Page 29 (DRAFT)

a Hermitian matrix can be “rotated” until it commutes with any other Hermitian
matrix. For waveguides with impedance matrices so aligned (all Z; have the same
eigenvectors on the unit circle), junction reversal is equivalent to wave-variable

exchange; either causes a sign reversal in all reflection coefficients.

4.2. The Scattering Matrix

pr P,
P~ o

Figure 8. A two-port diagram.

In block-matrix notation, the junction output is given by

P a-Il, o [P} o L+p )| Py
- = + = -+ (30)
P; az a-kLj p; Iy=p  -p || P;
reciprocal for py, or

P =3P (31)

This is called the scattering formulation, and ¥ is called the scattering matriz. It is
a special case of the N-junction scattering matrix defined in (20). Often we depict

a two-port junction as shown in Fig. 6, where © is defined in the next subsection.
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4.3. The Chain-Scattering Matrix

In the two-port case only, we can also define the chasn-scattering matriz via

P? P; ]
=62 (32)

P, P, |

where .
A [ 1 6 (33)

“ 1612 Oz

While the scattering matrix computes outgoing waves from incoming waves, the
chain-scattering matrix computes the left-going and right-going waves in section 1
given the left-going and right-going waves in section 2. The relation between the
scattering matrix £ and the chain-scattering matrix © is given by

0, = )32-1l 0,2 = _2;11):22
(34)
0, =T 53} 623 = 12— Z11 T35 D22
and
T =607 I;3=03-6,;66,
(35)

T2 =67 £33 = -6,,0;,

4.4. The One-Multiply Scattering Junction

Figure 7. The two-port one-m. :iply scattering section.
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Equations (28) and (29) combine to give

P, =P, +P,
- (36)
P; =P +P,
where
P, =¢(P{ - P})
(37)

p=pr=a1— I

Thus, only one matrix multiplication is necessary to compute the reflected waves
from the incoming waves. In the scalar case, this reduces to the so-called one-
multiplier lattice section [36] (minus the unit-sample delay ordinarily associated
with each section). A system diagram for the one-multiply section is shown in Fig.
7. It is well-known that any rational digital filter can be built using one-multiplier
lattice sections [36). In fixed-point implementations, the only source of error would
typically be in the computation of P,.

In linear fixed-point implementations, to ensure the absence of limit cycles and
overflow oscillations, the additions in (36) must be performed before rounding, and
the final rounding to obtain P; and P, must be norm reducing. (In the scalar
case, magnitude truncation is sufficient.) The added expense for postponing round-
off until the final outgoing waves are computed is typically negligible, requiring only
logic to determine the desired direction of truncation from the signs of P: and P,,
and the low-order product of P,. In other words, the double precision computations
required are only conceptual because the low-order half of the incoming wave P:
is zero.

Another one-multiplier form is obtained by organizing (28) as

+

P{ =P] +a(P, —P])=P] —aP,
P, =P +(P] —P;)=P] +P,
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where a & az to get (28). As in the previous case, only one multiply and three
adds are required per section.

In the scalar case, the single section parameter p of (38) must lie between —1
and 1, while in (37), the single section parameter o must lie between 0 and 2.
Otherwise, the junction is not passive. The practical implication of non-passive
junctions (ignoring roundoff error) is potential filter instability in the presence of
feedback.

In logarithmic fixed-point implementations, multiplication and division are
exact (in the absence of overflow or underflow), and roundoff error occurs only upon
addition or subtraction [17,37,48]. In this case, limit cycles and overflow oscillations
are suppressed if (a) a true zero element ¢ is supported such that z + ¢ = z and
2¢ = ¢, and (b) the log(1+ B*) table used in addition and subtraction are truncated
toward negative infinity. Normal truncating of the log magnitude of a number
yields a contractive quantization in the number itself. While it is not necessary for
passivity of overflow, it is preferable that overflow result in the maximum magnitude
number, of correct sign.

4.5. The Normalized Scattering Junction

Consider the rescaled quantities

P;Az;irt P AZMP )
o; azbul 07 Azdur
for 1 = 1,2 where
zt =zt (40)

is the unique para-Hermitian square root of Z;. The para-Hermitian square root of
Z; is defined as the analytic continuation of the Hermitian square root of Z;(e’%).
Uniqueness is inherited from uniqueness of both the Hermitian square root and the

process of analytic continuation.
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.-
In terms of P; , P; , the two-port scattering equations (38) become

- - =1 il~+ -1 P I
Pl = [Zl z(al —Iq)le]Pl +[Zl 20223]P

~ -1 Li~+ _;\. il~+ (41)
P2 = [22 20121’]}’1 +[Za Z(O’z—Iq)Zg]Pl

or, in terms of the reflection coefficient p=py = 0oy — Iy = Iy — a2,

-1 1]+
P =2zl [P + 2t ue - nizd P,
.+ (42)
P; =23ty b [P - 2702k P
This form will be further generalized in §5.4.

If Z\,Z; are diagonal, then each component Z;j] is real and positive and p is

diagonal by (29). In fact, there is very little difference between the case of diagonal
Z and scalar Z. In the diagonal case, (42) simplifies to

- -+ -+
Py, = pP, +(Iq—-p)V 23/ 2,P,

- N N (43)
By = (I, + p)VZi[ZP, —pP, ,  (disgonal case)
Recall from (29) that
p=1Z2—Z1)(Z2+ Z))"! = ([1 + T2} 7} (T1 —T2) (44)

which can be used to show

225" = I+ p) Mg — ) (45)
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This formula further simplifies (43) since

2 _ Iq+p__ 2
U= 32 = Ua = 72 =/l
1/21_ ‘/Iq-—p_‘/ 2

(Ig + p) Z_z—(lq'*'l’) Iivp Ig—»p

Defining p = /I - p2, the normalized scattering section, in the case of diagonal
characteristic impedance, reduces to

(46)

-~ = -+ .
Py, = pP, +pF
o - o+ -+
P, =pP, - oK, (47)

pA\/I;—-p*, pdiagonal
which is the well-known normalized ladder form (NLF) [36).

4.6. The Three-Multiply Normalized Scattering Junction

R

Figure 8. The normalized ladder form (NLF).
a) The four-multiply NLF.
b) The three-multiply NLF.
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Note that the normalized ladder form (NLF) for the diagonal or scalar case
(§4.5) requires four (matrix) multiplies for each scattering junction, as shown in
Figure 8a. One of these multiplies can be eliminated as shown in Figure 8b.

The three-multiply NLF is derived from (43) as follows. Define
(48)

Rewrite (43) so that the second equation becomes
~ - ~+ Zo =+
P, =\/2,/2; (Iq+P)P1_P ZP1 (49)

L+
and compare to the first equation, recognizing P, in both. The NLF is thus reduced

to a one-multiplier junction followed by a transformer (cf. §4.9), as shown in Fig.
8b.

Let

I+
ol /.Z_Ej =\ /T:_—% ,  (diagonal case) (50)

Then we can write the formulas for the three-multiplier NLF as

P, =P, +P, (51)

P, = o 1P, | p,o diagonal
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4.7. The Two-Port Delay Line

A L B
- (.(__5—) +
4% —FR

Figure 9. The two-port delay line.

Section §3.5 discusses the use of pure delay lines between scattering junctions.
A single section of lossless waveguide material is a two-port as shown in Fig. 9. The
input-output equations are
Py =dV"P;
Py =dN* P} 52)
where d is the unit-sample delay operator (d « z~!) defined by d*z(t) = z(t —
k). We will normally consider only the physically meaningful case N* = N~,
corresponding to equal forward and reverse delays. However, in typical ladder and
lattice filter structures [36), N+ == 0 and N~ = 2N, where N is the propagation
delay (in samples) from one junction to the next.

The scattering matriz (cf. §4.2) of a bidirectional delay line is

0 dN71,
E=[dN1,q . "] (53)
q

reciprocal for N* = N, and the chain scattering matriz (cf. §4.3) is

a-N-1, O
e—_-[ . q szI,,] (54)
q
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4.8. Generalized Delay

By replacing the delay operator by an arbitrary lossless transfer function matrix,
we obtain a generalized waveguide section. A transfer function matrix H is said to

be lossless (allpass) if it is para-unitary, i.e.,

Introducing an allpass filter into a delay line can be interpreted as making
the length of the waveguide section frequency-dependent. This technique has been
used to simulate stiffness in models for vibrating strings [56,57,58]. Since the phase
velocity along a stiff string increases with frequency [4], an allpass filter with a
phase delay which decreases with frequency can capture the most essential effects of
stiffness on traveling-wave propagation. A method which can be adapted to design
a scalar allpass filter, of any order, approximating a desired phase delay is given in
(55,57).

4.9. The Two-Port Transformer

t-l
P(-" '_"D‘—‘) Pz-
e

Figure 10. The two-port transformer.

The ideal cescade transformer is a lossless 2-port which scales up pressure by

some factor and scales down flow by the same factor v!'iout generating scattering
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reflections. This amounts to scaling the characteristic impedance across a wave-
guide without causing the reflections which normally accompany an impedance
discontinuity. Doing this requires violating conservation of flow (cf. (6)). Thus,
transformers are non-physical “miracle junctions” which can arbitrarily redistribute
the traveling wave between its pressure and flow components such that free propa-
gation is undisturbed. We will use transformers to control time-varying filters. A
diagram is shown in Fig. 10.

Recall the fundamental relations

P{ =2ZU;
- - (56)
P; =-2;U;

for = 1,2. Ordinarily, the impedance step from Z; to Z, generates a reflection. A
transformer suppresses reflections when crossing an impedance step. As discussed in
§5, the right-going and left-going signal power in a section of waveguide of impedance
Z are given, respectively, by

P*=P.U* =U;2U" =PTP*
- ee - - - (57)
P =P, U =-U,2U " =-P_TP

A two-port transformer, by definition, preserves the right-going and left-going
signal power. Thus, we require
P{.T\P; = P;I';P;

e (58)
P..T\P] = P;.T.P;

This is arranged if
P} = z3/* 27"/ P (59)

Let
tAzyPz7 (60)
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where ¢ is not necessarily Hermitian (Z .1-/ ? is not necessarily Hermitian even if Z; is
Hermitian). Then (58) implies

P; = l—lP:

P, =t71P;

= P2 = t_!PI
_ (61)
U; =tU,

= U] = taUz

The pressure scattering equations are

P: = lP;
- (62)
P; = ‘-IP:

as shown in Fig. 10.

The scattering matrix of an ideal transformer is

L= [ t(iq‘ otq ] (63

reciprocal for t? = I, and the chain scattering matrix is

ey

Note that the transformer scale factor ¢ can be any stable minimum-phase*

g by ¢ transfer function matrix.

* A transfer function ¢ is minimum-phase iff its inverse ¢t~ is stable and causal.
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The reflectance transfer function seen at any port (e.g., PI_/P;' at port 1) is not
changed by the insertion of a transformer if that port is not connected to anything
“downstream” of the transformer. This applies to waveguide chains and to acyclic
trees of waveguides. The filtering by ¢ is always canceled in the end by ¢—!.

4.10. The Two-Port Dualizer (Gyrator)

Figure 11. The two-port dualizer.
a) Pressure to flow.

b) Flow to pressure.

To minimize dynamic range requirements in fixed-point implementations (see
§5.7) it is helpful to be able to switch between pressure and flow as the explicitly
computed variable of propagation. Transformation from pressure to flow or vice
versa can be be accomplished by means of a two-port “dualizer” which is a special
case of a gyrator [14]. (A gyrator is more generally a dualizer in cascade with any
transformer.)

The dualizer merely implements the fundamental relations between pressure

and flow:
+

Pt =2U
- - (65)
P  =-2ZU
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This is a flow to pressure dualizer. The pressure to flow dualizer is obtained by
solving for flow in terms of pressure.

A two-port junction which converts pressure waves on the left to pressure waves
on the right which are equal to the flow waves on the left is obtained by defining
P, = Uy and P; = U}, and we get

P =-ZP;

- (686)
P; =27'P}]

Note that we write Z instead of Z; or Z; in (66) above because Z; = Z,. That is,

the dualizer converts pressure to flow at the same characteristic impedance.

The dualizer can be seen as a transformer scaling by Z together with a sign
reversal in the reflection branch. A gyrator is therefore any transformer modified
to have a sign change in the reflection path. The sign change in the reflection
is the heart of the dual operation: When pressure reflects in-phase, flow reflects

out-of-phase, and vice versa.

When inserting a dualizer into a network, it is necessary to redo the scattering
equations “down-stream.” In other words, if a pressure waveguide is connected to a
junction whose scattering coefficients expect pressure waves as input, changing the
wave variable to flow necessitates changing the scattering coefficients. Typically this
is done by converting back to pressure at the junction and combining computations.

In the case of cascade two-ports, one easily can change a waveguide from pres-
sure to flow or vice versa by inserting complementary dualizers on either side of
the waveguide branch and then absorbing the dualizer coefficients into the adjacent

two-port junctions.

The scattering matrix of the pressure to flow dualizer is

_[ 0 -2
2_{2_1 oq} (67)
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reciprocal when Z2? = —1I, and the chain scattering matrix is
Z 0
o= ! ] 68
[ 0, -7 (68)

The flow to pressure versions are obtained by substituting Z~! for Z.

4.11. The Normalized Time-Varying One-Multiply Junction

Suppose we are using a scalar one-multiply scattering junction (§4.4) and wish
to vary it over time. The scattering coefficients are completely determined by the
relative characteristic impedances in the successive waveguide branches. Therefore,
a time-varying filter is created by changing one or more characteristic impedances
over time. Two problems appear:

1) Changing a single branch characteristic impedance forces not one but two
scattering junctions to change with respect to time.

2) When a branch characteristic impedance is changed, the stored signal power
represented by the contents of the bidirectional delay line changes.

The first problem can be solved by varying all characteristic impedances so
that only one junction is modified (the characteristic impedance ratios are held
fixed at the remaining junctions). For example, suppose we have a cascade of 5
waveguide sections, and we want to vary the junction between Z; and Zs with an
amplitude modulation cos(wt). Then we can leave Z; and Z; as before and choose
Z;+— cos(wt)Z; for i = 3,4,5. The last section Zs must be terminated by either
Z = oo or Z = 0 (the so-called reflectively terminated case). In the general case of
waveguide networks with branches forming loops, this trick does not work, and a
changing characteristic impedance generally affects at least two branches.

The second problem can be solved by rescaling the entire contents of the

bidirectional delay line associated with the characteristic impedance in such a way
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as to compensate for the stored energy. If Z denotes the characteristic impedance of
the branch before time variation begins, then the orignal signal power represented
by each sample P*(n) is P*(n)?/Z, where n = 1,..., N denotes delay element
index in a length NV bidirectional delay line (2/V total memory cells). Let time be
frozen. Suppose now that the characteristic impedance instantaneously changes to
Z. Then to hold stored signal power constant, we must rescale the contents of the
delay line to

P (n)—P* () Z/2

. - (69)
P (n)—P (n\/Z/Z
Then .
[P ()2 _ [P*(n)?Z/Z _ |P"(n)?
z z Z
__ . _ (70)
[P () _ [P~ (n)22/Z _ |P"(n)?
z Z Z

and signal power is held invariant.

This type of power normalization is unnecessarily expensive in most cases.
Normally, the samples interior to a waveguide section can be left unnormalized
until they reach the end (a junction) or some interior point where a measurement
of waveguide pressure or flow is being made.

Both problems can be conveniently solved by using a transformer to change
the characteristic impedance just before entering a junction, and incorporating
normalization in the transformer. Doing this yields the normalized time-varying
one-multiply scattering junction shown in Fig. 8.

5. Signal Power in Lossless Waveguides

This section presents basic definitions of signal energy and power in a wave-

guide. These concepts provide the necessary handles on filter stability, passivity
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with respect to numerical round-off and overflow, and energy modulation due to

time-varying parameters.

5.1. Instantaneous Propagating Power

The instantaneous power in a waveguide containing instantaneous pressure P
and flow U is defined as the m by m product of pressure and flow:

P=PU (71)
The total instantaneous power is defined as the trace of the instantaneous power:
Pr ATr{P} = Tr{P.U} (72)

The total instantaneous power is a complex scalar measure of power flow. It can
be interpreted in a manner similar to the complex power in scalar transmission-
line theory in which sinusoidal phasors are propagated in either direction. The
instantaneous power can be expanded into four terms as follows:

P=PU=(P!+P) U +U )= (U, -U,)Z(U" +U")
=P.U'+P,U +P,U +P.U"

_—— - - (73)
=PTP* -PTP” +P,TP  -P_TP"
=UlZU*-U,2U” -U 2U” +U, 2U"
The right-going and left-going power are defined, respectively, by
p* =P,U" =U;ZU" = P,TP*
(74)

P =P, U =-U,2U =-P,TP




5 SIGNAL POWER IN LOSSLESS WAVEGUIDES Page 45 (DRAFT)

. . " + - oy
Since Z is para-Hermitian, P and P are Hermitian forms, and can be expressed

as
m
P =" turuy,
=1
om (75)
PT =Y \Turyy
fem]
where U7} is the ith eigenvector of P*, and A} is its th (real) eigenvalue. The

m-vectors U} can be chosen orthonormal. Similar remarks apply to the eigenvalues
and eigenvectors of P . It can be shown that the waveguide is passive if and only
if X}, 2 0. Consequently, we will assume in the sequel that

AP>0, AT>0, i=12...,m (76)

This implies P* and P~ are positive definite Hermitian matrices. The orthonormal

vectors ¥} and 7 (which are vector analytic functions of d), indicate “directions”

along which power flows in the m-dimensional manifold determined by U; (or F;)
and Z.

In the non-para-Hermitian case, the medium is passive if and only if
Z(d)+ Z.(d) 20, V|d| <1 (77)

That is, the para-Hermitian part of the characteristic impedance of a passive
medium must be positive definite in the unit circle. It can be shown using the
maximum modulus theorem [5] that (77) holds if Z 4+ Z, > 0 for |d| = 1.

We define the cross power by
P* =UzU” (78)

The instantaneous power (73) can now be written as

x

P=(P" =P )+(P" =P)) (79)
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which we interpret as a sum of a net traveling-power term pt—p~ plus the skew-
para-Hermitian part of the cross-power. In the real scalar case, P = P.x and the

CTrOSS power is zero.

Since the eigenvalues of a Hermitian matrix are purely real, we define the
difference between the right-going and left-going power P* — P~ as the active power.
Similarly, since the eigenvalues of a skew-Hermitian matrix are purely imaginary,
we define the skew-para-Hermitian part of the cross-power P X—p X as the reactive

power. These definitions paralle]l those of scalar transmission-line theory.

5.2. Instantaneous Stored Power

The total energy in a waveguide network is obtained by summing the instan-
taneous power over all of the storage elements. The storage elements are the memory
locations in the bidirectional delay lines. Each bidirectional delay line represents a
sampled uniform waveguide section. Let

Z; = Characteristic impedance of branch ¢
N; = Length of delay (samples) along either direction of branch ¢
n = Time in samples
Zi(n) = Characteristic impedance of branch ¢ at time n
Np(n) = Total number of branches in the waveguide network at time n
P}’(m, n) = Right-going pressure in branch ¢, forward delay element m, time n
P; (m,n) = Left-going pressure in branch §, reverse delay element m, time n
Pi(m,n) = P;-'(m, n) + P; (m, n) = Instantaneous pressure in branch i, element m, time n
U :-'(m, n) = Right-going flow in branch ¢, forward delay element m, time n
U; (m,n) = Left-going flow in branch ¢, reverse delay element m, time n

Ui(m,n) = U:(m, n) + U; (m,n) = Instantaneous flow in branch ¢, element m, time n

(80)
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The instantaneous signal power contributed by each delay element of a pressure
network is

Pi(m; n) = Pia(m» n)rl'(n)Pi(m’ n) (81)

Similarly, in a flow network, the instantaneous power is
Pi(m,n) = Uju(m, n)Zi(n)Ug(m, n) (82)

If branch 7 is a pressure branch, then increasing Z;(n) with P*, P, fixed decreases
the stored power in branch . On the other hand, the power in a flow branch
increases as Z;(n) increases. If the ¢th branch holds normalized waves (cf. §4.5,§4.6,§5.4)

the stored signal power is constant as the characteristic impedance varies.

The total power in a waveguide network at time n is given by

Ni(n) N;

P(m)A D Y P(m,n) (83)

fes] Mms]

Energy is the summation of power over time. (Power is energy per unit time.)
The total energy seen up to time n at a particular element m is

EmA 3 Aim b (&)
kws—00

Total energy measurement is useful for computing how much signal energy has been
received at the input(s) and how much has been dispatched through the outputs
(using matched-impedance waveguide terminations, for example).

5.3. Power Conservation at a Junction

For the N-way waveguide junction, the fundamental constraints P* = +U#,
P; = Py, and LU; = 0 yield

N N N
PrA Y PuU=3) PiUi=P; ) Ui=0 (85)

fa] f==1 f=1
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Thus, the N-way junction is lossless; no net power, active or reactive, flows into or

away from the junction.

5.4. Normalized Waves

We can normalize the pressure and flow variables by the Hermitian square root

of the characteristic impedance to obtain propagation waves in units of root power:

Pi AZTIPT P AZTEP]
~ 4+ 1 -— 1 - (86)
U; AZ:U; U, Az
where Z ,-%. is the unique para-Hermitian square root of Z; as discussed in §4.5.
In the non-para-Hermitian case, we normalize the traveling waves by
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