
CONVEX

OPTIMIZATION

                            

EUCLIDEAN

DISTANCE

GEOMETRY

                CONVEX

OPTIMIZATION

                             

EUCLIDEAN

DISTANCE

GEOMETRY

    TTORRODA

2ε

    TTORRODA

MεβοοMεβοο

2ε



Dattorro

CONVEX

OPTIMIZATION

�

EUCLIDEAN

DISTANCE

GEOMETRY

Meboo



Convex Optimization

�

Euclidean Distance Geometry

Mεβoo Publishing

https://ccrma.stanford.edu/~dattorro/dad.html


Meboo Publishing USA

PO Box 12

Palo Alto, California 94302

Dattorro, Convex Optimization � Euclidean Distance Geometry,
Mεβoo, 2005, v2019.10.28.

ISBN 978-0-578-16140-2

This is version 2019.10.28: available in print at Lulu.com, as conceived, in color.
Latest electronic version available at ccrma.stanford.edu/%7Edattorro/0976401304.pdf

Cybersearch:

I. semidefinite program

II. rank constraint

III. cardinality minimization

IV. audio signal processing

V. convex geometry

VI. convex cones

VII. distance matrix

programs by Matlab

Typesetting by

Donations from MATHWORKS, SIAM, and AMS.

cover art derives from new town hall, munich by Sze Wan

This searchable electronic color pdfBook is click-navigable within the text by page, section,
subsection, chapter, theorem, example, definition, cross reference, citation, equation, figure,
table, and hyperlink. A pdfBook has no electronic copy protection and can be read and printed
by most computers. The publisher hereby grants the right to reproduce this work in any format
but limited to personal use.

© 2005-2019 Mεβoo Publishing USA

https://www.convexoptimization.com
https://ccrma.stanford.edu/~dattorro
http://www.lulu.com/spotlight/dattorro
https://ccrma.stanford.edu/~dattorro/0976401304.pdf
https://www.mathworks.com/support/books/book49103.html?category=6&language=1&view=category
https://www.winedt.com
https://meboo.convexoptimization.com
https://www.szearts.com
https://meboo.convexoptimization.com/Meboo.html


for Jennie Columba

♦

Antonio

♦

& Sze Wan

♦

https://ccrma.stanford.edu/~dattorro/dad.html
https://www.szearts.com


EDM = Sh ∩
(

S⊥
c − S+

)

https://www.convexoptimization.com/TOOLS/DattorroLAA.pdf


Prelude

The constant demands of my department and university and the ever increasing
work needed to obtain funding have stolen much of my precious thinking time,
and I sometimes yearn for the halcyon days of Bell Labs.

−Steven Chu, Nobel laureate [92]

Convex Analysis is an emerging calculus of inequalities while Convex Optimization is its
application. Analysis is inherently the domain of a mathematician while Optimization
belongs to the engineer. A convex optimization problem is conventionally regarded as
minimization of a convex objective function subject to an artificial convex domain imposed
upon it by the problem constraints. The constraints comprise equalities and inequalities of
convex functions whose simultaneous solution set generally constitutes the imposed convex
domain: called feasible set.

It is easy to minimize a convex function over any convex subset of its domain because
any local minimum must be a global minimum. But it is difficult to find the maximum
of a convex function over some convex domain because there can be many local maxima;
although this has practical application (Eternity II §4.8, §C.5), it is not a convex problem.
Tremendous benefit accrues when a mathematical problem can be transformed to an
equivalent convex optimization, primarily because any locally optimal solution is then
guaranteed globally optimal.0.1 An optimal solution is a best solution to the problem
posed; a certificate can be obtained guaranteeing that no better solution exists.

To provide a concrete example of what it meant by optimal, recall the ordinary least
squares problem espoused by Gauss and Legendre over 200 years ago: (§E.0.1.0.1)

minimize
x

‖Ax − b‖2
2

Suppose we were to pose this problem a bit differently by constraining variable vector x
simultaneously with the minimization. In particular, let’s suppose that each entry of x
were bounded above by the same maximum allowable value:

minimize
x

‖Ax − b‖2
2

subject to x ¹ xmax

Would a constrained solution, so obtained, be equivalent to an ordinary least squares
solution whose entries (exceeding the prescribed bound) are simply clipped to the
maximum value? The two solutions are, generally, different when clipping occurs. We
argue that a constrained solution is better than a clipped solution; indeed, it is optimal.

0.1Solving a nonlinear system for example, by instead solving an equivalent convex optimization problem,
is therefore highly preferable and what motivates geometric programming; a form of convex optimization
invented in 1960s [67] [90] that has driven great advances in the electronic circuit design industry. [38, §4.7]
[288] [459] [462] [117] [215] [224] [225] [226] [227] [228] [305] [306] [356]
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Both of the foregoing ordinary and bounded least squares problems are convex.
Recognizing a problem as convex is an acquired skill; that being, to know when an objective
function is convex and when constraints specify a convex feasible set. The challenge,
which is indeed an art, is how to express difficult problems in a convex way: perhaps,
problems previously believed nonconvex. Practitioners in the art of Convex Optimization
engage themselves with discovery of which hard problems can be transformed into convex
equivalents; because, once convex form of a problem is found, then a globally optimal
solution is close at hand - the hard work is finished: Finding convex expression of a
problem is itself, in a very real sense, its solution.

Yet, that skill acquired by understanding the geometry and application of Convex
Optimization will remain more an art for some time to come; the reason being, there is
generally no unique transformation of a given problem to its convex equivalent. This
means, two researchers pondering the same problem are likely to formulate a convex
equivalent differently; hence, one solution is likely different from the other although any
convex combination of those two solutions remains optimal. Any presumption of only one
right or correct solution becomes nebulous. Study of equivalence & sameness, uniqueness,
and duality therefore pervade study of Optimization.

It can be difficult for the engineer to apply convex theory without an understanding
of Analysis. These pages comprise my journal over an eighteen year period bridging
gaps between engineer and mathematician; they constitute a translation, unification, and
cohering of about five hundred papers, books, and reports from several different fields of
mathematics and engineering. Although beacons of historical accomplishment are cited
throughout, much of what is written here will not be found elsewhere. Care to detail,
clarity, accuracy, consistency, and typography accompanies removal of ambiguity and
verbosity, out of respect for the reader. But the book is nonlinear in its presentation.
Consequently there is much indexing, cross referencing, linkage to online sources, and
background material provided in the text, footnotes, and appendices so as to be more
self-contained and to provide understanding of fundamental concepts.

Looking toward the future, there remains much to be done in the area of machine
computation if mathematical Optimization is to become fully embraced by the signal
processing community. Wordlength of contemporary computers and numerical burdens
upon them prohibit real time solution and accuracy sufficient to embed optimization
problems within a recursive mathematical setting. When optimization problems constitute
only intermediate solution to much larger problems, acquiring only a “few digits” accuracy
can throw off subsequent dependent calculations. Barrier methods of solution are the
principal obstacle to accuracy while simplex methods are the principal setback to speed.
Novel, not hybrid, methods of solution are needed.

Audio distortion & noise analysis and measurement §8.1-§8.4 was begun 2016. Sinusoid
tracking proved superior to Fourier and other filtering methods in 2017. Discerning
harmonic and intermodulation distortion of device under test (DUT), from that produced
by D/A→DUT→A/D signal chain, was discovered then. By 2018, the preferred “analyzer”
had become discrete D/A and A/D converter because commercial analyzers (test gear)
could not accept 32-bit inputs required for antidistortion injection. So it was discovered
how D/A and A/D could themselves become DUT, opening up analysis to converter
chip designers; submeasurable capability never prior had. The term submeasurable
was introduced in 2019 to define levels below what was then measurable by very best
commercial analyzers. Entrepreneurship prohibited publication in those years.

−Jon Dattorro

Stanford, California

2019
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Chapter 1

Overview

Convex Optimization
Euclidean Distance Geometry

People are so afraid of convex analysis.

−Claude Lemaréchal, 2003

In layman’s terms, the mathematical science of Optimization is a study of how to make
good choices when confronted with conflicting requirements and demands. Optimization
is a relatively new wisdom, historically, that can represent balance of real things. The
qualifier convex means: when an optimal solution is found, then it is guaranteed to be a
best solution; there is no better choice.

Any convex optimization problem has geometric interpretation. If a given optimization
problem can be transformed to a convex equivalent, then this interpretive benefit is
acquired. That is a powerful attraction: the ability to visualize geometry of an
optimization problem. Conversely, recent advances in geometry and in graph theory hold
convex optimization within their proofs’ core. [471] [367]

This book is about convex optimization, convex geometry (with particular attention
to distance geometry), and nonconvex, combinatorial, and geometrical problems that can
be relaxed or transformed into convexity. A virtual flood of new applications follows
by epiphany that many problems, presumed nonconvex, can be so transformed: [11] [12]
[38, §4.3, p.316-322] [66] [106] [177] [180] [320] [345] [353] [413] [414] [467] [471] e.g, sigma
delta analog-to-digital audio converter (A/D) antialiasing (Figure 1).

Euclidean distance geometry is, fundamentally, a determination of point conformation
(configuration, relative position or location) by inference from interpoint distance
information. By inference we mean: e.g, given only distance information, determine
whether there corresponds a realizable conformation of points; a list of points in some
dimension that attains the given interpoint distances. Each point may represent simply
location or, abstractly, any entity expressible as a vector in finite-dimensional Euclidean
space; e.g, distance geometry of music [125].

It is a common misconception to presume that some desired point conformation cannot
be recovered in absence of complete interpoint distance information. We might, for
example, want to realize a constellation given only interstellar distance (or, equivalently,
parsecs from our Sun and relative angular measurement; the Sun as vertex to two distant
stars); called stellar cartography, an application evoked by Figure 3. At first it may seem

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 19
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Figure 1: Multibit sigma delta quantization is predominant technology for analog to digital
audio signal conversion. [2, p.6] Input signal u(t) is continuous. Delay z−1 here is analog,
perhaps implemented by sample/hold circuit at MHz rate of ŷi samples. Observing vector
ŷ , signal u can be reconstructed by finding a point feasible to the set of linear inequalities
representing this coarse quantizer recursion. R is a lower triangular matrix of ones. [114]
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Figure 2: [137] [333] [134] Dokmanić & Parhizkar et alii discover an audio signal processing
application of Euclidean distance matrices to room geometry estimation by discerning
first acoustic reflections of stationary sound source s . Locations of source and phantom
⋆ sources s̃i and s̃j are ascertained by measuring arrival times of first echoes (blue) at
multiple microphone receivers. (Only one receiver r is illustrated. Second reflection (red)
phantom s̃ij ignored.) Phantom location is invariant to receiver position. All interpoint
distances among receivers are known. Once source and phantoms are localized, normals nj

and ni respectively identify truncated hyperplanes (walls) a and b bisecting perpendicular
line segment connecting source s to a phantom.
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Figure 3: Orion nebula. (Astrophotography by Massimo Robberto.)

that O(N 2) data is required, yet there are many circumstances where this can be reduced
to O(N ).

If we agree that a set of points may have a shape (three points can form a triangle
and its interior, for example, four points a tetrahedron), then we can ascribe shape of a
set of points to their convex hull. It should be apparent: from distance, these shapes can
be determined only to within a rigid transformation (rotation, reflection, translation).

Absolute position information is generally lost, given only distance information, but
we can determine the smallest possible dimension in which an unknown list of points can
exist; that attribute is their affine dimension (a triangle in any ambient space has affine
dimension 2 , for example). In circumstances where stationary reference points are also
provided, it becomes possible to determine absolute position or location; e.g, Figure 4.

Geometric problems involving distance between points can sometimes be reduced to
convex optimization problems. Mathematics of this combined study of geometry and
optimization is rich and deep. Its application has already proven invaluable discerning
organic molecular conformation by measuring interatomic distance along covalent bonds;
e.g, Figure 5. [100] [403] [164] [52] Many disciplines have already benefitted and simplified
consequent to this theory; e.g, distance based pattern recognition (Figure 6), localization
in wireless sensor networks [53] [465] [51] by measurement of intersensor distance along
channels of communication, wireless location of a radio-signal source such as cell phone
by multiple measurements of signal strength, the global positioning system (GPS),
multidimensional scaling (§5.12) which is a numerical representation of qualitative data by
finding a low-dimensional scale, and audio signal processing: ultrasound tomography, room
geometry estimation (Figure 2), and perhaps dereverberation by localization of phantom
sound sources [135] [134] [137]. [136]

Euclidean distance geometry provides some foundation for artificial intelligence.
Together with convex optimization, distance geometry has found application to:

� machine learning by discerning naturally occurring manifolds in:

– Euclidean bodies (Figure 7, §6.7.0.0.1)
– Fourier spectra of kindred utterances [248]
– photographic image sequences [448]

https://www.youtube.com/watch?v=wnb20chqbxM
http://www.stsci.edu/~robberto
https://www.convexoptimization.com/wikimization/index.php/Chromosome_structure_via_Euclidean_Distance_Matrices
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x̌2

x̌4

x̌3

Figure 4: Application of trilateration (§5.4.2.2.8) is localization (determining position)
of a radio signal source in 2 dimensions; more commonly known by radio engineers as
the process “triangulation”. In this scenario, anchors x̌2 , x̌3 , x̌4 are illustrated as fixed
antennae. [244] The radio signal source (a sensor • x1) anywhere in affine hull of three
antenna bases can be uniquely localized by measuring distance to each (dashed white
arrowed line segments). Ambiguity of lone distance measurement to sensor is represented
by circle about each antenna. Trilateration is expressible as a semidefinite program; hence,
a convex optimization problem. [368]

� robotics; e.g, automated manufacturing, and autonomous navigation of vehicles
maneuvering in formation (Figure 10).

by chapter

We study the many manifestations and representations of pervasive convex Euclidean
bodies. In particular, we make convex polyhedra, cones, and dual cones visceral through
illustration in Chapter 2 Convex Geometry where geometric relationship of polyhedral
cones to nonorthogonal bases (biorthogonal expansion) is examined. It is shown that
coordinates are unique in any conic system whose basis cardinality equals or exceeds
spatial dimension; for high cardinality, a new definition of conic coordinate is provided in
Theorem 2.13.13.0.1. Conic analogue to linear independence, called conic independence,
is introduced as a tool for study, analysis, and manipulation of cones; a natural extension
and next logical step in progression: linear, affine, conic. We explain conversion between
halfspace- and vertex-description of convex cone, we motivate dual cone and provide
formulae for finding it, and we show how first-order optimality conditions or alternative
systems of linear inequality or linear matrix inequality can be explained by dual generalized
inequalities with respect to convex cones. Arcane theorems of alternative generalized
inequality are, in fact, simply derived from cone membership relations; generalizations of
algebraic Farkas’ lemma translated to geometry of convex cones.

Any convex optimization problem can be visualized geometrically. Desire to visualize
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Figure 5: [223] [139] Distance data collected via nuclear magnetic resonance (NMR) helped
render this three-dimensional depiction of a protein molecule. At the beginning of the
1980s, Kurt Wüthrich [Nobel laureate] developed an idea about how NMR could be extended
to cover biological molecules such as proteins. He invented a systematic method of pairing
each NMR signal with the right hydrogen nucleus (proton) in the macromolecule. The
method is called sequential assignment and is today a cornerstone of all NMR structural
investigations. He also showed how it was subsequently possible to determine pairwise
distances between a large number of hydrogen nuclei and use this information with a
mathematical method based on distance-geometry to calculate a three-dimensional structure
for the molecule. [454] [218] −[324]

in high dimension [Sagan, Cosmos−The Edge of Forever, 22:55′] is deeply embedded in
the mathematical psyche. [1] Chapter 2 provides tools to make visualization easier, and we
teach how to visualize in high dimension. The concepts of face, extreme point, and extreme
direction of a convex Euclidean body are explained here; crucial to understanding convex
optimization. How to find the smallest face of any closed convex cone, containing convex
set C , is divulged; later shown to have practical application to presolving convex programs.
The convex cone of positive semidefinite matrices, in particular, is studied in depth:

� We interpret, for example, inverse image of the positive semidefinite cone under
affine transformation. (Example 2.9.1.0.2)

� Subsets of the positive semidefinite cone, discriminated by rank exceeding some lower
bound, are convex. In other words, high-rank subsets of the positive semidefinite
cone boundary united with its interior are convex. (Theorem 2.9.2.9.3) There is a
closed form for projection on those convex subsets.

� The positive semidefinite cone is a circular cone in low dimension; Geršgorin discs
specify inscription of a polyhedral cone into it. (Figure 51)

Chapter 3 Geometry of Convex Functions observes Fenchel’s analogy between
convex sets and functions: We explain, for example, how the real affine function relates
to convex functions as the hyperplane relates to convex sets. A toolbox of practical useful
convex functions and a cookbook for optimization problems, methods are drawn from the
appendices about matrix calculus for determining convexity and discerning geometry.

Chapter 4. Semidefinite Programming has recently emerged to prominence because
it admits a new problem type previously unsolvable by convex optimization techniques
and because it theoretically subsumes other convex types: linear programming, quadratic
programming, second-order cone programming . −p.219 Semidefinite programming is

https://www.cs.duke.edu/brd/Teaching/Previous/Bio
https://www.youtube.com/watch?v=YbgZWNW8ClU
https://www.science.psu.edu/news-and-events/2005-news/math10-2005.htm
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Figure 6: This coarsely discretized triangulated algorithmically flattened human face
(made by Kimmel & the Bronsteins [263]) represents a stage in machine recognition of
human identity; called facial recognition. Distance geometry is applied to determine
discriminating-features.

reviewed with particular attention to optimality conditions for prototypical primal and
dual problems, their interplay, and a perturbation method for rank reduction of optimal
solutions (extant but not well known). Positive definite Farkas’ lemma is derived, and we
also show how to determine if a feasible set belongs exclusively to a positive semidefinite
cone boundary. An arguably good three-dimensional polyhedral analogue to the positive
semidefinite cone of 3×3 symmetric matrices is introduced: a new tool for visualizing
coexistence of low- and high-rank optimal solutions in six isomorphic dimensions and a
mnemonic aid for understanding semidefinite programs. We find a minimal cardinality
Boolean solution to an instance of Ax = b :

minimize
x

‖x‖0

subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(715)

The sensor-network localization problem is solved in any dimension in this chapter. We
introduce a method of convex iteration for constraining rank in the form rankG≤ ρ and
cardinality in the form cardx≤ k . Cardinality minimization is applied to a discrete
image-gradient of the Shepp-Logan phantom, from Magnetic Resonance Imaging (MRI)
in the field of medical imaging, for which we find a new lower bound of 1.9% cardinality.
We show how to handle polynomial constraints, and how to transform a rank-constrained
problem to a rank-1 problem.

The EDM is studied in Chapter 5 Euclidean Distance Matrix; its properties and
relationship to both positive semidefinite and Gram matrices. We relate the EDM to the
four classical properties of Euclidean metric; thereby, observing existence of an infinity of
properties of the Euclidean metric beyond triangle inequality. We proceed by deriving the
fifth Euclidean metric property and then explain why furthering this endeavor is inefficient
because the ensuing criteria (while describing polyhedra in angle or area, volume, content,
and so on ad infinitum) grow linearly in complexity and number with problem size.

Reconstruction methods are explained and applied to a map of the United States; e.g,
Figure 8. We also experimentally test a conjecture of Borg & Groenen by reconstructing
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Figure 7: Swiss roll, Weinberger & Saul [448]. The problem of manifold learning, illustrated
for N = 800 data points sampled from a “Swiss roll” 1

O. A discretized manifold is
revealed by connecting each data point and its k=6 nearest neighbors 2

O. An unsupervised
learning algorithm unfolds the Swiss roll while preserving the local geometry of nearby data
points 3

O. Finally, the data points are projected onto the two-dimensional subspace that
maximizes their variance, yielding a faithful embedding of the original manifold 4

O.

a distorted but recognizable isotonic map of the USA using only ordinal (comparative)
distance data: Figure 156e-f. We demonstrate an elegant method for including dihedral
(or torsion) angle constraints into a molecular conformation problem. We explain why
trilateration (a.k.a localization) is a convex optimization problem. We show how to
recover relative position given incomplete interpoint distance information, and how to pose
EDM problems or transform geometrical problems to convex optimizations; e.g, kissing
number of packed spheres about a central sphere (solved in R3 by Isaac Newton).

The set of all Euclidean distance matrices forms a pointed closed convex cone called
the EDM cone: EDMN . We offer a new proof of Schoenberg’s seminal characterization
of EDMs:

D ∈ EDMN ⇔
{

−V T
NDVN º 0

D ∈ SN
h

(1025)

Our proof relies on fundamental geometry; assuming, any EDM must correspond to a
list of points contained in some polyhedron (possibly at its vertices) and vice versa. It
is known, but not obvious, this Schoenberg criterion implies nonnegativity of the EDM
entries; proved herein.

We characterize eigenvalue spectrum of an EDM, then devise a polyhedral spectral cone
for determining membership of a given matrix (in Cayley-Menger form) to the convex cone
of Euclidean distance matrices; id est, a matrix is an EDM if and only if its nonincreasingly

https://www.convexoptimization.com/wikimization/index.php/Isaac_Newton
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original reconstruction

Figure 8: (confer Figure 156) About five thousand points along borders constituting
United States were used to create an exhaustive matrix of interpoint distance for each
and every pair of points in an ordered set (a list); called Euclidean distance matrix. From
that noiseless distance information, it is easy to reconstruct this nonconvex map exactly
via Schoenberg criterion (1025). (§5.13.1.0.1) Map reconstruction is exact (to within a
rigid transformation) given any number of interpoint distances; the greater the number of
distances, the greater the detail (as it is for all conventional map preparation).

ordered vector of eigenvalues belongs to a polyhedral spectral cone for EDMN

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

∈
[

RN
+

R−

]

∩ ∂H

D ∈ SN
h

(1243)

We will see: spectral cones are not unique.
In Chapter 6 Cone of Distance Matrices we explain a geometric relationship

between the cone of Euclidean distance matrices, two positive semidefinite cones, and the
elliptope. We illustrate geometric requirements, in particular, for projection of a given
matrix on a positive semidefinite cone that establish its membership to the EDM cone.
The faces of the EDM cone are described, but still open is the question whether all its
faces are exposed as they are for the positive semidefinite cone.

The Schoenberg criterion,

D ∈ EDMN ⇔
{

−V T
NDVN ∈ SN−1

+

D ∈ SN
h

(1025)

for identifying a Euclidean distance matrix, is revealed to be a discretized membership
relation (dual generalized inequalities, a new Farkas’-like lemma) between the EDM cone

and its ordinary dual: EDMN∗
. A matrix criterion for membership to the dual EDM cone

is derived that is simpler than the Schoenberg criterion:

D∗∈ EDMN∗ ⇔ δ(D∗ 1) − D∗ º 0 (1393)

There is a concise equality, relating the convex cone of Euclidean distance matrices to the
positive semidefinite cone, apparently overlooked in the literature; an equality between
two large convex Euclidean bodies:

EDMN = SN
h ∩

(

SN⊥
c − SN

+

)

(1387)
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(a) (b)

Figure 9: (a) These bees construct a honeycomb by solving a convex optimization problem
(§5.4.2.2.6). The most dense packing of identical spheres about a central sphere in 2
dimensions is 6. Sphere centers describe a regular lattice. (b) A hexabenzocoronene
molecule (diameter : 1.4nm) imaged by noncontact atomic force microscopy using a
microscope tip terminated with a single carbon monoxide molecule. The carbon-carbon
bonds in the imaged molecule appear with different contrast and apparent lengths. Based on
these disparities, the bond orders and lengths of the individual bonds can be distinguished.
(Image by Leo Gross.)

Seemingly innocuous problems in terms of point position xi∈ Rn like

minimize
{xi}

∑

i , j ∈ I
(‖xi − xj‖ − hij)

2
(1427)

minimize
{xi}

∑

i , j ∈ I
(‖xi − xj‖2 − hij)

2
(1428)

are difficult to solve. So, in Chapter 7 Proximity Problems, we instead explore
methods of their solution by transformation to a few fundamental and prevalent Euclidean
distance matrix proximity problems; the problem of finding that distance matrix closest,
in some sense, to a given matrix H = [hij ] :

minimize
D

‖−V (D − H)V ‖2
F

subject to rankV D V ≤ ρ

D ∈ EDMN

minimize
◦√

D
‖ ◦
√

D − H‖2
F

subject to rankV D V ≤ ρ
◦
√

D ∈
√

EDMN

minimize
D

‖D − H‖2
F

subject to rankV D V ≤ ρ

D ∈ EDMN

minimize
◦√

D
‖−V ( ◦

√
D − H)V ‖2

F

subject to rankV D V ≤ ρ
◦
√

D ∈
√

EDMN

(1429)

We apply a convex iteration method for constraining rank. Known heuristics for rank
minimization are also explained. We offer new geometrical proof, in §7.1.4.0.1, of a
famous discovery by Eckart & Young in 1936 [153]: Euclidean projection on that generally
nonconvex subset of the positive semidefinite cone boundary comprising all semidefinite
matrices having rank not exceeding a prescribed bound ρ . We explain how this problem
is transformed to a convex optimization for any rank ρ .

Chapter 8 Audio Analysis constitutes the latest edition: §8.1) Discernment
of sinusoids at the same frequency, emanating from distinct sources, with application
to harmonic and intermodulation distortion measurement. §8.5) Arbitrary magnitude
analog filter design by quasiconvex optimization with application to parametric equalizer
implementation having zeros of transfer.

https://www.sciencemag.org/content/337/6100/1326.short
https://www.sciencemag.org/content/337/6100/1326.short
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Figure 10: Nanocopter swarm. Robotic vehicles in concert can move larger objects or
localize a plume of gas, liquid, or radio waves. [163]

appendices

We presume a reader already comfortable with elementary vector operations; [15, §3]
formally known as analytic geometry . [456] Toolboxes are provided, in the form of
appendices and code, so as to be more self-contained:

� linear algebra (Appendix A is primarily concerned with proper statements of
semidefiniteness for square matrices)

� simple matrices (dyad, doublet, elementary, Householder, Schoenberg, orthogonal,
etcetera, in Appendix B)

� collection of known analytical solutions to some important optimization problems
(Appendix C)

� matrix calculus remains somewhat unsystematized when compared to ordinary
calculus (Appendix D concerns matrix-valued functions, matrix differentiation and
directional derivatives, Taylor series, and tables of first- and second-order gradients
and matrix derivatives)

� elaborate exposition offering insight into orthogonal and nonorthogonal projection
on convex sets (the connection between projection and positive semidefiniteness, for
example, or between projection and a linear objective function in Appendix E)

� Matlab code on Wıκımization [436] to discriminate EDMs, to determine conic
independence, to reduce or constrain rank of an optimal solution to a semidefinite
program, to compress digital image and audio signals by compressive sampling
(compressed sensing), and to reconstruct a map of the United States by two distinct
methods: one given only distance data, the other given only comparative distance.

https://www.youtube.com/watch?v=YQIMGV5vtd4
https://www.youtube.com/watch?v=YQIMGV5vtd4
https://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry
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Figure 11: Three-dimensional reconstruction of David from distance data.

Figure 12: Digital Michelangelo Project , Stanford University. Measuring distance to David
by laser rangefinder. (Spatial resolution: 0.29mm.) Crystalix commercialized a 3D image
rendering laser by refining a stunning technique for interior engraving of cubic photocrystal .

https://graphics.stanford.edu/projects/mich
http://www.crystalix.com/index.php/en
https://vimeo.com/23623638
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Chapter 2

Convex Geometry

Convexity has an immensely rich structure and numerous applications. On the
other hand, almost every “convex” idea can be explained by a two-dimensional
picture.

−Alexander Barvinok [28, p.vii]

We study convex geometry because it is the easiest of geometries. For that reason, much
of a practitioner’s energy is expended seeking invertible transformation of problematic sets
to convex ones.

As convex geometry and linear algebra are inextricably bonded by linear inequality
(asymmetry), we provide much background material on linear algebra (especially in the
appendices) although a reader is assumed comfortable with [379] [381] [237] or any other
intermediate-level text. The essential references to convex analysis are [234] [354]. The
reader is referred to [377] [28] [447] [46] [68] [351] [410] for a comprehensive treatment of
convexity. There is relatively less published pertaining to convex matrix-valued functions.
[251] [238, §6.6] [340]

2.1 Convex set

A set C is convex iff for all Y , Z∈ C and 0≤µ≤1

µY + (1 − µ)Z ∈ C (1)

Under that defining condition on µ , the linear sum in (1) is called a convex combination
of Y and Z . If Y and Z are points in real finite-dimensional Euclidean vector space [264]
[456] Rn or Rm×n (matrices), then (1) represents the closed line segment joining them.
Line segments are thereby convex sets; C is convex iff the line segment connecting any two
points in C is itself in C . Apparent from this definition: a convex set is a connected set.
[299, §3.4, §3.5] [46, p.2] A convex set can, but does not necessarily, contain the origin 0.

An ellipsoid centered at x = a (Figure 15 p.36), given matrix C∈Rm×n and scalar γ

BE = {x∈Rn | ‖C(x − a)‖2 = (x − a)TCTC(x − a) ≤ γ2} (2)

(an ellipsoidal ball ) is a good icon for a convex set.2.1

2.1Ellipsoid semiaxes are eigenvectors of CTC whose lengths are reciprocal square root eigenvalues. This
particular definition is slablike (Figure 13) in R

n when C has nontrivial nullspace.

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 31

http://ee263.stanford.edu/lectures/ellipsoids.pdf
https://ccrma.stanford.edu/~dattorro
https://www.convexoptimization.com
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2.1.1 subspace

A nonempty subset R of real Euclidean vector space Rn is called a subspace (§2.5) if every
vector2.2 of the form αx + βy , for α , β∈R , is in R whenever vectors x and y are.
[290, §2.3] A subspace is a convex set containing the origin, by definition. [354, p.4] Any
subspace is therefore open in the sense that it contains no boundary, but closed in the
sense [299, §2]

R + R = R (3)

It is not difficult to show

R = −R (4)

as is true for any subspace R , because x∈R ⇔ −x∈R . Given any x∈R

R = x + R (5)

Intersection of an arbitrary collection of subspaces remains a subspace. Any subspace,
not constituting the entire ambient vector space Rn, is a proper subspace; e.g,2.3 any line
(of infinite extent) through the origin in two-dimensional Euclidean space R2. Subspace
{0} , comprising only the origin, is proper though trivial. The vector space Rn is itself a
conventional subspace, inclusively, [264, §2.1] although not proper.

2.1.2 linear independence

Arbitrary given vectors in Euclidean space {Γi∈Rn, i=1 . . . N} are linearly independent
(l.i.) if and only if, for all ζ∈RN (ζi∈R)

Γ1 ζ1 + · · · + ΓN−1 ζN−1 − ΓN ζN = 0 (6)

has only the trivial solution ζ = 0 ; in other words, iff no vector from the given set can be
expressed as a linear combination of those remaining.

Geometrically, two nontrivial vector subspaces are linearly independent iff they
intersect only at the origin.

2.1.2.1 preservation of linear independence

(confer §2.4.2.4, §2.10.1) Linear transformation preserves linear dependence. [264, p.86]
Conversely, linear independence can be preserved under linear transformation. Given
Y = [ y1 y2 · · · yN ]∈RN×N , consider the mapping

T (Γ) : Rn×N → Rn×N , ΓY (7)

whose domain is the set of all matrices Γ∈Rn×N holding a linearly independent set
columnar. Linear independence of {Γyi∈Rn, i=1 . . . N} demands, by definition, there
exist no nontrivial solution ζ∈RN to

Γy1 ζi + · · · + ΓyN−1 ζN−1 − ΓyN ζN = 0 (8)

By factoring out Γ , we see that triviality is ensured by linear independence of {yi∈RN}.

2.2A vector is assumed, throughout, to be a column vector.
2.3We substitute abbreviation e.g in place of the Latin exempli gratia; meaning, for sake of example.
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{y∈R2 | c ≤ aTy ≤ b} (2167)

Figure 13: A slab is a convex Euclidean body infinite in extent but not affine. Illustrated
in R2, it may be constructed by intersecting two opposing halfspaces whose bounding
hyperplanes are parallel but not coincident. Because number of halfspaces used in
its construction is finite, slab is a polyhedron (§2.12). (Cartesian axes + and vector
inward-normal, to each halfspace-boundary, are drawn for reference.)

2.1.3 Orthant:

name given to a closed convex set that is the higher-dimensional generalization of quadrant
from the classical Cartesian partition of R2 ; a Cartesian cone. The most common is the
nonnegative orthant Rn

+ or Rn×n
+ (analogue to quadrant I) to which membership denotes

nonnegative vector- or matrix-entries respectively; e.g,

Rn
+ , {x∈Rn | xi≥ 0 ∀ i} (9)

The nonpositive orthant Rn
− or Rn×n

− (analogue to quadrant III) denotes negative and 0
entries. Orthant convexity2.4 is easily verified by definition (1).

2.1.4 affine set

A nonempty affine set (from the word affinity) is any subset of Rn that is a translation
of some subspace. Any affine set is convex, and open in the sense that it contains no
boundary: e.g, empty set ∅ , point, line, plane, hyperplane (§2.4.2), subspace, etcetera.
The intersection of an arbitrary collection of affine sets remains affine.

2.1.4.0.1 Definition. Affine subset.
We analogize affine subset to subspace,2.5 defining it to be any nonempty affine set of
vectors; an affine subset of Rn. △

For some parallel 2.6 subspace R and any point x∈A

A is affine ⇔ A = x + R
= {y | y − x∈R}

(10)

Affine hull of a set C⊆Rn (§2.3.1) is the smallest affine set containing it.

2.1.5 dimension

Dimension of an arbitrary set Z is Euclidean dimension of its affine hull; [447, p.14]

dimZ , dim aff Z = dim aff(Z − s) , s∈Z (11)

2.4All orthants are selfdual simplicial cones. (§2.13.6.1, §2.12.3.1.1)
2.5The popular term affine subspace is an oxymoron.
2.6Two affine sets are parallel when one is a translation of the other. [354, p.4]
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the same as dimension of the subspace parallel to that affine set aff Z when nonempty.
Hence dimension (of a set) is synonymous with affine dimension. [234, A.2.1]

2.1.6 empty set versus empty interior

Emptiness ∅ of a set is handled differently than interior in the classical literature. It is
common for a nonempty convex set to have empty interior; e.g, paper in the real world:

� An ordinary flat sheet of paper is a nonempty convex set having empty interior in
R3 but nonempty interior relative to its affine hull.

2.1.6.1 relative interior

Although it is always possible to pass to a smaller ambient Euclidean space where a
nonempty set acquires an interior [28, §II.2.3], we prefer the qualifier relative which is the
conventional fix to this ambiguous terminology.2.7 So we distinguish interior from relative
interior throughout: [377] [447] [410]

� Classical interior intr C is defined as a union of points: x is an interior point of
C⊆Rn if there exists an open Euclidean ball

B , {y∈Rn | ‖y − x‖ < γ} (12)

of dimension n and nonzero radius γ centered at x that is contained in C .

� Relative interior rel intr C of a convex set C⊆ Rn is interior relative to its affine
hull.2.8

Thus defined, it is common (though confusing) for intr C the interior of C to be empty
while its relative interior is not: this happens whenever dimension of its affine hull is less
than dimension of the ambient space (dim aff C< n ; e.g, were C paper) or in the exception
when C is a single point; [299, §2.2.1]

rel intr{x} , aff{x} = {x} , intr{x} = ∅ , x∈Rn (13)

In any case, closure of the relative interior of a convex set C always yields closure of
the set itself;

rel intr C = C (14)

Closure is invariant to translation. If C is convex then rel intr C and C are convex.
[234, p.24] If C has nonempty interior, then

rel intr C= intr C (15)

Given the intersection of convex set C with affine set A

rel intr(C ∩ A) = rel intr(C) ∩ A ⇐ rel intr(C) ∩ A 6= ∅ (16)

Because an affine set A is open

rel intrA = A (17)

2.7Superfluous mingling of terms as in relatively nonempty set would be an unfortunate consequence.
From the opposite perspective, some authors use the term full or full-dimensional to describe a set having
nonempty interior.
2.8Likewise for relative boundary (§2.1.7.2), although relative closure is superfluous. [234, §A.2.1]
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(a)

(b)

(c)

R2

Figure 14: (a) Closed convex set. (b) Neither open, closed, or convex. Yet PSD cone
can remain convex in absence of certain boundary components (§2.9.2.9.3). Nonnegative
orthant with origin excluded (§2.6) and positive orthant with origin adjoined [354, p.49]
are convex. (c) Open convex set.

2.1.7 classical boundary

(confer §2.1.7.2) Boundary of a set C is the closure of C less its interior;

∂ C = C \ intr C (18)

[61, §1.1] which follows from the fact

intr C = C ⇔ ∂ intr C = ∂ C (19)

and presumption of nonempty interior.2.9 Implications are:

� intr C = C \∂ C

� a bounded open set has boundary defined but not contained in the set

� interior of an open set is equivalent to the set itself;

from which an open set is defined: [299, p.109]

C is open ⇔ intr C = C (20)

C is closed ⇔ intr C = C (21)

The set illustrated in Figure 14b is not open because it is not equivalent to its interior,
for example, it is not closed because it does not contain its boundary, and it is not convex
because it does not contain all convex combinations of its boundary points.

2.9Otherwise, for x∈R
n as in (13), [299, §2.1-§2.3]

intr{x} = ∅ = ∅
the empty set is both open and closed.
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(a)

(b)

(c)

R

R2

R3

Figure 15: (a) Ellipsoid in R is a line segment whose boundary comprises two points.
Intersection of line with ellipsoid in R , (b) in R2, (c) in R3. Each ellipsoid illustrated
has entire boundary constituted by zero-dimensional faces; in fact, by vertices (§2.6.1.0.1).
Intersection of line with boundary is a point at entry to interior. These same facts hold
in higher dimension.

2.1.7.1 Line intersection with boundary

A line can intersect the boundary of a convex set in any dimension at a point demarcating
the line’s entry to the set interior. On one side of that entry-point along the line is the
exterior of the set, on the other side is the set interior. In other words,

� starting from any point of a convex set, a move toward the interior is an immediate
entry into the interior. [28, §II.2]

When a line intersects the interior of a convex body in any dimension, the boundary
appears to the line to be as thin as a point. This is intuitively plausible because, for
example, a line intersects the boundary of the ellipsoids in Figure 15 at a point in R ,
R2, and R3. Such thinness is a remarkable fact when pondering visualization of convex
polyhedra (§2.12, §5.14.3) in four Euclidean dimensions, for example, having boundaries
constructed from other three-dimensional convex polyhedra called faces.

We formally define face in (§2.6). For now, we observe the boundary of a convex body to
be entirely constituted by all its faces of dimension lower than the body itself. Any face of a
convex set is convex. For example: The ellipsoids in Figure 15 have boundaries composed
only of zero-dimensional faces. The two-dimensional slab in Figure 13 is an unbounded
polyhedron having one-dimensional faces making its boundary. The three-dimensional
bounded polyhedron in Figure 22 has zero-, one-, and two-dimensional polygonal faces
constituting its boundary.

2.1.7.1.1 Example. Intersection of line with boundary in R6.
The convex cone of positive semidefinite matrices S3

+ (§2.9), in the ambient subspace of

symmetric matrices S3 (§2.2.2.0.1), is a six-dimensional Euclidean body in isometrically
isomorphic R6 (§2.2.1). Boundary of the positive semidefinite cone, in this dimension,
comprises faces having only the dimensions 0 , 1 , and 3 ; id est, {ρ(ρ+1)/2 , ρ=0, 1, 2}.
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Unique minimum-distance projection PX (§E.9) of any point X∈ S3 on that cone
S3

+ is known in closed form (§7.1.2). Given, for example, λ∈ intr R3

+ and diagonalization
(§A.5.1) of exterior point

X = QΛQT∈ S3, Λ ,





λ1 0
λ2

0 −λ3



 (22)

where Q∈R3×3 is an orthogonal matrix, then the projection on S3

+ in R6 is

PX = Q





λ1 0
λ2

0 0



QT∈ S3

+ (23)

This positive semidefinite matrix PX nearest X thus has rank 2 , found by discarding all
negative eigenvalues in Λ . The line connecting these two points is {X + (PX−X)t | t∈R}
where t=0 ⇔ X and t=1 ⇔ PX . Because this line intersects the boundary of the
positive semidefinite cone S3

+ at point PX and passes through its interior (by assumption),
then the matrix corresponding to an infinitesimally positive perturbation of t there should
reside interior to the cone (rank 3). Indeed, for ε an arbitrarily small positive constant,

X + (PX−X)t|t=1+ε = Q(Λ+(PΛ−Λ)(1+ε))QT = Q





λ1 0
λ2

0 ελ3



QT∈ intr S3

+ (24)

2

2.1.7.1.2 Example. Tangential line intersection with boundary.
A higher-dimensional boundary ∂C of a convex Euclidean body C is simply a
dimensionally larger set through which a line can pass when it does not intersect the body’s
interior. Still, for example, a line existing in five or more dimensions may pass tangentially
(intersecting no point interior to C [398, §15.3]) through a single point relatively interior
to a three-dimensional face on ∂C . Let’s understand why by inductive reasoning.

Figure 16a shows a vertical line-segment whose boundary comprises its two endpoints.
For a line to pass through the boundary tangentially (intersecting no point relatively
interior to the line-segment), it must exist in an ambient space of at least two dimensions.
Otherwise, the line is confined to the same one-dimensional space as the line-segment and
must pass along the segment to reach the end points.

Figure 16b illustrates a two-dimensional ellipsoid whose boundary is constituted
entirely by zero-dimensional faces. Again, a line must exist in at least two dimensions
to tangentially pass through any single arbitrarily chosen point on the boundary (without
intersecting the ellipsoid interior).

Now let’s move to an ambient space of three dimensions. Figure 16c shows a polygon
rotated into three dimensions. For a line to pass through its zero-dimensional boundary
(one of its vertices) tangentially, it must exist in at least the two dimensions of the polygon.
But for a line to pass tangentially through a single arbitrarily chosen point in the relative
interior of a one-dimensional face on the boundary as illustrated, it must exist in at least
three dimensions.

Figure 16d illustrates a solid circular cone (drawn truncated) whose one-dimensional
faces are halflines emanating from its pointed end (vertex ). This cone’s boundary is
constituted solely by those one-dimensional halflines. A line may pass through the
boundary tangentially, striking only one arbitrarily chosen point relatively interior to a
one-dimensional face, if it exists in at least the three-dimensional ambient space of the
cone.

From these few examples, we may deduce a general rule (without proof):
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R2

(a) (b)

(c) (d)

R3

Figure 16: Line tangential: (a) (b) to relative interior of a zero-dimensional face in R2,
(c) (d) to relative interior of a one-dimensional face in R3.
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� A line may pass tangentially through a single arbitrarily chosen point relatively
interior to a k-dimensional face on the boundary of a convex Euclidean body if the
line exists in dimension at least equal to k+2.

Now the interesting part, with regard to Figure 22 showing a bounded polyhedron in R3 ;
call it P : A line existing in at least four dimensions is required in order to pass tangentially
(without hitting intrP ) through a single arbitrary point in the relative interior of any
two-dimensional polygonal face on the boundary of polyhedron P . Now imagine that
polyhedron P is itself a three-dimensional face of some other polyhedron in R4. To pass
a line tangentially through polyhedron P itself, striking only one point from its relative
interior rel intrP as claimed, requires a line existing in at least five dimensions.2.10

It is not too difficult to deduce:

� A line may pass through a single arbitrarily chosen point interior to a k-dimensional
convex Euclidean body (hitting no other interior point) if that line exists in dimension
at least equal to k+1.

In layman’s terms, this means: a being capable of navigating four spatial dimensions
(one Euclidean dimension beyond our physical reality) could see inside three-dimensional
objects. 2

2.1.7.2 Relative boundary

The classical definition of boundary of a set C presumes nonempty interior:

∂ C = C \ intr C (18)

More suitable to study of convex sets is the relative boundary ; defined [234, §A.2.1.2]

rel ∂ C , C \ rel intr C (25)

boundary relative to affine hull of C .
In the exception when C is a single point {x} , (13)

rel ∂{x} = {x}\{x} = ∅ , x∈Rn (26)

A bounded convex polyhedron (§2.3.2, §2.12.0.0.1) in subspace R , for example, has
boundary constructed from two points, in R2 from at least three line segments, in R3

from convex polygons, while a convex polychoron (a bounded polyhedron in R4 [449]) has
boundary constructed from three-dimensional convex polyhedra. A halfspace is partially
bounded by a hyperplane; its interior therefore excludes that hyperplane. An affine set
has no relative boundary. Ellipsoid (2) has relative boundary

∂BE = {x∈Rn | ‖C(x − a)‖2 = (x − a)TCTC(x − a) = γ2} (27)

Relative boundary of a convex set consisting of more than a single point is nonconvex.

2.1.8 intersection, sum, difference, product

2.1.8.0.1 Theorem. Intersection. [354, §2, thm.6.5]
Intersection of an arbitrary collection of convex sets {Ci} is convex. For a
finite collection of N sets, a necessarily nonempty intersection of relative interior
⋂N

i=1rel intr Ci = rel intr
⋂N

i=1Ci equals relative interior of intersection. And for a possibly

infinite collection,
⋂ Ci =

⋂ Ci . ⋄
2.10This rule can help determine whether there exists unique solution to a convex optimization problem
whose feasible set is an intersecting line; e.g, the trilateration problem (§5.4.2.2.8).
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In converse this theorem is implicitly false insofar as a convex set can be formed by the
intersection of sets that are not. Unions of convex sets are generally not convex. [234, p.22]

Vector sum of two convex sets C1 and C2 is convex [234, p.24] (a.k.a Minkowski sum)

C1+ C2 = {x + y | x ∈ C1 , y ∈ C2} (28)

but not necessarily closed unless at least one set is closed and bounded.
By additive inverse, we can similarly define vector difference of two convex sets

C1− C2 = {x − y | x ∈ C1 , y ∈ C2} (29)

which is convex. Applying this definition to nonempty convex set C1 , its selfdifference
C1− C1 is generally nonempty, nontrivial, and convex; e.g, for any convex cone K , (§2.7.2)
the set K − K constitutes its affine hull. [354, p.15]

Cartesian product of convex sets

C1× C2 =

{[

x
y

]

| x ∈ C1 , y ∈ C2

}

=

[

C1

C2

]

(30)

remains convex. The converse also holds; id est, a Cartesian product is convex iff each set
is. [234, p.23]

Convex results are also obtained for scaling κ C of a convex set C , rotation/reflection
Q C , or translation C+ α ; each similarly defined.

Given any operator T and convex set C , we are prone to write T (C) meaning

T (C) , {T (x) | x∈ C} (31)

Given linear operator T , it therefore follows from (28),

T (C1 + C2) = {T (x + y) | x∈ C1 , y∈ C2}
= {T (x) + T (y) | x∈ C1 , y∈ C2}
= T (C1) + T (C2)

(32)

2.1.9 inverse image

While epigraph (§3.5) of a convex function must be convex, it generally holds that inverse
image (Figure 17) of a convex function is not. The most prominent examples to the
contrary are affine functions (§3.4):

2.1.9.0.1 Theorem. Inverse image. [354, §3]
Let f be a mapping from Rp×k to Rm×n.

� The image of a convex set C under any affine function

f(C) = {f(X) | X∈ C} ⊆ Rm×n (33)

is convex.

� Inverse image of a convex set F ,

f−1(F ) = {X | f(X)∈F} ⊆ Rp×k (34)

a single- or many-valued mapping, under any affine function f is convex. ⋄



2.1. CONVEX SET 41

f

f

f−1(F ) F

C

f(C)

(b)

(a)

Figure 17: (a) Image of convex set in domain of any convex function f is convex, but
there is no converse. (b) Inverse image under convex function f .

xp

Rn

Axp = b

Ax = b

R(AT) R(A)

N (A) N (AT)

Aη = 0
η

x=xp+ η

b

Rm

{b}

xp =A†b

00
{x}

Figure 18: (confer Figure 192) Action of linear map represented by A∈Rm×n : [379, p.140]
Component of vector x in nullspace N (A) maps to origin while component in rowspace
R(AT) maps to range R(A). For any A∈Rm×n, A†Ax = xp and AA†Ax = b (§E) and
inverse image of b∈R(A) is a nonempty affine set: xp+ N (A).
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In particular, any affine transformation of an affine set remains affine. [354, p.8] Inverse
of any affine transformation, whose image is nonempty and affine, is affine. [354, p.7]
Ellipsoids are invariant to any [sic ] affine transformation.

Although not precluded, this inverse image theorem does not require a uniquely
invertible mapping f . Figure 18, for example, mechanizes inverse image under a general
linear map. Example 2.9.1.0.2 and §3.5.1 offer further applications.

Each converse of this two-part theorem is generally false; id est, given f affine, a
convex image f(C) does not imply that set C is convex, and neither does a convex inverse
image f−1(F ) imply set F is convex. A counterexample, invalidating a converse, is easy
to visualize when the affine function is an orthogonal projector [379] [290]:

2.1.9.0.2 Corollary. Projection on subspace.2.11 (2151) [354, §3]
Orthogonal projection of a convex set on a subspace or nonempty affine set is another
convex set. ⋄

Again, the converse is false. Shadows, for example, are umbral projections that can be
convex when a body providing the shade is not.

2.2 Vectorized-matrix inner product

Euclidean space Rn comes equipped with a vector inner-product (1034)

〈y , z〉 , yTz = ‖y‖‖z‖ cos ψ (35)

where ψ represents angle (in radians) between vectors y and z . We prefer those angle
brackets to connote a geometric rather than algebraic perspective; e.g, vector y might
represent a hyperplane normal (§2.4.2). Two vectors are orthogonal (perpendicular) to
one another if and only if their inner product vanishes (iff ψ is an odd multiple of π

2 );

y ⊥ z ⇔ 〈y , z〉 = 0 (36)

When orthogonal vectors each have unit norm, then they are orthonormal. A vector
inner-product defines Euclidean norm (vector 2-norm, §A.7.1)

‖y‖2 = ‖y‖ ,
√

yTy , ‖y‖ = 0 ⇔ y = 0 (37)

For linear operator A , its adjoint AT is a linear operator defined by [264, §3.10]

〈y ,ATz〉 , 〈Ay , z〉 (38)

For linear operation on a vector, represented by real matrix A , the adjoint operator AT

is its transposition. This operator is selfadjoint when A=AT.
Vector inner-product for matrices is calculated just as it is for vectors; by first

transforming a matrix in Rp×k to a vector in Rpk by concatenating its columns in the
natural order. For lack of a better term, we shall call that linear bijective (one-to-one
and onto [264, App.A1.2]) transformation vectorization. For example, the vectorization of

Y = [ y1 y2 · · · yk ]∈Rp×k [198] [374] is

vec Y ,











y1

y2
...

yk











∈ Rpk (39)

2.11For hyperplane representations see §2.4.2. For projection of convex sets on hyperplanes see [447, §6.6].
A nonempty affine set is called an affine subset (§2.1.4.0.1). Orthogonal projection of points on affine
subsets is reviewed in §E.4.
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Then the vectorized-matrix inner-product is trace of matrix inner-product; for Z∈Rp×k,
[68, §2.6.1] [234, §0.3.1] [458, §8] [417, §2.2]

〈Y , Z〉 , tr(Y TZ) = vec(Y )Tvec Z (40)

where (§A.1.1)

tr(Y TZ) = tr(Z Y T) = tr(YZT) = tr(ZTY ) = 1T(Y ◦ Z)1 (41)

and where ◦ denotes the Hadamard product 2.12 of matrices [189, §1.1.4]. The adjoint AT

operation on a matrix can therefore be defined in like manner:

〈Y , ATZ〉 , 〈AY , Z 〉 (42)

Take any element C1 from a matrix-valued set C in Rp×k, for example, and consider any
particular dimensionally compatible real vectors v and w . Then vector inner-product of
C1 with vwT is

〈vwT, C1〉 = 〈v , C1w〉 = 〈wT, vTC1〉 = vTC1w = wTCT
1v = tr(wvTC1) = 1T

(

(vwT)◦ C1

)

1 (43)

Further, linear bijective vectorization is distributive with respect to Hadamard product;
id est,

vec(Y ◦ Z) = vec(Y ) ◦ vec(Z ) (44)

2.2.0.0.1 Example. Application of inverse image theorem.
Suppose set C ⊆ Rp×k were convex. Then for any particular vectors v∈Rp and w∈Rk,
the set of vector inner-products

Y , vTCw = 〈vwT, C〉 ⊆ R (45)

is convex. It is easy to show directly that convex combination of elements from Y remains
an element of Y .2.13 Instead given convex set Y , C must be convex consequent to inverse
image theorem 2.1.9.0.1.

More generally, vwT in (45) may be replaced with any particular matrix Z∈Rp×k while
convexity of set 〈Z , C〉⊆R persists. Further, by replacing v and w with any particular
respective matrices U and W of dimension compatible with all elements of convex set C ,
then set UTCW is convex by the inverse image theorem because it is a linear mapping
of C . 2

2.2.1 Frobenius’

2.2.1.0.1 Definition. Isomorphic.
An isomorphism of a vector space is a transformation equivalent to a linear bijective
mapping. Image and inverse image under the transformation operator are then called
isomorphic vector spaces. △
2.12Hadamard product is a simple entrywise product of corresponding entries from two matrices of like
size; id est, not necessarily square. A commutative operation, the Hadamard product can be extracted
from within a Kronecker product. [237, p.475]
2.13To verify that, take any two elements C1 and C2 from the convex matrix-valued set C , and then form
the vector inner-products (45) that are two elements of Y by definition. Now make a convex combination
of those inner products; videlicet, for 0≤µ≤1

µ 〈vwT, C1〉 + (1 − µ) 〈vwT, C2〉 = 〈vwT, µ C1 + (1 − µ)C2〉
The two sides are equivalent by linearity of inner product. The right side remains a vector inner-product
of vwT with an element µ C1 + (1 − µ)C2 from the convex set C ; hence, it belongs to Y . Since that
holds true for any two elements from Y , then it must be a convex set. ¨
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(a) (b)

R2 R3

Figure 19: (a) Cube in R3 projected on paper-plane R2. Subspace projection operator is
not an isomorphism because new adjacencies are introduced. (b) Tesseract is a projection
of hypercube in R4 on R3.

Isomorphic vector spaces are characterized by preservation of adjacency ; id est, if v
and w are points connected by a line segment in one vector space, then their images
will be connected by a line segment in the other. Two Euclidean bodies may be
considered isomorphic if there exists an isomorphism, of their vector spaces, under which
the bodies correspond. [419, §I.1] Projection (§E) is not an isomorphism, Figure 19 for
example; hence, perfect reconstruction (inverse projection) is generally impossible without
additional information.

When Z =Y ∈ Rp×k in (40), Frobenius’ norm is resultant from vector inner-product;
(confer (1881))

‖Y ‖2
F = ‖vec Y ‖2

2 = 〈Y , Y 〉 = tr(Y TY )

=
∑

i, j

Y 2
ij =

∑

i

λ(Y TY )i =
∑

i

σ(Y )2i
(46)

where λ(Y TY )i is the ith eigenvalue of Y TY , and σ(Y )i the ith singular value of Y .
Were Y a normal matrix (§A.5.1.0.1), then σ(Y )= |λ(Y )| [469, §8.1] thus

‖Y ‖2
F =

∑

i

λ(Y )2i = ‖λ(Y )‖2
2 = 〈λ(Y ) , λ(Y )〉 = 〈Y , Y 〉 (47)

The converse also holds: [237, §2.5.4]

(47) ⇒ normal matrix Y (48)

Frobenius’ norm is the Euclidean norm of vectorized matrices. Because the metrics are
equivalent, for X∈ Rp×k

‖vec X−vec Y ‖2 = ‖X−Y ‖F (49)

and because vectorization (39) is a linear bijective map, then vector space Rp×k is
isometrically isomorphic with vector space Rpk in the Euclidean sense and vec is an
isometric isomorphism of Rp×k. Because of this Euclidean structure, all known results
from convex analysis in Euclidean space Rn carry over directly to the space of real matrices
Rp×k ; e.g, norm function convexity (§3.2).

2.2.1.1 Injective linear operators

Injective mapping (transformation) means one-to-one mapping; synonymous with uniquely
invertible linear mapping on Euclidean space.

� Linear injective mappings are fully characterized by lack of nontrivial nullspace.
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R2

R3

T

dim domT = dimR(T )

Figure 20: Linear injective mapping Tx=Ax : R2→R3 of Euclidean body remains
two-dimensional under mapping represented by thin full-rank matrix A∈R3×2 ; two
bodies are isomorphic by Definition 2.2.1.0.1.

2.2.1.1.1 Definition. Isometric isomorphism.
An isometric isomorphism of a vector space, having a metric defined on it, is a linear
bijective mapping T that preserves distance; id est, for all x, y∈dom T

‖Tx − Ty‖ = ‖x − y‖ (50)

Then isometric isomorphism T is called a bijective isometry. △

Unitary linear operator Q : Rk → Rk, represented by orthogonal matrix Q∈Rk×k

(§B.5.2), is an isometric isomorphism; e.g, discrete Fourier transform via (887). Suppose
T (X)= UXQ is a bijective isometry where U is a dimensionally compatible orthonormal
matrix.2.14 Then we also say Frobenius’ norm is orthogonally invariant ; meaning, for
X,Y ∈ Rp×k

‖U(X−Y )Q‖F = ‖X−Y ‖F (51)

Yet isometric operator T : R2→ R3, represented by A =





1 0
0 1
0 0



on R2, is injective

but not a surjective map to R3. [264, §1.6, §2.6] This operator T can therefore be a bijective
isometry only with respect to its range.

Any linear injective transformation on Euclidean space is uniquely invertible on its
range. In fact, any linear injective transformation has a range whose dimension equals
that of its domain. In other words, for any invertible linear transformation T [ibidem]

dim dom(T ) = dimR(T ) (52)

e.g, T represented by thin-or-square full-rank matrices. (Figure 20) An important
consequence of this fact is:

� Affine dimension, of any n-dimensional Euclidean body in domain of operator T , is
invariant to linear injective transformation.

2.14 any matrix U whose columns are orthonormal with respect to each other (UTU = I ); these include
the orthogonal matrices. (§B.5)
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R3R3

PT

B

PT (B)

x PTx

Figure 21: Linear noninjective mapping PTx=A†Ax : R3→R3 of three-dimensional
Euclidean body B has affine dimension 2 under projection on rowspace of wide full-rank
matrix A∈R2×3. Set of coefficients of orthogonal projection TB= {Ax |x∈B} is
isomorphic with projection P (TB) [sic ].

2.2.1.1.2 Example. Noninjective linear operators.
Mappings in Euclidean space created by noninjective linear operators can be characterized
in terms of an orthogonal projector (§E). Consider noninjective linear operator
Tx =Ax : Rn→Rm represented by wide matrix A∈Rm×n (m< n). What can be said
about the nature of this m-dimensional mapping?

Concurrently, consider injective linear operator Py=A†y : Rm→Rn where
R(A†)=R(AT). P (Ax)= PTx achieves projection of vector x on rowspace R(AT).
(§E.3.1) This means vector Ax can be succinctly interpreted as coefficients of orthogonal
projection.

Pseudoinverse matrix A† is thin and full-rank, so operator Py is a linear bijection
with respect to its range R(A†). By Definition 2.2.1.0.1, image P (TB) of projection
PT (B) on R(AT) in Rn must therefore be isomorphic with the set of projection coefficients
TB= {Ax |x∈B} in Rm and have the same affine dimension by (52). To illustrate, we
present a three-dimensional Euclidean body B in Figure 21 where any point x in the
nullspace N (A) maps to the origin. 2

2.2.2 Symmetric matrices

2.2.2.0.1 Definition. Symmetric matrix subspace.
Define a subspace of RM×M : the convex set of all symmetric M×M matrices;

SM ,
{

A∈RM×M | A=AT
}

⊆ RM×M (53)

This subspace comprising symmetric matrices SM is isomorphic with the vector space
RM(M+1)/2 whose dimension is the number of free variables in a symmetric M×M matrix.
The orthogonal complement [379] [290] of SM is

SM⊥ ,
{

A∈RM×M | A=−AT
}

⊂ RM×M (54)
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the subspace of antisymmetric matrices in RM×M ; id est,

SM⊕ SM⊥ = RM×M (55)

where unique vector sum ⊕ is defined on page 635. △

All antisymmetric matrices have 0 main diagonal by definition. Any square matrix
A∈RM×M can be written as a sum of its symmetric and antisymmetric parts: respectively,

A =
1

2
(A +AT) +

1

2
(A −AT) (56)

The symmetric part is orthogonal in RM2

to the antisymmetric part; videlicet,

tr
(

(A +AT)(A −AT)
)

= 0 (57)

In the ambient space of real matrices, the antisymmetric matrix subspace can be described

SM⊥ =

{

1

2
(A −AT) | A∈RM×M

}

⊂ RM×M (58)

because any matrix in SM is orthogonal to any matrix in SM⊥. Further confined to the
ambient subspace of symmetric matrices, SM⊥ would become trivial ({0}).

2.2.2.1 Isomorphism of symmetric matrix subspace

When a matrix is symmetric in SM , we may still employ the vectorization transformation

(39) to RM2

; vec , an isometric isomorphism. We might instead choose to realize in the

lower-dimensional subspace RM(M+1)/2 by ignoring redundant entries (below the main
diagonal) during transformation. Such a realization would remain isomorphic but not
isometric. Lack of isometry is a spatial distortion due now to disparity in metric between

RM 2

and RM(M+1)/2. To realize isometrically in RM(M+1)/2, we must make a correction:
For Y = [Yij ]∈ SM we take symmetric vectorization [251, §2.2.1]

svec Y ,

























Y11√
2Y12

Y22√
2Y13√
2Y23

Y33...
YMM

























∈ RM(M+1)/2 (59)

where all entries off the main diagonal have been scaled. Now for Z∈ SM

〈Y , Z〉 , tr(Y TZ) = vec(Y )Tvec Z = 1T(Y ◦ Z)1 = svec(Y )Tsvec Z (60)

Then because the metrics become equivalent, for X∈ SM

‖svec X − svec Y ‖2 = ‖X − Y ‖F (61)

and because symmetric vectorization (59) is a linear bijective mapping, then svec is
an isometric isomorphism of the symmetric matrix subspace. In other words, SM is
isometrically isomorphic with RM(M+1)/2 in the Euclidean sense under transformation
svec .
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The set of all symmetric matrices SM forms a proper subspace in RM×M , so for it
there exists a standard orthonormal basis in isometrically isomorphic RM(M+1)/2

{Eij ∈ SM} =







eie
T
i , i = j = 1 . . . M

1√
2

(

eie
T
j + ej e

T
i

)

, 1 ≤ i < j ≤ M







(62)

where M(M + 1)/2 standard basis matrices Eij are formed from the standard basis
vectors

ei =

[{

1 , i = j
0 , i 6= j

, j = 1 . . . M

]

∈ RM (63)

Thus we have a basic orthogonal expansion for Y ∈ SM

Y =

M
∑

j=1

j
∑

i=1

〈Eij , Y 〉Eij (64)

whose unique coefficients

〈Eij , Y 〉 =

{

Yii , i = 1 . . . M

Yij

√
2 , 1 ≤ i < j ≤ M

(65)

correspond to entries of the symmetric vectorization (59).

2.2.3 Symmetric hollow subspace

2.2.3.0.1 Definition. Hollow subspaces. [404]
Define the real hollow subspace of RM×M to be the convex set of all symmetric M×M
matrices having 0 main diagonal;

RM×M
h ,

{

A∈RM×M | A=AT, δ(A) = 0
}

⊂ RM×M (66)

where the main diagonal of A∈RM×M is denoted (§A.1)

δ(A) ∈ RM (1592)

Operating on a vector, linear operator δ naturally returns a diagonal matrix; δ(δ(A)) is

a diagonal matrix. Operating recursively on a vector Λ∈RN or diagonal matrix Λ∈ SN ,
operator δ(δ(Λ)) returns Λ itself;

δ2(Λ) ≡ δ(δ(Λ)) = Λ (1594)

The subspace RM×M
h (66) comprising (real) symmetric hollow matrices is isomorphic with

subspace RM(M−1)/2 ; its orthogonal complement is

RM×M⊥
h ,

{

A∈RM×M | A=−AT+ 2δ2(A)
}

⊆ RM×M (67)

the subspace of antisymmetric antihollow matrices in RM×M ; id est,

RM×M
h ⊕ RM×M⊥

h = RM×M (68)

Yet defined instead as a proper subspace of ambient SM

SM
h ,

{

A∈ SM | δ(A) = 0
}

⊂ SM

≡ RM×M
h

(69)
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the orthogonal complement SM⊥
h of symmetric hollow subspace SM

h (confer (67))

SM⊥
h ,

{

A∈ SM | A=δ2(A)
}

⊆ SM (70)

(called symmetric antihollow subspace) is simply the subspace of diagonal matrices; id est,

SM
h ⊕ SM⊥

h = SM (71)

having dim SM
h = M(M−1)/2 and dim SM⊥

h = M in isomorphic RM(M+1)/2. △

Any matrix A∈RM×M can be written as a sum of its symmetric hollow and
antisymmetric antihollow parts: respectively,

A =

(

1

2
(A +AT) − δ2(A)

)

+

(

1

2
(A −AT) + δ2(A)

)

(72)

The symmetric hollow part is orthogonal to the antisymmetric antihollow part in RM2

;
videlicet,

tr

((

1

2
(A +AT) − δ2(A)

)(

1

2
(A −AT) + δ2(A)

))

= 0 (73)

because any matrix in subspace RM×M
h is orthogonal to any matrix in the antisymmetric

antihollow subspace

RM×M⊥
h =

{

1

2
(A −AT) + δ2(A) | A∈RM×M

}

⊆ RM×M (74)

of the ambient space of real matrices; which reduces to the diagonal matrices in the ambient
space of symmetric matrices

SM⊥
h =

{

δ2(A) | A∈SM
}

=
{

δ(u) | u∈RM
}

⊆ SM (75)

In anticipation of their utility with Euclidean distance matrices (EDMs) in §5, for
symmetric hollow matrices we introduce the linear bijective vectorization dvec that is the
natural analogue to symmetric matrix vectorization svec (59): for Y = [Yij ]∈ SM

h

dvec Y ,
√

2























Y12

Y13

Y23

Y14

Y24

Y34...
YM−1,M























∈ RM(M−1)/2 (76)

Like svec , dvec is an isometric isomorphism on the symmetric hollow subspace. For
X∈ SM

h

‖dvec X − dvec Y ‖2 = ‖X − Y ‖F (77)

The set of all symmetric hollow matrices SM
h forms a proper subspace in RM×M , so

for it there must be a standard orthonormal basis in isometrically isomorphic RM(M−1)/2

{Eij ∈ SM
h } =

{

1√
2

(

eie
T
j + eje

T
i

)

, 1 ≤ i < j ≤ M

}

(78)

where M(M−1)/2 standard basis matrices Eij are formed from the standard basis vectors

ei∈RM .
The symmetric hollow majorization corollary A.1.2.0.2 characterizes eigenvalues of

symmetric hollow matrices.
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Figure 22: Convex hull of a random list of points in R3. Some points from that
generating list reside interior to this convex polyhedron (§2.12). [449, Convex Polyhedron]
(Avis-Fukuda-Mizukoshi)

2.3 Hulls

We focus on the affine, convex, and conic hulls: convex sets that may be regarded as kinds
of Euclidean container or vessel united with its interior.

2.3.1 Affine hull, affine dimension

Affine dimension of any set in Rn is the dimension of the smallest affine set (empty set,
point, line, plane, hyperplane (§2.4.2), translated subspace, Rn) that contains it. For
nonempty sets, affine dimension is the same as dimension of the subspace parallel to that
affine set. [354, §1] [234, §A.2.1]

Ascribe the points in a list {xℓ ∈ Rn, ℓ=1 . . . N} to the columns of matrix X :

X = [x1 · · · xN ] ∈ Rn×N (79)

In particular, we define affine dimension r of the N -point list X as dimension of the
smallest affine set in Euclidean space Rn that contains X ;

r , dim aff X (80)

Affine dimension r is a lower bound sometimes called embedding dimension. [404] [220]
That affine set A in which those points are embedded is unique and called the affine hull
[377, §2.1];

A , aff {xℓ∈Rn, ℓ=1 . . . N} = aff X
= x1 + R{xℓ − x1 , ℓ=2 . . . N} = {Xa | aT1 = 1} ⊆ Rn (81)

for which we call list X a set of generators. Hull A is parallel to subspace

R{xℓ − x1 , ℓ=2 . . . N} = R(X − x11
T) ⊆ Rn (82)

where
R(A) = {Ax | ∀x} (146)

Given some arbitrary set C and any x∈ C

aff C = x + aff(C − x) (83)

where aff(C−x) is a subspace.

http://mathworld.wolfram.com/ConvexPolyhedron.html
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aff ∅ , ∅ (84)

The affine hull of a point x is that point itself;

aff{x} = {x} (85)

Affine hull of two distinct points is the unique line through them. (Figure 23) The affine
hull of three noncollinear points in any dimension is that unique plane containing the
points, and so on. Affine hull of a convex cone is the same as affine hull of its extreme
directions and the origin. The subspace of symmetric matrices Sm is the affine hull of the
cone of positive semidefinite matrices; (§2.9)

aff Sm
+ = Sm (86)

2.3.1.0.1 Example. Affine hull of rank-1 correlation matrices. (confer §5.9.1.0.1) [254]
The set of all m×m rank-1 correlation matrices is defined by all binary vectors y∈Rm

{yyT∈ Sm
+ | δ(yyT)=1} (87)

Affine hull of the rank-1 correlation matrices is equal to the set of normalized symmetric
matrices; id est,

aff{yyT∈ Sm
+ | δ(yyT)=1} = {A∈ Sm | δ(A)=1} (88)

2

2.3.1.0.2 Exercise. Affine hull of correlation matrices.
Prove (88) via definition of affine hull. Find the convex hull instead. H

2.3.1.1 Partial order induced by RN
+ and SM

+

Notation aº 0 means vector a belongs to nonnegative orthant RN
+ while a≻ 0 means

vector a belongs to the nonnegative orthant’s interior intr RN
+ . aº b denotes comparison

of vector a to vector b on RN with respect to the nonnegative orthant; id est, aº b means
a− b belongs to the nonnegative orthant but neither a or b is necessarily nonnegative.
With particular respect to the nonnegative orthant, aº b ⇔ ai ≥ bi ∀ i (377).

More generally, aºK b denotes comparison with respect to pointed closed convex
cone K , whereas comparison with respect to the cone’s interior is denoted a≻K b .
But equivalence with entrywise comparison does not generally hold, and neither a or
b necessarily belongs to K . (§2.7.2.2)

The symbol ≥ is reserved for scalar comparison on the real line R with respect to
the nonnegative real line R+ as in aTy ≥ b . Comparison of matrices with respect to
the positive semidefinite cone SM

+ , like I ºAº 0 in Example 2.3.2.0.1, is explained in
§2.9.0.1.

2.3.2 Convex hull

The convex hull [234, §A.1.4] [354] of any bounded2.15 list or set of N points X∈ Rn×N

forms a unique bounded convex polyhedron (confer §2.12.0.0.1) whose vertices constitute

2.15An arbitrary set C in R
n is bounded iff it can be contained in a Euclidean ball having finite radius.

[131, §2.2] (confer §5.7.3.0.1) The smallest ball containing C has radius inf
x

sup
y∈C

‖x−y‖ and center x⋆ whose

determination is a convex problem because sup
y∈C

‖x−y‖ is a convex function of x ; but the supremum may

be difficult to ascertain.
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affine hull (drawn truncated)

convex hull

conic hull (truncated)

range or span is a plane (truncated)

A

C

K

R

Figure 23: Given two points in Euclidean vector space of any dimension, their various hulls
are illustrated. Each hull is a subset of range; generally, A , C , K ⊆ R ∋ 0. (Cartesian
axes drawn for reference.)
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some subset of that list;

P , conv{xℓ , ℓ=1 . . . N} = conv X = {Xa | aT1 = 1 , a º 0} ⊆ Rn (89)

Union of relative interior and relative boundary (§2.1.7.2) of the polyhedron comprise
its convex hull P , the smallest closed convex set that contains list X ; e.g, Figure 22.
Given P , generating list {xℓ} is not unique. But because every bounded polyhedron is
the convex hull of its vertices, [377, §2.12.2] the vertices of P comprise a minimal set of
generators.

Given some arbitrary set C⊆Rn, its convex hull conv C is equivalent to the smallest
convex set containing it. (confer §2.4.1.1.1) The convex hull is a subset of the affine hull;

conv C ⊆ aff C = aff C = aff C = aff conv C (90)

Any closed bounded convex set C is equal to the convex hull of its boundary;

C = conv ∂C (91)

conv ∅ , ∅ (92)

2.3.2.0.1 Example. Hull of rank-k projection matrices. [170] [330] [12, §4.1]
[337, §3] [278, §2.4] [279] Convex hull of the set comprising outer product of orthonormal
matrices has equivalent expression: for 1 ≤ k ≤ N (§2.9.0.1)

conv
{

UUT | U ∈ RN×k, UTU = I
}

≡
{

A∈ SN | I º A º 0 , 〈I , A〉= k
}

⊂ SN
+ (93)

This important convex body we call Fantope (after mathematician Ky Fan). In case k = 1 ,
there is slight simplification: ((1806), Example 2.9.2.7.1)

conv
{

UUT | U ∈ RN , UTU = 1
}

=
{

A∈ SN | A º 0 , 〈I , A〉=1
}

(94)

This particular Fantope is called spectahedron. [sic ] [178, §5.1] In case k = N , the Fantope
is Identity matrix I . More generally, the set

{

UUT | U ∈ RN×k, UTU = I
}

(95)

comprises the extreme points (§2.6.0.0.1) of its convex hull. By (1640), each and every
extreme point UUT has only k nonzero eigenvalues λ and they all equal 1 ; id est,
λ(UUT)1:k = λ(UTU) = 1. So Frobenius’ norm of each and every extreme point equals
the same constant

‖UUT‖2
F = ‖U‖2

F = k (96)

Each extreme point simultaneously lies on the boundary of the positive semidefinite cone
(when k < N , §2.9) and on the boundary of a hypersphere of dimension k(N− k

2 + 1
2 ) and

radius
√

k(1− k
N ) centered at k

N I along the ray (base 0) through the Identity matrix I

in isomorphic vector space RN(N+1)/2 (§2.2.2.1).

Figure 24 illustrates extreme points (95) comprising the boundary of a Fantope: the
boundary of a disc corresponding to k = 1 , N = 2 ; but that circumscription does not hold
in higher dimension. (§2.9.2.8) 2

https://books.google.com/books?id=5QeLPOvIpNUC&pg=PA76&lpg=PA76&dq=spectahedron+spectrahedron&source=bl&ots=qnwjNXeWnz
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α
√

2β

γ

I

svec ∂ S2

+

[

α β
β γ

]

Figure 24: Two Fantopes. Circle (radius 1/
√

2), shown here on boundary of positive
semidefinite cone S2

+ in isometrically isomorphic R3 from Figure 46, comprises boundary
of a Fantope (93) in this dimension (k = 1 , N = 2). Lone point illustrated is Identity
matrix I , interior to PSD cone, and is that Fantope corresponding to k = 2 , N = 2.
(View is from inside PSD cone looking toward origin.)



2.3. HULLS 55

α

√
2β

γ

{

svec X | ‖X‖∗2 ≤ 1
}

X =

[

α β
β γ

]

Figure 25: Nuclear norm is a sum of singular values; ‖X‖∗2 ,
∑

i σ(X)i . Nuclear norm
ball, in the subspace of 2×2 symmetric matrices, is a truncated cylinder in isometrically
isomorphic R3.
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xyT
p

−xyT
p

uvT
p

−uvT
p

‖xyT‖=1

‖−xyT‖=1

‖uvT‖=1

‖−uvT‖=1

{X∈ Rm×n | ∑

i

σ(X)i ≤ 1}

‖uvT‖≤1

0

Figure 26: uvT
p is a convex combination of normalized dyads ‖±uvT‖=1 ; similarly for

xyT
p . Any point in line segment joining xyT

p to uvT
p is expressible as a convex combination

of two to four points indicated on boundary.

2.3.2.0.2 Example. Nuclear norm ball : convex hull of rank-1 matrices.
From (94), in Example 2.3.2.0.1, we learn that the convex hull of normalized symmetric
rank-1 matrices is a slice of the positive semidefinite cone. In §2.9.2.7 we find the convex
hull of all symmetric rank-1 matrices to be the entire positive semidefinite cone.

In the present example we abandon symmetry; instead posing, what is the convex hull
of bounded nonsymmetric rank-1 matrices:

conv{uvT | ‖uvT‖ ≤ 1 , u∈Rm, v∈Rn} = {X∈ Rm×n |
∑

i

σ(X)i ≤ 1} (97)

where σ(X) is a vector of singular values. (Since ‖uvT‖= ‖u‖‖v‖ (1796), norm of each
vector constituting a dyad uvT (§B.1) in the hull is effectively bounded above by 1.)

Proof. (⇐) Suppose
∑

σ(X)i ≤ 1. Decompose X = UΣV T by SVD (§A.6)

where U = [u1 . . . umin{m,n}]∈Rm×min{m,n}, V = [v1 . . . vmin{m,n}]∈Rn×min{m,n},
and whose sum of singular values is

∑

σ(X)i = tr Σ = κ≤ 1. Then we may write
X =

∑ σi

κ

√
κui

√
κvT

i which is a convex combination of dyads each of whose norm
does not exceed 1. (Srebro)

(⇒) Now suppose we are given a convex combination of dyads X =
∑

αi uiv
T
i such

that
∑

αi =1 , αi≥ 0 ∀ i , and ‖uiv
T
i ‖≤ 1 ∀ i . Then by triangle inequality for

singular values [238, cor.3.4.3]
∑

σ(X)i ≤
∑

σ(αi uiv
T
i )=

∑

αi‖uiv
T
i ‖≤

∑

αi . ¨

Given any particular dyad uvT
p in the convex hull, because its polar −uvT

p and every
convex combination of the two belong to that hull, then the unique line containing the
two points ±uvT

p (their affine combination (81)) must intersect the hull’s boundary at

the normalized dyads {±uvT | ‖uvT‖=1}. Any point formed by convex combination of
dyads in the hull must therefore be expressible as a convex combination of dyads on the
boundary: Figure 26,

conv{uvT | ‖uvT‖ ≤ 1 , u∈Rm, v∈Rn} ≡ conv{uvT | ‖uvT‖ = 1 , u∈Rm, v∈Rn} (98)
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id est, dyads may be normalized and the hull’s boundary contains them;

∂{X∈ Rm×n | ∑

i

σ(X)i ≤ 1} = {X∈ Rm×n | ∑

i

σ(X)i = 1}
⊇ {uvT | ‖uvT‖ = 1 , u∈Rm, v∈Rn}

(99)

Normalized dyads constitute the set of extreme points (§2.6.0.0.1) of this nuclear norm
ball (confer Figure 25) which is, therefore, their convex hull. 2

2.3.2.0.3 Exercise. Convex hull of outer product.
Describe the interior of a Fantope.
Find the convex hull of nonorthogonal-projection matrices (§E.1.1):

{UV T | U ∈ RN×k, V ∈ RN×k, V TU = I} (100)

Find the convex hull of nonsymmetric matrices bounded under some norm:

{UV T | U ∈ Rm×k, V ∈ Rn×k, ‖UV T‖ ≤ 1} (101)

H

2.3.2.0.4 Example. Permutation polyhedron. [236] [365] [302]
A permutation matrix Ξ is formed by interchanging rows and interchanging columns of
Identity matrix I . Since Ξ is square and ΞTΞ = I , the set of all permutation matrices
Π (of particular dimension) is a proper subset of the nonconvex manifold of orthogonal
matrices Q (§B.5). In fact, the only orthogonal matrices having all nonnegative entries
are permutations of the Identity:

Ξ−1 = ΞT, Ξ ≥ 0 ⇔ Ξ ∈ Π , Q∩ R+ (102)

a.k.a, the binary orthogonal matrices Π=Q∩ B in

Bn×n , {0, 1}n×n (103)

And the only positive semidefinite permutation matrix is the Identity. [381, §6.5 prob.20]
Regarding the permutation matrices as a set of points in Euclidean space equidistant

from the origin, its convex hull is a bounded polyhedron (§2.12) described (Birkhoff, 1946)

SΠ , conv{Π} = conv{Πi(I∈ Sn)∈Rn×n, i=1 . . . n!}
= {X∈ Rn×n | XT1=1 , X1=1 , X≥ 0}
= {X∈ Rn×n | (I ⊗ 1T)vec X = 1 , (1T⊗ I )vec X = 1 , X≥ 0}

(104)

where Πi is a linear operator here representing the ith permutation. This polyhedral hull,
whose n! vertices are the permutation matrices Π , is known as the set of doubly stochastic
matrices or the permutation polyhedron. Permutation matrices are the minimal cardinality
(fewest nonzero entries) doubly stochastic matrices. The only binary matrices belonging to
this polyhedron are the permutation matrices Π= SΠ ∩ B . The only orthogonal matrices
belonging to this polyhedron are permutation matrices Π=Q∩ SΠ .

It is remarkable that n! permutation matrices can be described as the extreme points
(§2.6.0.0.1) of a bounded polyhedron, of affine dimension (n−1)2, that is itself described
by 2n equalities.2.16 By Carathéodory’s theorem, conversely, any doubly stochastic matrix
can be described as a convex combination of at most (n−1)2+1 permutation matrices.
[237, §8.7] [61, thm.1.2.5] This polyhedron, then, can be a device for relaxing an integer,
combinatorial, or Boolean optimization problem.2.17 [74] [326, §3.1] 2

2.16 2n−1 linearly independent equality constraints in n2 nonnegative variables providing n2 facets.
2.17Relaxation replaces an objective function with its convex envelope or expands a feasible set to one
that is convex. Dantzig first showed in 1951 that, by this device, the so-called assignment problem can
be formulated as a linear program. [364] [28, §II.5]
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2.3.2.0.5 Example. Convex hull of orthonormal matrices. [29, §1.2]
Consider rank-k matrices U ∈ Rn×k such that UTU = I . These are the orthonormal
matrices; a closed bounded submanifold, of all orthogonal matrices, having dimension
nk − 1

2k(k + 1) [58]. Their convex hull is expressed, for 1 ≤ k ≤ n

conv{U ∈ Rn×k | UTU = I} = {X∈ Rn×k | ‖X‖2 ≤ 1}
= {X∈ Rn×k | ‖XTa‖ ≤ ‖a‖ ∀ a∈Rn} (105)

By Schur complement (§A.4), the spectral norm ‖X‖2 constraining largest singular
value σ(X)1 can be expressed as a semidefinite constraint

‖X‖2 ≤ 1 ⇔
[

I X
XT I

]

º 0 (106)

because of equivalence XTX¹ I ⇔ σ(X) ¹ 1 with singular values. (1746) (1627) (1628)
When k=n , matrices U are orthogonal and their convex hull is called the spectral

norm ball which is the set of all contractions. [238, p.158] [376, p.313] The orthogonal
matrices then constitute the extreme points (§2.6.0.0.1) of this hull. Hull intersection with
the nonnegative orthant Rn×n

+ contains the permutation polyhedron (104). 2

2.3.3 Conic hull

In terms of a finite-length point list (or set) arranged columnar in X∈ Rn×N (79), its conic
hull is expressed

K , cone {xℓ , ℓ=1 . . . N} = cone X = {Xa | a º 0} ⊆ Rn (107)

id est, every nonnegative combination of points from the list. Conic hull of any finite-length
list forms a polyhedral cone [234, §A.4.3] (§2.12.1.0.1; e.g, Figure 27, Figure 53a); the
smallest closed convex cone (§2.7.2) that contains the list.

By convention, the aberration [377, §2.1]

cone ∅ , {0} (108)

Given some arbitrary set C , it is apparent

conv C ⊆ cone C (109)

2.3.4 Vertex-description

The conditions in (81), (89), and (107) respectively define an affine combination, convex
combination, and conic combination of elements from the set or list. Whenever a Euclidean
body can be described as some hull or span of a set of points, then that representation is
loosely called a vertex-description and those points are called generators.

2.4 Halfspace, Hyperplane

A two-dimensional affine subset is called a plane. An n−1-dimensional affine subset of
Rn is called a hyperplane. [354] [234] Every hyperplane partially bounds a halfspace.2.18

2.18 which is convex, but not affine, and the only nonempty convex set in R
n whose complement is convex

and nonempty.
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Figure 27: A simplicial cone (§2.12.3.1.1) in R3 whose boundary is drawn truncated;
constructed using A∈R3×3 and C = 0 in (293). By the most fundamental definition of
a cone (§2.7.1), entire boundary can be constructed from an aggregate of rays emanating
exclusively from the origin. Each of three extreme directions corresponds to an edge
(§2.6.0.0.3); they are conically, affinely, and linearly independent for this cone. Because
this set is polyhedral, exposed directions are in one-to-one correspondence with extreme
directions; there are only three. Its extreme directions give rise to what is called a
vertex-description of this polyhedral cone; simply, the conic hull of extreme directions.
Obviously this cone can also be constructed by intersection of three halfspaces; hence the
equivalent halfspace-description.
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∆

∂H = {y | aT(y − yp)=0} = N (aT) + yp

N (aT)={y | aTy=0}

c

dy

yp

a H+ = {y | aT(y − yp)≥ 0}

H−= {y | aT(y − yp)≤ 0}

Figure 28: Hyperplane illustrated ∂H is a line partially bounding halfspaces H− and
H+ in R2. Shaded is a rectangular piece of semiinfinite H− with respect to which vector
a is outward-normal to bounding hyperplane; vector a is inward-normal with respect
to H+ . Halfspace H− contains nullspace N (aT) (dashed line through origin) because
aTyp > 0. Hyperplane, halfspace, and nullspace are each drawn truncated. Points c and
d are equidistant from hyperplane, and vector c−d is normal to it. ∆ is distance from
origin to hyperplane.

2.4.1 Halfspaces H+ and H−

Euclidean space Rn is partitioned in two by any hyperplane ∂H ; id est, H− + H+ = Rn.
The resulting (closed convex) halfspaces, both partially bounded by ∂H , may be described

H− = {y | aTy ≤ b} = {y | aT(y − yp) ≤ 0} ⊂ Rn (110)

H+ = {y | aTy ≥ b} = {y | aT(y − yp) ≥ 0} ⊂ Rn (111)

where nonzero vector a∈Rn is an outward-normal to the hyperplane partially bounding
H− while an inward-normal with respect to H+ . For any vector y−yp that makes an
obtuse angle with normal a , vector y will lie in the halfspace H− on one side (shaded
in Figure 28) of the hyperplane while acute angles denote y in H+ on the other side.

An equivalent more intuitive representation of a halfspace comes about when we
consider all the points in Rn closer to point d than to point c or equidistant, in the
Euclidean sense; from Figure 28,

H− = {y | ‖y − d‖ ≤ ‖y − c‖} (112)

This representation, in terms of proximity, is resolved with the more conventional
representation of a halfspace (110) by squaring both sides of the inequality in (112);

H− =

{

y | (c − d)Ty ≤ ‖c‖2 − ‖d‖2

2

}

=

{

y | (c − d)T
(

y − c + d

2

)

≤ 0

}

(113)

2.4.1.1 PRINCIPLE 1: Halfspace-description of convex sets

The most fundamental principle in convex geometry follows from the geometric
Hahn-Banach theorem [290, §5.12] [20, §1] [156, §I.1.2] which guarantees any closed convex
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set to be an intersection of halfspaces.

2.4.1.1.1 Theorem. Halfspaces. [234, §A.4.2b] [46, §2.4]
A closed convex set in Rn is equivalent to intersection of all halfspaces that contain it.

⋄

Intersection of multiple halfspaces in Rn may be represented using a matrix constant A
⋂

i

Hi− = {y | ATy ¹ b} = {y | AT(y − yp) ¹ 0} (114)

⋂

i

Hi+ = {y | ATy º b} = {y | AT(y − yp) º 0} (115)

where b is now a vector, and the ith column of A is normal to a hyperplane ∂Hi partially
bounding Hi . By the halfspaces theorem, intersections like this can describe interesting
convex Euclidean bodies such as polyhedra and cones (Figure 27); giving rise to the term
halfspace-description.

2.4.2 Hyperplane ∂H representations

Every hyperplane ∂H is an affine set parallel to an n−1-dimensional subspace of Rn ; it
is itself a subspace if and only if it contains the origin.

dim ∂H = n − 1 (116)

so a hyperplane is a point in R , a line in R2, a plane in R3, and so on. Every hyperplane
can be described as the intersection of complementary halfspaces; [354, §19]

∂H = H− ∩ H+ = {y | aTy ≤ b , aTy ≥ b} = {y | aTy = b} (117)

a halfspace-description. Assuming normal a∈Rn to be nonzero, then any hyperplane in
Rn can be described as the solution set to vector equation aTy = b (illustrated in Figure 28
and Figure 29 for R2 );

∂H , {y | aTy = b} = {y | aT(y − yp) = 0} = {Z ξ + yp | ξ∈Rn−1} ⊂ Rn (118)

All solutions y constituting the hyperplane are offset from the nullspace of aT by the same
vector constant yp∈ Rn that is any particular solution to aTy=b ; id est,

y = Z ξ + yp (119)

where the columns of Z∈Rn×n−1 constitute a basis for N (aT)={x∈Rn | aTx=0} the
nullspace.2.19

Conversely, given any point yp in Rn, the unique hyperplane containing it having
normal a is the affine set ∂H (118) where b equals aTyp and where a basis for N (aT) is
arranged in Z columnar. Hyperplane dimension is apparent from dimension of Z ; that
hyperplane is parallel to the span of its columns.

2.4.2.0.1 Exercise. Hyperplane scaling.
Given normal y , draw a hyperplane {x∈R2 | xTy =1}. Suppose z = 1

2y . On the same

plot, draw the hyperplane {x∈R2 | xTz =1}. Now suppose z = 2y , then draw the last
hyperplane again with this new z . What is the apparent effect of scaling normal y ?

H
2.19We will find this expression for y in terms of nullspace of aT (more generally, of matrix A (147)) to
be a useful trick (a practical device) for eliminating affine equality constraints, much as we did here.
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1
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1

1

1

1

1

1

1

−1

−1

−1

−1

−1

−1

−1

−1

−1

a =

[

1
1

]

b =

[

−1
−1

]

c =

[

−1
1

]

d =

[

1
−1

]

e =

[

1
0

]

{y | aTy=1}

{y | aTy=−1}

{y | bTy=−1}

{y | bTy=1}

{y | cTy=1}

{y | cTy=−1}

{y | dTy=−1}

{y | dTy=1}

{y | eTy=−1} {y | eTy=1}

(a) (b)

(c) (d)

(e)

Figure 29: (a)-(d) Hyperplanes in R2 (truncated) redundantly emphasize: hyperplane
movement opposite to its normal direction minimizes vector inner-product. This concept
is exploited to attain analytical solution of linear programs by visual inspection; e.g,
§2.4.2.6.2, §2.5.1.2.2, §3.4.0.0.2, [68, exer.4.8-exer.4.20]. Each graph is also interpretable
as contour plot of a real affine function of two variables as in Figure 80. (e) |β|/‖α‖ from
∂H={x | αTx = β} represents radius of hypersphere about 0 supported by any hyperplane
with same ratio |inner product|/norm.
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2.4.2.0.2 Example. Distance from origin to hyperplane.
Given the (shortest) distance ∆∈R+ from the origin to a hyperplane having normal
vector a , we can find its representation ∂H by dropping a perpendicular. The point
thus found is the orthogonal projection of the origin on ∂H (§E.5.0.0.6): equal to a∆/‖a‖
if the origin is known a priori to belong to halfspace H− (Figure 28), or equal to −a∆/‖a‖
if the origin belongs to halfspace H+ ; id est, when H−∋0

∂H =
{

y | aT(y − a∆/‖a‖) = 0
}

=
{

y | aTy = ‖a‖∆
}

(120)

or when H+∋0

∂H =
{

y | aT(y + a∆/‖a‖) = 0
}

=
{

y | aTy = −‖a‖∆
}

(121)

Knowledge of only distance ∆ and normal a thus introduces ambiguity into the
hyperplane representation. 2

2.4.2.1 Matrix variable

Any halfspace in Rmn may be represented using a matrix variable. For variable Y ∈ Rm×n,
given constants A∈Rm×n and b = 〈A , Yp〉 ∈ R

H− = {Y ∈Rmn | 〈A , Y 〉 ≤ b} = {Y ∈Rmn | 〈A , Y −Yp〉 ≤ 0} (122)

H+ = {Y ∈Rmn | 〈A , Y 〉 ≥ b} = {Y ∈Rmn | 〈A , Y −Yp〉 ≥ 0} (123)

Recall vector inner-product from §2.2: 〈A , Y 〉= tr(ATY )= vec(A)Tvec(Y ).
Hyperplanes in Rmn may, of course, also be represented using matrix variables.

∂H = {Y | 〈A , Y 〉 = b} = {Y | 〈A , Y −Yp〉 = 0} ⊂ Rmn (124)

Vector a from Figure 28 is normal to the hyperplane illustrated. Likewise, nonzero
vectorized matrix A is normal to hyperplane ∂H ;

A ⊥ ∂H in Rmn (125)

2.4.2.2 Vertex-description of hyperplane

Any hyperplane in Rn may be described as affine hull of a minimal set of points
{xℓ ∈Rn, ℓ = 1 . . . n} arranged columnar in a matrix X∈ Rn×n : (81)

∂H = aff{xℓ ∈Rn, ℓ = 1 . . . n} , dim aff{xℓ ∀ ℓ}=n−1

= aff X , dim aff X = n−1

= x1 + R{xℓ − x1 , ℓ=2 . . . n} , dimR{xℓ − x1 , ℓ=2 . . . n}=n−1

= x1 + R(X − x11
T) , dimR(X − x11

T) = n−1

(126)

where
R(A) = {Ax | ∀x} (146)

2.4.2.3 Affine independence, minimal set

For any particular affine set, a minimal set of points constituting its vertex-description is
an affinely independent generating set and vice versa.

Arbitrary given points {xi∈Rn, i=1 . . . N} are affinely independent (a.i.) if and only
if, over all ζ∈RN Ä ζT1=1 , ζk = 0∈R (confer §2.1.2)

xi ζi + · · · + xj ζj − xk = 0 , i 6= · · · 6=j 6=k = 1 . . . N (127)
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A1

A2
A3

0

R2

Figure 30: Of three points illustrated, any one particular point does not belong to affine
hull Ai (i∈ 1, 2 , 3, each drawn truncated) of points remaining. Three corresponding
vectors are, therefore, affinely independent (but neither linearly or conically independent).

has no solution ζ ; in words, iff no point from the given set can be expressed as an affine
combination of those remaining. We deduce

l.i. ⇒ a.i. (128)

Consequently, [241, §3] (Figure 30)

� {xi , i=1 . . . N} is an affinely independent set if and only if {xi−x1 , i=2 . . . N} is
a linearly independent (l.i.) set.

This is equivalent to the property that the columns of

[

X
1T

]

(for X∈ Rn×N as in (79))
form a linearly independent set. [234, §A.1.3]

Two nontrivial affine subsets are affinely independent iff their intersection is empty {∅}
or, analogously to subspaces, they intersect only at a point.

2.4.2.4 Preservation of affine independence

Independence in the linear (§2.1.2.1), affine, and conic (§2.10.1) senses can be preserved
under linear transformation. Suppose a matrix X∈ Rn×N (79) holds an affinely
independent set in its columns. Consider a transformation on the domain of such matrices

T (X) : Rn×N → Rn×N , XY (129)

where fixed matrix Y , [ y1 y2 · · · yN ]∈RN×N represents linear operator T . Affine
independence of {Xyi∈Rn, i=1 . . . N} demands (by definition (127)) there exist no
solution ζ∈RN Ä ζT1=1 , ζk = 0 , to

Xyi ζi + · · · + Xyj ζj − Xyk = 0 , i 6= · · · 6=j 6=k = 1 . . . N (130)

By factoring out X , we see that is ensured by affine independence of {yi∈RN} and by
R(Y )∩ N (X) = 0 where

N (A) = {x | Ax=0} (147)



2.4. HALFSPACE, HYPERPLANE 65

C

a

{z∈R2 | aTz = κ1}

{z∈R2 | aTz = κ2}

{z∈R2 | aTz = κ3}

H−

H+

0 > κ3 > κ2 > κ1

Figure 31: (confer Figure 80) Each linear contour, of equal inner product in vector z
with normal a , represents ith hyperplane in R2 parametrized by scalar κi . Inner
product κi increases in direction of normal a . In convex set C⊂R2, ith line segment
{z∈ C | aTz = κi} represents intersection with hyperplane. (Cartesian axes for reference.)

2.4.2.5 Affine maps

Affine transformations preserve affine hulls. Given any affine mapping T of vector spaces
and some arbitrary set C [354, p.8]

aff(T C) = T (aff C) (131)

2.4.2.6 PRINCIPLE 2: Supporting hyperplane

The second most fundamental principle of convex geometry also follows from the geometric
Hahn-Banach theorem [290, §5.12] [20, §1] that guarantees existence of at least one
hyperplane in Rn supporting a full-dimensional convex set2.20 at each point on its
boundary.

The partial boundary ∂H of a halfspace that contains arbitrary set Y is called a
supporting hyperplane ∂H to Y when the hyperplane contains at least one point of Y .
[354, §11]

2.20It is customary to speak of a hyperplane supporting set C but not containing C ; called nontrivial
support . [354, p.100] Hyperplanes in support of lower-dimensional bodies are admitted.
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yp

yp

Y

Y

∂H−

∂H+

(a)

(b)

a

ã

tradition

nontraditional

H+

H−

H+

H−

Figure 32: (a) Hyperplane ∂H− (132) supporting closed set Y⊂R2. Vector a
is inward-normal to hyperplane with respect to halfspace H+ , but outward-normal
with respect to set Y . A supporting hyperplane can be considered the limit of an
increasing sequence in the normal-direction like that in Figure 31. (b) Hyperplane ∂H+

nontraditionally supporting Y . Vector ã is inward-normal to hyperplane now with respect
to both halfspace H+ and set Y . Tradition [234] [354] recognizes only positive normal
polarity in support function σY as in (133); id est, normal a , figure (a). But both
interpretations of supporting hyperplane are useful.
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2.4.2.6.1 Definition. Supporting hyperplane ∂H .
Assuming set Y and some normal a 6=0 reside in opposite halfspaces2.21 (Figure 32a),
then a hyperplane supporting Y at point yp∈ ∂Y is described

∂H− =
{

y | aT(y − yp) = 0 , yp∈ Y , aT(z − yp)≤ 0 ∀ z∈Y
}

(132)

Given only normal a , the hyperplane supporting Y is equivalently described

∂H− =
{

y | aTy = sup{aTz | z∈Y}
}

(133)

where real function

σY(a) = sup{aTz | z∈Y} (571)

is called the support function for Y .
Another equivalent but nontraditional representation2.22 for a supporting hyperplane

is obtained by reversing polarity of normal a ; (1872)

∂H+ =
{

y | ãT(y − yp) = 0 , yp∈ Y , ãT(z − yp)≥ 0 ∀ z∈Y
}

=
{

y | ãTy = − inf{ãTz | z∈Y} = sup{−ãTz | z∈Y}
} (134)

where normal ã and set Y both now reside in H+ (Figure 32b).
When a supporting hyperplane contains only a single point of Y , that hyperplane is

termed strictly supporting.2.23 △

� A full-dimensional set that has a supporting hyperplane at each and every point on
its boundary, conversely, is convex.

A convex set C⊂Rn, for example, can be expressed as the intersection of all halfspaces
partially bounded by hyperplanes supporting it; videlicet, [290, p.135]

C =
⋂

a∈R
n

{

y | aTy ≤ σC(a)
}

(135)

by the halfspaces theorem (§2.4.1.1.1).
There is no geometric difference between supporting hyperplane ∂H+ or ∂H− or ∂H

and2.24 an ordinary hyperplane ∂H coincident with them.

2.4.2.6.2 Example. Minimization over hypercube.
Consider minimization of a linear function over a hypercube, given vector c

minimize
x

cTx

subject to −1 ¹ x ¹ 1
(136)

This convex optimization problem is called a linear program2.25 because the objective2.26

of minimization cTx is a linear function of variable x and the constraints describe a
polyhedron (intersection of a finite number of halfspaces and hyperplanes).

2.21Normal a belongs to H+ by definition.
2.22 useful for constructing the dual cone; e.g, Figure 59b.Tradition would instead have us construct the
polar cone; which is, the negative dual cone.
2.23Rockafellar terms a strictly supporting hyperplane tangent to Y if it is unique there; [354, §18, p.169] a
definition we do not adopt because our only criterion for tangency is intersection exclusively with a relative
boundary. Hiriart-Urruty & Lemaréchal [234, p.44] (confer [354, p.100]) do not demand any tangency of
a supporting hyperplane.
2.24If vector-normal polarity is unimportant, we may instead signify a supporting hyperplane by ∂H .
2.25The term program has its roots in economics. It was originally meant with regard to a plan or to
efficient organization or systematization of some industrial process. [107, §2]
2.26The objective is the function that is argument to minimization or maximization.

https://www.convexoptimization.com/wikimization/index.php/Rockafellar
https://www.convexoptimization.com/wikimization/index.php/Hiriart-Urruty
https://www.convexoptimization.com/wikimization/index.php/Lemar%C3%A9chal
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Any vector x satisfying the constraints is called a feasible solution. Applying graphical
concepts from Figure 29, Figure 31, and Figure 32, x⋆ =− sgn(c) is an optimal solution
to this minimization problem but is not necessarily unique. It generally holds for
optimization problem solutions:

optimal ⇒ feasible (137)

Because an optimal solution always exists at a hypercube vertex (§2.6.1.0.1) regardless of
value of nonzero vector c in (136) [107, p.158] [17, p.2], mathematicians see this geometry
as a means to relax a discrete problem (whose desired solution is integer or combinatorial,
confer Example 4.2.3.1.1). [278, §3.1] [279] 2

2.4.2.6.3 Exercise. Unbounded below.
Suppose instead we minimize over the unit hypersphere in Example 2.4.2.6.2; ‖x‖≤ 1.
What is an expression for optimal solution now? Is that program still linear?

Now suppose minimization of absolute value in (136). Are the following programs
equivalent for some arbitrary real convex set C ? (confer (529))

minimize
x∈R

|x|
subject to −1 ≤ x ≤ 1

x ∈ C
≡

minimize
α , β

α + β

subject to 1 ≥ β ≥ 0

1 ≥ α ≥ 0

α − β ∈ C

(138)

Many optimization problems of interest and some methods of solution require
nonnegative variables. The method illustrated below splits a variable into parts; x = α − β
(extensible to vectors). Under what conditions on vector a and scalar b is an optimal
solution x⋆ negative infinity?

minimize
α∈R , β∈R

α − β

subject to β ≥ 0

α ≥ 0

aT

[

α
β

]

= b

(139)

Minimization of the objective function entails maximization of β . H

2.4.2.7 PRINCIPLE 3: Separating hyperplane

The third most fundamental principle of convex geometry again follows from the geometric
Hahn-Banach theorem [290, §5.12] [20, §1] [156, §I.1.2] that guarantees existence of a
hyperplane separating two nonempty convex sets in Rn whose relative interiors are
nonintersecting. Separation intuitively means each set belongs to a halfspace on an
opposing side of the hyperplane. There are two cases of interest:

1) If the two sets intersect only at their relative boundaries (§2.1.7.2), then there exists
a separating hyperplane ∂H containing the intersection but containing no points
relatively interior to either set. If at least one of the two sets is open, conversely,
then the existence of a separating hyperplane implies the two sets are nonintersecting.
[68, §2.5.1]

2) A strictly separating hyperplane ∂H intersects the closure of neither set; its existence
is guaranteed when intersection of the closures is empty and at least one set is
bounded. [234, §A.4.1]
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2.4.3 Angle between hyperspaces

Given halfspace-descriptions, dihedral angle between hyperplanes or halfspaces is defined
as the angle between their defining normals. Given normals a and b respectively
describing ∂Ha and ∂Hb , for example

Á(∂Ha , ∂Hb) , arccos

( 〈a , b〉
‖a‖ ‖b‖

)

radians (140)

2.5 Subspace representations

There are two common forms of expression for Euclidean subspaces, both coming
from elementary linear algebra: range form R and nullspace form N ; a.k.a,

vertex-description and halfspace-description respectively.
The fundamental vector subspaces associated with a matrix A∈Rm×n [379, §3.1] are

ordinarily related by orthogonal complement (Figure 18)

R(AT) ⊥ N (A) , N (AT) ⊥ R(A) (141)

R(AT) ⊕ N (A) = Rn , N (AT) ⊕ R(A) = Rm (142)

and of dimension:

dimR(AT) = dimR(A) = rankA ≤ min{m ,n} (143)

with complementarity (a.k.a conservation of dimension)

dimN (A) = n − rankA , dimN (AT) = m − rankA (144)

Ben-Israel calls (141)-(142) Fredholm’s alternative theorem. [34, p.311] Strang asserts
(141)-(144) to comprise the fundamental theorem of linear algebra. [379, p.95, p.138]

From these four fundamental subspaces, the rowspace and range identify one form of
subspace description (vertex-description (§2.3.4) or range form)

R(AT) , span AT = {ATy | y∈Rm} = {x∈Rn | ATy=x , y∈R(A)} (145)

R(A) , spanA = {Ax | x∈Rn} = {y∈Rm | Ax=y , x∈R(AT)} (146)

while the nullspaces identify the second common form (halfspace-description (117) or
nullspace form)

N (A) , {x∈Rn | Ax=0} = {x∈Rn | x ⊥ R(AT)} (147)

N (AT) , {y∈Rm | ATy=0} = {y∈Rm | y ⊥ R(A)} (148)

Range forms (145) (146) are realized as the respective span of the column vectors in
matrices AT and A , whereas nullspace form (147) or (148) is the solution set to a
linear equation similar to hyperplane definition (118). Yet because matrix A generally
has multiple rows, halfspace-description N (A) is actually the intersection of as many
hyperplanes through the origin; for (147), each row of A is normal to a hyperplane while
each row of AT is a normal for (148).

2.5.0.0.1 Exercise. Subspace algebra.
Given

R(A) + N (AT) = R(B) + N (BT) = Rm (149)
prove

R(A) ⊇ N (BT) ⇔ N (AT) ⊆ R(B) (150)

R(A) ⊇ R(B) ⇔ N (AT) ⊆ N (BT) (151)

e.g, Theorem A.3.1.0.6. H
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2.5.1 Subspace or affine subset . . .

Any particular vector subspace Rp can be described as nullspace N (A) of some matrix A
or as range R(B) of some matrix B .

More generally, we have the choice of expressing an n−m-dimensional affine subset
of Rn as the intersection of m hyperplanes, or as the offset span of n−m vectors:

2.5.1.1 . . . as hyperplane intersection

Any affine subset A of dimension n − m can be described as an intersection of m
hyperplanes in Rn ; [354, p.6, p.44] given wide (m≤n) full-rank (rank = min{m, n})
matrix

A ,





aT
1
...

aT
m



∈ Rm×n (152)

and vector b∈Rm,

A , {x∈Rn | Ax= b} =

m
⋂

i=1

{

x | aT
i x= bi

}

(153)

a halfspace-description. (117)

For example: The intersection of any two independent2.27 hyperplanes in R3 is a
line, whereas three independent hyperplanes intersect at a point. Intersection of two
independent hyperplanes is a plane in R4 (Example 2.5.1.2.1), whereas three hyperplanes
intersect at a line, four at a point, and so on. A describes a subspace whenever b=0.

For n>k

A ∩ Rk = {x∈Rn | Ax= b} ∩ Rk =
m
⋂

i=1

{

x∈Rk | ai(1 : k)Tx= bi

}

(154)

The result in §2.4.2.2 is extensible; id est, any affine subset A also has a vertex-description:

2.5.1.2 . . . as span of nullspace basis

Alternatively, we may compute a basis for nullspace of matrix A (§E.3.1) and then
equivalently express affine subset A as its span plus an offset: Define

Z , basisN (A)∈Rn×n−rank A (155)

so AZ = 0. Then we have a vertex-description in Z ,

A = {x∈Rn | Ax = b} =
{

Zξ + xp | ξ∈Rn−rank A
}

⊆ Rn (156)

the offset span of n− rankA column vectors, where xp is any particular solution to
Ax = b ; e.g, A describes a subspace whenever xp = 0.

2.27Any number of hyperplanes are called independent when defining normals are linearly independent.
This misuse departs from independence of two affine subsets that demands intersection only at a point or
not at all. (§2.1.4.0.1)



2.5. SUBSPACE REPRESENTATIONS 71

2.5.1.2.1 Example. Intersecting planes in 4-space.
Two planes can intersect at a point in four-dimensional Euclidean vector space. It is easy
to visualize intersection of two planes in three dimensions; a line can be formed. In four
dimensions it is harder to visualize. So let’s resort to the tools acquired.

Suppose an intersection of two hyperplanes in four dimensions is specified by a wide
full-rank matrix A1∈ R2×4 (m = 2 , n = 4) as in (153):

A1 ,

{

x∈R4

∣

∣

∣

∣

[

a11 a12 a13 a14

a21 a22 a23 a24

]

x = b1

}

(157)

The nullspace of A1 is two-dimensional (from Z in (156)), so A1 represents a plane in
four dimensions. Similarly define a second plane in terms of A2∈ R2×4 :

A2 ,

{

x∈R4

∣

∣

∣

∣

[

a31 a32 a33 a34

a41 a42 a43 a44

]

x = b2

}

(158)

If the two planes are affinely independent and intersect, they intersect at a point because
[

A1

A2

]

is invertible;

A1 ∩ A2 =

{

x∈R4

∣

∣

∣

∣

[

A1

A2

]

x =

[

b1

b2

]}

(159)

2

2.5.1.2.2 Exercise. Linear program.
Minimize a hyperplane over affine set A in the nonnegative orthant

minimize
x

cTx

subject to Ax = b
x º 0

(160)

where A = {x | Ax = b}. Two cases of interest are drawn in Figure 33. Graphically
illustrate and explain optimal solutions indicated in the caption. Why is α⋆ negative in
both cases? Is there solution on the vertical axis? What causes objective unboundedness
in latter case (b)? Describe all vectors c that would yield finite optimal objective in (b).

Graphical solution to linear program

maximize
x

cTx

subject to x ∈ P (161)

is illustrated in Figure 34. Bounded set P is an intersection of many halfspaces. Why is
optimal solution x⋆ not aligned with vector c as in Cauchy-Schwarz inequality (2295)?

H

2.5.1.2.3 Exercise. Nonconvex problem.
Explain why linear program

minimize
x

cTx

subject to Ax = b
0 ¹ x ¹ 2
x º 3

(162)

is not convex, even though it has linear objective and affine constraints.2.28 H

2.28Hint: (683).
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(a)

(b)

A = {x |Ax = b}

A = {x |Ax = b}

{x | cTx = α}

{x | cTx = α}

c

c

Figure 33: Minimizing hyperplane over affine subset A in nonnegative orthant R2

+

whose extreme directions (§2.8.1) are nonnegative Cartesian axes. Solutions visually
ascertainable: (a) Optimal solution • finite. (b) Optimal objective α⋆ =−∞ unbounded.
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x⋆

c
P

∂H

Figure 34: Maximizing hyperplane ∂H , whose normal is vector c∈P , over polyhedral
set P in R2 is a linear program (161). Optimal solution x⋆ at • .

2.5.2 Intersection of subspaces

The intersection of nullspaces associated with two matrices A∈Rm×n and B∈Rk×n can
be expressed most simply as

N (A) ∩ N (B) = N
([

A
B

])

, {x∈Rn |
[

A
B

]

x = 0} (163)

nullspace of their rowwise concatenation.
Suppose the columns of a matrix Z constitute a basis for N (A) while the columns of

a matrix W constitute a basis for N (BZ ). Then [189, §12.4.2]

N (A) ∩ N (B) = R(ZW ) (164)

If each basis is orthonormal, then the columns of ZW constitute an orthonormal basis for
the intersection.

In the particular circumstance A and B are each positive semidefinite [23, §6], or in
the circumstance A and B are two linearly independent dyads (§B.1.1), then

N (A) ∩ N (B) = N (A + B) ,







A,B∈ SM
+

or
A + B = u1v

T
1 + u2v

T
2 (l.i.)

(165)

2.5.2.0.1 Example. Visualization of matrix subspaces.
Fundamental subspace relations, such as

R(AT) ⊥ N (A) , N (AT) ⊥ R(A) (141)

are partially defining. But to aid visualization of involved geometry, it sometimes helps to
vectorize matrices; e.g, §2.9.2.5.1. For any square matrix A , s∈N (A) , and w∈N (AT)

〈A , ssT〉 = 0 , 〈A , wwT〉 = 0 (166)
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because sTA s = wTA w = 0. This innocuous observation can become an instrument for
visualization of diagonalizable matrices (§A.5.1): For rank-ρ matrix

A = SΛS−1 = [ s1 · · · sM ] Λ





wT
1
...

wT
M



 =

M
∑

i=1

λi siw
T
i ∈ RM×M (1722)

nullspace eigenvectors are real (Theorem A.5.0.0.2) having range (§B.1.1)

R{si∈ RM |λi =0} = R
(

M
∑

i=ρ+1

sis
T
i

)

= N (A)

R{wi∈ RM |λi =0} = R
(

M
∑

i=ρ+1

wiw
T
i

)

= N (AT)

(167)

Define an unconventional basis among column vectors of each summation: (confer (2125))

basisN (A) ⊆
M
∑

i=ρ+1

sis
T
i ⊆ N (A)

basisN (AT) ⊆
M
∑

i=ρ+1

wiw
T
i ⊆ N (AT)

(168)

An overcomplete vectorized basis for the nullspace of any M×M matrix is

vec basisN (A) = vec
M
∑

i=ρ+1

sis
T
i

vec basisN (AT) = vec
M
∑

i=ρ+1

wiw
T
i

(169)

By this reckoning, vec basisR(A)= vec A but is not unique. Now, because
〈

A ,

M
∑

i=ρ+1

sis
T
i

〉

= 0 ,

〈

A ,

M
∑

i=ρ+1

wiw
T
i

〉

= 0 (170)

then vectorized matrix A is normal to a hyperplane (of dimension M 2−1) that contains
both vectorized nullspaces simultaneously (each of whose dimension is M−ρ);

vec A ⊥ vec basisN (A) , vec basisN (AT) ⊥ vec A (171)

These orthogonality relations represent a departure (absent T) from fundamental subspace
relations (141) stated at the outset. 2

2.6 Extreme, Exposed

2.6.0.0.1 Definition. Extreme point.
An extreme point xε of a convex set C is a point, belonging to its closure C [46, §3.3],
that is not expressible as a convex combination of points in C distinct from xε ; id est, for
xε∈ C and all x1 , x2∈ C \xε

µx1 + (1 − µ)x2 6= xε ∀µ ∈ [0 , 1] (172)
△

In other words, xε is an extreme point of C if and only if xε is not a point relatively
interior to any line segment in C . [410, §2.10]

Borwein & Lewis offer: [61, §4.1.6] An extreme point of a convex set C is a point xε

in C whose relative complement C \xε is convex.
The set consisting of a single point C={xε} is itself an extreme point.
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2.6.0.0.2 Theorem. Extreme existence. [354, §18.5.3] [28, §II.3.5]
A nonempty closed convex set containing no lines has at least one extreme point. ⋄

2.6.0.0.3 Definition. Face, edge. [234, §A.2.3]

� A face F of convex set C is a convex subset F⊆C such that every closed line
segment x1x2 in C , having a relatively interior point (x∈ rel intrx1x2) in F , has
both endpoints in F . The zero-dimensional faces of C constitute its extreme points.

� All faces F are extreme sets by definition; id est, for F⊆C and all x1 , x2∈ C\F

µx1 + (1 − µ)x2 /∈ F ∀µ ∈ [0 , 1] (173)

� A one-dimensional face of a convex set is called an edge. △

The empty set ∅ and C itself are conventional faces of convex set C . [354, §18] Faces of
subspace Rn therefore comprise only itself and ∅ . Faces of a hyperplane ∂H are constituted
by itself and ∅ . Faces of a halfspace H are itself, ∅ , and its bounding hyperplane.

Dimension of a face is the penultimate number of affinely independent points (§2.4.2.3)
belonging to it;

dimF = sup
ρ

dimR{x2− x1 , x3− x1 , . . . , xρ− x1 | xi∈F , i=1 . . . ρ} (174)

The point of intersection in C with a strictly supporting hyperplane identifies an
extreme point, but not vice versa. The nonempty intersection of any supporting
hyperplane with C identifies a face, in general, but not vice versa. To acquire a converse,
the concept exposed face requires introduction:

2.6.1 Exposure

2.6.1.0.1 Definition. Exposed face, exposed point, vertex, facet. [234, §A.2.3, §A.2.4]

� F is an exposed face of an n-dimensional convex set C iff there is a supporting
hyperplane ∂H to C such that

F = ∂H ∩ C (175)

Only faces of dimension −1 through n−1 can be exposed by a hyperplane.

� An exposed point, the definition of vertex, is equivalent to a zero-dimensional exposed
face; the point of intersection with a strictly supporting hyperplane.

� A facet is an n−1-dimensional exposed face of an n-dimensional convex set C ; facets
exist in one-to-one correspondence with the n−1-dimensional faces.2.29

� {exposed points} = {extreme points}
{exposed faces} ⊆ {faces} △

2.29This coincidence occurs simply because the facet’s dimension is the same as dimension of the
supporting hyperplane exposing it.
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2.6.1.1 Density of exposed points

For any closed convex set C , its exposed points constitute a dense subset of its extreme
points; [354, §18] [383] [377, §3.6, p.115] dense in the sense [449] that closure of that subset
yields the set of extreme points.

For the convex set illustrated in Figure 35, point B cannot be exposed because it
relatively bounds both the facet AB and the closed quarter circle, each bounding the set.
Since B is not relatively interior to any line segment in the set, then B is an extreme point
by definition. Point B may be regarded as the limit of some sequence of exposed points
beginning at vertex C .

2.6.1.2 Face transitivity and algebra

Faces of a convex set enjoy transitive relation. If F1 is a face (an extreme set) of F2

which in turn is a face of F3 , then it is always true that F1 is a face of F3 . (The parallel
statement for exposed faces is false. [354, §18]) For example, any extreme point of F2 is
an extreme point of F3 ; in this example, F2 could be a face exposed by a hyperplane
supporting polyhedron F3 . [259, def.115/6 p.358] Yet it is erroneous to presume that
a face, of dimension 1 or more, consists entirely of extreme points. Nor is a face of
dimension 2 or more entirely composed of edges, and so on.

For the polyhedron in R3 from Figure 22, for example, the nonempty faces exposed
by a hyperplane are the vertices, edges, and facets; there are no more. The zero-, one-,
and two-dimensional faces are in one-to-one correspondence with the exposed faces in that
example.

2.6.1.3 Smallest face

Define the smallest face F , that contains some element G , of a convex set C :

F(C ∋G) (176)

videlicet, C ⊃ rel intrF(C ∋G) ∋ G . An affine set has no faces except itself and the empty
set. The smallest face, that contains G , of intersection of convex set C with an affine set
A [278, §2.4] [279]

F((C∩A)∋G) = F(C ∋G) ∩ A (177)

equals intersection of A with the smallest face, that contains G , of set C .

2.6.1.4 Conventional boundary

(confer §2.1.7.2) Relative boundary

rel ∂ C = C \ rel intr C (25)

is equivalent to:

2.6.1.4.1 Definition. Conventional boundary of convex set. [234, §C.3.1]
The relative boundary ∂ C of a nonempty convex set C is the union of all exposed faces
of C . △

Equivalence to (25) comes about because it is conventionally presumed that any
supporting hyperplane, central to the definition of exposure, does not contain C .
[354, p.100] Any face F of convex set C (that is not C itself) belongs to rel ∂ C . (§2.8.2.1)
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2.7 Cones

In optimization, convex cones achieve prominence because they generalize subspaces. Most
compelling is the projection analogy: Projection on a subspace can be ascertained from
projection on its orthogonal complement (Figure 197), whereas projection on a closed
convex cone can be determined from projection instead on its algebraic complement (§2.13,
Figure 198, §E.9.2); called the polar cone.

2.7.0.0.1 Definition. Ray.
The one-dimensional set

{ζ Γ + B | ζ ≥ 0 , Γ 6= 0} ⊂ Rn (178)

defines a halfline called a ray in nonzero direction Γ∈Rn having base B∈Rn. When
B=0 , a ray is the conic hull of direction Γ ; hence a closed convex cone. △

Relative boundary of a single ray, base 0 in any dimension, is the origin because that
is the union of all exposed faces not containing the entire set. Its relative interior is the
ray itself excluding the origin.

2.7.1 Cone defined

A set X is called, simply, cone if and only if

Γ ∈ X ⇒ ζ Γ ∈ X for all ζ ≥ 0 (179)

where X denotes closure of cone X ; e.g, Figure 38, Figure 39. An example of nonconvex
cone is the union of two opposing quadrants: X ={x∈R2 | x1 x2≥ 0}. [447, §2.5] Similar
examples are Figure 36 and Figure 40.

All cones obey (179) and can be defined by an aggregate of rays emanating exclusively
from the origin. Hence all closed cones contain the origin 0 but are unbounded, excepting
the simplest cone {0}. The empty set ∅ is not a cone, but its conic hull is;

cone ∅ = {0} (108)

2.7.2 Convex cone

We call set K a convex cone iff

Γ1 ,Γ2 ∈ K ⇒ ζ Γ1 + ξ Γ2 ∈ K for all ζ , ξ ≥ 0 (180)

id est, if and only if any conic combination of elements from K belongs to its closure.
Apparent from this definition, ζ Γ1∈ K and ξ Γ2 ∈ K ∀ ζ , ξ≥ 0 ; meaning, K is a cone.
Set K is convex since, for any particular ζ , ξ≥ 0

µ ζ Γ1 + (1 − µ) ξ Γ2 ∈ K ∀µ ∈ [0 , 1] (181)

because µ ζ , (1 − µ) ξ ≥ 0. Obviously,

{X} ⊃ {K} (182)

the set of all convex cones is a proper subset of all cones. The set of convex cones is
a narrower but more familiar class of cone, any member of which can be equivalently
described as the intersection of a possibly (but not necessarily) infinite number of
hyperplanes (through the origin) and halfspaces whose bounding hyperplanes pass through
the origin; a halfspace-description (§2.4). Convex cones need not be full-dimensional.
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BA

D

C

Figure 35: Closed convex set in R2. Point A is exposed hence extreme; a classical
vertex. Point B is extreme but not an exposed point. Point C is exposed and extreme;
zero-dimensional exposure makes it a vertex. Point D is neither an exposed or extreme
point although it belongs to a one-dimensional exposed face. [234, §A.2.4] [377, §3.6]
Closed face AB is exposed; a facet. The arc is not a conventional face, yet it is composed
entirely of extreme points. Union of all rotations of this entire set about its vertical edge
produces another convex set in three dimensions having no edges; but that convex set
produced by rotation about horizontal edge containing D has edges.

0

X

X

(a)
0

(b)

Figure 36: (a) Two-dimensional nonconvex cone drawn truncated. Boundary of this
cone is itself a cone. Each half, about origin, is itself a convex cone. (b) This convex
cone (drawn truncated) is a line through the origin in any dimension. It has no relative
boundary, while its relative interior comprises entire line.
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0

Figure 37: This nonconvex cone in R2 is a pair of lines through the origin. [290, §2.4]
Because the lines are linearly independent, they are algebraic complements whose vector
sum is R2 a convex cone.

0

Figure 38: Boundary of a convex cone in R2 is a nonconvex cone; a pair of rays emanating
from the origin.

X

X

Figure 39: Union of two pointed closed convex cones in R2 is nonconvex cone X .
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X

X

Figure 40: Truncated nonconvex cone X ={x∈R2 | x1≥ x2 , x1 x2≥ 0}. Boundary is
also a cone. [290, §2.4] (Cartesian axes drawn for reference.) Each half (about the origin)
is itself a convex cone.

0

X

Figure 41: Nonconvex cone X drawn truncated in R2. Boundary is also a cone. [290, §2.4]
Cone exterior is convex cone.
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Figure 42: Not a cone; ironically, the three-dimensional flared horn (with or without its
interior) resembling mathematical symbol ≻ denoting strict cone membership and partial
order.

More familiar convex cones are Lorentz cone (confer Figure 49)2.30

Kℓ =

{[

x
t

]

∈ Rn× R | ‖x‖ℓ ≤ t

}

, ℓ=2 (183)

and polyhedral cone (§2.12.1.0.1); e.g, any orthant generated by Cartesian half-axes
(§2.1.3). Esoteric examples of convex cone include the point at the origin, any line
through the origin, any ray having the origin as base such as the nonnegative real
line R+ in subspace R , any halfspace partially bounded by a hyperplane through the
origin, the positive semidefinite cone SM

+ (198), the cone of Euclidean distance matrices

EDMN (1008) (§6), completely positive semidefinite matrices {CCT |C ≥ 0} [44, p.71],
dimensionally extended Lorentz cone and its dual (§2.13.1) [166]

Kℓe =

{[

x
t

]

∈ Rn× Rp | ‖x‖ℓ1 ¹ t

}

, ℓ=2 (184)

K∗
ℓe =

{[

x
t

]

∈ Rn× Rp
+ | ‖x‖ℓ ≤ 1Tt

}

, ℓ=2 (185)

any subspace, and Euclidean vector space Rn.

2.7.2.1 cone invariance

More Euclidean bodies are cones, it seems, than are not.2.31 The convex cone class of
Euclidean body is invariant to scaling, linear and single- or many-valued inverse linear
transformation, vector sum, and Cartesian product, but is not invariant to translation.
[354, p.22]

2.30 a.k.a: second-order cone, quadratic cone, circular cone (§2.9.2.8.1), unbounded ice-cream cone
united with its interior.
2.31confer Figures: 27 36 37 38 39 40 41 42 44 46 53 58 61 62 63 66 67 68 69 70 73 160 173

https://books.google.com/books?id=AllToPtYGGgC&pg=PA71&lpg=PA71&dq=berman+shaked-monderer+%22cones+of+completely+positive+matrices%22&source=bl&ots=4oWwYJMZW8&sig=xuCYeghUfSW-fAbUkx48VhaxyvY&hl=en&ei=mIm-SsWLC5DWtgPz69lA&sa=X&oi=book_result&ct=result&resnum=1#v=onepage&q=&f=false
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2.7.2.1.1 Theorem. Cone intersection (nonempty).

� Intersection of an arbitrary collection of convex cones is a convex cone. [354, §2, §19]

� Intersection of an arbitrary collection of closed convex cones is a closed convex cone.
[299, §2.3]

� Intersection of a finite number of polyhedral cones (§2.12.1.0.1) remains a polyhedral
cone. ⋄

The property pointedness is ordinarily associated with a convex cone but, strictly speaking,

� pointed cone < convex cone (Figure 38, Figure 39)

2.7.2.1.2 Definition. Pointed convex cone. (confer §2.12.2.2)
A convex cone K is pointed iff it contains no line. Equivalently, K is not pointed iff there
exists any nonzero direction Γ∈ K such that −Γ∈ K . If the origin is an extreme point
of K or, equivalently, if

K ∩ −K = {0} (186)

then K is pointed, and vice versa. [377, §2.10] A convex cone is pointed iff the origin is
the smallest nonempty face of its closure. △

Then a pointed closed convex cone, by principle of separating hyperplane (§2.4.2.7),
has a strictly supporting hyperplane at the origin.

2.7.2.1.3 Theorem. Pointed cones. [61, §3.3.15, exer.20]
Closed convex cone K⊂Rn is pointed if and only if there exists a vector β normal to a
hyperplane strictly supporting K ; id est, for some positive scalar ǫ (35)

〈x , β〉 ≥ ǫ‖x‖ ∀x∈K (187)

Equivalently, K is pointed if and only if there exists a normal α such that the set

C , {x∈K | 〈x , α〉 = 1} (188)

is closed, bounded, and K= cone C . ⋄

The simplest and only bounded [447, p.75] convex cone K= {0} ⊆ Rn is pointed, by
convention, but generally not full-dimensional. Its relative boundary is the empty set ∅
(26) while its relative interior is the point 0 itself (13). The pointed closed convex cone
that is a halfline, emanating from the origin in Rn, has relative boundary 0 while its
relative interior is the halfline itself excluding 0.

Pointed are any Lorentz cone, cone of Euclidean distance matrices EDMN in symmetric
hollow subspace SN

h , and positive semidefinite cone SM
+ in ambient SM .

If closed convex cone K is not pointed, then it has no extreme point.2.32 Yet a pointed
closed convex cone has only one extreme point [46, §3.3]: the exposed point residing at
the origin; its vertex. Pointedness is invariant to Cartesian product by (186). And from
the cone intersection theorem it follows that an intersection of convex cones is pointed if
at least one of the cones is; implying, each and every nonempty exposed face of a pointed
closed convex cone is a pointed closed convex cone.

2.32 nor does it have extreme directions (§2.8.1).
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C1

C2

x + K

y −K

x

y

(b)

(a)

R2

Figure 43: (confer Figure 75) (a) Point x is the unique minimum element of set C1 with
respect to pointed closed convex cone K because cone, translated to x∈ C1 , contains entire
set. (Cones drawn truncated.) (b) Point y is a minimal element of set C2 with respect to
cone K because negative cone translated to y∈ C2 contains only y . These two concepts,
minimum/minimal, become equivalent under a total order.
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2.7.2.2 Pointed closed convex cone induces partial order

Relation ¹ represents partial order on some set if that relation possesses2.33

reflexivity (x¹x)

antisymmetry (x¹z , z¹x ⇒ x=z)

transitivity (x¹ y , y¹z ⇒ x¹z), (x¹ y , y≺z ⇒ x≺z)

A pointed closed convex cone K induces partial order on Rn or Rm×n, [23, §1] [371, p.7]
essentially defined by vector or matrix inequality;

x ¹
K

z ⇔ z − x ∈ K (189)

x ≺
K

z ⇔ z − x ∈ rel intrK (190)

Neither x or z is necessarily a member of K for these relations to hold. Only
when K is a nonnegative orthant Rn

+ do these inequalities reduce to ordinary entrywise
comparison (§2.13.4.2.3) while partial order lingers. Inclusive of that special case, we
ascribe nomenclature generalized inequality to comparison with respect to a pointed closed
convex cone.

We say two points x and y are comparable when x¹ y or y¹ x with respect to pointed
closed convex cone K . Visceral mechanics of actually comparing points, when cone K
is not an orthant, are well illustrated in the example of Figure 67 which relies on the
equivalent membership-interpretation in definition (189) or (190).

Comparable points and the minimum element of some vector- or matrix-valued
partially ordered set are thus well defined, so nonincreasing sequences with respect to
cone K can therefore converge in this sense: Point x∈ C is the unique minimum element
of set C with respect to cone K iff for each and every z ∈ C we have x¹ z ; equivalently,
iff C ⊆ x + K .2.34

A closely related concept, minimal element, is useful for partially ordered sets having
no minimum element: Point x∈ C is a minimal element of set C with respect to pointed
closed convex cone K if and only if (x −K) ∩ C = x . (Figure 43) No uniqueness is implied
here, although implicit is the assumption: dimK ≥ dim aff C . In words, a point that is a
minimal element is smaller (with respect to K) than any other point in the set to which
it is comparable.

Further properties of partial order with respect to pointed closed convex cone K are
nondefining:

homogeneity (x¹ y , λ≥0 ⇒ λx¹λz), (x≺ y , λ>0 ⇒ λx≺λz)

additivity (x¹z , u¹v ⇒ x+u¹ z+v), (x≺z , u¹v ⇒ x+u≺ z+v)

2.33A set is totally ordered if it further obeys a comparability property of the relation: for each and every
x and y from the set, x¹ y or y¹ x ; e.g, one-dimensional real vector space R is the smallest unbounded
totally ordered and connected set.
2.34Borwein & Lewis [61, §3.3 exer.21] ignore possibility of equality to x + K in this condition, and require
a second condition: . . . and C ⊂ y + K for some y in R

n implies x ∈ y + K .
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2.7.2.2.1 Definition. Proper cone: a cone that is

� pointed

� closed

� convex

� full-dimensional. △

A proper cone remains proper under injective linear transformation. [102, §5.1]
Examples of proper cone are the positive semidefinite cone SM

+ in the ambient space
of symmetric matrices (§2.9), the nonnegative real line R+ in vector space R , or
any orthant in Rn, the Lorentz cone, and the set of all coefficients of univariate
degree-n polynomials nonnegative on interval [0 , 1] [68, exmp.2.16] or univariate degree-2n
polynomials nonnegative over R [68, exer.2.37].

2.8 Cone boundary

Every hyperplane supporting a convex cone contains the origin. [234, §A.4.2] Because any
supporting hyperplane to a convex cone must therefore itself be a cone, then from the
cone intersection theorem (§2.7.2.1.1) it follows:

2.8.0.0.1 Lemma. Cone faces. [28, §II.8]
Each nonempty exposed face of a convex cone is a convex cone. ⋄

2.8.0.0.2 Theorem. Proper-cone boundary.
Suppose a nonzero point Γ lies on the boundary ∂K of proper cone K in Rn. Then it
follows that the ray {ζ Γ | ζ ≥ 0} also belongs to ∂K . ⋄

Proof. By virtue of its propriety, a proper cone guarantees existence of a strictly
supporting hyperplane at the origin. [354, cor.11.7.3]2.35 Hence the origin belongs to the
boundary of K because it is the zero-dimensional exposed face. The origin belongs to the
ray through Γ , and the ray belongs to K by definition (179). By the cone faces lemma, each
and every nonempty exposed face must include the origin. Hence the closed line segment
0Γ must lie in an exposed face of K because both endpoints do by Definition 2.6.1.4.1.
That means there exists a supporting hyperplane ∂H to K containing 0Γ . So the ray
through Γ belongs both to K and to ∂H . ∂H must therefore expose a face of K that
contains the ray; id est,

{ζ Γ | ζ ≥ 0} ⊆ K ∩ ∂H ⊂ ∂K (191)

¨

Proper cone {0} in R0 has no boundary (25) because (13)

rel intr{0} = {0} (192)

The boundary of any proper cone in R is the origin.

The boundary of any convex cone whose dimension exceeds 1 can be constructed
entirely from an aggregate of rays emanating exclusively from the origin.

2.35Rockafellar’s corollary yields a supporting hyperplane at the origin to any convex cone in R
n not equal

to R
n.
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K

∂K∗

R3

Figure 44: K is a pointed polyhedral cone but not full-dimensional (drawn truncated in
a plane parallel to the ground). Dual cone K∗ is a wedge having no extreme direction and
no vertex; a nonpointed polyhedral cone whose truncated boundary is illustrated (faces
drawn perpendicular to ground). In this particular instance, K⊂ intrK∗ excepting the
origin. (Cartesian coordinate axes drawn for reference.)

2.8.1 Extreme direction

The property extreme direction arises naturally in connection with the pointed closed
convex cone K⊂Rn, being analogous to extreme point. [354, §18, p.162]2.36 An extreme
direction Γε of pointed K is a vector corresponding to an edge that is a ray {ζ Γε∈K | ζ≥0}
emanating from the origin.2.37 Nonzero direction Γε in pointed K is extreme if and only if

ζ1 Γ1 + ζ2 Γ2 6= Γε ∀ ζ1 , ζ2 ≥ 0 , ∀ Γ1 ,Γ2 ∈ K\{ζ Γε∈K | ζ≥0} (193)

In words, an extreme direction in a pointed closed convex cone is the direction of a ray
(called an extreme ray) that cannot be expressed as a conic combination of directions of
any rays in the cone distinct from it.

An extreme ray is a one-dimensional face of K . By (109), extreme direction Γε is not
a point relatively interior to any line segment in K\{ζ Γε∈K | ζ≥0}. Thus, by analogy,
the corresponding extreme ray {ζ Γε∈K | ζ≥0} is not a ray relatively interior to any
plane segment 2.38 in K .

2.8.1.1 extreme distinction, uniqueness

An extreme direction is unique, but its vector representation Γε is not because any positive
scaling of it produces another vector in the same (extreme) direction. Hence an extreme
direction is unique to within a positive scaling. When we say extreme directions are

2.36We diverge from Rockafellar’s extreme direction: “extreme point at infinity”.
2.37An edge (§2.6.0.0.3) of a convex cone is not necessarily a ray. A convex cone may contain an edge
that is a line; e.g, a wedge-shaped polyhedral cone (K∗ in Figure 44).
2.38A planar fragment; in this context, a planar cone.
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distinct, we are referring to distinctness of rays containing them. Nonzero vectors of
various length in the same extreme direction are therefore interpreted to be identical
extreme directions.2.39

The extreme directions of the polyhedral cone in Figure 27 (p.59), for example,
correspond to its three edges. For any pointed polyhedral cone, there is a one-to-one
correspondence of one-dimensional faces with extreme directions.

Extreme directions of the positive semidefinite cone (§2.9) comprise the infinite set
of all symmetric rank-1 matrices. [23, §6] [230, §III] It is sometimes prudent to instead
consider the less infinite but complete normalized set of extreme directions: for M > 0
(confer (244))

{zzT∈ SM | ‖z‖= 1} (194)

The positive semidefinite cone in one dimension M =1 , S+ the nonnegative real line, has
one extreme direction belonging to its relative interior; an idiosyncrasy of dimension 1.

Pointed convex cone K= {0} has an extreme point but no extreme direction because
extreme directions are nonzero by definition.

� If closed convex cone K is not pointed, then its nonempty faces comprise no extreme
directions and no vertex. [23, §1]

Conversely, pointed closed convex cone K is equivalent to the convex hull of its vertex and
all its extreme directions. [354, §18, p.167] That is the practical utility of extreme direction;
to facilitate construction of polyhedral sets, apparent from the extremes theorem:

2.8.1.1.1 Theorem. (Klee) Extremes. [377, §3.6] [354, §18, p.166]
(confer §2.3.2, §2.12.2.0.1) Any closed convex set containing no lines can be expressed as
the convex hull of its extreme points and extreme rays. ⋄

It follows that any element of a convex set containing no lines may be expressed as a
linear combination of its extreme elements; e.g, §2.9.2.7.1.

2.8.1.2 generators

In the narrowest sense, generators for a convex set comprise any collection of points and
directions whose convex hull constructs the set.

When the extremes theorem applies, the extreme points and directions are called
generators of a convex set. An arbitrary collection of generators for a convex set includes
its extreme elements as a subset; the set of extreme elements of a convex set is a minimal
set of generators for that convex set. Any polyhedral set has a minimal set of generators
whose cardinality is finite.

When the convex set under scrutiny is a closed convex cone, conic combination
of generators during construction is implicit as shown in Example 2.8.1.2.1 and
Example 2.10.2.0.1. So, a vertex at the origin (if it exists) becomes benign.

We can, of course, generate affine sets by taking the affine hull of any collection of
points and directions. We broaden, thereby, the meaning of generator to be inclusive of
all kinds of hulls.

Any hull of generators is loosely called a vertex-description. (§2.3.4) Hulls encompass
subspaces, so any basis constitutes generators for a vertex-description; span basisR(A).

2.39Like vectors, an extreme direction can be identified with the Cartesian point at the vector’s head with
respect to the origin.
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2.8.1.2.1 Example. Application of extremes theorem.
Given an extreme point at the origin and N extreme rays {ζ Γi , i=1 . . . N | ζ≥0}
(§2.7.0.0.1), denoting the ith extreme direction by Γi∈Rn, then their convex hull (89) is

P =
{

[0 Γ1 Γ2 · · · ΓN ] a ζ | aT1 = 1 , a º 0 , ζ ≥ 0
}

=
{

[Γ1 Γ2 · · · ΓN ] a ζ | aT1 ≤ 1 , a º 0 , ζ ≥ 0
}

=
{

[Γ1 Γ2 · · · ΓN ] b | b º 0
}

⊂ Rn
(195)

a closed convex set that is simply a conic hull like (107). 2

2.8.2 Exposed direction

2.8.2.0.1 Definition. Exposed point & direction of pointed convex cone. [354, §18]
(confer §2.6.1.0.1)

� When a convex cone has a vertex, an exposed point, it resides at the origin; there
can be only one.

� In the closure of a pointed convex cone, an exposed direction is the direction of a
one-dimensional exposed face that is a ray emanating from the origin.

� {exposed directions} ⊆ {extreme directions} △

For a proper cone in vector space Rn with n≥ 2 , we can say more:

{exposed directions} = {extreme directions} (196)

It follows from Lemma 2.8.0.0.1 for any pointed closed convex cone, there is one-to-one
correspondence of one-dimensional exposed faces with exposed directions; id est, there is
no one-dimensional exposed face that is not a ray base 0.

The pointed closed convex cone EDM2, for example, is a ray in isomorphic subspace R
whose relative boundary (§2.6.1.4.1) is the origin. The conventionally exposed directions
of EDM2 constitute the empty set ∅ ⊂ {extreme direction}. This cone has one extreme
direction belonging to its relative interior; an idiosyncrasy of dimension 1.

2.8.2.1 Connection between boundary and extremes

2.8.2.1.1 Theorem. Exposed. [354, §18.7] (confer §2.8.1.1.1)
Any closed convex set C containing no lines (and whose dimension is at least 2) can be
expressed as closure of the convex hull of its exposed points and exposed rays. ⋄

From Theorem 2.8.1.1.1,

rel ∂ C = C \ rel intr C (25)

= conv{exposed points and exposed rays} \ rel intr C
= conv{extreme points and extreme rays} \ rel intr C











(197)

Thus each and every extreme point of a convex set (that is not a point) resides on its
relative boundary, while each and every extreme direction of a convex set (that is not a
halfline and contains no line) resides on its relative boundary because extreme points and
directions of such respective sets do not belong to relative interior by definition.

The relationship between extreme sets and the relative boundary actually goes deeper:
Any face F of convex set C (that is not C itself) belongs to rel ∂ C , so dimF < dim C .
[354, §18.1.3]
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D

C
B

A

0

Figure 45: Properties of extreme points carry over to extreme directions. [354, §18] Four
rays (drawn truncated) on boundary of conic hull of two-dimensional closed convex set
from Figure 35 lifted to R3. Ray through point A is exposed hence extreme. Extreme
direction B on cone boundary is not an exposed direction, although it belongs to the
exposed face cone{A , B}. Extreme ray through C is exposed. Point D is neither an
exposed or extreme direction although it belongs to a two-dimensional exposed face of the
conic hull.
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2.8.2.2 Converse caveat

It is inconsequent to presume that each and every extreme point and direction is necessarily
exposed, as might be erroneously inferred from the conventional boundary definition
(§2.6.1.4.1); although it can correctly be inferred: each and every extreme point and
direction belongs to some exposed face.

Arbitrary points residing on the relative boundary of a convex set are not necessarily
exposed or extreme points. Similarly, the direction of an arbitrary ray, base 0 , on the
boundary of a convex cone is not necessarily an exposed or extreme direction. For the
polyhedral cone illustrated in Figure 27, for example, there are three two-dimensional
exposed faces constituting the entire boundary, each composed of an infinity of rays. Yet
there are only three exposed directions.

Neither is an extreme direction on the boundary of a pointed convex cone necessarily
an exposed direction. Lift the two-dimensional set in Figure 35, for example, into three
dimensions such that no two points in the set are collinear with the origin. Then its conic
hull can have an extreme direction B on the boundary that is not an exposed direction,
illustrated in Figure 45.

2.9 Positive semidefinite (PSD) cone

The cone of positive semidefinite matrices studied in this section is arguably the
most important of all non-polyhedral cones whose facial structure we completely
understand.

−Alexander Barvinok [28, p.78]

2.9.0.0.1 Definition. Positive semidefinite cone.
The set of all symmetric positive semidefinite matrices of particular dimension M is called
the positive semidefinite cone:

SM
+ ,

{

A ∈ SM | A º 0
}

=
{

A ∈ SM | yTAy≥ 0 ∀ ‖y‖= 1
}

=
⋂

‖y‖=1

{

A ∈ SM | 〈yyT, A〉 ≥ 0
}

≡ {A ∈ SM
+ | rankA ≤ M }

(198)

formed by the intersection of an infinite number of halfspaces (§2.4.1.1) in vectorized
variable2.40 A , each halfspace having partial boundary containing the origin in isomorphic
RM(M+1)/2. It is a unique immutable proper cone (§2.7.2.2.1) in the ambient space of
symmetric matrices SM .

The positive definite (full-rank) matrices comprise the cone interior

intr SM
+ =

{

A ∈ SM | A ≻ 0
}

=
{

A ∈ SM | yTAy> 0 ∀ ‖y‖= 1
}

=
⋂

‖y‖=1

{

A ∈ SM | 〈yyT, A〉 > 0
}

= {A ∈ SM
+ | rankA = M }

(199)

2.40 infinite in number when M >1. Because yTA y=yTATy , matrix A is almost always assumed
symmetric. (§A.2.1)
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while all singular positive semidefinite matrices (having at least one 0 eigenvalue) reside
on the cone boundary (Figure 46); (§A.7.5)

∂SM
+ =

{

A ∈ SM | A º 0 , A ⊁ 0
}

=
{

A ∈ SM | min{λ(A)i , i=1 . . . M } = 0
}

=
{

A ∈ SM
+ | 〈yyT, A〉=0 for some ‖y‖= 1

}

= {A ∈ SM
+ | rankA < M }

(200)

where λ(A)∈ RM holds the eigenvalues of A . △

The only symmetric positive semidefinite matrix in SM
+ having M 0-eigenvalues resides

at the origin. (§A.7.3.0.1)

2.9.0.1 Membership

Observe notation Aº 0 denoting a positive semidefinite matrix;2.41 meaning
(confer §2.3.1.1), matrix A belongs to the positive semidefinite cone in the subspace of
symmetric matrices whereas A≻ 0 denotes membership to that cone’s interior. (§2.13.2)
Notation A≻ 0 , denoting a positive definite matrix, can be read: symmetric matrix A
exceeds the origin with respect to the positive semidefinite cone interior. These notations
further imply that coordinates [sic ] for orthogonal expansion of a positive (semi)definite
matrix must be its (nonnegative) positive eigenvalues (§2.13.8.1.1, §E.6.4.1.1) when
expanded in its eigenmatrices (§A.5.0.3); id est, eigenvalues must be (nonnegative)
positive.

Generalizing comparison on the real line, notation AºB denotes comparison with
respect to the positive semidefinite cone and denotes partial order on the symmetric
matrices; (§A.3.1) id est,

A ºB ⇔ A−B∈ SM
+ (201)

but neither matrix A or B necessarily belongs to the positive semidefinite cone. Yet,
(1663) AºB , Bº 0 ⇒ Aº0 ; id est, A∈ SM

+ . (confer Figure 67)

2.9.0.1.1 Example. Equality constraints in semidefinite program (686).
Employing properties of partial order (§2.7.2.2) for the pointed closed convex positive
semidefinite cone, it is easy to show, given A + S = C

S º 0 ⇔ A ¹ C
S ≻ 0 ⇔ A ≺ C

(202)

2

2.9.1 Positive semidefinite cone is convex

The set of all positive semidefinite matrices forms a convex cone in the ambient space of
symmetric matrices because any pair satisfies definition (180); [237, §7.1] videlicet, for all
ζ1 , ζ2 ≥ 0 and each and every A1 , A2 ∈ SM

ζ1 A1 + ζ2 A2 º 0 ⇐ A1 º 0 , A2 º 0 (203)

a fact easily verified by the definitive test for positive semidefiniteness of a symmetric
matrix (§A):

A º 0 ⇔ xTA x ≥ 0 for each and every ‖x‖= 1 (204)

2.41 the same as nonnegative definite matrix.
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α

√
2β

γ

svec ∂ S2

+

[

α β
β γ

]

Minimal set of generators are the extreme directions: svec{yyT | y∈RM}

Figure 46: (d’Aspremont) Truncated boundary of PSD cone in S2 plotted in isometrically
isomorphic R3 via svec (59); 0-contour of smallest eigenvalue (200). Lightest shading
is closest, darkest shading is farthest and inside shell. Entire boundary can be
constructed from an aggregate of rays (§2.7.0.0.1) emanating exclusively from origin:
{

κ2[ z2
1

√
2z1z2 z2

2 ]T | κ∈R , z∈R2
}

. A circular cone in this dimension (§2.9.2.8), each
and every ray on boundary corresponds to an extreme direction but such is not the
case in any higher dimension (confer Figure 27). PSD cone geometry is not as simple
in higher dimensions [28, §II.12] although PSD cone is selfdual (387) in ambient real space
of symmetric matrices. [230, §II] PSD cone has no two-dimensional face in any dimension,
its only extreme point residing at 0.
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X

x

C

\C

Figure 47: Convex set C={X∈ S × x∈R | Xº xxT} drawn truncated.

id est, for A1 , A2 º 0 and each and every ζ1 , ζ2 ≥ 0

ζ1 xTA1 x + ζ2 xTA2 x ≥ 0 for each and every normalized x∈ RM (205)

The convex cone SM
+ is more easily visualized in the isomorphic vector space

RM(M+1)/2 whose dimension is the number of free variables in a symmetric M×M matrix.
When M = 2 the PSD cone is semiinfinite in expanse in R3, having boundary illustrated
in Figure 46. When M = 3 the PSD cone is six-dimensional, and so on.

2.9.1.0.1 Example. Sets from maps of positive semidefinite cone.
The set

C = {X∈ Sn× x∈Rn | Xº xxT} (206)

is convex because it has Schur-form; (§A.4)

X − xxTº 0 ⇔ f(X , x) ,

[

X x
xT 1

]

º 0 (207)

e.g, Figure 47. Set C is the inverse image (§2.1.9.0.1) of Sn+1
+ under affine mapping f .

The set \C={X∈ Sn× x∈Rn | X≺ xxT} is not convex, in contrast, having no Schur-form.
Yet for fixed x = xp , the set

{X∈ Sn | X¹ xpxT
p } (208)

is simply the negative semidefinite cone shifted to xpxT
p . 2

2.9.1.0.2 Example. Inverse image of positive semidefinite cone.
Now consider finding the set of all matrices X∈ SN satisfying

AX + B º 0 (209)

given A,B∈ SN . Define the set

X , {X | AX + B º 0} ⊆ SN (210)

which is the inverse image of the positive semidefinite cone under affine transformation
g(X),AX+B . Set X must therefore be convex by Theorem 2.1.9.0.1.
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Yet we would like a less amorphous characterization of this set, so instead we consider
its vectorization (39) which is easier to visualize:

vec g(X) = vec(AX) + vec B = (I ⊗A) vec X + vec B (211)

where

I ⊗A , QΛQT∈ SN 2

(212)

is block-diagonal formed by Kronecker product (§A.1.1 no.33, §D.1.2.1). Assign

x , vec X ∈ RN 2

b , vec B ∈ RN 2 (213)

then make the equivalent problem: Find

vecX = {x∈RN 2 | (I ⊗A)x + b ∈ K} (214)

where

K , vec SN
+ (215)

is a proper cone isometrically isomorphic with the positive semidefinite cone in the
subspace of symmetric matrices; the vectorization of every element of SN

+ . Utilizing
the diagonalization (212),

vecX = {x | ΛQTx ∈ QT(K − b)}
= {x | ΦQTx ∈ Λ†QT(K − b)} ⊆ RN 2 (216)

where † denotes matrix pseudoinverse (§E) and

Φ , Λ†Λ (217)

is a diagonal projection matrix whose entries are either 1 or 0 (§E.3). We have the
complementary sum

ΦQTx + (I − Φ)QTx = QTx (218)

So, adding (I − Φ)QTx to both sides of the membership within (216) admits

vecX = {x∈RN 2 | QTx ∈ Λ†QT(K − b) + (I − Φ)QTx}
= {x | QTx ∈ Φ

(

Λ†QT(K − b)
)

⊕ (I − Φ)RN 2}
= {x ∈ QΛ†QT(K − b) ⊕ Q(I − Φ)RN 2}
= (I ⊗A)†(K − b) ⊕ N (I ⊗A)

(219)

where we used the facts: linear function QTx in x on RN 2

is a bijection, and ΦΛ†= Λ†.

vecX = (I ⊗A)† vec(SN
+ − B) ⊕ N (I ⊗A) (220)

In words, set vecX is the vector sum of the translated PSD cone (linearly mapped onto
the rowspace of I ⊗A (§E)) and the nullspace of I ⊗A (synthesis of fact from §A.6.2
and §A.7.3.0.1). Should I ⊗A have no nullspace, then vecX =(I ⊗A)−1 vec(SN

+ − B)
which is the expected result. 2
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(a) (b)

√
2β

α

[

α β
β γ

]

svec S2

+

Figure 48: (a) Projection of truncated PSD cone S2

+ , truncated above γ=1 , on

αβ-plane in isometrically isomorphic R3. View is from above with respect to Figure 46.
(b) Truncated above γ=2. From these plots we might infer, for example, line
{

[ 0 1/
√

2 γ ]T | γ∈R
}

intercepts PSD cone at some large value of γ ; in fact, γ=∞.
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2.9.2 Positive semidefinite cone boundary

For any symmetric positive semidefinite matrix A of rank ρ , there must exist a rank ρ
matrix Y such that A be expressible as an outer product in Y ; [379, §6.3]

A = Y Y T∈ SM
+ , rankA = rankY = ρ , Y ∈ RM×ρ (221)

Then the boundary of the positive semidefinite cone may be expressed

∂SM
+ =

{

A ∈ SM
+ | rankA<M

}

=
{

Y Y T | Y ∈ RM×M−1
}

(222)

Because the boundary of any convex body is obtained with closure of its relative interior
(§2.1.7, §2.1.7.2), from (199) we must also have

SM
+ =

{

A ∈ SM
+ | rankA=M

}

=
{

Y Y T | Y ∈ RM×M , rankY =M
}

=
{

Y Y T | Y ∈ RM×M
}

(223)

2.9.2.1 rank ρ subset of the positive semidefinite cone

For the same reason (closure), this applies more generally; for 0≤ρ≤M

{

A ∈ SM
+ | rankA= ρ

}

=
{

A ∈ SM
+ | rankA≤ ρ

}

(224)

For easy reference, we give such generally nonconvex sets a name: rank ρ subset of a
positive semidefinite cone. For ρ < M this subset, nonconvex for M > 1 , resides on the
positive semidefinite cone boundary.

2.9.2.1.1 Exercise. Closure and rank ρ subset.
Prove equality in (224). Are rank ρ subsets connected sets? H

For example,

∂SM
+ =

{

A ∈ SM
+ | rankA=M− 1

}

=
{

A ∈ SM
+ | rankA≤M− 1

}

(225)

In S2, each and every ray on the boundary of the positive semidefinite cone in isomorphic
R3 corresponds to a symmetric rank-1 matrix (Figure 46); but that does not hold in any
higher dimension.

2.9.2.2 Subspace tangent to open rank ρ subset

When the positive semidefinite cone subset in (224) is left unclosed as in

M(ρ) ,
{

A ∈ SN
+ | rankA= ρ

}

(226)

then we can specify a subspace tangent to the positive semidefinite cone at a particular
member of manifold M(ρ). Specifically, the subspace RM tangent to manifold M(ρ) at
B∈M(ρ) [221, §5, prop.1.1]

RM(B) , {XB + BXT | X∈ RN×N} ⊆ SN (227)

has dimension

dim svecRM(B) = ρ

(

N − ρ − 1

2

)

= ρ(N − ρ) +
ρ(ρ + 1)

2
(228)
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Tangent subspace RM contains no member of the positive semidefinite cone SN
+ whose

rank exceeds ρ .

Subspace RM(B) is a hyperplane supporting SN
+ when B∈M(N−1). Another

good example of tangent subspace is given in §E.7.2.0.2 by (2231); RM(11T) = SN⊥
c ,

orthogonal complement to the geometric center subspace. (Figure 170 p.432)

2.9.2.3 Faces of PSD cone, their dimension versus rank

Define F(SM
+ ∋A) (176) as the smallest face, that contains a given positive semidefinite

matrix A , of positive semidefinite cone SM
+ . Then matrix A , having rank ρ and ordered

diagonalization A = QΛQT∈ SM
+ (§A.5.1), is relatively interior to2.42 [279] [28, §II.12]

[131, §31.5.3] [278, §2.4]

F
(

SM
+ ∋A

)

= {X∈ SM
+ | N (X) ⊇ N (A)}

= {X∈ SM
+ | 〈Q(I − ΛΛ†)QT, X 〉 = 0}

= {QΛΛ†ΨΛΛ†QT |Ψ∈ SM
+ }

= QΛΛ† SM
+ ΛΛ†QT

= Q(: , 1:ρ)Sρ
+Q(: , 1:ρ)T

≃ Sρ
+

(229)

which is isomorphic with convex cone Sρ
+ ; e.g, Q SM

+ QT = SM
+ . The larger the nullspace

of A , the smaller the face. (144) Thus dimension of the smallest face that contains given
matrix A is

dimF
(

SM
+ ∋A

)

= ρ(ρ + 1)/2 (230)

in isomorphic RM(M+1)/2.

Each and every face of SM
+ is isomorphic with a positive semidefinite cone having

dimension the same as the face. Observe: not all dimensions are represented, and the only
zero-dimensional face is the origin; e.g, a positive semidefinite cone has no facets:

2.9.2.3.1 Table: Rank ρ versus dimension of S3

+ faces

ρ dimF
(

S3

+∋ rank-ρ matrix
)

0 0
boundary ≤1 1

≤2 3

interior ≤3 6

For positive semidefinite cone S2

+ in isometrically isomorphic R3 depicted in Figure 46,
rank-2 matrices belong to the interior of that face having dimension 3 (the entire closed
cone), rank-1 matrices belong to relative interior of a face having dimension2.43 1 , and
the only rank-0 matrix is the point at the origin (the zero-dimensional face).

2.42For X∈ S
M
+ , A= QΛQT∈ S

M
+ , show: N (X)⊇ N (A) ⇔ 〈Q(I − ΛΛ†)QT, X 〉 = 0.

Given 〈Q(I − ΛΛ†)QT, X 〉 = 0 ⇔ R(X)⊥ N (A). (§A.7.4)
(⇒) Assume N (X)⊇ N (A) , then R(X)⊥ N (X)⊇ N (A).
(⇐) Assume R(X)⊥ N (A) , then X Q(I − ΛΛ†)QT = 0 ⇒ N (X)⊇ N (A). ¨
2.43The boundary constitutes all the one-dimensional faces, in R

3, which are rays emanating from the
origin.
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2.9.2.3.2 Exercise. Bijective isometry.
Prove that the smallest face of positive semidefinite cone SM

+ , containing a particular
full-rank matrix A having ordered diagonalization QΛQT, is the entire cone: id est, prove
Q SM

+ QT = SM
+ from (229). H

2.9.2.4 rank-ρ face of PSD cone

Because each and every face of the positive semidefinite cone contains the origin
(§2.8.0.0.1), each face belongs to a subspace of dimension the same as the face; from (229)

F
(

SM
+ ∋A

)

⊆ SF , Q(: , 1:ρ)SρQ(: , 1:ρ)T ≃ Sρ (231)

Because Q(: , 1:ρ)T SMQ(: , 1:ρ) = Sρ, a surjection, projection of any matrix Y ∈ SM on
this subspace SF ⊆ SM is expressed P Y P (§E.7) where P , Q(: , 1:ρ)Q(: , 1:ρ)T. SF is
the smallest subspace containing F .

Each and every face of the positive semidefinite cone, having dimension less than that
of the cone, is exposed. [286, §6] [251, §2.3.4] Any rank-ρ<M positive semidefinite matrix
A belongs to a face, of positive semidefinite cone SM

+ , described by intersection with a

hyperplane: for ordered diagonalization of A=QΛQT∈ SM
+ Ä rank(A)= ρ<M

F
(

SM
+ ∋A

)

= {X∈ SM
+ | 〈Q(I − ΛΛ†)QT, X 〉 = 0}

=

{

X∈ SM
+

∣

∣

∣

∣

〈

Q

(

I −
[

I∈ Sρ 0
0T 0

])

QT, X

〉

= 0

}

= SM
+ ∩ ∂H+

≃ Sρ
+

(232)

Faces are doubly indexed: continuously indexed by orthogonal matrix Q , and
discretely indexed by rank ρ . Each and every orthogonal matrix Q makes projectors
Q(: , ρ+1:M)Q(: , ρ+1:M)T indexed by ρ , in other words, each projector describing
a normal2.44 svec

(

Q(: , ρ+1:M)Q(: , ρ+1:M)T
)

to a supporting hyperplane ∂H+

(containing the origin) exposing a face (§2.11) of the positive semidefinite cone that
contains rank-ρ (and less) matrices.

2.9.2.4.1 Exercise. Simultaneously diagonalizable means commutative.
Given diagonalization of rank-ρ≤M positive semidefinite matrix A = QΛQT and any
particular Ψº 0 , both in SM from (229), show how I−ΛΛ† and ΛΛ†ΨΛΛ† share a
complete set of eigenvectors. H

2.9.2.5 PSD cone face containing principal submatrix

A principal submatrix of a matrix A∈RM×M is formed by discarding any particular subset
of its rows and columns having the same indices. There are M !/(1!(M−1)!) principal
1×1 submatrices, M !/(2!(M−2)!) principal 2×2 submatrices, and so on, totaling 2M − 1
principal submatrices including A itself. Principal submatrices of a symmetric matrix are
symmetric. A given symmetric matrix has rank ρ iff it has a nonsingular ρ×ρ principal
submatrix but none larger. [343, §5-10] By loading vector y in test yTAy (§A.2) with various
binary patterns, it follows that any principal submatrix must be positive (semi)definite
whenever A is (Theorem A.3.1.0.4). If positive semidefinite matrix A∈SM

+ has principal
submatrix of dimension ρ with rank r , then rankA ≤ M−ρ+r by (1711).

2.44Any vectorized nonzero matrix ∈ S
M
+ is normal to a hyperplane supporting S

M
+ (§2.13.1) because PSD

cone is selfdual. Normal on boundary exposes nonzero face by (337) (338).

https://books.google.com/books?id=5_sxtcnvLhoC&pg=PA103&lpg=PA103&dq=rank+of+principal+submatrix&source=bl&ots=Zof_uQkJFG&sig=W-BlCkeQ1JrExj01v8G13F-fm9U&hl=en&ei=dH3jS5ezKIqYsgOM1_i6DQ&sa=X&oi=book_result&ct=result&resnum=4&ved=0CCMQ6AEwAw#v=onepage&q=rank%20of%20principal%20submatrix&f=false
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Because each and every principal submatrix of a positive semidefinite matrix in SM

is PSD, then each principal submatrix belongs to a certain face of cone SM
+ by (230).

Of special interest are full-rank positive semidefinite principal submatrices, for then
description of smallest face becomes simpler. We can find the smallest face, that contains
a particular complete full-rank principal submatrix of A , by embedding that submatrix
in a 0 matrix of the same dimension as A : Were Φ a binary diagonal matrix

Φ = δ2(Φ)∈ SM , Φii∈ {0 , 1} (233)

having diagonal entry 0 corresponding to a discarded row and column from A∈ SM
+ , then

any principal submatrix2.45 so embedded can be expressed ΦAΦ ; id est, for an embedded
principal submatrix ΦAΦ∈SM

+ Ä rank ΦAΦ = rank Φ≤ rankA

F
(

SM
+ ∋ΦAΦ

)

= {X∈ SM
+ | N (X) ⊇ N (ΦAΦ)}

= {X∈ SM
+ | 〈I − Φ , X 〉 = 0}

= {ΦΨΦ |Ψ∈ SM
+ }

≃ Srank Φ
+

(234)

The smallest face that contains an embedded principal submatrix, whose rank is
not necessarily full, may be expressed like (229): For embedded principal submatrix
ΦAΦ∈SM

+ Ä rank ΦAΦ≤ rank Φ , apply ordered diagonalization instead to

Φ̂TA Φ̂ = UΥUT∈ Srank Φ
+ (235)

where U−1 = UT is an orthogonal matrix and Υ= δ2(Υ) is diagonal. Then

F
(

SM
+ ∋ΦAΦ

)

= {X∈ SM
+ | N (X) ⊇ N (ΦAΦ)}

= {X∈ SM
+ | 〈Φ̂U(I − ΥΥ†)UTΦ̂T + I − Φ , X 〉 = 0}

= {Φ̂UΥΥ†ΨΥΥ†UTΦ̂T |Ψ∈ Srank Φ
+ }

≃ Srank ΦAΦ
+

(236)

where binary diagonal matrix Φ is partitioned into nonzero and zero columns by
permutation Ξ∈RM×M ;

ΦΞT , [ Φ̂ 0 ]∈RM×M , rank Φ̂ = rankΦ , Φ = Φ̂Φ̂T∈ SM , Φ̂TΦ̂ = I (237)

Any embedded principal submatrix may be expressed

ΦAΦ = Φ̂Φ̂TA Φ̂Φ̂T∈ SM
+ (238)

where Φ̂TA Φ̂∈ Srank Φ
+ extracts the principal submatrix whereas Φ̂Φ̂TA Φ̂Φ̂T embeds it.

2.9.2.5.1 Example. Smallest face containing disparate elements.
Smallest face formula (229) can be altered to accommodate a union of points {Ai∈ SM

+ } :

F
(

SM
+ ⊃

⋃

i

Ai

)

=

{

X∈ SM
+

∣

∣

∣ N (X) ⊇
⋂

i

N (Ai)

}

(239)

2.45To express a leading principal submatrix, for example, Φ =

[

I 0
0T 0

]

.
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To see that, imagine two vectorized matrices A1 and A2 on diametrically opposed
sides of the positive semidefinite cone S2

+ boundary pictured in Figure 46. Regard

svec A1 as normal to a hyperplane in R3 containing a vectorized basis for its nullspace:
svec basisN (A1) (§2.5.2.0.1). Similarly, there is a second hyperplane containing
svec basisN (A2) having normal svecA2 . While each hyperplane is two-dimensional,
each nullspace has only one affine dimension because A1 and A2 are rank-1. Because
our interest is only that part of the nullspace in the positive semidefinite cone, then by

〈X , Ai〉 = 0 ⇔ XAi = AiX = 0 , X , Ai∈ SM
+ (1776)

we may ignore the fact that vectorized nullspace svec basisN (Ai) is a proper subspace
of the hyperplane. We may think, instead, in terms of whole hyperplanes because
equivalence (1776) says that the positive semidefinite cone effectively filters that subset of
the hyperplane, whose normal is Ai , constituting N (Ai) = N (AT

i ).

And so hyperplane intersection makes a line intersecting positive semidefinite cone S2

+

but only at the origin. In this hypothetical example, the smallest face containing those two
matrices A1 and A2 therefore comprises the entire cone because every positive semidefinite
matrix has nullspace containing 0. The smaller the intersection, the larger the smallest
face. 2

2.9.2.5.2 Exercise. Disparate elements.
Prove that (239) holds for an arbitrary set {Ai∈ SM

+ ∀ i∈ I}. One way is by showing
⋂N (Ai)∩ SM

+ = conv({Ai})⊥∩ SM
+ ; with perpendicularity ⊥ as in (381).2.46 H

2.9.2.6 face of all PSD matrices having same principal submatrix

Now we ask what is the smallest face of the positive semidefinite cone containing all
matrices having a complete principal submatrix in common; in other words, that face
containing all PSD matrices (of any rank) with particular entries fixed - the smallest
face containing all PSD matrices whose fixed entries correspond to some given embedded
principal submatrix ΦAΦ . To maintain generality,2.47 we move an extracted principal
submatrix Φ̂TA Φ̂∈ Srank Φ

+ into leading position via permutation Ξ from (237): for A∈ SM
+

ΞAΞT ,

[

Φ̂TA Φ̂ B
BT C

]

∈ SM
+ (240)

By properties of partitioned PSD matrices in §A.4.0.1,

basisN
([

Φ̂TA Φ̂ B
BT C

])

⊇
[

0
I − CC†

]

(241)

Hence N (ΞXΞT) ⊇ N (ΞAΞT) + span

[

0
I

]

in a smallest face F formula2.48 because all

PSD matrices, given fixed principal submatrix, are admitted: Define a set of all PSD
matrices

S+ ,

{

A = ΞT

[

Φ̂TA Φ̂ B
BT C

]

Ξ º 0

∣

∣

∣

∣

B∈Rrank Φ×M−rank Φ, C∈ SM−rank Φ
+

}

(242)

2.46Hint: (1776) (2125).
2.47 to fix any principal submatrix; not only leading principal submatrices.
2.48 meaning, more pertinently, I − Φ is dropped from (236).
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having fixed embedded principal submatrix ΦAΦ = ΞT

[

Φ̂TA Φ̂ 0
0T 0

]

Ξ . So

F
(

SM
+ ⊇S+

)

=
{

X∈ SM
+ | N (X) ⊇ N (S+)

}

= {X∈ SM
+ | 〈Φ̂U(I − ΥΥ†)UTΦ̂T, X 〉 = 0}

=

{

ΞT

[

UΥΥ† 0
0T I

]

Ψ

[

ΥΥ†UT 0
0T I

]

Ξ

∣

∣

∣

∣

Ψ∈ SM
+

}

≃ SM−rank Φ+rank ΦAΦ
+

(243)

Ξ= I whenever ΦAΦ denotes a leading principal submatrix. Smallest face of the positive
semidefinite cone, containing all matrices having the same full-rank principal submatrix
(ΥΥ†= I , Υº 0), is the entire cone (Exercise 2.9.2.3.2).

2.9.2.7 Extreme directions of positive semidefinite cone

Because the positive semidefinite cone is pointed (§2.7.2.1.2), there is a one-to-one
correspondence of one-dimensional faces with extreme directions in any dimension M ;
id est, because of the cone faces lemma (§2.8.0.0.1) and direct correspondence of exposed
faces to faces of SM

+ , it follows: there is no one-dimensional face of the positive semidefinite
cone that is not a ray emanating from the origin.

Symmetric dyads constitute the set of all extreme directions: For M > 1

{yyT∈ SM | y∈RM} ⊂ ∂SM
+ (244)

this superset of extreme directions (infinite in number, confer (194)) for the positive
semidefinite cone is a proper subset of the boundary when M > 2. By extremes theorem
2.8.1.1.1, the convex hull of extreme rays and origin is the positive semidefinite cone:
(§2.8.1.2.1)

conv{yyT∈ SM | y∈RM} =

{ ∞
∑

i=1

bi ziz
T
i | zi∈RM , bº0

}

= SM
+ (245)

For two-dimensional matrices (M =2 , Figure 46)

{yyT∈ S2 | y∈R2} = ∂S2

+ (246)

while for one-dimensional matrices, in exception, (M =1 , §2.7)

{yy∈ S | y 6=0} = intr S+ (247)

Each and every extreme direction yyT makes the same angle with the Identity matrix
in isomorphic RM(M+1)/2, dependent only on dimension; videlicet,2.49

Á(yyT, I ) = arccos
〈yyT, I 〉

‖yyT‖F ‖I‖F
= arccos

(

1√
M

)

∀ y ∈ RM (248)

This means the positive semidefinite cone broadens in higher dimension.

2.49Analogy with respect to the EDM cone is considered in [220, p.162] where it is found: angle is not
constant. Extreme directions of the EDM cone can be found in §6.4.3.2. The cone’s axis is −E = 11T− I
(1213).
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2.9.2.7.1 Example. Positive semidefinite matrix from extreme directions.
Diagonalizability (§A.5) of symmetric matrices yields the following results:

Any positive semidefinite matrix (1627) in SM can be written in the form

A =

M
∑

i=1

λi ziz
T
i = ÂÂT =

∑

i

âi â
T
i º 0 , λ º 0 (249)

a conic combination of linearly independent extreme directions (âi â
T
i or ziz

T
i , ‖zi‖=1)

of the positive semidefinite cone, where λ is a vector of eigenvalues.
If we limit consideration to all symmetric positive semidefinite matrices bounded via

unity trace
C , {A º 0 | tr A = 1} (94)

then any matrix A from that set may be expressed as a convex combination of linearly
independent extreme directions;

A =

M
∑

i=1

λi ziz
T
i ∈ C , 1Tλ = 1 , λ º 0 (250)

Implications are:

1. set C is convex (an intersection of PSD cone with hyperplane),

2. because the set of eigenvalues corresponding to a given square matrix A is unique
(§A.5.0.1), no single eigenvalue can exceed 1 ; id est, I ºA

3. and the converse holds: set C is an instance of Fantope (94). 2

2.9.2.7.2 Exercise. Extreme directions of positive semidefinite cone.
Prove, directly from definition (193), that symmetric dyads (244) constitute the set of all
extreme directions of the positive semidefinite cone. H

2.9.2.8 Positive semidefinite cone is generally not circular

Extreme angle equation (248) suggests that the positive semidefinite cone might be
invariant to rotation about its axis of revolution; id est, a circular cone. We investigate
this now:

2.9.2.8.1 Definition. Circular cone:2.50

a pointed closed convex cone having hyperspherical sections orthogonal to its axis of
revolution about which the cone is invariant to rotation. △

A conic section is the intersection of a cone with any hyperplane. In three dimensions,
an intersecting plane perpendicular to a circular cone’s axis of revolution produces a
section bounded by a circle. (Figure 49) A prominent example of circular cone, in convex
analysis, is Lorentz cone (183). We also find that the positive semidefinite cone and cone
of Euclidean distance matrices are circular cones, but only in low dimension.

The positive semidefinite cone has axis of revolution that is the ray (base 0) through
the Identity matrix I . Consider a set of normalized extreme directions of the positive
semidefinite cone: for some arbitrary positive constant a∈R+

{yyT∈ SM | ‖y‖ =
√

a} ⊂ ∂SM
+ (251)

2.50A circular cone is assumed convex throughout, although not so by other authors. We also assume a
right circular cone.
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0

R

Figure 49: This solid circular cone in R3 continues upward infinitely. Axis of revolution
is illustrated as vertical line through origin. R represents radius: distance measured from
an extreme direction to axis of revolution. Were this a Lorentz cone, any plane slice
containing axis of revolution would make a right angle.
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a
M I

θ a
M 11T

yyT

R

Figure 50: Illustrated is a section, perpendicular to axis of revolution, of circular cone
from Figure 49. Radius R is distance from any extreme direction to axis at a

M I . Vector
a
M 11T is an arbitrary reference by which to measure angle θ .

The distance from each extreme direction to the axis of revolution is radius

R , inf
c
‖yyT− cI‖F = a

√

1 − 1

M
(252)

which is the distance from yyT to a
M I ; the length of vector yyT− a

M I .
Because distance R (in a particular dimension) from the axis of revolution to each and

every normalized extreme direction is identical, the extreme directions lie on the boundary
of a hypersphere in isometrically isomorphic RM(M+1)/2. From Example 2.9.2.7.1, the
convex hull (excluding vertex at the origin) of the normalized extreme directions is a
conic section

C , conv{yyT | y∈RM , yTy = a} = SM
+ ∩ {A∈ SM | 〈I , A〉 = a} (253)

orthogonal to Identity matrix I ;

〈

C− a

M
I , I

〉

= tr(C− a

M
I ) = 0 (254)

Proof. Although the positive semidefinite cone possesses some characteristics of a
circular cone, we can show that it is not by demonstrating shortage of extreme directions;
id est, some extreme directions corresponding to each and every angle of rotation about
the axis of revolution are nonexistent: Referring to Figure 50, [456, §1-7]

cos θ =

〈

a
M 11T− a

M I , yyT− a
M I

〉

a2(1 − 1
M )

(255)

Solving for vector y we get

a(1 + (M−1) cos θ) = (1Ty)2 (256)

which does not have real solution ∀ 0≤ θ≤ 2π in every matrix dimension M . ¨
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From the foregoing proof we can conclude that the positive semidefinite cone might
be circular but only in matrix dimensions 1 and 2. [158] Because of a shortage of
extreme directions, conic section (253) cannot be hyperspherical by the extremes theorem
(§2.8.1.1.1, Figure 45).

2.9.2.8.2 Exercise. Circular semidefinite cone. [13, §3.1.2]
Prove the positive semidefinite cone to be circular in matrix dimensions 1 and 2 while it
is a rotation of Lorentz cone (183) in matrix dimension 2 .2.51 H

2.9.2.8.3 Example. Positive semidefinite cone inscription in three dimensions.

Theorem. Geršgorin discs. [237, §6.1] [416] [295, p.140]
Given A=[Aij ]∈ Sm, all its eigenvalues belong to a union of m closed intervals on
the real line; for p∈Rm

+

λ(A) ∈
m
⋃

i=1















ξ ∈ R |ξ − Aii| ≤ ̺i ,
1

pi

m
∑

j=1
j 6= i

pj |Aij |















=
m
⋃

i=1

[Aii−̺i , Aii+̺i] (257)

Furthermore, if a union of k of these m [intervals] forms a connected region
that is disjoint from all the remaining n−k [intervals], then there are precisely
k eigenvalues of A in this region. ⋄

To apply the theorem to determine positive semidefiniteness of symmetric matrix A ,
observe that for each i we must have

Aii ≥ ̺i (258)

Suppose
m = 2 (259)

so A∈ S2. Vectorizing A as in (59), svec A belongs to isometrically isomorphic R3. Then
we have m2m−1 = 4 inequalities, in the matrix entries Aij with Geršgorin parameters
p = [pi]∈R2

+ ,

p1A11 ≥ ±p2A12

p2A22 ≥ ±p1A12
(260)

which describe an intersection of four halfspaces in Rm(m+1)/2. That intersection creates
the proper polyhedral cone K (§2.12.1) whose construction is illustrated in Figure 51.
Drawn truncated is the boundary of the positive semidefinite cone svec S2

+ and the
bounding hyperplanes supporting K .

Created by means of Geršgorin discs, K always belongs to the positive semidefinite cone
for any nonnegative value of p∈Rm

+ . Hence any point in K corresponds to some positive
semidefinite matrix A . Only the extreme directions of K intersect the positive semidefinite
cone boundary in this dimension; the four extreme directions of K are extreme directions of
the positive semidefinite cone. As p1/p2 increases in value from 0 , two extreme directions
of K sweep the entire boundary of this positive semidefinite cone. Because the entire
positive semidefinite cone can be swept by K , the system of linear inequalities

Y Tsvec A ,

[

p1 ±p2/
√

2 0

0 ±p1/
√

2 p2

]

svec A º 0 (261)

2.51Hint: Given cone

{[

α β/
√

2

β/
√

2 γ

]

|
√

α2+ β2 ≤ γ

}

, show 1√
2

[

γ + α β
β γ − α

]

to be a vector

rotation that is positive semidefinite under the same inequality.
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p1A11 ≥ ±p2A12
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Figure 51: Proper polyhedral cone K , created by intersection of halfspaces, inscribes
PSD cone in isometrically isomorphic R3 as predicted by Geršgorin discs theorem for
A=[Aij ]∈ S2. Hyperplanes supporting K intersect along boundary of PSD cone. Four
extreme directions of K coincide with extreme directions of PSD cone.
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(when made dynamic) can replace a semidefinite constraint Aº 0 ; id est, for

K = {z | Y Tz º 0} ⊂ svec Sm
+ (262)

given p where Y ∈ Rm(m+1)/2×m2m−1

svec A ∈ K ⇒ A ∈ Sm
+ (263)

but

∃ p Ä Y Tsvec A º 0 ⇔ A º 0 (264)

In other words, diagonal dominance [237, p.349, §7.2.3]

Aii ≥
m

∑

j=1
j 6= i

|Aij | , ∀ i = 1 . . . m (265)

is generally only a sufficient condition for membership to the PSD cone. But by dynamic
weighting p in this dimension, diagonal dominance was made necessary and sufficient.

2

In higher dimension (m > 2), boundary of the positive semidefinite cone is no longer
constituted completely by its extreme directions (symmetric rank-1 matrices); its geometry
becomes intricate. How all the extreme directions can be swept by an inscribed polyhedral
cone,2.52 similarly to the foregoing example, remains an open question.

2.9.2.8.4 Exercise. Dual inscription.
Find dual proper polyhedral cone K∗ from Figure 51. H

2.9.2.9 Boundary constituents of the positive semidefinite cone

2.9.2.9.1 Lemma. Sum of positive semidefinite matrices. (confer (1643))
For A,B∈ SM

+

rank(A + B) = rank(µA + (1−µ)B) (266)

over open interval (0 , 1) of µ . ⋄

Proof. Any positive semidefinite matrix belonging to the PSD cone has an eigenvalue
decomposition that is a positively scaled sum of linearly independent symmetric dyads. By
the linearly independent dyads definition in §B.1.1.0.1, rank of the sum A+B is equivalent
to the number of linearly independent dyads constituting it. Linear independence is
insensitive to further positive scaling by µ . The assumption of positive semidefiniteness
prevents annihilation of any dyad from the sum A +B . ¨

2.9.2.9.2 Example. Rank function quasiconcavity. (confer §3.15)
For A,B∈Rm×n [237, §0.4]

rankA + rankB ≥ rank(A + B) (267)

that follows from the fact [379, §3.6]

dimR(A) + dimR(B) = dimR(A + B) + dim(R(A) ∩R(B)) (268)

2.52It is not necessary to sweep the entire boundary in higher dimension.
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For A,B∈ SM
+

rankA + rankB ≥ rank(A + B) ≥ min{rankA , rankB} (1643)

that follows from the fact

N (A + B) = N (A) ∩ N (B) , A ,B∈ SM
+ (165)

Rank is a quasiconcave function on SM
+ because the right side inequality in (1643) has

concave form (671); videlicet, Lemma 2.9.2.9.1. 2

From this example we see, unlike convex functions, quasiconvex functions are not
necessarily continuous. (§3.15) We also glean:

2.9.2.9.3 Theorem. Convex subsets of positive semidefinite cone.
Subsets of the positive semidefinite cone SM

+ , for 0≤ρ≤M

SM
+ (ρ) , {X∈ SM

+ | rankX ≥ ρ} (269)

are pointed convex cones, but not closed unless ρ = 0 ; id est, SM
+ (0)= SM

+ . ⋄

Proof. Given ρ , a subset SM
+ (ρ) is convex if and only if convex combination of any

two members has rank at least ρ . That is confirmed by applying identity (266) from
Lemma 2.9.2.9.1 to (1643); id est, for A,B∈ SM

+ (ρ) on closed interval [0 , 1] of µ

rank(µA + (1−µ)B) ≥ min{rankA , rankB} (270)

It can similarly be shown, almost identically to proof of the lemma: any conic combination
of A,B in subset SM

+ (ρ) remains a member; id est, ∀ ζ , ξ≥ 0

rank(ζA + ξB) ≥ min{rank(ζA) , rank(ξB)} (271)

Therefore, SM
+ (ρ) is a convex cone. ¨

2.9.2.9.4 Exercise. Convex subsets of nonnegative orthant.
Illustrate an analogue to Theorem 2.9.2.9.3 for cardinality. H

Another proof of SM
+ (ρ) convexity can be made by projection arguments:

2.9.2.10 Projection on SM
+ (ρ)

Because these cones SM
+ (ρ) indexed by ρ (269) are convex, projection on them is

straightforward. Given a symmetric matrix H having diagonalization H , QΛQT∈ SM

(§A.5.1) with eigenvalues Λ arranged in nonincreasing order, then its Euclidean projection
(minimum-distance projection) on SM

+ (ρ)

PSM
+ (ρ)H = QΥ⋆QT (272)

corresponds to a map of its eigenvalues:

Υ⋆
ii =

{

max {ǫ , Λii} , i=1 . . . ρ
max {0 , Λii} , i=ρ+1 . . . M

(273)

where ǫ is positive but arbitrarily close to 0.
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2.9.2.10.1 Exercise. Projection on open convex cones.
Prove (273) using Theorem E.9.2.0.1. H

Because each H∈ SM has unique projection on SM
+ (ρ) (despite possibility of repeated

eigenvalues in Λ), we may conclude it is a convex set by the Bunt-Motzkin theorem
(§E.9.0.0.1).

Compare (273) to the well-known result regarding Euclidean projection on a rank ρ
subset of the positive semidefinite cone (§2.9.2.1)

SM
+ \SM

+ (ρ + 1) = {X∈ SM
+ | rankX ≤ ρ} (224)

PSM
+ \SM

+ (ρ+1)H = QΥ⋆QT (274)

As proved in §7.1.4, this projection of H corresponds to the eigenvalue map

Υ⋆
ii =

{

max {0 , Λii} , i=1 . . . ρ
0 , i=ρ+1 . . . M

(1461)

Together these two results (273) and (1461) mean: A higher-rank solution to projection
on the positive semidefinite cone lies arbitrarily close to any given lower-rank projection,
but not vice versa. Were the number of nonnegative eigenvalues in Λ known a priori not
to exceed ρ , then these two different projections would produce identical results in the
limit ǫ→ 0.

2.9.2.11 Uniting constituents

Interior of the PSD cone intr SM
+ is convex by Theorem 2.9.2.9.3, for example, because all

positive semidefinite matrices having rank M constitute the cone interior.
All positive semidefinite matrices of rank less than M constitute the cone boundary; an

amalgam of positive semidefinite matrices of different rank. Thus each nonconvex subset
of positive semidefinite matrices, for 0<ρ<M

{Y ∈ SM
+ | rankY = ρ} (275)

having rank ρ successively 1 lower than M , appends a nonconvex constituent to the cone
boundary; but only in their union is the boundary complete: (confer §2.9.2)

∂SM
+ =

M−1
⋃

ρ=0

{Y ∈ SM
+ | rankY = ρ} (276)

The composite sequence, the cone interior in union with each successive constituent,
remains convex at each step; id est, for 0≤k≤M

M
⋃

ρ=k

{Y ∈ SM
+ | rankY = ρ} (277)

is convex for each k by Theorem 2.9.2.9.3.

2.9.2.12 Peeling constituents

Proceeding the other way: To peel constituents off the complete positive semidefinite cone
boundary, one starts by removing the origin; the only rank-0 positive semidefinite matrix.
What remains is convex. Next, the extreme directions are removed because they constitute
all the rank-1 positive semidefinite matrices. What remains is again convex, and so on.
Proceeding in this manner eventually removes the entire boundary leaving, at last, the
convex interior of the PSD cone; all the positive definite matrices.
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2.9.2.12.1 Exercise. Difference A − B .
What about a difference of matrices A,B belonging to the PSD cone? Show:

� Difference of any two points on the boundary belongs to the boundary or exterior.

� Difference A−B , where A belongs to the boundary while B is interior, belongs to
the exterior. H

2.9.3 Barvinok’s proposition

Barvinok posits existence and quantifies an upper bound on rank of a positive semidefinite
matrix belonging to the intersection of the PSD cone with an affine subset:

2.9.3.0.1 Proposition. Affine intersection with PSD cone. [28, §II.13] [26, §2.2]
Consider finding a matrix X∈ SN satisfying

X º 0 , 〈Aj , X 〉 = bj , j =1 . . . m (2312)

given nonzero linearly independent (vectorized) Aj ∈ SN and real bj . Define the affine
subset

A , {X | 〈Aj , X 〉= bj , j =1 . . . m} ⊆ SN (2313)

If the intersection A ∩ SN
+ is nonempty given a number m of equalities, then there exists

a matrix X∈A ∩ SN
+ such that

rankX (rankX + 1)/2 ≤ m (278)

whence the upper bound2.53

rankX ≤
⌊√

8m + 1 − 1

2

⌋

(279)

Given desired rank instead, equivalently,

m < (rankX + 1)(rankX + 2)/2 (280)

An extreme point of A ∩ SN
+ satisfies (279) and (280). (confer §4.1.2.2) A matrix

X ,RTR is an extreme point if and only if the smallest face, that contains X , of A ∩ SN
+

has dimension 0 ; [278, §2.4] [279] id est, iff

dimF
(

(A ∩ SN
+ )∋X

)

= rank(X)(rank(X) + 1)/2 − rank
[

svec RA1R
T svec RA2R

T · · · svec RAmRT
]

(281)

(176) equals 0 in isomorphic RN(N+1)/2.
Now the intersection A ∩ SN

+ is assumed bounded: Assume a given nonzero upper
bound ρ on rank, a number of equalities

m=(ρ + 1)(ρ + 2)/2 (282)

and matrix dimension N≥ ρ + 2≥ 3. If the intersection is nonempty and bounded, then
there exists a matrix X∈A ∩ SN

+ such that

rankX ≤ ρ (283)

This represents a tightening of the upper bound; a reduction by exactly 1 of the bound
provided by (279) given the same specified number m (282) of equalities; id est,

rankX ≤
√

8m + 1 − 1

2
− 1 (284)

⋄
2.53

§4.1.2.2 contains an intuitive explanation. This bound is itself limited above, of course, by N ; a tight
limit corresponding to an interior point of S

N
+ .
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2.10 Conic independence (c.i.)

In contrast to extreme direction, the property conically independent direction is more
generally applicable; inclusive of all closed convex cones (not only pointed closed convex
cones). Arbitrary given directions {Γi∈Rn, i=1 . . . N} comprise a conically independent
set if and only if (confer §2.1.2, §2.4.2.3)

Γi ζi + · · · + Γj ζj − Γℓ = 0 , i 6= · · · 6=j 6=ℓ = 1 . . . N (285)

has no solution ζ∈RN
+ (ζi∈R+); in words, iff no direction from the given set

can be expressed as a conic combination of those remaining; e.g, Figure 52
[425, conic independence test (285) Matlab]. Arranging any set of generators for a
particular closed convex cone in a matrix columnar,

X , [ Γ1 Γ2 · · · ΓN ] ∈ Rn×N (286)

then this test of conic independence (285) may be expressed as a set of linear feasibility
problems: for ℓ = 1 . . . N

find ζ∈RN

subject to Xζ = Γℓ

ζ º 0
ζℓ = 0

(287)

If feasible for any particular ℓ , then the set is not conically independent.
To find all conically independent directions from a set via (287), generator Γℓ must

be removed from the set once it is found (feasible) conically dependent on remaining
generators in X . So, to continue testing remaining generators when Γℓ is found to be
dependent, Γℓ must be discarded from matrix X before proceeding. A generator Γℓ that
is instead found conically independent of remaining generators in X , on the other hand,
is conically independent of any subset of remaining generators. A c.i. set thus found is not
necessarily unique.

It is evident that linear independence (l.i.) of N directions implies their conic
independence;

� l.i. ⇒ c.i.

which suggests, number of l.i. generators in the columns of X cannot exceed number of
c.i. generators. Denoting by k the number of conically independent generators contained
in X , we have the most fundamental rank inequality for convex cones

dim aff K = dim aff[0 X ] = rankX ≤ k ≤ N (288)

Whereas N directions in n dimensions can no longer be linearly independent once N
exceeds n , conic independence remains possible:

2.10.0.0.1 Table: Maximum number of c.i. directions

dimension n supk (pointed) supk (not pointed)

0 0 0
1 1 2
2 2 4
3 ∞ ∞
...

...
...

Assuming veracity of this table, there is an apparent vastness between two and three
dimensions. These numbers of conically independent directions indicate:
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0
00

(a) (b) (c)

Figure 52: Vectors in R2 : (a) affinely and conically independent, (b) affinely independent
but not conically independent, (c) conically independent but not affinely independent.
None of the examples exhibits linear independence. (In general, a.i. < c.i.)

� Convex cones in dimensions 0 , 1 , and 2 must be polyhedral (§2.12.1).

� Full-dimensional pointed closed convex cones in dimensions 1 and 2 must be
simplicial. (§2.8.1.1 p.87, §2.12.3.1.1)

� Pointed polyhedral cones in dimension 3 and higher can have an infinite number of
faces; id est, can be full-dimensional and nonsimplicial (§2.12.3.1.1); e.g, Figure 53.

It is also evident that dimension of Euclidean space cannot exceed number of conically
independent directions possible;

� n ≤ supk

Conic independence is certainly one convex idea that cannot be completely explained by
a two-dimensional picture as Barvinok suggests (p.31) [28, p.vii].

2.10.1 Preservation of conic independence

Independence in the linear (§2.1.2.1), affine (§2.4.2.4), and conic senses can be preserved
under linear transformation. Suppose a matrix X∈ Rn×N (286) holds a conically
independent set columnar. Consider a transformation on the domain of such matrices

T (X) : Rn×N → Rn×N , XY (289)

where fixed matrix Y , [ y1 y2 · · · yN ]∈RN×N represents linear operator T . Conic
independence of {Xyi∈Rn, i=1 . . . N} demands, by definition (285),

Xyi ζi + · · · + Xyj ζj − Xyℓ = 0 , i 6= · · · 6=j 6=ℓ = 1 . . . N (290)

have no solution ζ∈RN
+ . That is ensured by conic independence of {yi∈RN} and by

R(Y )∩ N (X) = 0 ; seen by factoring out X .

2.10.1.1 linear maps of cones

[23, §7] If K is a convex cone in Euclidean space R and T is any linear mapping from
R to Euclidean space M , then T (K) is a convex cone in M and x ¹ y with respect
to K implies T (x)¹ T (y) with respect to T (K). If K is full-dimensional in R , then so
is T (K) in M .

If T is a linear bijection, then x ¹ y ⇔ T (x)¹ T (y). If K is pointed, then so is
T (K). And if K is closed, so is T (K). If F is a face of K , then T (F ) is a face of T (K).
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K

K

∂K∗

(a)

(b)

Figure 53: (a) A nonsimplicial pointed polyhedral cone (drawn truncated) in R3 having six
facets. The extreme directions, corresponding to six edges emanating from the origin, are
generators for this cone; not linearly independent but they must be conically independent.
(b) Boundary of dual cone K∗ (drawn truncated) is now added to the drawing of same K .
K∗ is polyhedral, proper, and has the same number of extreme directions as K has facets.
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Linear bijection is only a sufficient condition for pointedness and closedness; convex
polyhedra (§2.12) are invariant to any linear or inverse linear transformation [28, §I.9]
[354, p.44, thm.19.3].

2.10.2 Pointed closed convex K & conic independence

The following bullets can be derived from definitions (193) and (285) in conjunction with
the extremes theorem (§2.8.1.1.1):

The set of all extreme directions from a pointed closed convex cone K⊂Rn is not
necessarily a linearly independent set, yet it must be a conically independent set; (compare
Figure 27 on page 59 with Figure 53a)

� {extreme directions} ⇒ {c.i.}

When a conically independent set of directions from pointed closed convex cone K is known
to comprise generators, conversely, then all directions from that set must be extreme
directions of the cone;

� {extreme directions} ⇔ {c.i. generators of pointed closed convex K}

Barker & Carlson [23, §1] call the extreme directions a minimal generating set 2.54 for
a pointed closed convex cone. A minimal set of generators is therefore a conically
independent set of generators, and vice versa,2.55 for a pointed closed convex cone.

An arbitrary collection of n or fewer distinct extreme directions, from pointed closed
convex cone K⊂Rn, is not necessarily a linearly independent set; e.g, dual extreme
directions (493) from Example 2.13.12.0.3.

� {≤ n extreme directions in Rn} ; { l.i.}

Linear dependence of few extreme directions is another convex idea that cannot be
explained by a two-dimensional picture as Barvinok suggests (p.31) [28, p.vii]; indeed,
it only first comes to light in four dimensions! But there is a converse: [377, §2.10.9]

� {extreme directions} ⇐ {l.i. generators of closed convex K}

2.10.2.0.1 Example. Vertex-description of halfspace H about origin.
From n + 1 points in Rn we can make a vertex-description of a convex cone that is
a halfspace H , where {xℓ∈Rn, ℓ=1 . . . n} constitutes a minimal set of generators for a
hyperplane ∂H through the origin. An example is illustrated in Figure 54. By demanding
the augmented set {xℓ∈Rn, ℓ=1 . . . n+1} be affinely independent (we want vector xn+1

not parallel to ∂H ), then

H =
⋃

ζ≥0

(ζ xn+1 + ∂H)

= {ζ xn+1 + cone{xℓ∈Rn, ℓ=1 . . . n} | ζ≥ 0}
= cone{xℓ∈Rn, ℓ=1 . . . n + 1}

(291)

a union of parallel hyperplanes. Cardinality is one step beyond dimension of the ambient
space, but {xℓ ∀ ℓ} is a minimal set of generators for this convex cone H which has no
extreme elements. 2

2.54A minimal generating set for any polyhedral cone (§2.12.1) is known as a frame; e.g, Figure 54.
2.55This converse does not hold for nonpointed closed convex cones as Table 2.10.0.0.1 implies; e.g,
ponder four conically independent generators for a plane (n=2 , Figure 52).
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0

H

x1

x2

x3

∂H

Figure 54: Minimal set of generators X = [x1 x2 x3 ]∈R2×3 (not extreme directions) for
halfspace about origin; affinely and conically independent. Any halfspace, about origin, is
a polyhedral cone (§2.12.1) but is not pointed.

2.10.2.0.2 Exercise. Enumerating conically independent directions.
Do Example 2.10.2.0.1 in R and R3 by drawing two figures corresponding to Figure 54
and enumerating n + 1 conically independent generators for each. Describe a nonpointed
polyhedral cone in three dimensions having more than eight conically independent
generators. (confer Table 2.10.0.0.1) H

2.10.3 Utility of conic independence

Perhaps the most useful application of conic independence is determination of the
intersection of closed convex cones from their halfspace-descriptions, or representation
of the sum of closed convex cones from their vertex-descriptions.

⋂Ki A halfspace-description for the intersection of any number of closed convex cones
Ki can be acquired by pruning normals; specifically, only the conically independent
normals from the aggregate of all the halfspace-descriptions need be retained.

∑Ki Generators for the sum of any number of closed convex cones Ki can be determined
by retaining only the conically independent generators from the aggregate of all the
vertex-descriptions.

Such conically independent sets are not necessarily unique or minimal.

2.11 When extreme means exposed

For any convex full-dimensional polyhedral set in Rn, distinction between the terms
extreme and exposed vanishes [377, §2.4] [131, §2.2] for faces of all dimensions except n ;
their meanings become equivalent as we saw in Figure 22 (discussed in §2.6.1.2). In other
words, each and every face of any polyhedral set (except the set itself) can be exposed by
a hyperplane, and vice versa; e.g, Figure 27.
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Lewis [286, §6] [251, §2.3.4] claims nonempty extreme proper subsets and the exposed
subsets coincide for Sn

+ ; id est, each and every face of the positive semidefinite cone (whose
dimension is less than dimension of the cone) is exposed. A more general discussion of
cones having this property can be found in [390]; e.g, Lorentz cone (183) [22, §II.A].

2.12 Convex polyhedra

Every polyhedron, such as the convex hull (89) of a bounded list X , can be expressed
as the solution set of a finite system of linear equalities and inequalities, and vice versa.
[131, §2.2]

2.12.0.0.1 Definition. Convex polyhedra, halfspace-description.
A convex polyhedron is the intersection of a finite number of halfspaces and hyperplanes;

P = {y | Ay º b , Cy = d} ⊆ Rn (292)

where coefficients A and C generally denote matrices. Each row of C is a vector normal
to a hyperplane, while each row of A is a vector inward-normal to a hyperplane partially
bounding a halfspace. △

By halfspaces theorem (§2.4.1.1.1), a polyhedron thus described is a closed convex set
possibly not full-dimensional; e.g, Figure 22. Convex polyhedra2.56 are finite-dimensional
comprising all affine sets (§2.3.1, §2.1.4), polyhedral cones, line segments, rays, halfspaces,
convex polygons, solids [259, def.104/6 p.343], polychora, polytopes,2.57 etcetera.

It follows from definition (292) by exposure that each face of a convex polyhedron is a
convex polyhedron.

Projection of any polyhedron on a subspace remains a polyhedron. More generally,
image and inverse image of a convex polyhedron under any linear transformation remains
a convex polyhedron; [28, §I.9] [354, thm.19.3] the foremost consequence being, invariance
of polyhedral set closedness.

When b and d in (292) are 0 , the resultant is a polyhedral cone. The set of all
polyhedral cones is a subset of convex cones:

2.12.1 Polyhedral cone

From our study of cones, we see: the number of intersecting hyperplanes and halfspaces
constituting a convex cone is possibly but not necessarily infinite. When the number is
finite, the convex cone is termed polyhedral. That is the primary distinguishing feature
between the set of all convex cones and polyhedra; all polyhedra, including polyhedral
cones, are finitely generated [354, §19]. (Figure 55) We distinguish polyhedral cones in the
set of all convex cones for this reason, although all convex cones of dimension 2 or less are
polyhedral.

2.12.1.0.1 Definition. Polyhedral cone, halfspace-description.2.58 (confer (107))
A polyhedral cone is the intersection of a finite number of halfspaces and hyperplanes

2.56We consider only convex polyhedra throughout, but acknowledge the existence of concave polyhedra.
[449, Kepler-Poinsot Solid ]
2.57Some authors distinguish bounded polyhedra via designation polytope. [131, §2.2]
2.58Rockafellar [354, §19] proposes affine sets be handled via complementary pairs of affine inequalities;
e.g, antisymmetry Cyºd and Cy¹d which can present severe difficulty to some interior-point methods
of numerical solution.

http://mathworld.wolfram.com/Kepler-PoinsotSolid.html
https://www.convexoptimization.com/wikimization/index.php/Rockafellar
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bounded
polyhedra

convex polyhedra

polyhedral
cones

convex cones

Figure 55: Polyhedral cones are finitely generated, unbounded, and convex.

about the origin;

K = {y | Ay º 0 , Cy = 0} ⊆ Rn (a)

= {y | Ay º 0 , Cy º 0 , Cy ¹ 0} (b)

=







y |





A
C

−C



y º 0







(c)

(293)

where coefficients A and C generally denote matrices of finite dimension. Each row of C
is a vector normal to a hyperplane containing the origin, while each row of A is a vector
inward-normal to a hyperplane containing the origin and partially bounding a halfspace.

△

A polyhedral cone thus defined is closed, convex (§2.4.1.1), has only a finite number
of generators (§2.8.1.2), and can be not full-dimensional. (Minkowski) Conversely, any
finitely generated convex cone is polyhedral. (Weyl) [377, §2.8] [354, thm.19.1]

2.12.1.0.2 Exercise. Unbounded convex polyhedra.
Illustrate an unbounded polyhedron that is not a cone or its translation. H

From the definition it follows that any single hyperplane, through the origin, or any
halfspace partially bounded by a hyperplane through the origin is a polyhedral cone. The
most familiar example of polyhedral cone is any quadrant (or orthant, §2.1.3) generated by
Cartesian half-axes. Esoteric examples of polyhedral cone include the point at the origin,
any line through the origin, any ray having the origin as base such as the nonnegative real
line R+ in subspace R , polyhedral flavor (proper) Lorentz cone (307), any subspace, and
Rn. More polyhedral cones are illustrated in Figure 53 and Figure 27.

2.12.2 Vertices of convex polyhedra

By definition, a vertex (§2.6.1.0.1) always lies on the relative boundary of a convex
polyhedron. [259, def.115/6 p.358] In Figure 22, each vertex of the polyhedron is located
at an intersection of three or more facets, and every edge belongs to precisely two facets
[28, §VI.1 p.252]. In Figure 27, the only vertex of that polyhedral cone lies at the origin.

The set of all polyhedral cones is clearly a subset of convex polyhedra and a subset of
convex cones (Figure 55). Not all convex polyhedra are bounded; evidently, neither can
they all be described by the convex hull of a bounded set of points as defined in (89).
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X(: , 1)

X(: , 2)

P11 = {Xa | 1ºaº−1}

P10 = {Xa | 1ºaº0}

PC = {Xa | aT1=1 , aº0}

PC

PA = {Xa | aT1=1}

R2

Figure 56: A polyhedron’s generating list X does not necessarily constitute its vertices.
Convex polyhedra P11⊃ P10 are parallelograms, polyhedron PA is a line, polyhedron PC is
a line segment in PA ⊃ PC . In higher dimension, P11 and P10 are known as parallelepiped.
Were vector a unbounded above, P10 would become a polyhedral cone K . Were vector
a unbounded above and below, P11 and P10 would become subspace R(X).

Hence a universal vertex-description of polyhedra in terms of that same finite-length list
X (79):

2.12.2.0.1 Definition. Convex polyhedra, vertex-description.
Denote upper u and lower ℓ real vector bounds and truncated N -dimensional a-vector by

ai:j =

[

ai...
aj

]

(294)

By discriminating a suitable finite-length generating list (or set) arranged columnar in
X∈Rn×N , then any particular polyhedron may be described

P =
{

Xa | aT
1:k1 = 1 , u º am:N º ℓ , {1 . . . k} ∪ {m. . . N} = {1 . . . N}

}

(295)

where 0≤k≤N and 1≤m≤N+1. Setting k=0 removes the affine equality condition.
Setting m=N+1 removes the inequality. △

Coefficient indices in (295) may or may not be overlapping. From (81), (89), (107),
and (146), we summarize how the coefficient conditions may be applied;

subspace −→ ∞ºaº−∞
parallelepiped −→ u º a º ℓ
affine set −→ aT

1:k1 = 1
polyhedral cone −→ am:N º 0

}

←− convex hull (m ≤ k)
(296)
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It is always possible to describe a convex hull in a region of overlapping indices because,
for 1 ≤ m ≤ k ≤ N

{am:k | aT
m:k1 = 1 , am:k º 0} ⊆ {am:k | aT

1:k1 = 1 , am:N º 0} (297)

Generating list members are neither unique or necessarily vertices of the corresponding
polyhedron; e.g, Figure 56. Indeed, for convex hull (89) (a special case of (295)), some
subset of list members may reside in the polyhedron’s relative interior. Conversely, convex
hull of the vertices and extreme rays of a polyhedron is identical to the convex hull of any
list generating that polyhedron; that is, extremes theorem 2.8.1.1.1.

2.12.2.1 Vertex-description of polyhedral cone

Given closed convex cone K in a subspace of Rn having any set of generators for it arranged
in a matrix X∈ Rn×N as in (286), then that cone is described setting m=1 and k=0 in
vertex-description (295): (confer (293))

K = cone X = {Xa | a º 0} ⊆ Rn (107)

a conic hull of N generators.

2.12.2.2 Pointedness

(§2.7.2.1.2) [377, §2.10] Assuming all generators constituting the columns of X∈ Rn×N are
nonzero, polyhedral cone K is pointed if and only if there is no nonzero aº 0 that solves
Xa=0 , or iff2.59

N (X) ∩ RN
+ = 0 (298)

or iff
find a

subject to Xa = 0
1Ta = 1
a º 0

(299)

is infeasible. Otherwise, the cone will contain at least one line and there can be no vertex
nor extreme direction; id est, the cone cannot, otherwise, be pointed. Any subspace,
Euclidean vector space Rn, or any halfspace are examples of nonpointed polyhedral cone.

This null-pointedness criterion Xa=0 means that a pointed polyhedral cone is
invariant to linear injective transformation. Examples of pointed polyhedral cone K
include: the origin, any 0-based ray in a subspace, any two-dimensional V-shaped cone in
a subspace, any orthant in Rn or Rm×n ; e.g, nonnegative real line R+ in vector space R .

2.12.3 Unit simplex

A peculiar subset of the nonnegative orthant with halfspace-description

S , {s | s º 0 , 1Ts ≤ 1} ⊆ Rn
+ (300)

is a unique bounded convex full-dimensional polyhedron called unit simplex (Figure 57)
having n + 1 facets, n + 1 vertices, and dimension

dimS = n (301)

2.59If rank X = n , then dual cone K∗ (§2.13.1) is pointed. (318) The intersection with R
N
+ means that an

a vector in N (X) can have nonnegative entries, just not exclusively (excepting the origin).
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1

S = {s | s º 0 , 1Ts ≤ 1}

Figure 57: Unit simplex S in R3 is a unique solid tetrahedron but is not regular.

The origin supplies one vertex while heads of the standard basis [237] [379] {ei , i=1 . . . n}
in Rn constitute those remaining; thus its vertex-description:

S = conv {0, {ei , i=1 . . . n}}
=

{

[0 e1 e2 · · · en ] a | aT1 = 1 , a º 0
} (302)

In R0 the unit simplex is the point at the origin, in R the unit simplex is the line segment
[0 , 1] , in R2 it is a triangle and its relative interior, in R3 it is the convex hull of a
tetrahedron (Figure 57), in R4 it is the convex hull of a pentatope [449], and so on.

2.12.3.1 Simplex

The unit simplex comes from a class of general polyhedra called simplex, having
vertex-description: [107] [354] [447] [131] given n≥ k

conv{xℓ ∈Rn | ℓ = 1 . . . k+1 , dim aff{xℓ}= k} (303)

So defined, a simplex is a closed bounded convex set possibly not full-dimensional.
Examples of simplex, by increasing affine dimension, are: a point, any line segment, any
triangle and its relative interior, a general tetrahedron, any five-vertex polychoron, and so
on.

2.12.3.1.1 Definition. Simplicial cone.
A proper (§2.7.2.2.1) polyhedral cone K in Rn is called simplicial iff K has exactly n
extreme directions; [22, §II.A] equivalently, iff pointed polyhedral cone K in Rn can be
generated by n linearly independent directions. △

� simplicial cone ⇒ proper polyhedral cone

Whereas a ray having base 0 in R is a simplicial cone, any full-dimensional pointed closed
convex cone in R2 is simplicial. There are an infinite variety of simplicial cones in Rn ;
e.g, Figure 27, Figure 58, Figure 68. Any orthant is simplicial, as is any rotation thereof.
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Figure 58: Two views of a simplicial cone and its dual in R3. Semiinfinite boundary of
each cone is truncated for illustration. Each cone has three facets (confer §2.13.12.0.3).
(Cartesian axes drawn for reference.)
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2.12.4 Converting between descriptions

Conversion between halfspace- (292) (293) and vertex-description (89) (295) is nontrivial,
in general, [17] [131, §2.2] [246] but the conversion is easy for simplices. [68, §2.2.4]
Nonetheless, we tacitly assume the two descriptions of polyhedra to be equivalent.
[354, §19 thm.19.1] We explore conversions in §2.13.4, §2.13.10, and §2.13.12:

2.13 Dual cone & generalized inequality
& biorthogonal expansion

These three concepts, dual cone, generalized inequality, and biorthogonal expansion,
are inextricably melded; meaning, it is difficult to completely discuss one without
mentioning the others. The dual cone is critical in tests for convergence by contemporary
primal/dual methods for numerical solution of conic problems. [467] [320, §4.5] For unique
minimum-distance projection on a closed convex cone K , the negative dual cone −K∗

plays the role that orthogonal complement plays for subspace projection.2.60 (§E.9.2,
Figure 198) Indeed, −K∗ is the algebraic complement in Rn ;

K ⊞ −K∗= Rn (2257)

where ⊞ denotes unique orthogonal vector sum.
One way to think of a pointed closed convex cone is as a new kind of coordinate

system whose basis is generally nonorthogonal; a conic system, very much like the familiar
Cartesian system whose analogous cone is the first quadrant (the nonnegative orthant).
Generalized inequality ºK is a formalized means to determine membership to any pointed
closed convex cone K (§2.7.2.2) whereas biorthogonal expansion is, fundamentally, an
expression of coordinates in a pointed conic system whose axes are linearly independent
but not necessarily orthogonal. When cone K is the nonnegative orthant, then these
three concepts come into alignment with the Cartesian prototype: biorthogonal expansion
becomes orthogonal expansion, the dual cone becomes identical to the orthant, and
generalized inequality obeys a total order entrywise.

2.13.1 Dual cone

For any set K (convex or not), its dual cone [127, §4.2]

K∗ , {y∈Rn | 〈y , x〉 ≥ 0 for all x∈ K} (304)

is a unique cone2.61 that is always closed and convex because it is an intersection of
halfspaces (§2.4.1.1.1). Each halfspace has inward-normal x , belonging to K , and
boundary containing the origin; e.g, Figure 59a.

When cone K is convex, there is a second and equivalent construction: Dual cone K∗

is the union of each and every vector y inward-normal to a hyperplane supporting K
(§2.4.2.6.1); e.g, Figure 59b. When K is represented by a halfspace-description such as
(293), for example, where

(152) A ,







aT
1
...

aT
m






∈ Rm×n , C ,







cT
1
...

cT
p






∈ Rp×n (305)

2.60Namely, projection on a subspace is ascertainable from projection on its orthogonal complement
(Figure 197).
2.61The dual cone is the negative polar cone defined by many authors; K∗ = −K◦. [234, §A.3.2] [354, §14]
[45] [28] [377, §2.7]
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0

K
(a)

K∗

K∗

0

K
(b)

y

Figure 59: Two equivalent constructions of dual cone K∗ in R2 : (a) Showing construction
by intersection of halfspaces about 0 (drawn truncated). Only those two halfspaces, whose
bounding hyperplanes have inward-normal corresponding to an extreme direction of this
pointed closed convex cone K⊂R2, need be drawn; by (376). (b) Suggesting construction
by union of inward-normals y to each and every hyperplane ∂H+ supporting K . This
interpretation is valid when K is convex because existence of a supporting hyperplane is
then guaranteed (§2.4.2.6).

then the dual cone can be represented as the conic hull

K∗ = cone{a1 , . . . , am , ±c1 , . . . , ±cp} (306)

a vertex-description, because each and every conic combination of normals from the
halfspace-description of K yields another inward-normal to a hyperplane supporting K .

K∗ can also be constructed pointwise using projection theory from §E.9.2: for PKx
the Euclidean projection of point x on closed convex cone K

−K∗ = {x − PKx | x∈Rn} = {x∈Rn | PKx = 0} (2258)

2.13.1.0.1 Exercise. Manual dual cone construction.
Perhaps the most instructive graphical method of dual cone construction is cut-and-try.
Find the dual of each polyhedral cone from Figure 60 by using dual cone equation (304).

H
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x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ G(K∗) (373)

Figure 60: Dual cone construction by right angle. Each extreme direction of a proper
polyhedral cone is orthogonal to a facet of its dual cone, and vice versa, in any dimension.
(§2.13.7.1) (a) This characteristic guides graphical construction of dual cone in two
dimensions: It suggests finding dual-cone boundary ∂ by making right angles with extreme
directions of polyhedral cone. The construction is then pruned so that each dual boundary
vector does not exceed π/2 radians in angle with each and every vector from polyhedral
cone. Were dual cone in R2 to narrow, Figure 63 would be reached in limit. (b) Same
polyhedral cone and its dual continued into three dimensions. (confer Figure 68)
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2.13.1.0.2 Exercise. Dual cone definitions.
What is {x∈Rn | xTz≥0 ∀ z∈Rn} ?
What is {x∈Rn | xTz≥1 ∀ z∈Rn} ?
What is {x∈Rn | xTz≥1 ∀ z∈Rn

+} ? H

As defined, dual cone K∗ exists even when affine hull of the original cone is a proper
subspace; id est, even when the original cone is not full-dimensional.2.62

2.13.1.1 Examples of dual cone

When K is Rn, K∗ is the point at the origin, and vice versa.
When K is a subspace, K∗ is its orthogonal complement, and vice versa. (§E.9.2.1,

Figure 61)
When cone K is a halfspace in Rn with n> 0 (Figure 63 for example), the dual cone

K∗ is a ray (base 0) belonging to that halfspace but orthogonal to its bounding hyperplane
(that contains the origin), and vice versa.

When convex cone K is a closed halfplane in R3 (Figure 62), it is neither pointed or
full-dimensional; hence, the dual cone K∗ can be neither full-dimensional or pointed.

When K is any particular orthant in Rn, the dual cone is identical; id est, K=K∗.
When K is any quadrant in subspace R2, K∗ is a wedge-shaped polyhedral cone in R3 ;

e.g, for K equal to quadrant I , K∗ =

[

R2

+

R

]

.

Lorentz cone (183) is selfdual. When K is a polyhedral flavor Lorentz cone

Kℓ =

{[

x
t

]

∈ Rn× R | ‖x‖ℓ ≤ t

}

, ℓ∈{1,∞} (307)

its dual is the proper cone [68, exmp.2.25]

Kq = K∗
ℓ =

{[

x
t

]

∈ Rn× R | ‖x‖q ≤ t

}

, 1
ℓ + 1

q = 1 (308)

where ‖x‖q = ‖x‖∗ℓ is that norm dual to ‖x‖ℓ determined via solution to 1/ℓ + 1/q = 1 .2.63

Figure 66 illustrates K=K1 and K∗=K∗
1 =K∞ in R2× R .

2.13.1.1.1 Exercise. Dual Lorentzian.
For each ℓ∈{1, 2 ,∞} , find the dual to proper Lorentzian cone (184). H

To further motivate our understanding of dual cone, consider the ease with which
convergence can be ascertained in the following optimization problem (310p):

2.13.1.1.2 Example. Dual problem. (confer §4.1)
Duality is a powerful and widely employed tool in applied mathematics for a number of
reasons. First, the dual program is always convex even if the primal is not. Second, the
number of variables in the dual is equal to the number of constraints in the primal which is
often less than the number of variables in the primal program. Third, the maximum value
achieved by the dual problem is often equal to the minimum of the primal . −[346, §2.1.3]
When not equal, the dual always provides a bound on the primal optimal objective. For
convex problems, the dual variables provide necessary and sufficient optimality conditions:

2.62Rockafellar formulates dimension of K and K∗. [354, §14.6.1] His monumental work Convex Analysis
has not one figure or illustration. See [28, §II.16] for illustration of Rockafellar’s recession cone [46].
2.63Dual norm is not a conjugate or dual function.

https://www.convexoptimization.com/wikimization/index.php/Rockafellar
https://www.convexoptimization.com/TOOLS/AnalysisRock.pdf
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K∗

K

0

K∗

K
0

R3

R2

Figure 61: When convex cone K is any one Cartesian axis, its dual cone is the convex hull
of all axes remaining; its orthogonal complement. In R3, dual cone K∗ (drawn tiled and
truncated) is a hyperplane through origin; its normal belongs to line K . In R2, dual cone
K∗ is a line through origin while convex cone K is that line orthogonal.
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K

K∗

Figure 62: K and K∗ are halfplanes in R3 ; blades. Both semiinfinite convex cones
appear truncated. Each cone is like K from Figure 63 but embedded in a two-dimensional
subspace of R3. (Cartesian coordinate axes drawn for reference.)

Essentially, Lagrange duality theory concerns representation of a given optimization
problem as half of a minimax problem. [354, §36] [68, §5.4] Given any real function f(x, z)

minimize
x

maximize
z

f(x, z) ≥ maximize
z

minimize
x

f(x, z) (309)

always holds. But when met with equality, then we have strong duality and a saddle value
[181] exists. (Figure 64) [351, p.3]

Consider primal conic problem (p) (over cone K) and its corresponding dual problem
(d): [338, §3.3.1] [278, §2.1] [279] given vectors α , β and matrix constant C

(p)

minimize
x

αTx

subject to x ∈ K
Cx = β

maximize
y , z

βTz

subject to y ∈ K∗

CTz + y = α

(d) (310)

Observe: the dual problem is also conic, and its objective function value never exceeds
that of the primal;

αTx ≥ βTz

xT(CTz + y) ≥ (Cx)Tz

xTy ≥ 0

(311)

known as weak duality which holds by definition (304). Under the sufficient condition that
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K

K∗

0

Figure 63: Polyhedral cone K is a halfspace about origin in R2. Pointed dual cone K∗ is
a ray base 0 , hence not full-dimensional in R2 ; so K cannot be pointed, hence has no
extreme directions nor vertex. (Both convex cones drawn truncated.)

(310p) is a convex problem2.64 satisfying Slater’s condition (p.225), then equality

x⋆Ty⋆ = 0 (312)

is achieved; which is necessary and sufficient for optimality (§2.13.11.1.5); each problem
(p) and (d) attains the same optimal value of its objective, and each problem is called a
strong dual to the other because the duality gap (optimal primal−dual objective difference)
becomes 0. Then (p) and (d) are together equivalent to the minimax problem

minimize
x,y,z

αTx − βTz

subject to x ∈ K , y ∈ K∗

Cx = β , CTz + y = α

(p)−(d) (313)

whose optimal objective always has the saddle value 0 (regardless of the particular convex
cone K and other problem parameters). [411, §3.2] Thus determination of convergence for
either primal or dual problem is facilitated.

Were convex cone K polyhedral (§2.12.1), then primal problem (p) and its dual (d)
would be linear programs (LP). Selfdual nonnegative orthant K yields the prototypical
primal linear program and its dual. Were K a positive semidefinite cone, then problem (p)
has the form of prototypical primal semidefinite program (SDP (686)) with (d) its dual.

The dual problem may be solvable more quickly by computer. It is sometimes possible
to solve a primal problem by way of its dual; advantageous when the dual problem is easier
to solve than the primal problem, for example, because it can be solved analytically, or has
some special structure that can be exploited. −[68, §5.5.5] (§4.2.3.1) 2

2.13.1.2 Key properties of dual cone

� For any cone, (−K)
∗

= −K∗

� For any cones K1 and K2 , K1 ⊆ K2 ⇒ K∗
1 ⊇ K∗

2 [377, §2.7]

2.64In this context, problems (p) and (d) are convex if K is a convex cone.
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f(xp , z) or g(z)

f(x , zp) or f(x)

x
z

Figure 64: (Drawing by Lucas V. Barbosa.) This serves as mnemonic icon for primal
and dual problems, although objective functions from conic problems (310p) (310d) are
linear. When problems are strong duals, duality gap is 0 ; meaning, functions f(x) , g(z)
(dotted) kiss at saddle value as depicted at center. Otherwise, dual functions never meet
(f(x) > g(z)) by (309).

� (Cartesian product) For closed convex cones K1 and K2 , their Cartesian product
K = K1 × K2 is a closed convex cone, and

K∗ = (K1 × K2)
∗
= K∗

1 × K∗
2 (314)

where each dual is determined with respect to a cone’s ambient space.

� (conjugation) [354, §14] [127, §4.5] [377, p.52] When K is any convex cone, dual of
the dual cone equals closure of the original cone;

K∗∗ = K (315)

is the intersection of all halfspaces about the origin that contain K . Because
K∗∗∗= K∗ always holds,

K∗ = (K)
∗

(316)

When convex cone K is closed, then dual of the dual cone is the original cone;
K∗∗= K ⇔ K is a closed convex cone: [377, p.53, p.95]

K = {x∈Rn | 〈y , x〉 ≥ 0 ∀ y∈ K∗} (317)

https://commons.wikimedia.org/wiki/File:Saddle_point.png
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� If any cone K is full-dimensional, then K∗ is pointed;

K full-dimensional ⇒ K∗ pointed (318)

If the closure of any convex cone K is pointed, conversely, then K∗ is full-dimensional;

K pointed ⇒ K∗ full-dimensional (319)

Given closed convex cone K⊂Rn, [61, §3.3 exer.20]2.65

K is
pointed

full-dimensional
⇔
⇔

full-dimensional
pointed

is K∗ (320)

The dual, of a closed convex cone not full-dimensional, contains a line. (§2.7.2.1.2)

� (vector sum) [354, thm.3.8] For convex cones K1 and K2

K1 + K2 = conv(K1 ∪ K2) (321)
is a convex cone.

� (dual vector-sum) [354, §16.4.2] [127, §4.6] For convex cones K1 and K2

K∗
1 ∩ K∗

2 = (K1 + K2)
∗

= (K1 ∪ K2)
∗

(322)

� (closure of vector sum of duals)2.66 For closed convex cones K1 and K2

(K1 ∩ K2)
∗

= K∗
1 + K∗

2 = conv(K∗
1 ∪ K∗

2) (323)

[377, p.96] where operation closure becomes superfluous under sufficient condition
K1 ∩ intrK2 6= ∅ [61, §3.3 exer.16, §4.1 exer.7].

� (Krein-Rutman) Given closed convex cones K1⊆ Rm and K2⊆Rn and any linear
map A : Rn→Rm, then provided intrK1 ∩ AK2 6= ∅ [61, §3.3.13, confer §4.1 exer.9]

(A−1K1 ∩ K2)
∗

= ATK∗
1 + K∗

2 (324)

where dual of cone K1 is with respect to its ambient space Rm and dual of cone K2

is with respect to Rn, where A−1K1 denotes inverse image (§2.1.9.0.1) of K1 under
mapping A , and where AT denotes adjoint operator. The particularly important
case K2 = Rn is easy to show: for ATA = I

(ATK1)
∗
, {y∈Rn | xTy ≥ 0 ∀x∈ATK1}
= {y∈Rn | (ATz)Ty ≥ 0 ∀ z∈K1}
= {ATw | zTw ≥ 0 ∀ z∈K1}
= ATK∗

1

(325)

� K is proper if and only if K∗ is proper.

� K is polyhedral if and only if K∗ is polyhedral. [377, §2.8]

� K is simplicial if and only if K∗ is simplicial. (§2.13.10.2) A simplicial cone and its
dual are proper polyhedral cones (Figure 68, Figure 58), but not the converse.

� K ⊞ −K∗= Rn ⇔ K is closed and convex. (2257)

� Any direction in a proper cone K is normal to a hyperplane separating K from −K∗.
2.65 K∗ is full-dimensional iff K∗−K∗= R

n.
2.66These parallel analogous results for subspaces R1 ,R2⊆R

n ; [127, §4.6]

(R1+ R2)⊥ = R⊥
1 ∩R⊥

2

(R1∩R2)⊥ = R⊥
1 + R⊥

2

R⊥⊥=R for any subspace R .
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2.13.2 Abstractions of Farkas’ lemma

2.13.2.0.1 Corollary. Generalized inequality and membership relation. [234, §A.4.2]
Let K be any closed convex cone and K∗ its dual, and let x and y belong to a vector
space Rn. Then

y ∈ K∗ ⇔ 〈y , x〉 ≥ 0 for all x ∈ K (326)

which is, merely, a statement of fact by definition of dual cone (304). By closure we have
conjugation: [354, thm.14.1]

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ K∗ (327)

which may be regarded as a simple translation of Farkas’ lemma [157] as in [354, §22] to
the language of convex cones, and a generalization of the well-known Cartesian cone fact

x º 0 ⇔ 〈y , x〉 ≥ 0 for all y º 0 (328)

for which implicitly K = K∗ = Rn
+ the nonnegative orthant.

Membership relation (327) is often written instead as dual generalized inequalities,
when K and K∗ are pointed closed convex cones,

x º
K

0 ⇔ 〈y , x〉 ≥ 0 for all y º
K∗

0 (329)

meaning, coordinates for biorthogonal expansion of x (§2.13.8.1.2, §2.13.9) [417] must be
nonnegative when x belongs to K . Conjugating,

y º
K∗

0 ⇔ 〈y , x〉 ≥ 0 for all x º
K

0 (330)

⋄

When pointed closed convex cone K is not polyhedral, coordinate axes for biorthogonal
expansion asserted by the corollary are taken from extreme directions of K ; expansion is
assured by Carathéodory’s theorem (§E.6.4.1.1).

We presume, throughout, the obvious:

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ K∗ (327)
⇔

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ K∗, ‖y‖= 1
(331)

2.13.2.0.2 Exercise. Dual generalized inequalities.
Test Corollary 2.13.2.0.1 and (331) graphically on the two-dimensional polyhedral cone
and its dual in Figure 60. H

(confer §2.7.2.2) When pointed closed convex cone K is implicit from context:

x º 0 ⇔ x ∈ K
x ≻ 0 ⇔ x ∈ rel intrK (332)

Strict inequality x≻ 0 means coordinates for biorthogonal expansion of x must be positive
when x belongs to rel intrK . Strict membership relations are useful; e.g, for any proper
cone2.67 K and its dual K∗

x ∈ intrK ⇔ 〈y , x〉 > 0 for all y ∈ K∗, y 6= 0 (333)

x ∈ K , x 6= 0 ⇔ 〈y , x〉 > 0 for all y ∈ intrK∗ (334)

2.67An open cone K is admitted to (333) and (336) by (20).
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Conjugating, we get the dual relations:

y ∈ intrK∗ ⇔ 〈y , x〉 > 0 for all x ∈ K , x 6= 0 (335)

y ∈ K∗, y 6= 0 ⇔ 〈y , x〉 > 0 for all x ∈ intrK (336)

Boundary-membership relations for proper cones are also useful:

x ∈ ∂K ⇔ ∃ y 6= 0 Ä 〈y , x〉 = 0 , y ∈ K∗, x ∈ K (337)

y ∈ ∂K∗ ⇔ ∃ x 6= 0 Ä 〈y , x〉 = 0 , x ∈ K , y ∈ K∗ (338)

which are consistent; e.g, x∈ ∂K ⇔ x /∈ intrK and x∈K .

2.13.2.0.3 Example. Linear inequality. [385, §4] (confer §2.13.6.1.1)
Consider a given matrix A and closed convex cone K . By membership relation we have

Ay ∈ K∗ ⇔ xTA y≥ 0 ∀x ∈ K
⇔ yTz≥ 0 ∀ z ∈ {ATx | x ∈ K}
⇔ y ∈ {ATx | x ∈ K}∗

(339)

This implies

{y | Ay ∈ K∗} = {ATx | x ∈ K}∗ (340)

When K is the selfdual nonnegative orthant (§2.13.6.1), for example, then

{y | Ay º 0} = {ATx | x º 0}∗ (341)

and the dual relation

{y | Ay º 0}∗ = {ATx | x º 0} (342)

comes by a theorem of Weyl (p.117) that yields closedness for any vertex-description of a
polyhedral cone. 2

2.13.2.1 Null certificate, Theorem of the alternative

If in particular xp /∈K a closed convex cone, then construction in Figure 59b suggests
there exists a supporting hyperplane (having inward-normal belonging to dual cone K∗)
separating xp from K ; indeed, (327)

xp /∈ K ⇔ ∃ y ∈ K∗ Ä 〈y , xp〉 < 0 (343)

Existence of any one such y is a certificate of null membership. From a different
perspective,

xp ∈ K
or in the alternative

∃ y ∈ K∗ Ä 〈y , xp〉 < 0

(344)

By alternative is meant: these two systems are incompatible; one system is feasible while
the other is not.
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2.13.2.1.1 Example. Theorem of the alternative for linear inequality.
Myriad alternative systems of linear inequality can be explained in terms of pointed closed
convex cones and their duals.

Beginning from the simplest Cartesian dual generalized inequalities (328) (with respect
to nonnegative orthant Rm

+ ),

y º 0 ⇔ xTy ≥ 0 for all x º 0 (345)

Given A∈Rn×m, we make vector substitution y ← ATy

ATy º 0 ⇔ xTATy ≥ 0 for all x º 0 (346)

Introducing a new vector by calculating b , Ax we get

ATy º 0 ⇔ bTy ≥ 0 , b = Ax for all x º 0 (347)

By complementing sense of the scalar inequality:

ATy º 0

or in the alternative

bTy < 0 , ∃ b = Ax , x º 0

(348)

If one system has a solution, then the other does not; define a convex cone
K={y | ATyº 0} , then y ∈ K or in the alternative y /∈ K .

Scalar inequality bTy< 0 is movable to the other side of alternative (348), but
that requires some explanation: From results in Example 2.13.2.0.3, the dual cone is
K∗={Ax | xº 0}. From (327) we have

y ∈ K ⇔ bTy ≥ 0 for all b ∈ K∗

ATy º 0 ⇔ bTy ≥ 0 for all b ∈ {Ax | xº 0} (349)

Given some b vector and y ∈ K , then bTy< 0 can only mean b /∈ K∗. An alternative
system is therefore simply b ∈ K∗: [234, p.59] (Farkas/Tucker)

ATy º 0 , bTy < 0

or in the alternative

b = Ax , x º 0

(350)

Geometrically this means: either vector b belongs to convex cone K∗ or it does not.
When b /∈K∗, then there is a vector y∈K normal to a hyperplane separating point b
from cone K∗.

For another example, from membership relation (326) with affine transformation of
dual variable we may write: Given A∈Rn×m and b∈Rn

b − Ay ∈ K∗ ⇔ xT(b − Ay)≥ 0 ∀x ∈ K (351)

ATx=0 , b − Ay ∈ K∗ ⇒ xTb≥ 0 ∀x ∈ K (352)

From membership relation (351), conversely, suppose we allow any y∈Rm. Then because
−xTA y is unbounded below, xT(b−Ay)≥ 0 implies ATx=0 : for y∈Rm

ATx=0 , b − Ay ∈ K∗ ⇐ xT(b − Ay)≥ 0 ∀x ∈ K (353)

In toto,
b − Ay ∈ K∗ ⇔ xTb≥ 0 , ATx=0 ∀x ∈ K (354)
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Vector x belongs to cone K but is also constrained to lie in a subspace of Rn specified by an
intersection of hyperplanes through the origin {x∈Rn |ATx=0}. From this, alternative
systems of generalized inequality with respect to pointed closed convex cones K and K∗

Ay ¹
K∗

b

or in the alternative

xTb < 0 , ATx=0 , x º
K

0

(355)

derived from (354) simply by taking the complementary sense of the inequality in xTb .
These two systems are alternatives; if one system has a solution, then the other does
not.2.68 [354, p.201]

By invoking a strict membership relation between proper cones (333), we can construct
a more exotic alternative strengthened by demand for an interior point;

b − Ay ≻
K∗

0 ⇔ xTb > 0 , ATx=0 ∀x º
K

0 , x 6= 0 (356)

From this, alternative systems of generalized inequality [68, pp.50,54,262]

Ay ≺
K∗

b

or in the alternative

xTb≤ 0 , ATx=0 , x º
K

0 , x 6= 0

(357)

derived from (356) by taking complementary sense of the inequality in xTb .
And from this, alternative systems with respect to the nonnegative orthant attributed

to Gordan in 1873: [191] [61, §2.2] substituting A←AT and setting b = 0

ATy ≺ 0

or in the alternative

Ax = 0 , x º 0 , ‖x‖1 = 1

(358)

In Motzkin transposition theorem, [36] Ben-Israel collects related results from Farkas,
Motzkin, Gordan, and Stiemke. 2

2.13.3 Optimality condition

(confer §2.13.11.1) The general first-order necessary and sufficient condition for optimality
of solution x⋆ to a minimization problem ((310p) for example) with real differentiable
convex objective function f(x) : Rn→R is [353, §3]

∇f(x⋆)T(x − x⋆) ≥ 0 ∀x∈ C , x⋆∈ C (359)

2.68If solutions at ±∞ are disallowed, then the alternative systems become instead mutually exclusive
with respect to nonpolyhedral cones. Simultaneous infeasibility of the two systems is not precluded by
mutual exclusivity; called a weak alternative. Ye provides an example illustrating simultaneous infeasibility

with respect to the positive semidefinite cone: x∈ S
2, y∈R , A =

[

1 0
0 0

]

, and b =

[

0 1
1 0

]

where

xTb means 〈x , b〉. A better strategy than disallowing solutions at ±∞ is to demand an interior point
as in (357) or Lemma 4.2.1.1.2. Then question of simultaneous infeasibility is moot.

https://www.encyclopediaofmath.org/index.php/Motzkin_transposition_theorem
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where C is a convex feasible set,2.69 and where ∇f(x⋆) is the gradient (§3.6) of f with
respect to x evaluated at x⋆. In words, negative gradient is normal to a hyperplane
supporting the feasible set at a point of optimality. (Figure 71)

Direct solution to variation inequality (359), instead of the corresponding minimization,
spawned from calculus of variations. [290, p.178] [156, p.37] One solution method solves
an equivalent fixed point-of-projection problem

x = PC(x −∇f(x)) (360)

that follows from a necessary and sufficient condition for projection on convex set C
(Theorem E.9.1.0.2)

P (x⋆−∇f(x⋆)) ∈ C , 〈x⋆−∇f(x⋆) − x⋆, x − x⋆〉 ≤ 0 ∀x ∈ C (2241)

Proof of equivalence [421, Complementarity problem] is provided by Németh. Given
minimum-distance projection problem

minimize
x

1
2‖x − y‖2

subject to x ∈ C (361)

on convex feasible set C for example, the equivalent fixed point problem

x = PC(x −∇f(x)) = PC(y) (362)

is solved in one step.
In the unconstrained case (C= Rn), optimality condition (359) reduces to the classical

rule (p.197)
∇f(x⋆) = 0 , x⋆∈ dom f (363)

which can be inferred from the following application:

2.13.3.0.1 Example. Optimality for equality-constrained problem.
Given a real differentiable convex function f(x) : Rn→R defined on domain Rn, a wide
full-rank matrix C∈Rp×n, and vector d∈Rp, the convex optimization problem

minimize
x

f(x)

subject to Cx = d
(364)

is characterized by the well-known necessary and sufficient optimality condition [68, §4.2.3]

∇f(x⋆) + CTν = 0 (365)

where ν∈Rp is the eminent Lagrange multiplier. [352] [290, p.188] [267] In other words,
solution x⋆ is optimal if and only if ∇f(x⋆) belongs to R(CT).

Via membership relation, we now derive condition (365) from the general first-order
condition for optimality (359): For problem (364)

C , {x∈Rn | Cx = d} = {Zξ + xp | ξ∈Rn−rank C} (366)

is the feasible set where Z∈Rn×n−rank C holds basisN (C ) columnar, and xp is any
particular solution to Cx = d . Since x⋆∈ C , we arbitrarily choose xp = x⋆ which yields
an equivalent optimality condition

∇f(x⋆)TZξ ≥ 0 ∀ ξ∈Rn−rank C (367)

2.69 presumably nonempty set of all variable values satisfying all given problem constraints; the set of
feasible solutions.
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when substituted into (359). But this is simply half of a membership relation where the
cone dual to Rn−rank C is the origin in Rn−rank C . We must therefore have

ZT∇f(x⋆) = 0 ⇔ ∇f(x⋆)TZξ ≥ 0 ∀ ξ∈Rn−rank C (368)

meaning, ∇f(x⋆) must be orthogonal to N (C ). These conditions

ZT∇f(x⋆) = 0 , Cx⋆ = d (369)

are necessary and sufficient for optimality. 2

2.13.4 Discretization of membership relation

2.13.4.1 Dual halfspace-description

Halfspace-description of dual cone K∗ is equally simple as vertex-description

K = cone(X) = {Xa | a º 0} ⊆ Rn (107)

for corresponding closed convex cone K : By definition (304), for X∈ Rn×N as in (286),
(confer (293))

K∗ =
{

y∈Rn | zTy ≥ 0 for all z∈ K
}

=
{

y∈Rn | zTy ≥ 0 for all z = Xa , a º 0
}

=
{

y∈Rn | aTXTy ≥ 0 for all a º 0
}

=
{

y∈Rn | XTy º 0
}

(370)

that follows from the generalized inequality and membership corollary (328). The
semi-infinity of tests specified by all z∈K has been reduced to a set of generators for K
constituting the columns of X ; id est, the test has been discretized.

Whenever cone K is known to be closed and convex, the conjugate statement must
also hold; id est, given any set of generators for dual cone K∗ arranged columnar in Y ,
then the consequent vertex-description of dual cone connotes a halfspace-description for
K : [377, §2.8]

K∗ = {Y a | a º 0} ⇔ K∗∗= K =
{

z | Y Tz º 0
}

(371)

2.13.4.2 First dual-cone formula

From these two results (370) and (371) we deduce a general principle:

� From any [sic ] given vertex-description (107) of closed convex cone K ,
halfspace-description (370) of the dual cone K∗ is immediate by matrix transposition.
Conversely, from any given halfspace-description (293) of K , dual vertex-description
(371) is immediate. [354, p.122]

Various other converses are just a little trickier. (§2.13.10, §2.13.12)

We further deduce: For any polyhedral cone K , the dual cone K∗ is also polyhedral and
K∗∗= K . [377, p.56] For any pointed polyhedral cone K , dual cone K∗ is full-dimensional.
(319) (§2.13.7)

The generalized inequality and membership corollary is discretized in the following
theorem inspired by (370) and (371):
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K
x

Figure 65: xº 0 with respect to K but not with respect to nonnegative orthant R2

+

(pointed convex cone K drawn truncated).

2.13.4.2.1 Theorem. Discretized membership. (confer §2.13.2.0.1)2.70

Given any set of generators (§2.8.1.2) denoted by G(K) , for closed convex cone K⊆Rn,
and any set of generators denoted G(K∗) for its dual such that

K = coneG(K) , K∗= coneG(K∗) (372)

then discretization of the generalized inequality and membership corollary (p.131) is
necessary and sufficient for certifying cone membership: for x and y in vector space Rn

x ∈ K ⇔ 〈γ∗, x〉 ≥ 0 for all γ∗∈ G(K∗) (373)

y ∈ K∗ ⇔ 〈γ , y〉 ≥ 0 for all γ ∈ G(K) (374)

⋄

Proof. K∗= {G(K∗)a | aº 0}. y∈K∗⇔ y=G(K∗)a for some aº 0.
x∈K ⇔ 〈y , x〉≥ 0 ∀ y∈K∗⇔ 〈G(K∗)a , x〉≥ 0 ∀ aº 0 (327). a,

∑

i αi ei where ei is the
ith member of a standard basis of possibly infinite cardinality. 〈G(K∗)a , x〉≥ 0 ∀ aº 0
⇔ ∑

i αi〈G(K∗)ei , x〉≥ 0 ∀αi ≥ 0 ⇔ 〈G(K∗)ei , x〉≥ 0 ∀ i . Conjugate relation (374) is
similarly derived. ¨

2.13.4.2.2 Exercise. Discretized dual generalized inequalities.
Test Theorem 2.13.4.2.1 on Figure 60a using extreme directions there as generators.

H

From the discretized membership theorem we may further deduce a more surgical
description of closed convex cone that prescribes intersection of only a finite number of
halfspaces for its construction when polyhedral: (Figure 59a)

K = {x∈Rn | 〈γ∗, x〉 ≥ 0 for all γ∗∈ G(K∗)} (375)

K∗ = {y∈Rn | 〈γ , y〉 ≥ 0 for all γ∈ G(K)} (376)

2.70Stated in [23, §1] without proof for pointed closed convex case.
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2.13.4.2.3 Exercise. Partial order induced by orthant.
When comparison is with respect to the nonnegative orthant K= Rn

+ , then from the
discretized membership theorem it directly follows:

x ¹ z ⇔ xi ≤ zi ∀ i (377)

Generate simple counterexamples demonstrating that this equivalence with entrywise
inequality holds only when the underlying cone inducing partial order is the nonnegative
orthant; e.g, explain Figure 65. H

2.13.4.2.4 Example. Boundary membership to polyhedral cone.
For a polyhedral cone, test (337) of boundary membership can be formulated as a linear
program. Say proper polyhedral cone K is specified completely by generators that are
arranged columnar in

X = [ Γ1 · · · ΓN ] ∈ Rn×N (286)

id est, K = {Xa | a º 0} (107). Then boundary-membership relation for proper cone

c ∈ ∂K ⇔ ∃ y 6= 0 Ä 〈y , c〉 = 0 , y ∈ K∗, c ∈ K (337)

may be expressed2.71

find
a , y

y 6= 0

subject to cTy = 0
XTy º 0
Xa = c
a º 0

(378)

This linear feasibility problem has a solution iff c∈∂K . If membership c∈K is known a
priori, then variable a becomes redundant. This method assumes a full-dimensional cone.

We may adapt (378) to cones, contained wholly in a subspace, by introducing affine
hull aff K into the program; id est, given c∈K

find
h , y

y 6= 0

subject to cTy = 0
XTy º 0
y = [0 X ]h
hT1 = 1

(379)

Now this linear feasibility problem has solution iff c∈rel ∂K . This adaptation is necessary
to determine boundary membership to a cone that is not full-dimensional. 2

2.13.5 Smallest face of closed convex cone

Given nonempty convex subset C of a convex set K , the smallest face of K containing
C is equivalent to intersection of all faces of K that contain C . [354, p.164] By (317),
membership relation (337) means that each and every point on boundary ∂K of proper
cone K belongs to a hyperplane supporting K whose normal y belongs to dual cone K∗.
It follows that the smallest face F , containing C ⊂ ∂K⊂Rn on boundary of proper cone
K , is the intersection of all hyperplanes containing C whose normals are in K∗;

F(K⊃C) = {x∈ K | x ⊥ K∗∩ C⊥} (380)
where

C⊥ , {y∈Rn | 〈z , y〉=0 ∀ z∈ C} (381)

When C ∩ intrK 6= ∅ then F(K⊃C)=K .

2.71A clumsy but sure convex method, for determining whether nonzero y∈R
n exists, is to constrain

each entry yi = ±1 , i=1 . . . n individually until one of them (if any) becomes feasible.
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2.13.5.0.1 Example. Finding smallest face of cone.
Suppose polyhedral cone K is completely specified by generators arranged columnar in

X = [ Γ1 · · · ΓN ] ∈ Rn×N (286)

id est,

K = cone X = {Xa | a º 0} ⊆ Rn (107)

To find its smallest face F(K∋ c) containing a given point c∈K , by the discretized
membership theorem 2.13.4.2.1, it is necessary and sufficient to find generators for the
smallest face. We may do so one generator at a time:

Consider generator Γi . If there exists a vector z∈K∗ in the dual cone that is orthogonal
to c but not to Γi , then Γi cannot belong to the smallest face of K containing c . Such
a vector z can be realized by a linear feasibility problem: given c∈K

find z∈Rn

subject to cTz = 0
XTz º 0
ΓT

i z = 1 , i∈{1 . . . N }
(382)

If there exists a solution z for which ΓT
i z=1 , then

Γi 6⊥ K∗∩ c⊥ = {z∈Rn | XTzº 0 , cTz=0} (383)

so Γi /∈ F(K∋ c) ; solution z is a certificate of null membership. If problem (382) is
infeasible for generator Γi∈K , conversely, then Γi ∈ F(K∋ c) by (380) and (370) because
Γi ⊥ K∗∩ c⊥ ; in that case, Γi is a generator of F(K∋ c).

Since the constant in constraint ΓT
i z =1 is arbitrary positively, then there is

correspondence between (382) and (355) [sic ] admitting an alternative to linear feasibility
problem (382): for a given point c∈K

find
a∈RN , µ∈R

a , µ

subject to µc − Γi = Xa , i∈{1 . . . N }
a º 0

(384)

Now if this problem is feasible (bounded) for generator Γi∈K , then (382) is infeasible
and Γi ∈ F(K∋ c) is a generator of the smallest face of K that contains c .

When finding a smallest face via (382) or (384), generators of K in matrix X may not
be diminished in number (by discarding columns) until all generators of the smallest face
have been identified. Diminishing column space is a form of presolving ; it is equivalent to
a proof that coefficient ai can only be 0 in

find a∈RN

subject to c = Xa
a º 0

(385)

because the corresponding Γi does not belong to the smallest face of K that contains c .

en masse

Solving (382) or (384) N times can be computationally intensive if number of columns is
large. If there were fewer than N unique2.72 vectors z in the dual cone that satisfy (382),
then it would be more economical to find them instead of testing columns of X one by

2.72 unique in the same sense as for eigenvectors in Definition A.5.0.1.1.



140 CHAPTER 2. CONVEX GEOMETRY

one. We propose finding generators {Γi}en masse for the smallest face of polyhedral cone
K , containing c , by solving a variant of (382): assuming c∈K

maximize
z∈R

n
1TXTz

subject to cTz = 0
1 º XTz º 0

−1 ¹ z ¹ 1

(386)

where bounding to 1 precludes an unbounded objective or variable and insures that
maximization is democratic over all rows of XT. For all Γi corresponding to an inactive
inequality {ΓT

i z⋆ > 0} , optimal solution z⋆ is a certificate of their null membership to
F(K∋ c). One way to find the set of all optimal {z⋆} is to solve (386) recursively;
id est, columns of X , corresponding to inactive inequalities, are deprecated (discarded)
before solving (386) again. Recursion continues until the inequality constraint becomes
completely active below: XTz⋆ = 0. Surviving columns of X comprise a superset
containing generators for F(K∋ c). 2

2.13.5.0.2 Exercise. Optimality of null membership en masse.
Prove that solving (386) recursively is not equivalent to solving (382) for i=1 . . . N . While
fast, (386) is suboptimal eliminating a proper though substantial subset (if not equal in
number) of columns eliminated by (382). H

2.13.5.0.3 Exercise. Finding smallest face for broader class of convex cone.
Show how algorithms (382) (384) (386) apply more broadly; id est, full-dimensionality2.73

can be unnecessary. H

2.13.5.0.4 Exercise. Finding smallest face by alternative system.
Derive (384) from (382).2.74 What is a variant of (384) that finds generators {Γi}en masse
for the smallest face of K containing c . H

2.13.5.0.5 Exercise. Smallest face of positive semidefinite cone.
Derive (229) from (380). H

2.13.5.0.6 Exercise. Deprecation by column discard.
Explain why, when finding a smallest face via (382), generators of K may be discarded only
after all generators of the smallest face have been identified. Then explain why generators
may be discarded en masse prior to finding a smallest face via (386). H

2.13.5.0.7 Exercise. Elegantly ascertain membership to cone boundary.
Invent a convex objective or single convex constraint that insures finding a nonzero y if it
exists in the feasible set of vectors y for problem (378). H

2.13.5.0.8 Exercise. Constraints en masse.
Consider introducing a constraint ξTa = φ , on coefficient vector a from (107), to en masse
algorithm (386) for finding smallest face of polyhedral cone K containing point c . Show
that to be accomplished by merely augmenting the X matrix, as in [XT ξ ] , and the c
vector as in [ cT φT ] given ξ and φ . H

2.73Hint: A hyperplane, with normal in K∗, containing cone K is admissible; e.g, Figure 44. More
importantly, as in (379), full-dimensionality is obviated by application of affine hull of K .
2.74Hint: Recall dual closed convex cone description (371), then swap cone K with its dual in (355).
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2.13.6 Dual PSD cone and generalized inequality

The dual positive semidefinite cone K∗ is confined to SM by convention;

SM ∗
+ , {Y ∈ SM | 〈Y , X 〉 ≥ 0 for all X∈ SM

+ } = SM
+ (387)

The positive semidefinite cone is selfdual in the ambient space of symmetric matrices
[68, exmp.2.24] [43] [230, §II ]; K=K∗.

Dual generalized inequalities with respect to the positive semidefinite cone in the
ambient space of symmetric matrices can therefore be simply stated: (Fejér)

X º 0 ⇔ tr(Y TX) ≥ 0 for all Y º 0 (388)

Membership to this cone can be determined in the isometrically isomorphic Euclidean

space RM 2

via (40). (§2.2.1) By the two interpretations in §2.13.1, positive semidefinite
matrix Y can be interpreted as inward-normal to a hyperplane supporting the positive
semidefinite cone.

The fundamental statement of positive semidefiniteness, yTXy≥0 ∀ y (§A.3.0.0.1),
evokes a particular instance of these dual generalized inequalities (388):

X º 0 ⇔ 〈yyT, X 〉 ≥ 0 ∀ yyT(º 0) (1619)

Discretization (§2.13.4.2.1) allows replacement of positive semidefinite matrices Y with
this minimal set of generators comprising the extreme directions of the positive semidefinite
cone (§2.9.2.7).

2.13.6.1 selfdual cones

From (135) (a consequence of the halfspaces theorem, §2.4.1.1.1), where the only finite
value of the support function for a convex cone is 0 [234, §C.2.3.1], or from discretized
definition (376) of the dual cone we get a rather self evident characterization of selfdual
cones:

K = K∗ ⇔ K =
⋂

γ∈G(K)

{

y | γTy ≥ 0
}

(389)

In words: Cone K is selfdual iff its own extreme directions are inward-normals to a
(minimal) set of hyperplanes bounding halfspaces whose intersection constructs it. This
means each extreme direction of K is normal to a hyperplane exposing one of its own
faces; a necessary but insufficient condition for selfdualness (Figure 66, for example).

Selfdual cones are necessarily full-dimensional. [32, §I] Their most prominent
representatives are the orthants (Cartesian cones), the positive semidefinite cone SM

+

in the ambient space of symmetric matrices (387), and Lorentz cone (183) [22, §II.A]
[68, exmp.2.25]. In three dimensions, a plane containing the axis of revolution of a selfdual
cone (and the origin) will produce a slice whose boundary makes a right angle.

2.13.6.1.1 Example. Linear matrix inequality. (confer §2.13.2.0.3)
Consider a peculiar vertex-description for a convex cone K defined over a positive
semidefinite cone (instead of a nonnegative orthant as in definition (107)): for X∈ Sn

+
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K

0 ∂K∗

K

∂K∗

(a)

(b)

Figure 66: Two (truncated) views of a polyhedral cone K and its dual in R3. Each of
four extreme directions from K belongs to a face of dual cone K∗. Cone K , shrouded by
its dual, is symmetrical about its axis of revolution. Each pair of diametrically opposed
extreme directions from K makes a right angle. An orthant (or any rotation thereof;
a simplicial cone) is not the only selfdual polyhedral cone in three or more dimensions;
[22, §2.A.21] e.g, consider an equilateral having five extreme directions. In fact, every
selfdual polyhedral cone in R3 has an odd number of extreme directions. [24, thm.3]
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given Aj ∈ Sn, j =1 . . . m

K =











〈A1 , X 〉
...

〈Am , X 〉



 | Xº 0







⊆ Rm

=











svec(A1)
T

...
svec(Am)T



svec X | Xº 0







, {A svec X | Xº 0}

(390)

where A∈Rm×n(n+1)/2, and where symmetric vectorization svec is defined in (59). Cone
K is indeed convex because, by (180)

A svec Xp1
, A svec Xp2

∈ K ⇒ A(ζ svec Xp1
+ ξ svec Xp2

)∈K for all ζ , ξ ≥ 0 (391)

since a nonnegatively weighted sum of positive semidefinite matrices must be positive
semidefinite. (§A.3.1.0.2) Although matrix A is finite-dimensional, K is generally not a
polyhedral cone (unless m=1or 2) simply because X∈ Sn

+ .

Theorem. Inverse image closedness. [234, prop.A.2.1.12] [354, thm.6.7]
Given affine operator g : Rm→Rp, convex set D⊆Rm, and convex set C ⊆Rp Ä
g−1(rel intr C) 6= ∅ , then

rel intr g(D)= g(rel intrD) , rel intr g−1C= g−1(rel intr C) , g−1C= g−1C (392)

⋄
By this theorem, relative interior of K may always be expressed

rel intrK = {A svec X | X≻ 0} (393)

Because dim(aff K)=dim(A svec Sn) (131) then, provided the vectorized Aj matrices are
linearly independent,

rel intrK = intrK (15)

meaning, cone K is full-dimensional ⇒ dual cone K∗ is pointed by (318). Convex cone K
can be closed, by this corollary:

Corollary. Cone closedness invariance. [62, §3] [63, §3]
Given linear operator A : Rp→Rm and closed convex cone X ⊆Rp, convex cone

K= A(X ) is closed
(

A(X ) = A(X )
)

if and only if

N (A) ∩ X = {0} or N (A) ∩ X * rel ∂X (394)

Otherwise, K = A(X ) ⊇ A(X ) ⊇ A(X ). [354, thm.6.6] ⋄

If matrix A has no nontrivial nullspace, then A svec X is an isomorphism in X between
cone Sn

+ and range R(A) of matrix A ; (§2.2.1.0.1, §2.10.1.1) sufficient for convex cone K
to be closed and have relative boundary

rel ∂K = {A svec X | Xº 0 , X ⊁ 0} (395)
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Now consider the (closed convex) dual cone:

K∗ = {y | 〈z , y〉 ≥ 0 for all z∈K} ⊆ Rm

= {y | 〈z , y〉 ≥ 0 for all z = A svec X , Xº 0}
= {y | 〈A svec X , y〉 ≥ 0 for all Xº 0}
=

{

y | 〈svec X , ATy〉 ≥ 0 for all Xº 0
}

=
{

y | svec−1(ATy) º 0
}

(396)

that follows from (388) and leads to an equally peculiar halfspace-description

K∗ = {y∈Rm |
m

∑

j=1

yjAj º 0} (397)

The summation inequality with respect to positive semidefinite cone Sn
+ is known as linear

matrix inequality . [66] [180] [303] [414] Although we already know that the dual cone is
convex (§2.13.1), inverse image theorem 2.1.9.0.1 certifies convexity of K∗ which is the
inverse image of positive semidefinite cone Sn

+ under linear transformation g(y),
∑

yjAj .
And although we already know that the dual cone is closed, it is certified by (392). By
the inverse image closedness theorem, dual cone relative interior may always be expressed

rel intrK∗ = {y∈Rm |
m

∑

j=1

yjAj ≻ 0} (398)

Function g(y) on Rm is an isomorphism when the vectorized Aj matrices are linearly
independent; hence, uniquely invertible. Inverse image K∗ must therefore have dimension
equal to dim

(

R(AT)∩ svec Sn
+

)

(52) and relative boundary

rel ∂K∗ = {y∈Rm |
m

∑

j=1

yjAj º 0 ,

m
∑

j=1

yjAj ⊁ 0} (399)

When this dimension equals m , then dual cone K∗ is full-dimensional

rel intrK∗ = intrK∗ (15)

which implies: closure of convex cone K is pointed (318). 2

2.13.7 Dual of pointed polyhedral cone

In a subspace of Rn, now we consider a pointed polyhedral cone K given in terms of its
extreme directions Γi arranged columnar in

X = [ Γ1 Γ2 · · · ΓN ] ∈ Rn×N (286)

The extremes theorem (§2.8.1.1.1) provides the vertex-description of a pointed polyhedral
cone in terms of its finite number of extreme directions and its lone vertex at the origin:

2.13.7.0.1 Definition. Pointed polyhedral cone, vertex-description.
Given pointed polyhedral cone K in a subspace of Rn, denoting its ith extreme direction
by Γi∈Rn arranged in a matrix X as in (286), then that cone may be described: (89)
(confer (195) (300))

K =
{

[0 X ] a ζ | aT1 = 1 , a º 0 , ζ ≥ 0
}

=
{

Xa ζ | aT1 ≤ 1 , a º 0 , ζ ≥ 0
}

=
{

Xb | b º 0
}

⊆ Rn
(400)
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that is simply a conic hull (like (107)) of a finite number N of directions. Relative interior
may always be expressed

rel intrK = {Xb | b ≻ 0} ⊂ Rn (401)

although Xb∈ rel intrK ; b ≻ 0 unless matrix X represents a bijection onto its range.
But identifying the cone’s relative boundary in this manner

rel ∂K = {Xb | b º 0 , b ⊁ 0} (402)

holds only when X represents a bijection; in other words, some coefficients meeting lower
bound zero (b∈∂RN

+ ) do not necessarily provide membership to the relative boundary of
cone K . △

Whenever cone K is pointed, closed, and convex (not only polyhedral), then dual cone
K∗ has a halfspace-description in terms of the extreme directions Γi of K :

K∗ =
{

y | γTy ≥ 0 for all γ∈ {Γi , i=1 . . . N} ⊆ rel ∂K
}

(403)

because when {Γi} constitutes any set of generators for K , the discretization result in
§2.13.4.1 allows relaxation of the requirement ∀ x∈K in (304) to ∀ γ∈{Γi} directly.2.75

That dual cone so defined is unique, identical to (304), polyhedral whenever the number
of generators N is finite

K∗ =
{

y | XTy º 0
}

⊆ Rn (370)

and is full-dimensional because K is assumed pointed. But K∗ is not necessarily pointed
unless K is full-dimensional. (§2.13.1.2)

2.13.7.1 Facet normal & extreme direction

We see from (370) that the conically independent generators of cone K (namely, the
extreme directions of pointed closed convex cone K constituting the N columns of X)
each define an inward-normal to a hyperplane supporting dual cone K∗ (§2.4.2.6.1) and
exposing a dual facet when N is finite. Were K∗ pointed and finitely generated, by closure
the conjugate statement would also hold; id est, the extreme directions of pointed K∗ each
define an inward-normal to a hyperplane supporting K and exposing a facet when N is
finite. Examine Figure 60 or Figure 66, for example.

We may conclude, the extreme directions of proper polyhedral K are respectively
orthogonal to the facets of K∗; likewise, the extreme directions of proper polyhedral
K∗ are respectively orthogonal to the facets of K .

2.13.8 Biorthogonal expansion by example

2.13.8.0.1 Example. Relationship to dual polyhedral cone.
Simplicial cone K illustrated in Figure 67 induces a partial order on R2. All points greater
than x with respect to K , for example, are contained in the translated cone x + K . The
extreme directions Γ1 and Γ2 of K do not make an orthogonal set; neither do extreme
directions Γ3 and Γ4 of dual cone K∗; rather, we have the biorthogonality condition [417]

ΓT
4 Γ1 = ΓT

3 Γ2 = 0

ΓT
3 Γ1 6= 0 , ΓT

4 Γ2 6= 0
(404)

2.75The extreme directions of K constitute a minimal set of generators. Formulae and conversions to
vertex-description of the dual cone are in §2.13.10 and §2.13.12.
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x

y

z

w

w −K

u0
Γ1 ⊥ Γ4

Γ2 ⊥ Γ3

Γ1

Γ2

Γ3

Γ4

K

K∗

K∗

Figure 67: (confer Figure 194) Simplicial cone K∈R2 and its dual K∗ drawn truncated.
Conically independent generators Γ1 and Γ2 constitute extreme directions of K while Γ3

and Γ4 constitute extreme directions of K∗. Dotted ray-pairs bound translated cones K .
Point x is comparable to point z (and vice versa) but not to y ; z ºK x ⇔ z − x∈K ⇔
z − x ºK 0 iff ∃ nonnegative coordinates for biorthogonal expansion of z − x . Point y is
not comparable to z because z does not belong to y ±K . Translating a negated cone is
quite helpful for visualization: u ¹K w ⇔ u∈ w −K ⇔ u − w ¹K 0. Points need not
belong to K to be comparable; e.g, all points less than w (w.r.t K) belong to w −K .



2.13. DUAL CONE & GENERALIZED INEQUALITY 147

Biorthogonal expansion of x∈K is then

x = Γ1
ΓT

3 x

ΓT
3 Γ1

+ Γ2
ΓT

4 x

ΓT
4 Γ2

(405)

where ΓT
3 x/(ΓT

3 Γ1) is the nonnegative coefficient of nonorthogonal projection (§E.6.1) of x
on Γ1 in the direction orthogonal to Γ3 (y in Figure 194 p.593), and where ΓT

4 x/(ΓT
4 Γ2)

is the nonnegative coefficient of nonorthogonal projection of x on Γ2 in the direction
orthogonal to Γ4 (z in Figure 194); they are coordinates in this nonorthogonal system.
Those coefficients must be nonnegative x ºK 0 because x∈ K (332) and K is simplicial.

If we ascribe the extreme directions of K to the columns of a matrix

X , [ Γ1 Γ2 ] (406)

then we find that the pseudoinverse transpose matrix

X†T =

[

Γ3
1

ΓT
3 Γ1

Γ4
1

ΓT
4 Γ2

]

(407)

holds the extreme directions of the dual cone. Therefore

x = XX†x (413)

is biorthogonal expansion (405) (§E.0.1), and biorthogonality condition (404) can be
expressed succinctly (§E.1.1)2.76

X†X = I (414)

Expansion w=XX†w , for any particular w∈Rn more generally, is unique w.r.t X if
and only if the extreme directions of K populating the columns of X∈ Rn×N are linearly
independent; id est, iff X has no nullspace. 2

2.13.8.0.2 Exercise. Visual comparison of real sums.
Given y ¹ x with respect to the nonnegative orthant, draw a figure showing a negated
shifted orthant (like the cone in Figure 67) illustrating why 1Ty ≤ 1Tx for y and x
anywhere in R2. Incorporate two hyperplanes into your drawing, one containing y
and another containing x with reference to Figure 29. Does this result hold in higher
dimension? H

2.13.8.1 Pointed cones and biorthogonality

Biorthogonality condition X†X = I from Example 2.13.8.0.1 means Γ1 and Γ2 are
linearly independent generators of K (§B.1.1.1); generators because every x∈K is their
conic combination. From §2.10.2 we know that means Γ1 and Γ2 must be extreme
directions of K .

A biorthogonal expansion is necessarily associated with a pointed closed convex
cone; pointed, otherwise there can be no extreme directions (§2.8.1). We will address
biorthogonal expansion with respect to a pointed polyhedral cone, not full-dimensional,
in §2.13.9.

2.76Possibly confusing is the fact that formula XX†x is simultaneously: the orthogonal projection of x
on R(X) (2124), and a sum of nonorthogonal projections of x∈R(X) on the range of each and every
column of full-rank X thin-or-square (§E.5.0.0.2).
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2.13.8.1.1 Example. Expansions implied by diagonalization. (confer §6.4.3.2.1)
When matrix X∈ RM×M is diagonalizable (§A.5),

X = SΛS−1 = [ s1 · · · sM ] Λ





wT
1
...

wT
M



 =

M
∑

i=1

λi siw
T
i (1722)

coordinates for biorthogonal expansion are its eigenvalues λi (contained in diagonal
matrix Λ) when expanded in S ;

X = SS−1X = [ s1 · · · sM ]





wT
1 X
...

wT
MX



 =
M
∑

i=1

λi siw
T
i (408)

Coordinate values depend upon geometric relationship of X to its linearly independent
eigenmatrices siw

T
i . (§A.5.0.3, §B.1.1)

� Eigenmatrices siw
T
i are linearly independent dyads constituted by right and left

eigenvectors of diagonalizable X and are generators of some pointed polyhedral cone
K in a subspace of RM×M .

When S is real and X belongs to that polyhedral cone K , for example, then coordinates
of expansion (the eigenvalues λi ) must be nonnegative.

When matrix X = QΛQT is symmetric, it is diagonalizable (§A.5.1). Coordinates for
biorthogonal expansion are its eigenvalues when expanded in Q ; id est, for X∈ SM

X = QQTX =

M
∑

i=1

qi qT
i X =

M
∑

i=1

λi qiq
T
i ∈ SM (409)

becomes an orthogonal expansion with orthonormality condition QTQ=I where λi is
the ith (largest, usually) eigenvalue of X , qi is the corresponding ith eigenvector arranged
columnar in orthogonal matrix

Q = [ q1 q2 · · · qM ] ∈ RM×M (410)

and where eigenmatrix qiq
T
i is an extreme direction of some pointed polyhedral cone

K⊂ SM and an extreme direction of the positive semidefinite cone SM
+ .

� Orthogonal expansion is a special case of biorthogonal expansion of X∈ aff K
occurring when polyhedral cone K is any rotation about the origin of an orthant
belonging to a subspace.

Similarly, when X = QΛQT belongs to the positive semidefinite cone in the subspace
of symmetric matrices, coordinates for orthogonal expansion must be its nonnegative
eigenvalues (1627) when expanded in Q ; id est, for X∈ SM

+

X = QQTX =
M
∑

i=1

qi qT
i X =

M
∑

i=1

λi qiq
T
i ∈ SM

+ (411)

where λi≥ 0 is the ith eigenvalue of X . This means matrix X simultaneously belongs to
the positive semidefinite cone and to the pointed polyhedral cone K formed by the conic
hull of its eigenmatrices. 2
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2.13.8.1.2 Example. Expansion respecting nonpositive orthant.
Suppose x∈K any orthant in Rn .2.77 Then coordinates for biorthogonal expansion of x
must be nonnegative; in fact, absolute value of the Cartesian coordinates.

Suppose, in particular, x belongs to the nonpositive orthant K = Rn
− . Then

biorthogonal expansion becomes orthogonal expansion

x = XXTx =

n
∑

i=1

−ei(−eT
i x) =

n
∑

i=1

−ei|eT
i x| ∈ Rn

− (412)

and the coordinates of expansion are nonnegative. For this orthant K we have
orthonormality condition XTX = I where X =−I , ei∈Rn is a standard basis vector,
and −ei is an extreme direction (§2.8.1) of K .

Of course, this expansion x=XXTx applies more broadly to domain Rn, but then
the coordinates each belong to all of R . 2

2.13.9 Biorthogonal expansion, derivation

Biorthogonal expansion is a means for determining coordinates in a pointed conic
coordinate system characterized by a nonorthogonal basis. Study of nonorthogonal bases
invokes pointed polyhedral cones and their duals; extreme directions of a cone K are
assumed to constitute the basis while those of the dual cone K∗ determine coordinates.

Unique biorthogonal expansion with respect to K relies upon existence of its linearly
independent extreme directions: Polyhedral cone K must be pointed; then it possesses
extreme directions. Those extreme directions must be linearly independent to uniquely
represent any point in their span.

We consider nonempty pointed polyhedral cone K possibly not full-dimensional; id est,
we consider a basis spanning a subspace. Then we need only observe that section of dual
cone K∗ in the affine hull of K because, by expansion of x , membership x∈ aff K is
implicit and because any breach of the ordinary dual cone into ambient space becomes
irrelevant (§2.13.10.3). Biorthogonal expansion

x = XX†x ∈ aff K = aff cone(X) (413)

is expressed in the extreme directions {Γi} of K arranged columnar in

X = [ Γ1 Γ2 · · · ΓN ] ∈ Rn×N (286)

under assumption of biorthogonality

X†X = I (414)

where † denotes matrix pseudoinverse (§E).
We therefore seek, in this section, a vertex-description for K∗∩ aff K in terms of

linearly independent dual generators {Γ∗
i }⊂ aff K in the same finite quantity2.78 as the

extreme directions {Γi} of

K = cone(X) = {Xa | a º 0} ⊆ Rn (107)

We assume the quantity of extreme directions N does not exceed the dimension n of
ambient vector space because, otherwise, expansion w.r.t K could not be unique; id est,
assume N linearly independent extreme directions hence N ≤ n (X thin2.79-or-square
full-rank). In other words, wide full-rank matrix X is prohibited by uniqueness because
of existence of an infinity of right inverses;

2.77An orthant is simplicial and selfdual.
2.78When K is contained in a proper subspace of R

n, the ordinary dual cone K∗ will have more generators
in any minimal set than K has extreme directions.
2.79“Thin” meaning more rows than columns.
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� polyhedral cones whose extreme directions number in excess of the ambient space
dimension are precluded in biorthogonal expansion.

2.13.9.1 x ∈ K
Suppose x belongs to K⊆Rn. Then x =Xa for some aº0. Coordinate vector a is
unique only when {Γi} is a linearly independent set.2.80 Vector a∈RN can take the
form a =Bx if R(B)= RN . Then we require Xa =XBx = x and Bx=BXa = a . The
pseudoinverse B =X†∈RN×n (§E) is suitable when X is thin-or-square and full-rank. In
that case rank X =N , and for all c º 0 and i=1 . . . N

a º 0 ⇔ X†Xa º 0 ⇔ aTXTX†Tc ≥ 0 ⇔ ΓT
i X†Tc ≥ 0 (415)

The penultimate inequality follows from the generalized inequality and membership
corollary, while the last inequality is a consequence of that corollary’s discretization
(§2.13.4.2.1).2.81 From (415) and (403) we deduce

K∗∩ aff K = cone(X†T) = {X†Tc | c º 0} ⊆ Rn (416)

is the vertex-description for that section of K∗ in the affine hull of K because
R(X†T)=R(X) by definition of the pseudoinverse. From (318), we know K∗∩ aff K
must be pointed if rel intrK is logically assumed nonempty with respect to aff K .

Conversely, suppose full-rank thin-or-square matrix (N ≤ n)

X†T , [ Γ∗
1 Γ∗

2 · · · Γ∗
N ] ∈ Rn×N (417)

comprises the extreme directions {Γ∗
i }⊂ aff K of the dual-cone intersection with the affine

hull of K .2.82 From the discretized membership theorem and (323) we get a partial dual
to (403); id est, assuming x∈ aff cone X

x ∈ K ⇔ γ∗Tx ≥ 0 for all γ∗∈ {Γ∗
i , i=1 . . . N} ⊂ ∂K∗∩ aff K (418)

⇔ X†x º 0 (419)

that leads to a partial halfspace-description,

K =
{

x∈aff cone X | X†x º 0
}

(420)

For γ∗=X†Tei , any x =Xa , and for all i we have eT
i X†Xa = eT

i a ≥ 0 only when a º 0.
Hence x∈K .

When X is full-rank, then unique biorthogonal expansion of x∈ K becomes (413)

x = XX†x =

N
∑

i=1

Γi Γ∗T
i x (421)

2.80Conic independence alone (§2.10) is insufficient to guarantee uniqueness.
2.81

a º 0 ⇔ aTXTX†Tc ≥ 0 ∀ (c º 0 ⇔ aTXTX†Tc ≥ 0 ∀ a º 0)
∀ (c º 0 ⇔ ΓT

i X†Tc ≥ 0 ∀ i ) ¨

Intuitively, any nonnegative vector a is a conic combination of the standard basis {ei∈R
N} ;

aº 0 ⇔ ai eiº 0 for all i . The last inequality in (415) is a consequence of the fact that x=Xa may be
any extreme direction of K , in which case a is a standard basis vector; a = eiº 0. Theoretically, because
cº 0 defines a pointed polyhedral cone (the nonnegative orthant in R

N, in fact), we can take (415) one
step further by discretizing c :

a º 0 ⇔ ΓT
i Γ∗

j ≥ 0 for i, j =1 . . . N ⇔ X†X ≥ 0

In words, X†X must be a matrix whose entries are each nonnegative.
2.82When closed convex cone K is not full-dimensional, K∗ has no extreme directions. (§2.13.1.2)
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whose coordinates a = Γ∗T
i x must be nonnegative because K is assumed pointed, closed,

and convex. Whenever X is full-rank, so is its pseudoinverse X†. (§E) In the present case,
the columns of X†T are linearly independent and generators of the dual cone K∗∩ aff K ;
hence, the columns constitute its extreme directions. (§2.10.2) That section of the dual
cone is itself a polyhedral cone (by (293) or the cone intersection theorem, §2.7.2.1.1)
having the same number of extreme directions as K .

2.13.9.2 x ∈ aff K
The extreme directions of K and K∗∩aff K have a distinct relationship; because X†X = I ,
then for i,j = 1 . . . N , ΓT

i Γ∗
i = 1 , while for i 6= j , ΓT

i Γ∗
j = 0. Yet neither set of extreme

directions, {Γi} nor {Γ∗
i } , is necessarily orthogonal. This is a biorthogonality condition,

precisely, [417, §2.2.4] [237] implying each set of extreme directions is linearly independent.
(§B.1.1.1)

Biorthogonal expansion therefore applies more broadly; meaning, for any x∈ aff K ,
vector x can be uniquely expressed x =Xb where b∈RN because aff K contains the
origin. Thus, for any such x∈R(X) (confer §E.1.1), biorthogonal expansion (421) becomes
x =XX†Xb =Xb .

2.13.10 Formulae finding dual cone

2.13.10.1 Pointed K , dual, X thin-or-square full-rank

We wish to derive expressions for a convex cone and its ordinary dual under the general
assumptions: pointed polyhedral K denoted by its linearly independent extreme directions
arranged columnar in matrix X such that

rank(X∈ Rn×N ) = N , dim aff K ≤ n (422)

The vertex-description is given:

K = {Xa | a º 0} ⊆ Rn (107)

from which a halfspace-description for the dual cone follows directly:

K∗ = {y∈Rn | XTy º 0} (423)

By defining a matrix
X⊥ , basisN (XT) (424)

(a columnar basis for the orthogonal complement of R(X)), we can say

aff cone X = aff K = {x | X⊥Tx = 0} (425)

meaning K lies in a subspace, perhaps Rn. Thus a halfspace-description

K = {x∈Rn | X†x º 0 , X⊥Tx = 0} (426)

and a vertex-description2.83 from (323)

K∗ = { [X†T X⊥ −X⊥ ]b | b º 0 } ⊆ Rn (427)

These results are summarized for a pointed polyhedral cone, having linearly independent
generators, and its ordinary dual:

Cone Table 1 K K∗

vertex-description X X†T, ±X⊥

halfspace-description X† , X⊥T XT

2.83These descriptions are not unique. A vertex-description of the dual cone, for example, might use four
conically independent generators for a plane (§2.10.0.0.1, Figure 52) when only three would suffice.
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2.13.10.2 Simplicial case

When a convex cone is simplicial (§2.12.3.1.1), Cone Table 1 simplifies because then
aff cone X = Rn : For square X and assuming simplicial K such that

rank(X∈ Rn×N ) = N , dim aff K = n (428)

we have

Cone Table S K K∗

vertex-description X X†T

halfspace-description X† XT

For example, vertex-description (427) simplifies to

K∗ = {X†Tb | b º 0} ⊂ Rn (429)

Now, because dimR(X)=dimR(X†T) , (§E) dual cone K∗ is simplicial whenever K
is. So (§2.10.2) each respective vertex-description holds the extreme directions of the
corresponding cone.

2.13.10.3 Cone membership relations in a subspace SR

It is obvious by definition (304) of ordinary dual cone K∗, in ambient vector space R ,
that its determination instead in subspace SR⊆ R is identical to its intersection with
SR ; id est, assuming closed convex cone K⊆SR and K∗⊆R

(K∗ were ambient SR) ≡ (K∗ in ambient R) ∩ SR (430)

because

{y∈ SR | 〈y , x〉 ≥ 0 for all x∈ K} = {y∈R | 〈y , x〉 ≥ 0 for all x∈ K} ∩ SR (431)

From this, a constrained membership relation for the ordinary dual cone K∗⊆R , assuming
x, y∈SR and closed convex cone K⊆SR

y ∈ K∗∩ SR ⇔ 〈y , x〉 ≥ 0 for all x ∈ K (432)

By closure in subspace SR we have conjugation (§2.13.1.2):

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y∈ K∗∩ SR (433)

This means membership determination in subspace SR requires knowledge of dual cone
only in SR . For sake of completeness, for proper cone K with respect to subspace SR
(confer (333))

x ∈ intrK ⇔ 〈y , x〉 > 0 for all y∈ K∗∩ SR , y 6= 0 (434)

x ∈ K , x 6= 0 ⇔ 〈y , x〉 > 0 for all y ∈ intrK∗∩ SR (435)

(By closure, we also have the conjugate relations.) Yet when SR equals aff K for K a closed
convex cone

x ∈ rel intrK ⇔ 〈y , x〉 > 0 for all y∈ K∗∩ aff K , y 6= 0 (436)

x ∈ K , x 6= 0 ⇔ 〈y , x〉 > 0 for all y ∈ rel intr(K∗∩ aff K) (437)
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2.13.10.4 Subspace SR= aff K
Assume now a subspace SR that is the affine hull of cone K : Consider again a pointed
polyhedral cone K denoted by its extreme directions arranged columnar in matrix X such
that

rank(X∈ Rn×N ) = N , dim aff K ≤ n (422)

We want expressions for the convex cone and its dual in subspace SR= aff K :

Cone Table A K K∗∩ aff K
vertex-description X X†T

halfspace-description X† , X⊥T XT, X⊥T

Now each respective vertex-description holds extreme directions of the corresponding cone
in subspace SR . (§2.13.9.1) When dim aff K = n , this table reduces to Cone Table S.

These descriptions facilitate work in a proper subspace. The subspace of symmetric
matrices SN , for example, often serves as ambient space.2.84

2.13.10.4.1 Exercise. Conically independent columns and rows.
We suspect the number of conically independent columns (rows) of X to be the same
for X†T, where † denotes matrix pseudoinverse (§E). Prove whether it holds that the
columns (rows) of X are c.i.⇔ the columns (rows) of X†T are c.i. H

2.13.10.4.2 Example. Monotone nonnegative cone. [68, exer.2.33] [405, §2]
Simplicial cone (§2.12.3.1.1) KM+ is the cone of all nonnegative vectors having their entries
sorted in nonincreasing order:

KM+ , {x | x1 ≥ x2 ≥ · · · ≥ xn ≥ 0} ⊆ Rn
+

= {x | (ei − ei+1)
Tx ≥ 0 , i = 1 . . . n−1 , eT

nx ≥ 0}
= {x | X†x º 0}

(438)

a halfspace-description where ei is the ith standard basis vector, and where2.85

X†T , [ e1−e2 e2−e3 · · · en ] ∈ Rn×n (439)

For any vectors x and y , simple algebra demands

xTy =
n

∑

i=1

xi yi = (x1 − x2)y1 + (x2 − x3)(y1 + y2) + (x3 − x4)(y1 + y2 + y3) + · · ·

+ (xn−1 − xn)(y1 + · · · + yn−1) + xn(y1 + · · · + yn)

(440)

Because xi − xi+1 ≥ 0 ∀ i by assumption whenever x∈KM+ , we can employ dual
generalized inequalities (330) with respect to the selfdual nonnegative orthant Rn

+ to find
the halfspace-description of dual monotone nonnegative cone K∗

M+ . We can say xTy≥ 0

for all X†xº 0 [sic ] if and only if

y1 ≥ 0 , y1 + y2 ≥ 0 , . . . , y1 + y2 + · · · + yn ≥ 0 (441)

2.84The dual cone of positive semidefinite matrices S
N∗
+ = S

N
+ remains in S

N by convention, whereas the

ordinary dual cone would venture into R
N×N .

2.85With X† in hand, we might concisely scribe the remaining vertex- and halfspace-descriptions from
the tables for KM+ and its dual. Instead we use dual generalized inequalities in their derivation.
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Figure 68: Simplicial cones. (a) Monotone nonnegative cone KM+ and its dual K∗
M+

(drawn truncated) in R2. (b) Monotone nonnegative cone and boundary of its dual (both
drawn truncated) in R3. Extreme directions of K∗

M+ are indicated.
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Figure 69: Monotone cone KM and its dual K∗
M (drawn truncated) in R2.

id est,
xTy ≥ 0 ∀X†x º 0 ⇔ XTy º 0 (442)

where
X = [ e1 e1+ e2 e1+ e2+ e3 · · · 1 ] ∈ Rn×n (443)

Because X†xº 0 connotes membership of x to pointed KM+ , then (by (304)) the dual
cone that we seek comprises all y for which (442) holds; thus its halfspace-description

K∗
M+ = {y º

K∗
M+

0} = {y | ∑k
i=1 yi ≥ 0 , k = 1 . . . n} = {y | XTy º 0} ⊂ Rn (444)

The monotone nonnegative cone and its dual are simplicial, illustrated for two Euclidean
spaces in Figure 68.

From §2.13.7.1, the extreme directions of proper KM+are respectively orthogonal to the
facets of K∗

M+ . Because K∗
M+ is simplicial, the inward-normals to its facets constitute the

linearly independent rows of XT by (444). Hence the vertex-description for KM+ employs
the columns of X in agreement with Cone Table S because X†=X−1. Likewise, the
extreme directions of proper K∗

M+ are respectively orthogonal to the facets of KM+ whose

inward-normals are contained in the rows of X† by (438). So the vertex-description for
K∗

M+ employs the columns of X†T. 2

2.13.10.4.3 Example. Monotone cone. (Figure 69, Figure 70)
Full-dimensional but not pointed, the monotone cone is polyhedral and defined by the
halfspace-description

KM , {x∈ Rn | x1 ≥ x2 ≥ · · · ≥ xn} = {x ∈ Rn | X∗Tx º 0} (445)

Its dual is therefore pointed but not full-dimensional;

K∗
M = {X∗ b , [ e1−e2 e2−e3 · · · en−1−en ] b | b º 0 } ⊂ Rn (446)

the dual cone vertex-description where the columns of X∗ comprise its extreme directions.
Because dual monotone cone K∗

M is pointed and satisfies

rank(X∗∈ Rn×N ) = N , dim aff K∗ ≤ n (447)

where N = n−1 , and because KM is closed and convex, we may adapt Cone Table 1
(p.151) as follows:



156 CHAPTER 2. CONVEX GEOMETRY
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Figure 70: Two views of monotone cone KM and its dual K∗
M (drawn truncated) in R3.

Monotone cone is not pointed. Dual monotone cone is not full-dimensional. (Cartesian
coordinate axes are drawn for reference.)
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Cone Table 1* K∗ K∗∗= K
vertex-description X∗ X∗†T, ±X∗⊥

halfspace-description X∗† , X∗⊥T X∗T

The vertex-description for KM is therefore

KM = {[X∗†T X∗⊥ −X∗⊥ ]a | a º 0} ⊂ Rn (448)

where X∗⊥= 1 and

X∗† =
1

n

























n − 1 −1 −1 · · · −1 −1 −1

n − 2 n − 2 −2
. . . · · · −2 −2

... n − 3 n − 3
. . . −(n − 4)

... −3
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... n − 4

. . . −(n − 3) −(n − 3)
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1 1 1 · · · 1 1 −(n − 1)

























∈ Rn−1×n (449)

while
K∗

M = {y ∈ Rn | X∗†y º 0 , X∗⊥Ty = 0} (450)

is the dual monotone cone halfspace-description. 2

2.13.10.4.4 Exercise. Inside the monotone cones.
Mathematically describe the respective interior of the monotone nonnegative cone and
monotone cone. In three dimensions, also describe the relative interior of each face. H

2.13.10.5 More pointed cone descriptions with equality condition

Consider pointed polyhedral cone K having a linearly independent set of generators
and whose subspace membership is explicit; id est, we are given the ordinary
halfspace-description

K = {x | Ax º 0 , Cx = 0} ⊆ Rn (293a)

where A∈ Rm×n and C ∈ Rp×n. This can be equivalently written in terms of nullspace
of C and vector ξ :

K = {Zξ ∈ Rn | AZξ º 0} (451)

where R(Z∈Rn×n−rank C ),N (C ). Assuming (422) is satisfied

rankX , rank
(

(AZ )†∈ Rn−rank C×m
)

= m − ℓ = dim aff K ≤ n − rankC (452)

where ℓ is the number of conically dependent rows in AZ which must be removed to
make ÂZ before the Cone Tables become applicable.2.86 Then results collected there
admit assignment X̂ , (ÂZ )†∈Rn−rank C×m−ℓ, where Â∈Rm−ℓ×n, followed with linear
transformation by Z . So we get the vertex-description, for full-rank (ÂZ )† thin-or-square,

K = {Z(ÂZ )† b | b º 0} (453)

From this and (370) we get a halfspace-description of the dual cone

K∗ = {y∈Rn | (ZTÂT)†ZTy º 0} (454)

2.86When the conically dependent rows (§2.10) are removed, the rows remaining must be linearly
independent for the Cone Tables (p.12) to apply.



158 CHAPTER 2. CONVEX GEOMETRY

From this and Cone Table 1 (p.151) we get a vertex-description, (2080)

K∗ = {[Z†T(ÂZ )T CT −CT ]c | c º 0} (455)

Yet because
K = {x | Ax º 0} ∩ {x | Cx = 0} (456)

then, by (323), we get an equivalent vertex-description for the dual cone

K∗ = {x | Ax º 0}∗ + {x | Cx = 0}∗
= {[AT CT −CT ]b | b º 0}

(457)

from which the conically dependent columns may, of course, be removed.

2.13.11 Dual cone-translate

(§2.13.11.0.1) First-order optimality condition (359) inspires a dual-cone variant: For any
set K , the negative dual of its translation by any a∈Rn is

−(K − a)∗ = {y∈Rn | 〈y , x − a〉≤ 0 for all x∈ K} , K⊥(a)
= {y∈Rn | 〈y , x〉≤ 0 for all x∈ K − a} (458)

a closed convex cone called normal cone to K at point a . From this, a new membership
relation like (327):

y ∈ −(K − a)∗ ⇔ 〈y , x − a〉≤ 0 for all x ∈ K (459)

and by closure the conjugate, for closed convex cone K
x ∈ K ⇔ 〈y , x − a〉≤ 0 for all y ∈ −(K − a)∗ (460)

2.13.11.0.1 Definition. Normal cone. [310] [46, p.261] [234, §A.5.2] [61, §2.1]
[353, §3] [354, p.15] The normal cone to any set Z⊆Rn at any particular point a∈Rn is
defined as the closed cone

K⊥
Z(a) = {z∈Rn | zT(y−a)≤ 0 ∀ y∈Z} = −(Z − a)∗

= {z∈Rn | zTy ≤ 0 ∀ y∈Z − a} (458)

an intersection of halfspaces about the origin in Rn, hence convex regardless of convexity
of Z ; it is the negative dual cone to translate Z − a ; the set of all vectors normal to Z
at a (§E.9.1.0.1). △

The normal cone to any affine set A at α∈A is the orthogonal complement of A− α .
When A= 0 , K⊥

A(0) = A⊥ is Rn : the ambient space of A . The normal cone to convex
cone K at the origin

K⊥
K(0) = −K∗ (461)

is the negative dual cone. Normal cone construction is illustrated in Figure 71, Figure 72,
Figure 73, Figure 207.

2.13.11.1 first-order optimality condition - restatement

(confer §2.13.3) The general first-order necessary and sufficient condition for optimality of
solution x⋆ to a minimization problem with real differentiable convex objective function
f(x) : Rn→R over convex feasible set C is [353, §3]

−∇f(x⋆) ∈ −(C − x⋆)∗ , x⋆∈ C (462)

id est, the negative gradient (§3.6) belongs to the normal cone to C at x⋆ as in Figure 71.
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α

C

β

γ

x⋆

−∇f(x⋆)

{y | ∇f(x⋆)T(y − x⋆) = 0 , f(x⋆)= γ}

{z | f(z) = α}

α ≥ β ≥ γ

Figure 71: (confer Figure 86) Shown is a plausible contour plot in R2 of some arbitrary
differentiable convex real function f(x) at selected levels α , β , and γ ; id est, contours
of equal level f (level sets) drawn dashed in function’s domain. From results in §3.7
(p.202), gradient ∇f(x⋆) is normal to γ-sublevel set Lγf (577) by Definition E.9.1.0.1.
From §2.13.11.1, function is minimized over convex set C at point x⋆ iff negative gradient
−∇f(x⋆) belongs to normal cone to C there. In circumstance depicted, normal cone is
a ray whose direction is coincident with negative gradient. So, gradient is normal to a
hyperplane supporting both C and the γ-sublevel set.

2.13.11.1.1 Example. Normal cone to orthant.
Consider proper cone K= Rn

+ , the selfdual nonnegative orthant in Rn. The normal cone
to Rn

+ at a∈K is (2329)

K⊥
Rn

+
(a∈Rn

+) = −(Rn
+ − a)∗ = −Rn

+ ∩ a⊥ , a∈Rn
+ (463)

where −Rn
+ =−K∗ is the algebraic complement of Rn

+ , and a⊥ is the orthogonal
complement to range of vector a . This means: When point a is interior to Rn

+ , the
normal cone is the origin. If np represents number of nonzero entries in vector a∈∂Rn

+ ,
then dim(−Rn

+ ∩ a⊥)= n − np and there is a complementary relationship between the
nonzero entries in vector a and the nonzero entries in any vector x∈−Rn

+ ∩ a⊥. 2

2.13.11.1.2 Example. Optimality conditions for conic problem.
Consider a convex optimization problem having real differentiable convex objective
function f(x) : Rn→R defined on domain Rn

minimize
x

f(x)

subject to x ∈ K (464)

Let’s first suppose that the feasible set is a pointed polyhedral cone K possessing a linearly
independent set of generators and whose subspace membership is made explicit by wide
full-rank matrix C∈Rp×n ; id est, we are given the halfspace-description, for A∈Rm×n

K = {x | Ax º 0 , Cx = 0} ⊆ Rn (293a)
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K⊥
C1(0)

C1

K⊥
C2(0)

C2

K⊥
Ci(0)

Ci

Figure 72: Rough sketch of normal cone to set C⊂R2 as C wanders toward infinity. Point
at which a normal cone is determined, here the origin, need not belong to the set. Normal
cone to C1 is a ray. But as C moves outward (i→∞), normal cone approaches a halfspace.

(We’ll generalize to any convex cone K shortly.) Vertex-description of this cone, assuming
(ÂZ )† thin-or-square full-rank, is

K = {Z(ÂZ )† b | b º 0} (453)

where Â∈Rm−ℓ×n, ℓ is the number of conically dependent rows in AZ (§2.10) which
must be removed, and Z∈Rn×n−rank C holds basisN (C ) columnar.

From optimality condition (359),

∇f(x⋆)T(Z(ÂZ )† b − x⋆)≥ 0 ∀ b º 0 (465)

−∇f(x⋆)TZ(ÂZ )†(b − b⋆)≤ 0 ∀ b º 0 (466)

because
x⋆ , Z(ÂZ )† b⋆∈ K (467)

From membership relation (459) and Example 2.13.11.1.1

〈−(ZTÂT)†ZT∇f(x⋆) , b − b⋆〉 ≤ 0 for all b ∈ Rm−ℓ
+

⇔
−(ZTÂT)†ZT∇f(x⋆) ∈ −Rm−ℓ

+ ∩ b⋆⊥
(468)

Then equivalent necessary and sufficient conditions for optimality of conic problem (464)
with feasible set K are: (confer (369))

(ZTÂT)†ZT∇f(x⋆) º
R

m−ℓ
+

0 , b⋆ º
R

m−ℓ
+

0 , ∇f(x⋆)TZ(ÂZ )† b⋆ = 0 (469)

expressible, by (454),

∇f(x⋆) ∈ K∗, x⋆ ∈ K , ∇f(x⋆)Tx⋆ = 0 (470)
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E3

K⊥
E3(11T) + 11T

Figure 73: Renderings of normal cone K⊥
E3 to elliptope E3 (Figure 152), at point 11T,

projected on R3. In [276, fig.2], normal cone is claimed circular in this dimension.
(Numerical artifacts corrupt boundary and make truncated relative interior corporeal.)
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This result (470) actually applies more generally to any convex cone K comprising
the feasible set: Necessary and sufficient optimality conditions are in terms of objective
gradient

−∇f(x⋆) ∈ −(K − x⋆)∗ , x⋆∈ K (462)

whose membership to normal cone, assuming only cone K convexity,

−(K − x⋆)∗ = K⊥
K(x⋆∈ K) = −K∗∩ x⋆⊥ (2329)

equivalently expresses conditions (470).
When K= Rn

+ , in particular, then C =0 , A=Z = I∈ Sn ; id est,

minimize
x

f(x)

subject to x º
R

n
+

0 (471)

Necessary and sufficient optimality conditions become (confer [68, §4.2.3])

∇f(x⋆) º
R

n
+

0 , x⋆ º
R

n
+

0 , ∇f(x⋆)Tx⋆ = 0 (472)

equivalent to condition (337)2.87 (under nonzero gradient) for membership to the
nonnegative orthant boundary ∂Rn

+ . 2

2.13.11.1.3 Example. Complementarity problem. [245]
A complementarity problem in nonlinear function f is nonconvex

find z ∈ K
subject to f(z) ∈ K∗

〈z , f(z)〉 = 0
(473)

yet bears strong resemblance to (470) and to Moreau’s decomposition (2261) on page 612
for projection P on mutually polar cones K and −K∗. Identify a sum of mutually
orthogonal projections x , z−f(z) ; in Moreau’s terms, z=PKx and −f(z)=P−K∗x .
Then f(z)∈K∗ (§E.9.2.2 no.4) and z is a solution to the complementarity problem iff it is
a fixed point of

z = PKx = PK(z − f(z)) (474)

Given that a solution exists, existence of a fixed point would be guaranteed by theory
of contraction. [264, p.300] But because only nonexpansivity (Theorem E.9.3.0.1) is
achievable by a projector, uniqueness cannot be assured. [238, p.155] Elegant proofs of
equivalence between complementarity problem (473) and fixed point problem (474) are
provided by Németh [433, Fixed point problems]. 2

2.13.11.1.4 Example. Linear complementarity problem. [99] [314] [358]
Given matrix B∈Rn×n and vector q∈Rn, a prototypical complementarity problem on
the nonnegative orthant K= Rn

+ is linear in w = f(z) :

find z º 0
subject to w º 0

wTz = 0
w = q + Bz

(475)

2.87 and equivalent to well-known Karush-Kuhn-Tucker (KKT) optimality conditions [68, §5.5.3] because
the dual variable becomes gradient ∇f(x).

https://www.convexoptimization.com/wikimization/index.php/Harold_W._Kuhn
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This problem is not convex when both vectors w and z are variable.2.88 Notwithstanding,
this linear complementarity problem can be solved by identifying w←∇f(z)= q + Bz
then substituting that gradient into (473)

find z ∈ K
subject to ∇f(z) ∈ K∗

〈z , ∇f(z)〉 = 0
(476)

which is simply a restatement of optimality conditions (470) for conic problem (464).
Suitable f(z) is the quadratic objective from convex problem

minimize
z

1
2zTBz + qTz

subject to z º 0
(477)

which means B∈ Sn
+ can be (symmetric) positive semidefinite for solution of (475) by this

method. Then (475) has solution iff (477) does. 2

2.13.11.1.5 Exercise. Optimality for equality-constrained conic problem.
Consider a conic optimization problem like (464) having real differentiable convex objective
function f(x) : Rn→R

minimize
x

f(x)

subject to Cx = d
x ∈ K

(478)

minimized over convex cone K but, this time, constrained to affine set A = {x | Cx = d}.
Show, by means of first-order optimality condition (359) or (462), that necessary and
sufficient optimality conditions are: (confer (470))

x⋆ ∈ K
Cx⋆ = d

∇f(x⋆) + CTν⋆ ∈ K∗

〈∇f(x⋆) + CTν⋆, x⋆〉 = 0

(479)

where ν⋆ is any vector2.89 satisfying these conditions. H

2.13.12 Proper nonsimplicial K , dual, X wide full-rank

Since conically dependent columns can always be removed from X to construct K or to
determine K∗ [425], then assume we are given a set of N conically independent generators
(§2.10) of an arbitrary proper polyhedral cone K in Rn arranged columnar in X∈ Rn×N

such that N > n (wide) and rankX = n . Having found formula (429) to determine the
dual of a simplicial cone, the easiest way to find a vertex-description of proper dual cone

2.88But if one of them is fixed, then the problem becomes convex with a very simple geometric
interpretation: Define the affine subset

A , {y∈R
n | By = w − q}

For wTz to vanish, there must be a complementary relationship between the nonzero entries of vectors w
and z ; id est, wizi = 0 ∀ i . Given wº 0 , then z belongs to the convex set of solutions:

z ∈ −K⊥
Rn
+
(w∈R

n
+) ∩ A = R

n
+ ∩ w⊥ ∩ A

where K⊥
Rn
+
(w) is the normal cone to R

n
+ at w (463). If this intersection is nonempty, then the problem is

solvable.
2.89 an optimal dual variable, these optimality conditions are equivalent to the KKT conditions [68, §5.5.3].
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K∗ is to first decompose K into simplicial parts Ki so that K=
⋃Ki .2.90 Each component

simplicial cone in K corresponds to some subset of n linearly independent columns from
X . The key idea, here, is how the extreme directions of the simplicial parts must remain
extreme directions of K . Finding the dual of K amounts to finding the dual of each
simplicial part:

2.13.12.0.1 Theorem. Dual cone intersection. [377, §2.7]
Suppose proper cone K⊂ Rn equals the union of M simplicial cones Ki whose extreme
directions all coincide with those of K . Then proper dual cone K∗ is the intersection of
M dual simplicial cones K∗

i ; id est,

K =

M
⋃

i=1

Ki ⇒ K∗ =

M
⋂

i=1

K∗
i (480)

⋄

Proof. For Xi∈Rn×n, a complete matrix of linearly independent extreme
directions (p.114) arranged columnar, corresponding simplicial Ki (§2.12.3.1.1) has
vertex-description

Ki = {Xi c | c º 0} (481)

Now suppose,

K =

M
⋃

i=1

Ki =

M
⋃

i=1

{Xi c | c º 0} (482)

The union of all Ki can be equivalently expressed

K =















[X1 X2 · · · XM ]









a
b
...
c









| a , b . . . c º 0















(483)

Because extreme directions of the simplices Ki are extreme directions of K by assumption,
then

K = { [X1 X2 · · · XM ] d | d º 0 } (484)

by the extremes theorem (§2.8.1.1.1). Defining X , [X1 X2 · · · XM ] (with any redundant
[sic ] columns optionally removed from X), then K∗ can be expressed ((370), Cone Table S
p.152)

K∗ = {y | XTy º 0} =

M
⋂

i=1

{y | XT
i y º 0} =

M
⋂

i=1

K∗
i (485)

¨

To find the extreme directions of the dual cone, first we observe: some facets of each
simplicial part Ki are common to facets of K by assumption, and the union of all those
common facets comprises the set of all facets of K by design. For any particular proper
polyhedral cone K , the extreme directions of dual cone K∗ are respectively orthogonal to
the facets of K . (§2.13.7.1) Then the extreme directions of the dual cone can be found
among inward-normals to facets of the component simplicial cones Ki ; those normals are

2.90That proposition presupposes, of course, that we know how to perform simplicial decomposition
efficiently; also called “triangulation”. [350] [206, §3.1] [207, §3.1] Existence of multiple simplicial parts
means expansion of x∈K , like (421), can no longer be unique because number N of extreme directions
in K exceeds dimension n of the space.
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extreme directions of the dual simplicial cones K∗
i . From the theorem and Cone Table S

(p.152),

K∗ =

M
⋂

i=1

K∗
i =

M
⋂

i=1

{X†T
i c | c º 0} (486)

The set of extreme directions {Γ∗
i } for proper dual cone K∗ is therefore constituted by

those conically independent generators, from the columns of all the dual simplicial matrices
{X†T

i } , that do not violate discrete definition (370) of K∗;

{Γ∗
1 , Γ∗

2 . . . Γ∗
N} = c.i.

{

X†T
i (:,j) , i=1 . . . M , j =1 . . . n | X†

i (j,:)Γℓ ≥ 0 , ℓ =1 . . . N
}

(487)

where c.i. denotes selection of only the conically independent vectors from the argument
set, argument (:,j) denotes the j th column while (j,:) denotes the j th row, and {Γℓ}
constitutes the extreme directions of K . Figure 53b (p.113) shows a cone and its dual
found via this algorithm.

2.13.12.0.2 Example. Dual of K nonsimplicial in subspace aff K .
Given conically independent generators for pointed closed convex cone K in R4 arranged
columnar in

X = [ Γ1 Γ2 Γ3 Γ4 ] =









1 1 0 0
−1 0 1 0

0 −1 0 1
0 0 −1 −1









(488)

having dim aff K= rankX = 3 , (288) then performing the most inefficient simplicial
decomposition in aff K we find

X1 =









1 1 0
−1 0 1

0 −1 0
0 0 −1









, X2 =









1 1 0
−1 0 0

0 −1 1
0 0 −1









X3 =









1 0 0
−1 1 0

0 0 1
0 −1 −1









, X4 =









1 0 0
0 1 0

−1 0 1
0 −1 −1









(489)

The corresponding dual simplicial cones in aff K have generators respectively columnar
in

4X†T
1 =









2 1 1
−2 1 1

2 −3 1
−2 1 −3









, 4X†T
2 =









1 2 1
−3 2 1

1 −2 1
1 −2 −3









4X†T
3 =









3 2 −1
−1 2 −1
−1 −2 3
−1 −2 −1









, 4X†T
4 =









3 −1 2
−1 3 −2
−1 −1 2
−1 −1 −2









(490)

Applying algorithm (487) we get

[ Γ∗
1 Γ∗

2 Γ∗
3 Γ∗

4 ] =
1

4









1 2 3 2
1 2 −1 −2
1 −2 −1 2

−3 −2 −1 −2









(491)
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whose rank is 3 , and is the known result;2.91 a conically independent set of generators
for that pointed section of the dual cone K∗ in aff K ; id est, K∗∩ aff K . 2

2.13.12.0.3 Example. Dual of proper polyhedral K in R4.
Given conically independent generators for a full-dimensional pointed closed convex cone K

X = [ Γ1 Γ2 Γ3 Γ4 Γ5 ] =









1 1 0 1 0
−1 0 1 0 1

0 −1 0 1 0
0 0 −1 −1 0









(492)

we count 5!/((5−4)! 4!)=5 component simplices.2.92 Applying algorithm (487), we find
the six extreme directions of dual cone K∗ (with Γ2 = Γ∗

5)

X∗ = [ Γ∗
1 Γ∗

2 Γ∗
3 Γ∗

4 Γ∗
5 Γ∗

6 ] =









1 0 0 1 1 1
1 0 0 1 0 0
1 0 −1 0 −1 1
1 −1 −1 1 0 0









(493)

which means, (§2.13.7.1) this proper polyhedral K= cone(X) has six facets generated by
its extreme directions:































G(F1)
G(F2)
G(F3)
G(F4)
G(F5)
G(F6)































=































Γ1 Γ2 Γ3

Γ1 Γ2 Γ5

Γ1 Γ4 Γ5

Γ1 Γ3 Γ4

Γ3 Γ4 Γ5

Γ2 Γ3 Γ5































(494)

whereas dual proper polyhedral cone K∗ has only five (three-dimensional) facets:























G(F∗
1 )

G(F∗
2 )

G(F∗
3 )

G(F∗
4 )

G(F∗
5 )























=























Γ∗
1 Γ∗

2 Γ∗
3 Γ∗

4

Γ∗
1 Γ∗

2 Γ∗
6

Γ∗
1 Γ∗

4 Γ∗
5 Γ∗

6

Γ∗
3 Γ∗

4 Γ∗
5

Γ∗
2 Γ∗

3 Γ∗
5 Γ∗

6























(495)

Six two-dimensional cones, having generators G respectively {Γ∗
1 Γ∗

3} {Γ∗
2 Γ∗

4} {Γ∗
1 Γ∗

5}
{Γ∗

4 Γ∗
6} {Γ∗

2 Γ∗
5} {Γ∗

3 Γ∗
6} , are relatively interior to dual facets; so cannot be

two-dimensional faces of K∗ (by Definition 2.6.0.0.3).
We can check this result (493) by reversing the process; we find 6!/((6−4)! 4!)− 3=12

component simplices in the dual cone.2.93 Applying algorithm (487) to those simplices
returns a conically independent set of generators for K equivalent to (492). 2

2.13.12.0.4 Exercise. Reaching proper polyhedral cone interior.
Name two extreme directions Γi of cone K from Example 2.13.12.0.3 whose convex hull
passes through that cone’s interior. Explain why. Are there two such extreme directions
of dual cone K∗? H

2.91These calculations proceed so as to be consistent with [133, §6]; as if the ambient vector space were
proper subspace aff K whose dimension is 3. In that ambient space, K may be regarded as a proper cone.
Yet that author erroneously states dimension of the ordinary dual cone to be 3 ; it is, in fact, 4.
2.92There are no linearly dependent combinations of three or four extreme directions in the primal cone.
2.93Three combinations of four dual extreme directions are linearly dependent; they belong to the dual
facets. But there are no linearly dependent combinations of three dual extreme directions.
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2.13.13 coordinates in proper nonsimplicial system

A natural question pertains to whether a theory of unique coordinates, like biorthogonal
expansion w.r.t pointed closed convex K , is extensible to proper cones whose extreme
directions number in excess of ambient spatial dimensionality.

2.13.13.0.1 Theorem. Conic coordinates.
With respect to vector v in some finite-dimensional Euclidean space Rn, define a
coordinate t⋆v of point x in full-dimensional pointed closed convex cone K

t⋆v(x) , sup{t∈R | x − tv∈K} (496)

Given points x and y in cone K , if t⋆v(x)= t⋆v(y) for each and every extreme direction v
of K then x = y . ⋄

Conic coordinate definition (496) acquires its heritage from conditions (384) for
generator membership to a smallest face. Coordinate t⋆v(c)=0 , for example, corresponds
to unbounded µ in (384); indicating, extreme direction v cannot belong to the smallest
face of cone K that contains c .

2.13.13.0.2 Proof. Vector x− t⋆v must belong to the cone boundary ∂K by definition
(496). So there must exist a nonzero vector λ that is inward-normal to a hyperplane
supporting cone K and containing x− t⋆v ; id est, by boundary-membership relation for
full-dimensional pointed closed convex cones (§2.13.2)

x− t⋆v ∈ ∂K ⇔ ∃ λ 6= 0 Ä 〈λ , x− t⋆v〉 = 0 , λ ∈ K∗, x− t⋆v ∈ K (337)

where
K∗ = {w∈Rn | 〈v , w〉 ≥ 0 for all v∈ G(K)} (376)

is the full-dimensional pointed closed convex dual cone. The set G(K) , of possibly
infinite cardinality N , comprises generators for cone K ; e.g, its extreme directions which
constitute a minimal generating set. If x− t⋆v is nonzero, any such vector λ must belong
to the dual cone boundary by conjugate boundary-membership relation

λ ∈ ∂K∗ ⇔ ∃ x− t⋆v 6= 0 Ä 〈λ , x− t⋆v〉 = 0 , x− t⋆v ∈ K , λ ∈ K∗ (338)

where
K = {z∈Rn | 〈λ , z〉 ≥ 0 for all λ∈ G(K∗)} (375)

This description of K means: cone K is an intersection of halfspaces whose inward-normals
are generators of the dual cone. Each and every face of cone K (except the cone itself)
belongs to a hyperplane supporting K . Each and every vector x− t⋆v on the cone
boundary must therefore be orthogonal to an extreme direction constituting generators
G(K∗) of the dual cone.

To the ith extreme direction v = Γi∈Rn of cone K , ascribe a coordinate t⋆i (x)∈R of
x from definition (496). On domain K , the mapping

t⋆(x) =







t⋆1(x)
...

t⋆N (x)






: Rn→RN (497)

has no nontrivial nullspace. Because x− t⋆v must belong to ∂K by definition, the mapping
t⋆(x) is equivalent to a convex problem (separable in index i) whose objective (by (337))
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is tightly bounded below by 0 :

t⋆(x) ≡ arg minimize
t∈RN

N
∑

i=1

Γ∗T
j(i)(x − tiΓi)

subject to x − tiΓi ∈ K , i=1 . . . N
(498)

where index j∈ I is dependent on i and where (by (375)) λ = Γ∗
j ∈Rn is an extreme

direction of dual cone K∗ that is normal to a hyperplane supporting K and containing
x − t⋆i Γi . Because extreme-direction cardinality N for cone K is not necessarily the same
as for dual cone K∗, index j must be judiciously selected from a set I .

To prove injectivity when extreme-direction cardinality N > n exceeds spatial
dimension, we need only show mapping t⋆(x) to be invertible; [152, thm.9.2.3] id est,
x is recoverable given t⋆(x) :

x = arg minimize
x̃∈R

n

N
∑

i=1

Γ∗T
j(i)(x̃ − t⋆i Γi)

subject to x̃ − t⋆i Γi ∈ K , i=1 . . . N
(499)

The feasible set of this nonseparable convex problem is an intersection of translated
full-dimensional pointed closed convex cones

⋂

iK + t⋆i Γi . The objective function’s linear
part describes movement in normal-direction −Γ∗

j for each of N hyperplanes. The optimal
point of hyperplane intersection is the unique solution x when {Γ∗

j } comprises n linearly
independent normals that come from the dual cone and make the objective vanish. Because
the dual cone K∗ is full-dimensional, pointed, closed, and convex by assumption, there
exist N extreme directions {Γ∗

j } from K∗⊂ Rn that span Rn. So we need simply choose
N spanning dual extreme directions that make the optimal objective vanish. Because such
dual extreme directions preexist by (337), t⋆(x) is invertible.

Otherwise, in the case N≤ n , t⋆(x) holds coordinates for biorthogonal expansion.
Reconstruction of x is therefore unique. ¨

2.13.13.1 reconstruction from conic coordinates

The foregoing proof of the conic coordinates theorem is not constructive; it establishes
existence of dual extreme directions {Γ∗

j } that will reconstruct a point x from its
coordinates t⋆(x) via (499), but does not prescribe the index set I . There are at least two
computational methods for specifying {Γ∗

j(i)} : one is combinatorial but sure to succeed,
the other is a geometric method that searches for a minimum of a nonconvex function.
We describe the latter:

Convex problem (P)

(P)
maximize

t∈R

t

subject to x − tv∈K

minimize
λ∈R

n
λTx

subject to λTv = 1
λ ∈ K∗

(D) (500)

is equivalent to definition (496) whereas convex problem (D) is its dual;2.94 meaning,
primal and dual optimal objectives are equal t⋆ = λ⋆Tx assuming Slater’s condition (p.225)

2.94Form a Lagrangian associated with primal problem (P):

L(t , λ) = t + λT(x − tv) = λTx + t(1 − λTv) , λ º
K∗

0

sup
t∈R

L(t , λ) = λTx , 1 − λTv = 0

Dual variable (Lagrange multiplier [290, p.216]) λ generally has a nonnegative sense º for primal
maximization with any cone membership constraint, whereas λ would have a nonpositive sense ¹ were
the primal instead a minimization problem with a cone membership constraint.

https://books.google.com/books?id=ImCSX_gm40oC&printsec=frontcover&dq=An+Introduction+to+Mathematical+Reasoning:+numbers,+sets+and+functions+Peter+J.+Eccles&sig=ACfU3U3mw4U6gxzd4T1jyDVbHgoCPYmHfg#PPA107,M1
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is satisfied. Under this assumption of strong duality, λ⋆T(x − t⋆v)= t⋆(1 − λ⋆Tv)=0 ;
which implies, the primal problem is equivalent to

minimize
t∈R

λ⋆T(x − tv)

subject to x − tv∈K
(p) (501)

while the dual problem is equivalent to

minimize
λ∈R

n
λT(x − t⋆v)

subject to λTv = 1
λ ∈ K∗

(d) (502)

Instead given coordinates t⋆(x) and a description of cone K , we propose inversion by
alternating solution of respective primal and dual problems

minimize
x∈R

n

N
∑

i=1

Γ∗T
i (x − t⋆i Γi)

subject to x − t⋆i Γi ∈ K , i=1 . . . N
(503)

minimize
Γ∗

i∈R
n

N
∑

i=1

Γ∗T
i (x⋆− t⋆i Γi)

subject to Γ∗T
i Γi = 1 , i=1 . . . N

Γ∗
i ∈ K∗ , i=1 . . . N

(504)

where dual extreme directions Γ∗
i are initialized arbitrarily and ultimately ascertained by

the alternation. Convex problems (503) and (504) are iterated until convergence which is
guaranteed by virtue of a monotonically nonincreasing real sequence of objective values.
Convergence can be fast. The mapping t⋆(x) is uniquely inverted when the necessarily
nonnegative objective vanishes; id est, when Γ∗T

i (x⋆− t⋆i Γi)=0 ∀ i . Here, a zero objective
can occur only at the true solution x . But this global optimality condition cannot be
guaranteed by the alternation because the common objective function, when regarded in
both primal x and dual Γ∗

i variables simultaneously, is generally neither quasiconvex or
monotonic. (§3.15.0.0.3)

Conversely, a nonzero objective at convergence is a certificate that inversion was not
performed properly. A nonzero objective indicates that a global minimum of a multimodal
objective function could not be found by this alternation. That is a flaw in this particular
iterative algorithm for inversion; not in theory.2.95 A numerical remedy is to reinitialize
the Γ∗

i to different values.

2.95The Proof 2.13.13.0.2, that suitable dual extreme directions {Γ∗
j } always exist, means that a global

optimization algorithm would always find the zero objective of alternation (503) (504); hence, the unique
inversion x . But such an algorithm can be combinatorial.
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Chapter 3

Geometry of Convex Functions

The link between convex sets and convex functions is via the epigraph: A
function is convex if and only if its epigraph is a convex set.

−Werner Fenchel

We limit our treatment of multidimensional functions3.1 to finite-dimensional Euclidean
space. Then an icon for a one-dimensional (real) convex function is bowl-shaped
(Figure 85), whereas the concave icon is the inverted bowl; respectively characterized by a
unique global minimum and maximum whose existence is assumed. Because of this simple
relationship, usage of the term convexity is often implicitly inclusive of concavity. Despite
iconic imagery, the reader is reminded that the set of all convex, concave, quasiconvex,
and quasiconcave functions contains the monotonic functions [238] [251, §2.3.5].

3.1 Convex real and vector-valued function

Vector-valued function

f(X) : Rp×k→RM =







f1(X)
...

fM (X)






(505)

assigns each X in its domain dom f (a subset of ambient vector space Rp×k) to a specific
element [299, p.3] of its range (a subset of RM ). Function f(X) is linear in X on its
domain if and only if, for each and every Y,Z∈dom f and α , β∈R

f(α Y + βZ) = αf(Y ) + βf(Z ) (506)

A vector-valued function f(X) : Rp×k→RM is convex in X if and only if dom f is a
convex set and, for each and every Y,Z∈dom f and 0≤µ≤1

f(µ Y + (1 − µ)Z) ¹
R

M
+

µf(Y ) + (1 − µ)f(Z ) (507)

3.1 vector- or matrix-valued functions including the real functions. Appendix D, with its tables of first-
and second-order gradients, is the practical adjunct to this chapter.

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 171

https://www.convexoptimization.com/TOOLS/Fenchel1951.pdf
https://ccrma.stanford.edu/~dattorro
https://www.convexoptimization.com
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(a) (b)

f1(x) f2(x)

Figure 74: Convex real functions here have a unique minimizer x⋆. f1(x)=x2 =‖x‖2
2

is strictly convex, for x∈R , whereas f2(x)=
√

x2 = |x|=‖x‖2 is convex but not strictly.
Strict convexity of a real function is only a sufficient condition for minimizer uniqueness.

As defined, continuity is implied but not differentiability3.2 (nor smoothness). Apparently
some, but not all, nonlinear functions are convex. Reversing sense of the inequality flips
this definition to concavity. Linear (and affine §3.4)3.3 functions attain equality in this
definition. Linear functions are therefore simultaneously convex and concave.

Vector-valued functions are most often compared (189) as in (507) with respect to
the M -dimensional selfdual nonnegative orthant RM

+ , a proper cone.3.4 In this case, the
test prescribed by (507) is simply a comparison on R of each entry fi of a vector-valued
function f . (§2.13.4.2.3) The vector-valued function case is therefore a straightforward
generalization of conventional convexity theory for a real function. This conclusion follows
from theory of dual generalized inequalities (§2.13.2.0.1) which asserts

f convex w.r.t RM
+ ⇔ wTf convex ∀w∈ G(RM∗

+ ) (508)

shown by substitution of the defining inequality (507). Discretization allows relaxation

(§2.13.4.2.1) of a semiinfinite number of conditions {w∈RM∗
+ } to:

{w∈ G(RM∗
+ )} ≡ {ei∈ RM , i=1 . . . M } (509)

(the standard basis for RM and a minimal set of generators (§2.8.1.2) for RM
+ ) from which

the stated conclusion follows; id est, the test for convexity of a vector-valued function is a
comparison on R of each entry.

3.1.1 strict convexity

When f(X) instead satisfies, for each and every distinct Y and Z in dom f and all 0<µ<1
on an open interval

f(µ Y + (1 − µ)Z) ≺
R

M
+

µf(Y ) + (1 − µ)f(Z ) (510)

then we shall say f is a strictly convex function.

3.2Figure 74b illustrates a convex function, nondifferentiable at 0. Differentiability is certainly not a
requirement for optimization of convex functions by numerical methods; e.g, [282].
3.3While linear functions are not invariant to translation (offset), convex functions are.
3.4Definition of convexity can be broadened to other (not necessarily proper) cones. Referred to in the

literature as K-convexity, [340] R
M∗
+ (508) generalizes to K∗.
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Similarly to (508)

f strictly convex w.r.t RM
+ ⇔ wTf strictly convex ∀w∈ G(RM∗

+ ) (511)

discretization allows relaxation of the semiinfinite number of conditions {w∈RM∗
+ , w 6= 0}

(333) to a finite number (509). More tests for strict convexity are given in §3.6.1.0.3, §3.10,
and §3.14.0.0.2.

3.1.1.1 local/global minimum, uniqueness of solution

A local minimum of any convex real function is also its global minimum. In fact, any
convex real function f(X) has one minimum value over any convex subset of its domain.
[349, p.123] Yet solution to some convex optimization problem is, in general, not unique;
id est, given minimization of a convex real function over some convex feasible set C

minimize
X

f(X)

subject to X∈ C
(512)

any optimal solution X⋆ comes from a convex set of optimal solutions

X⋆ ∈ {X | f(X) = inf
Y ∈ C

f(Y ) } ⊆ C (513)

But a strictly convex real function has a unique minimizer X⋆ ; id est, for the optimal
solution set in (513) to be a single point, it is sufficient (Figure 74) that f(X) be a
strictly convex real3.5 function and set C convex. But strict convexity is not necessary for
minimizer uniqueness: existence of any strictly supporting hyperplane to a convex function
epigraph (p.171, §3.5) at its minimum over C is necessary and sufficient for uniqueness.

Quadratic real functions xTAx + bTx + c are convex in x iff Aº0. (§3.10.0.0.1)
Quadratics characterized by positive definite matrix A≻0 are strictly convex and vice
versa. The vector 2-norm square ‖x‖2 (Euclidean norm square) and Frobenius’ norm
square ‖X‖2

F , for example, are strictly convex functions of their respective argument.
(Each absolute norm is convex but not strictly.) Figure 74a illustrates a strictly convex
real function.

3.1.1.2 minimum/minimal element, dual cone characterization

f(X⋆) is the minimum element of its range if and only if, for each and every w∈ intr RM∗
+ ,

it is the unique minimizer of wTf . (Figure 75) [68, §2.6.3]

If f(X⋆) is a minimal element of its range, then there exists a nonzero w∈RM∗
+ such

that f(X⋆) minimizes wTf . If f(X⋆) minimizes wTf for some w∈ intr RM∗
+ , conversely,

then f(X⋆) is a minimal element of its range.

3.1.1.2.1 Exercise. Cone of convex functions.
Prove that relation (508) implies: The set of all convex vector-valued functions forms a
convex cone in some space. Indeed, any nonnegatively weighted sum of convex functions
remains convex. So trivial function f = 0 is convex. Relatively interior to each face of
this cone are the strictly convex functions of corresponding dimension.3.6 How do convex
real functions fit into this cone? Where are the affine functions? H

3.5It is more customary to consider only a real function for the objective of a convex optimization
problem because vector- or matrix-valued functions can introduce ambiguity into the optimal objective
value. (§2.7.2.2, §3.1.1.2) Study of multidimensional objective functions is called multicriteria- [371] or
multiobjective- or vector-optimization.
3.6Strict case excludes cone’s point at origin and zero weighting.

https://books.google.com/books?id=cqyHkkCxVtcC&pg=RA1-PA123&lpg=RA1-PA123&dq=convex+function+global+local+minimum&source=bl&ots=Y1Hv1x0vrK&sig=xS-nlzgCyKnn3wZNytK5PebXZUI&hl=en&ei=IRIwSoyRIo7mtAOZ1LG0CA&sa=X&oi=book_result&ct=result&resnum=6#PRA1-PA123,M1
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Rf

Rf

f

f

f(X⋆)

f(X⋆)

f(X)1

f(X)2

w

w

(b)

(a)

Figure 75: (confer Figure 43) Function range is convex for a convex problem.
(a) Point f(X⋆) is the unique minimum element of function range Rf .
(b) Point f(X⋆) is a minimal element of depicted range.
(Cartesian axes drawn for reference.)

3.1.1.2.2 Example. Conic origins of Lagrangian.
The cone of convex functions, implied by membership relation (508), provides foundation
for what is known as a Lagrangian function. [292, p.398] [323] Consider a conic
optimization problem, for proper cone K and affine subset A

minimize
x

f(x)

subject to g(x) ºK 0
h(x) ∈ A

(514)

A Cartesian product of convex functions remains convex, so we may write

[

f
g
h

]

convex w.r.t





RM
+

K
A



 ⇔ [wT λT νT ]

[

f
g
h

]

convex ∀





w
λ
ν



∈





RM∗
+

K∗

A⊥



 (515)

where A⊥ is a normal cone to A . A normal cone to an affine subset is the orthogonal
complement of its parallel subspace (§2.13.11.0.1).

Membership relation (515) holds because of equality for h in convexity criterion (507)
and because normal-cone membership relation (460), given point a∈A , becomes

h ∈ A ⇔ 〈ν , h − a〉=0 for all ν ∈ A⊥ (516)

In other words: all affine functions are convex (with respect to any given proper cone), all
convex functions are translation invariant, whereas any affine function must satisfy (516).

A real Lagrangian arises from the scalar term in (515); id est,

L , [wT λT νT ]

[

f
g
h

]

= wTf + λTg + νTh (517)

2
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ℓ= 1
4

ℓ= 1
2

ℓ=1

ℓ=2

ℓ=∞

{

x∈R2

∣

∣

∣

∣

∣

‖x‖
ℓ
= ℓ

√

n
∑

j=1

|xj |ℓ = 1

}

R2

Figure 76: (confer Figure 77) Various vector norm ball boundaries; convex for ℓ≥1.
1-norm ball vertices comprise cardinality-1 vectors; coincident with ball vertices ∀ ℓ<1.

3.2 Practical norm functions, absolute value

To mathematicians, “all norms on Rn are equivalent” [189, p.53]; meaning, ratios of
different norms are bounded above and below by finite predeterminable constants. For
x∈Rn, for example,

‖x‖2 ≤ ‖x‖1 ≤ √
n‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤ √
n‖x‖∞

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞
(518)

But, to statisticians and engineers, all norms are not created equal.3.7 For some positive
constant c0 & 1 , empirically, infimum over an affine subset (Figure 77) obeys

∥

∥arg inf ‖x‖2

∥

∥

2
≤

∥

∥arg inf ‖x‖1

∥

∥

2
≤ c0

∥

∥arg inf ‖x‖0

∥

∥

2
(519)

which are generally not tight.

3.2.0.0.1 Definition. Vector norm: [264, p.59] [189, p.52]
a convex function f : Rn→ R on domain Rn satisfying: for x, y∈Rn, α∈R

1. f(x) ≥ 0 (f(x) = 0 ⇔ x = 0) (nonnegativity)

2. f(x + y) ≤ f(x) + f(y) 3.8(triangle inequality)

3. f(αx) = |α|f(x) (nonnegative homogeneity)

Convexity follows by properties 2 and 3. △

3.7 evidenced by the compressed sensing (sparsity) revolution, begun 2004, whose focus is predominantly
the argument of a 1-norm minimization.
3.8 ‖x + y‖ ≤ ‖x‖ + ‖y‖ for any norm, with equality iff x = κy where κ≥ 0.
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Most useful are 1-, 2-, and ∞-norm:

‖x‖1 = minimize
t∈R

n
1Tt

subject to −t ¹ x ¹ t
(520)

where |x|= t⋆ (entrywise absolute value equals optimal t ).3.9

‖x‖1 = minimize
α∈R

n , β∈R
n

1T(α + β)

subject to α , β º 0
x = α − β

(521)

where |x|= α⋆+ β⋆ because of complementarity α⋆Tβ⋆ = 0 at optimality.

‖x‖2 = minimize
t∈R

t

subject to

[

tI x
xT t

]

º
S

n+1
+

0
(522)

where ‖x‖2 = ‖x‖ ,
√

xTx = t⋆.

‖x‖∞ = minimize
t∈R

t

subject to −t1 ¹ x ¹ t1
(523)

where max{|xi| , i=1 . . . n}= t⋆ because ‖x‖∞ = max{|xi|}≤ t ⇔ |x|¹ t1 ; absolute
value |x| inequality, in this sense, describing an ∞-norm ball (Figure 76). Optimizations
(520) (521) and (523) represent linear programs. Optimization (522) is a semidefinite
program.

3.2.0.1 norm square versus square root

Each of these norms is a monotonic real function on a nonnegative orthant. But over any
arbitrary convex set C , given vector constant y or matrix constant Y

arg inf
x∈C

‖x − y‖ = arg inf
x∈C

‖x − y‖2 (524)

arg inf
X∈C

‖X− Y ‖ = arg inf
X∈C

‖X− Y ‖2 (525)

are unconstrained convex problems for any convex norm and any affine transformation of
variable.3.10

Optimal solution is norm dependent: [68, p.297]

minimize
x∈R

n
‖x‖1

subject to x ∈ C
≡

minimize
x∈R

n , t∈R
n

1Tt

subject to −t ¹ x ¹ t

x ∈ C
(526)

minimize
x∈R

n
‖x‖2

subject to x ∈ C
≡

minimize
x∈R

n , t∈R

t

subject to

[

tI x
xT t

]

º
S

n+1
+

0

x ∈ C

(527)

3.9Vector 1 may be replaced with any positive [sic ] vector to get absolute value, theoretically, although
1 provides the 1-norm.
3.10But equality would not hold for, instead, a sum of norms; e.g, §5.4.2.2.4.
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minimize
x∈R

n
‖x‖∞

subject to x ∈ C
≡

minimize
x∈R

n , t∈R

t

subject to −t1 ¹ x ¹ t1

x ∈ C
(528)

In Rn : ‖x‖1 represents length measured along a grid (taxicab distance, Figure 88),
‖x‖2 is Euclidean length, ‖x‖∞ is maximum |coordinate| (peak magnitude).

minimize
x∈R

n
‖x‖1

subject to x ∈ C
≡

minimize
α∈R

n , β∈R
n

1T(α + β)

subject to α , β º 0
x = α − β
x ∈ C

(529)

These foregoing problems (520)-(529) are convex whenever set C is. Their equivalence
transformations make objectives smooth.

3.2.0.1.1 Exercise. Norms on R2.
Which of these functions f(x) : R2→ R are norms as defined in §3.2.0.0.1:?

(1) (2) (3) (4)

f(x) =



















x1+ x2 , |x1+ x2| , | |x1| + |x2| | , (|x1| + |x2| )2 (a)

x1− x2 , |x1− x2| , | |x1| − |x2| | , (|x1| − |x2| )2 (b)

x2
1+ x2

2 , |x2
1+ x2

2| , | |x1|2+ |x2|2| , (|x1|2+ |x2|2)2 (c)

x2
1− x2

2 , |x2
1− x2

2| , | |x1|2− |x2|2| , (|x1|2− |x2|2)2 (d)

(530)

Which are convex? H

3.2.0.1.2 Example. Projecting the origin, on an affine subset, in 1-norm.
In (2094) we interpret least norm solution to linear system Ax = b as orthogonal projection
of the origin 0 on affine subset A= {x∈Rn |Ax=b} where A∈Rm×n is wide full-rank.
Suppose, instead of the Euclidean metric, we use taxicab distance to do projection. Then
the least 1-norm problem is stated, for b∈R(A)

minimize
x

‖x‖1

subject to Ax = b
(531)

a.k.a compressed sensing problem. Optimal solution can be interpreted as an oblique
projection of the origin on A simply because the Euclidean metric is not employed. This
problem statement sometimes returns optimal x⋆ having minimal cardinality; which can
be explained intuitively with reference to Figure 77: [21]

Projection of the origin, in 1-norm, on affine subset A is equivalent to maximization
(in this case) of the 1-norm ball B1 until it kisses A ; rather, a kissing point in A achieves
the distance in 1-norm from the origin to A . For the example illustrated (m=1 , n=3),
it appears that a vertex of the ball will be first to touch A . 1-norm ball vertices in R3

represent nontrivial points of minimal cardinality 1 , whereas edges represent cardinality 2 ,
while relative interiors of facets represent maximal cardinality 3. By reorienting affine
subset A so it were parallel to an edge or facet, it becomes evident as we expand or
contract the ball that a kissing point is not necessarily unique.3.11

The 1-norm ball in Rn has 2n facets and 2n vertices.3.12 For n > 0

B1 = {x∈Rn | ‖x‖1≤ 1} = conv{‖x∈Rn‖= 1 | cardx= 1} = conv{±ei∈Rn, i=1 . . . n} (532)

3.11This is unlike the case for Euclidean ball (2094) where minimum-distance projection on a convex set
is unique (§E.9); all kissable faces of the Euclidean ball are single points (vertices).
3.12The ∞-norm ball in R

n has 2n facets and 2n vertices.
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A= {x∈R3 |Ax=b}

R3

B1 = {x∈R3 | ‖x‖1≤ 1}

Figure 77: (confer Figure 76) Unit 1-norm ball B1 is convex hull of all cardinality-1 vectors
of unit norm (its vertices); its edges comprise all cardinality-2 vectors. An octahedron in
this dimension, ball boundary contains all points equidistant from origin in 1-norm. Plane
A is overhead, drawn truncated. If 1-norm ball is expanded until A kisses it (intersects
ball only at boundary), then distance (in 1-norm) from origin to A is achieved. Euclidean
(2-norm) ball would be spherical in this dimension. Cartesian axes are drawn for reference.
Only were A parallel to two axes could there be a minimal cardinality least Euclidean norm
solution. Yet 1-norm ball offers infinitely many, but not all, A-orientations resulting in a
minimal cardinality solution. (∞-norm ball would be a cube in this dimension.)
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(531)
minimize

x
‖x‖1

subject to Ax = b

minimize
x

‖x‖1

subject to Ax = b
x º 0

(536)

hard hard

Figure 78: (confer Figure 112) Exact recovery transition: Respectively signed [140] [142]
or positive [147] [145] [146] solutions x , to Ax=b with sparsity k below thick curve,
are recoverable. For Gaussian random matrix A∈Rm×n, thick curve demarcates phase
transition in ability to find sparsest solution x by linear programming. These results
empirically reproduced in [42].
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Figure 79: Under 1-norm f2(x) , histogram (hatched) of residual amplitudes Ax− b
exhibits predominant accumulation of zero-residuals. Nonnegatively constrained 1-norm
f3(x) from (536) accumulates more zero-residuals than f2(x). Under norm f4(x) (not
discussed), histogram would exhibit predominant accumulation of (nonzero) residuals at
gradient discontinuities.
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is a vertex-description of the unit 1-norm ball centered at the origin. Maximization of the
1-norm ball, until it kisses A , is equivalent to minimization of the 1-norm ball until it no
longer intersects A . Then projection of the origin on affine subset A is

minimize
x∈R

n
‖x‖1

subject to Ax = b
≡

minimize
c∈R , x∈R

n
c

subject to x ∈ cB1

Ax = b

(533)

where
cB1 = {[ I∈Rn×n −I∈Rn×n ]a | aT1= c , aº0} (534)

which is the convex hull of 1-norm ball vertices. Then (533) is equivalent to

minimize
c∈R , x∈R

n , a∈R
2n

c

subject to x = [ I −I ]a
aT1 = c
a º 0
Ax = b

≡
minimize

a∈R
2n

‖a‖1

subject to [A −A ]a = b
a º 0

(535)

where x⋆ = [ I −I ]a⋆. (confer (529)) Significance of this result:

� (confer p.318) Any vector 1-norm minimization problem may have its variable
replaced with a nonnegative variable of the same optimal cardinality but twice the
length.

All other things being equal, nonnegative variables are easier to solve for sparse solutions.
(Figure 78, Figure 79, Figure 112) The compressed sensing problem (531) becomes easier
to interpret; e.g, for A∈Rm×n

minimize
x

‖x‖1

subject to Ax = b
x º 0

≡
minimize

x
1Tx

subject to Ax = b
x º 0

(536)

movement of a hyperplane (Figure 29, Figure 33) over a bounded polyhedron always has
a vertex solution [107, p.158]. Or vector b might lie on the relative boundary of a pointed
polyhedral cone K= {Ax | xº 0}. In the latter case, we find practical application of the
smallest face F containing b from §2.13.5 to remove all columns of matrix A not belonging
to F ; because those columns correspond to 0-entries in vector x (and vice versa). 2

3.2.0.1.3 Exercise. Combinatorial optimization.
A device commonly employed to relax combinatorial problems is to arrange desirable
solutions at vertices of bounded polyhedra; e.g, the permutation matrices of dimension n ,
which are factorial in number, are the extreme points of a polyhedron in the nonnegative
orthant described by an intersection of 2n hyperplanes (§2.3.2.0.4). Minimizing a linear
objective function over a bounded polyhedron is a convex problem (a linear program) that
always has an optimal solution residing at a vertex.

What about minimizing other functions? Given some nonsingular matrix A , describe
three circumstances geometrically under which there are likely to exist vertex solutions to

minimize
x∈R

n
‖Ax‖1

subject to x ∈ P
(537)

optimized over some bounded polyhedron P .3.13 H
3.13Hint: Suppose, for example, P belongs to an orthant and A were orthogonal. Begin with A=I and
apply level sets of the objective, as in Figure 71 and Figure 77. Or rewrite the problem as a linear

program like (526) and (528) but in a composite variable

[

x
t

]

← y .



3.2. PRACTICAL NORM FUNCTIONS, ABSOLUTE VALUE 181

3.2.1 k smallest entries

Sum of the k smallest entries of x∈Rn is the optimal objective value from: for 1≤k≤n
n
∑

i=n−k+1

π(x)i = minimize
y∈R

n
xTy

subject to 0 ¹ y ¹ 1

1Ty = k

≡

n
∑

i=n−k+1

π(x)i = maximize
z∈R

n , t∈R

k t + 1Tz

subject to x º t1 + z
z ¹ 0

(538)

which are dual linear programs, where π(x)1 = max{xi , i=1 . . . n} where π is a nonlinear
permutation-operator sorting its vector argument into nonincreasing order. Finding k
smallest entries of an n-length vector x is expressible as an infimum of n!/(k!(n − k)!)
linear functions of x . The sum

∑

π(x)i is therefore a concave function of x ; in fact,
monotonic (§3.6.1.0.1) in this instance.

3.2.2 k largest entries

Sum of the k largest entries of x∈Rn is the optimal objective value from: [68, exer.5.19]

k
∑

i=1

π(x)i = maximize
y∈R

n
xTy

subject to 0 ¹ y ¹ 1

1Ty = k

≡

k
∑

i=1

π(x)i = minimize
z∈R

n , t∈R

k t + 1Tz

subject to x ¹ t1 + z
z º 0

(539)

which are dual linear programs. Finding k largest entries of an n-length vector x is
expressible as a supremum of n!/(k!(n − k)!) linear functions of x . (Figure 81) The
summation is therefore a convex function (and monotonic in this instance, §3.6.1.0.1).

3.2.2.1 k-largest norm

Let Π x be a permutation of entries xi such that their absolute value becomes arranged
in nonincreasing order: |Π x|1 ≥ |Π x|2 ≥ · · · ≥ |Π x|n . Sum of the k largest entries of
|x|∈Rn is a norm, by properties of vector norm (§3.2), and is the optimal objective value
of a linear program:

‖x‖n
k

,
k
∑

i=1

|Π x|i =
k
∑

i=1

π(|x|)i = minimize
z∈R

n , t∈R

k t + 1Tz

subject to −t1 − z ¹ x ¹ t1 + z
z º 0

= sup
i∈I

{

aT
i x

∣

∣

∣

∣

aij ∈ {−1, 0, 1}
card ai = k

}

= maximize
y1 , y2∈R

n
(y1 − y2)

Tx

subject to 0 ¹ y1 ¹ 1
0 ¹ y2 ¹ 1
(y1 + y2)

T1 = k

(540)

where the norm subscript derives from a binomial coefficient

(

n
k

)

, and

‖x‖n
n

= ‖x‖1

‖x‖n
1

= ‖x‖∞
‖x‖n

k
= ‖π(|x|)1:k‖1

(541)

Sum of k largest absolute entries of an n-length vector x is expressible as a supremum
of 2kn!/(k!(n − k)!) linear functions of x ; (Figure 81) hence, this norm is convex in x .
[68, exer.6.3e]
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minimize
x∈R

n
‖x‖n

k

subject to x ∈ C
≡

minimize
z∈R

n , t∈R , x∈R
n

k t + 1Tz

subject to −t1 − z ¹ x ¹ t1 + z
z º 0
x ∈ C

(542)

3.2.2.1.1 Exercise. Polyhedral epigraph of k-largest norm.
Make those card I = 2kn!/(k!(n − k)!) linear functions explicit for ‖x‖2

2
and ‖x‖2

1
on R2

and ‖x‖3
2

on R3. Plot ‖x‖2
2

and ‖x‖2
1

in three dimensions. H

3.2.2.1.2 Exercise. Norm strict convexity.
Which of the vector norms ‖x‖n

k
, ‖x‖1 , ‖x‖2 , ‖x‖∞ become strictly convex when squared?

Do they remain strictly convex when raised to third and higher whole powers? H

3.2.2.1.3 Example. Compressed sensing problem.
Conventionally posed as convex problem (531), we showed: the compressed sensing
problem can always be posed equivalently with a nonnegative variable as in convex
statement (536). The 1-norm predominantly appears in the literature because it is convex,
it inherently minimizes cardinality under some technical conditions, [77] and because the
desirable 0-norm is intractable.

Assuming a cardinality-k solution exists, the compressed sensing problem may be
written as a difference of two convex functions: for A∈Rm×n

minimize
x∈R

n
‖x‖1 − ‖x‖n

k

subject to Ax = b
x º 0

≡
find x ∈ Rn

subject to Ax = b
x º 0
‖x‖0 ≤ k

(543)

which is a nonconvex statement, a minimization of n−k smallest entries of variable
vector x , minimization of a concave function on Rn

+ (§3.2.1) [354, §32]; but a statement
of compressed sensing more precise than (536) because of its equivalence to 0-norm. ‖x‖n

k
is the convex k-largest norm of x (monotonic on Rn

+) while ‖x‖0 expresses its cardinality
(quasiconcave on Rn

+). Global optimality occurs at a zero objective of minimization; id est,
when the smallest n−k entries of variable vector x are zeroed. Under nonnegativity
constraint, this compressed sensing problem (543) becomes the same as

minimize
z(x) , x∈R

n
(1 − z)Tx

subject to Ax = b
x º 0

(544)

where
1 = ∇‖x‖1 = ∇1Tx

z = ∇‖x‖n
k

= ∇zTx

}

, x º 0 (545)

where gradient of k-largest norm is an optimal solution to a convex problem:

‖x‖n
k

= maximize
y∈R

n
yTx

subject to 0 ¹ y ¹ 1
yT1 = k

∇‖x‖n
k

= arg maximize
y∈R

n
yTx

subject to 0 ¹ y ¹ 1
yT1 = k















































, x º 0 (546)

2
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3.2.2.1.4 Exercise. k-largest norm gradient.
Prove (545). Is ∇‖x‖n

k
unique? Find ∇‖x‖1 and ∇‖x‖n

k
on Rn .3.14 H

3.2.3 clipping

Zeroing negative vector entries under 1-norm is accomplished:

‖x+‖1 = minimize
t∈R

n
1Tt

subject to x ¹ t

0 ¹ t

(547)

where, for x=[xi , i=1 . . . n]∈Rn

x+ , t⋆ =

[

xi , xi ≥ 0

0 , xi < 0

}

, i=1 . . . n

]

=
1

2
(x + |x|) (548)

(clipping)

minimize
x∈R

n
‖x+‖1

subject to x ∈ C
≡

minimize
x∈R

n , t∈R
n

1Tt

subject to x ¹ t

0 ¹ t

x ∈ C

(549)

3.3 Powers, roots, and inverted functions

A given function f is convex iff −f is concave. Both functions are loosely referred to as
convex since −f is simply f inverted about the abscissa axis, and minimization of f is
equivalent to maximization of −f .

A given positive function f is convex iff 1/f is concave; f inverted about ordinate 1
is concave. Minimization of f is maximization of 1/f .

We wish to implement objectives of the form x−1. Suppose we have a 2×2 matrix

T ,

[

x z
z y

]

∈ S2 (550)

which is positive semidefinite by (1689) when

T º 0 ⇔ x > 0 and xy ≥ z2 (551)

A polynomial constraint such as this is therefore called a conic constraint.3.15 This means
we may formulate convex problems, having inverted variables, as semidefinite programs in
Schur-form (§A.4); e.g,

minimize
x∈R

x−1

subject to x > 0

x ∈ C
≡

minimize
x , y ∈ R

y

subject to

[

x 1
1 y

]

º 0

x ∈ C

(552)

rather

x > 0 , y ≥ 1

x
⇔

[

x 1
1 y

]

º 0 (553)

3.14Hint: §D.2.1.
3.15In this dimension, the convex cone formed from the set of all values {x , y , z} (satisfying constraint
(551)) is called positive semidefinite cone or a rotated quadratic, circular, or second-order cone. We have
the Lorentz cone when y=x∈R . [288, §1.4]
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(inverted) For vector x=[xi , i=1 . . . n]∈Rn

minimize
x∈R

n

n
∑

i=1

x−1
i

subject to x ≻ 0

x ∈ C
≡

minimize
x∈R

n , y∈R

y

subject to

[

xi
√

n√
n y

]

º 0 , i=1 . . . n

x ∈ C

(554)

rather

x ≻ 0 , y ≥ tr
(

δ(x)−1
)

⇔
[

xi
√

n√
n y

]

º 0 , i=1 . . . n (555)

3.3.1 rational exponent

Galtier [177] shows how to implement an objective of the form xα for positive α . He
suggests quantizing α and working instead with that approximation. Choose nonnegative
integer q for adequate quantization of α like so:

α ,
k

2q
, k∈{0, 1, 2 . . . 2q−1} (556)

Any k from that set may be written k=
q
∑

i=1

bi 2
i−1 where bi∈{0, 1}. Define vector

y=[yi , i=0 . . . q]∈Rq+1 with y0 =1 :

3.3.1.1 positive

Then we have the equivalent semidefinite program for maximizing a concave function xα,
for quantized 0≤α<1

maximize
x∈R

xα

subject to x > 0

x ∈ C
≡

maximize
x∈R , y∈R

q+1
yq

subject to

[

yi−1 yi

yi xbi

]

º 0 , i=1 . . . q

x ∈ C

(557)

where nonnegativity of yq is enforced by maximization; id est,

x > 0 , yq ≤ xα ⇔
[

yi−1 yi

yi xbi

]

º 0 , i=1 . . . q (558)

3.3.1.1.1 Example. Square root.
α= 1

2 . Choose q=1 and k=1=20.

maximize
x∈R

√
x

subject to x > 0

x ∈ C
≡

maximize
x∈R , y∈R

2

y1

subject to

[

y0 =1 y1

y1 x

]

º 0

x ∈ C

(559)

where

x > 0 , y1≤
√

x ⇔
[

1 y1

y1 x

]

º 0 (560)

2
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3.3.1.2 negative

It is also desirable to implement an objective of the form x−α for positive α . The
technique is nearly the same as before: for quantized 0≤α<1

minimize
x∈R

x−α

subject to x > 0

x ∈ C
≡

minimize
x , z∈R , y∈R

q+1
z

subject to

[

yi−1 yi

yi xbi

]

º 0 , i=1 . . . q
[

z 1

1 yq

]

º 0

x ∈ C

(561)

rather

x > 0 , z ≥ x−α ⇔

[

yi−1 yi

yi xbi

]

º 0 , i=1 . . . q
[

z 1

1 yq

]

º 0

(562)

3.3.1.3 positive inverted

Now define vector t=[ti , i=0 . . . q]∈Rq+1 with t0 =1. To implement an objective x1/α

for quantized 0≤α<1 as in (556)

minimize
x∈R

x1/α

subject to x > 0

x ∈ C
≡

minimize
x , y∈R , t∈R

q+1
y

subject to

[

ti−1 ti
ti ybi

]

º 0 , i=1 . . . q

x = tq > 0

x ∈ C

(563)

rather

x > 0 , y ≥ x1/α ⇔

[

ti−1 ti
ti ybi

]

º 0 , i=1 . . . q

x = tq > 0

(564)

3.3.1.3.1 Example. Cubed. [200, §11.4]
α=3.

S ,

[

z y
y 1

]

∈ S2 , T ,

[

x z
z y

]

∈ S2 (565)

By (1689) or (551)

S º 0 , T º 0
⇔

0 < y3≤ x

(566)

thereby

minimize
y∈R

y3

subject to y > 0

y ∈ C
≡

minimize
x,y,z∈R

x

subject to S º 0
T º 0
y ∈ C

(567)

2
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3.4 Affine function

A function f(X) is affine when it is continuous and has the dimensionally extensible form
(confer §2.9.1.0.2)

f(X) = AX + B (568)

All affine functions are simultaneously convex and concave. Both −AX+B and AX+B ,
for example, are convex functions of X . The linear functions constitute a proper subset
of affine functions; e.g, when B=0 , function f(X) is linear.

Unlike other convex functions, affine function convexity holds with respect to any
dimensionally compatible proper cone substituted into convexity definition (507). All
affine functions satisfy a membership relation, for some normal cone, like (516). Affine
multidimensional functions are more easily recognized by existence of no multiplicative
multivariate terms and no polynomial terms of degree higher than 1 ; id est, entries of the
function are characterized by only linear combinations of argument entries plus constants.

ATXA + BTB is affine in X , for example. Trace is an affine function; actually, a
real linear function expressible as inner product f(X) = 〈A , X〉 with matrix A being the
Identity. The real affine function in Figure 80 illustrates hyperplanes, in its domain,
constituting contours of equal function-value (level sets (573)).

3.4.0.0.1 Example. Engineering control. [464, §2.2]3.16

For X∈ SM and matrices A , B , Q , R of any compatible dimensions, for example, the
expression XAX is not affine in X whereas

g(X) =

[

R BTX
XB Q + ATX + XA

]

(569)

is an affine multidimensional function. Such a function is typical in engineering control.
[66] [180] 2

(confer Figure 18) Any single- or many-valued inverse of an affine function is affine.

3.4.0.0.2 Example. Linear objective.
Consider minimization of a real affine function f(z)= aTz + b over the convex feasible set
C in its domain R2 illustrated in Figure 80. Since scalar b is fixed, the problem posed is
the same as the convex optimization

minimize
z

aTz

subject to z∈ C
(570)

whose objective of minimization is a real linear function. Were convex set C polyhedral
(§2.12), then this problem would be called a linear program. Were convex set C an
intersection with a positive semidefinite cone, this problem would be called a semidefinite
program.

There are two distinct ways to visualize this problem: one in the objective function’s
domain R2, the other including the ambient space of the objective function’s range as

in

[

R2

R

]

. Both visualizations are illustrated in Figure 80. Visualization in the function

domain is easier because of lower dimension and because

3.16Interpretation of {X∈ S
M | g(X)º 0} as “an intersection between a linear subspace and the cone of

positive semidefinite matrices,” from this citation, is incorrect. (See §2.9.1.0.2 for a similar example.) The
conditions they state, under which strong duality holds for semidefinite programming, are conservative.
(confer §4.2.3.0.1)
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C

a

H−

A

H+ {z∈R 2| a Tz = κ1 }{z∈R 2| a Tz = κ2 }{z∈R 2| a Tz = κ3 }

f(z)

z2

z1

Figure 80: (confer Figure 31) Three hyperplanes intersecting convex set C⊂R2 from
Figure 31. Cartesian axes in R3 : Plotted is affine subset A= f(R2)⊂ R2× R ; a
plane with third dimension. We say sequence of hyperplanes, w.r.t domain R2 of affine
function f(z)= aTz + b : R2→R , is increasing in normal direction (Figure 29) because
affine function increases in direction of gradient a (§3.6.0.0.3). Minimization of aTz + b
over C is equivalent to minimization of aTz .

� level sets (573) of any affine function are affine. (§2.1.9)

In this circumstance, the level sets are parallel hyperplanes with respect to R2. One
solves optimization problem (570) graphically by finding that hyperplane intersecting
feasible set C furthest right (in the direction of negative gradient −a (§3.6)). 2

When a differentiable convex objective function f is nonlinear, its negative gradient
−∇f is a viable search direction (replacing −a in (570)). (§2.13.11.1, Figure 71) [181]
Then the nonlinear objective function can be replaced with a dynamic linear objective;
linear as in (570).

3.4.0.0.3 Example. Support function. [234, §C.2.1-§C.2.3.1]
For arbitrary set Y ⊆ Rn, its support function σY(a) : Rn→R is defined

σY(a) , sup
z∈Y

aTz (571)

a positively homogeneous function of direction a whose range contains ±∞. [290, p.135]
For each z∈Y , aTz is a linear function of vector a . Because σY(a) is a pointwise
supremum of linear functions, it is convex in a (Figure 81). Application of the support
function is illustrated in Figure 32a for one particular normal a . Given nonempty closed
bounded convex sets Y and Z in Rn and nonnegative scalars β and γ [447, p.234]

σβY+γZ(a) = βσY(a) + γσZ(a) (572)

2
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a

{aTz1 + b1 | a∈R}

{aTz2 + b2 | a∈R}

{aTz3 + b3 | a∈R}

{aTz4 + b4 | a∈R}

{aTz5 + b5 | a∈R}

sup
i

aT
pzi + bi

Figure 81: Pointwise supremum of any convex functions remains convex; by epigraph
intersection. Supremum of affine functions in variable a evaluated at argument ap is
illustrated. Topmost affine function per a is supremum.

quasiconvex convex

f(x)q(x)

xx

Figure 82: Quasiconvex function q epigraph is not necessarily convex, but convex function
f epigraph is convex in any dimension. Sublevel sets are necessarily convex for either
function, but sufficient only for quasiconvexity.

3.4.0.0.4 Exercise. Level sets.
Given a function f and constant κ , its level sets are defined

Lκ
κf , {z | f(z)=κ} (573)

Give two distinct examples of convex function, that are not affine, having convex level
sets. H

3.4.0.0.5 Exercise. Epigraph intersection. (confer Figure 81)
Draw three hyperplanes in R3 representing max(0 , x), sup{0 , xi | x∈Rn} in R2×R to
see why maximum of nonnegative vector entries is a convex function of variable x . What
is the normal to each hyperplane?3.17 Why is max(x) convex? H

3.17Hint: p.202.
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3.5 Epigraph, Sublevel set

It is well established that a continuous real function is convex if and only if its epigraph
makes a convex set; [234] [354] [410] [447] [290] epigraph is the connection between
convex sets and convex functions (p.171). Piecewise-continuous convex functions are
admitted, thereby, and all invariant properties of convex sets carry over directly to convex
functions. Generalization of epigraph to a vector-valued function f(X) : Rp×k→RM is
straightforward: [340]

epi f , {(X , t)∈Rp×k× RM | X∈ dom f , f(X) ¹
R

M
+

t } (574)

id est,

f convex ⇔ epi f convex (575)

Necessity is proven: [68, exer.3.60] Given any (X, u) , (Y , v)∈ epi f , we must
show for all µ∈ [0 , 1] that µ(X, u) + (1−µ)(Y , v)∈ epi f ; id est, we must show

f(µX + (1−µ)Y ) ¹
R

M
+

µ u + (1−µ)v (576)

Yet this holds by definition because f(µX + (1−µ)Y ) ¹ µf(X)+ (1−µ)f(Y ).
The converse also holds. ¨

3.5.0.0.1 Exercise. Epigraph sufficiency.
Prove that converse: Given any (X, u) , (Y , v)∈ epi f , if µ(X, u) + (1−µ)(Y , v)∈ epi f
holds for all µ∈ [0 , 1] , then f must be convex. H

Sublevel sets of a convex real function are convex. Likewise, corresponding to each and
every ν∈RM

Lνf , {X∈ dom f | f(X) ¹
R

M
+

ν} ⊆ Rp×k (577)

sublevel sets of a convex vector-valued function are convex. As for convex real functions,
the converse does not hold. (Figure 82)

To prove necessity of convex sublevel sets: For any X,Y ∈Lνf we must show
for each and every µ∈ [0 , 1] that µ X + (1−µ)Y ∈Lνf . By definition,

f(µ X + (1−µ)Y ) ¹
R

M
+

µf(X) + (1−µ)f(Y ) ¹
R

M
+

ν (578)

¨

When an epigraph (574) is artificially bounded above, t ¹ ν , then the corresponding
sublevel set can be regarded as an orthogonal projection of epigraph on the function
domain.

Sense of the inequality is reversed in (574), for concave functions, and we use instead
the nomenclature hypograph. Sense of the inequality in (577) is reversed, similarly, with
each convex set then called superlevel set.
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3.5.1 matrix pseudofractional function

Consider a real function of two variables

f(A , x) : Sn× Rn→R = xTA†x (579)

on dom f = Sn
+×R(A). This function is convex simultaneously in both variables when

variable matrix A belongs to the entire positive semidefinite cone Sn
+ and variable vector

x is confined to range R(A) of matrix A .

To explain this, we need only demonstrate that the function epigraph is convex.
Recall Schur-form (1686) from §A.4: for t∈R

G(A , z , t) =

[

A z
zT t

]

º 0

⇔
zT(I − AA†) = 0

t − zTA†z ≥ 0

A º 0

(580)

Inverse image of the positive semidefinite cone Sn+1
+ under affine mapping

G(A , z , t) is convex by Theorem 2.1.9.0.1. Of the equivalent conditions for
positive semidefiniteness of G , the first is an equality demanding that vector z
belong to R(A). Function f(A , z)= zTA†z is convex on convex domain
Sn

+×R(A) because the Cartesian product constituting its epigraph

epi f(A , z) =
{

(A , z , t) | A º 0 , z∈R(A) , zTA†z ≤ t
}

= G−1
(

Sn+1
+

)

(581)

is convex. ¨

3.5.1.0.1 Exercise. Matrix product function.
Continue §3.5.1 by introducing vector variable x and making the substitution z←Ax .
Because of matrix symmetry (§E), for all x∈Rn

f(A , z(x)) = zTA†z = xTATA†A x = xTA x = f(A , x) (582)

whose epigraph is

epi f(A , x) =
{

(A , x , t) | A º 0 , xTA x ≤ t
}

(583)

Provide two simple explanations why f(A , x) = xTA x is not a function convex
simultaneously in positive semidefinite matrix A and vector x on dom f = Sn

+× Rn.
H

3.5.2 matrix fractional function

(confer §3.13.1) Now consider a real function of two variables on dom f = Sn
+×Rn for

small positive constant ǫ (confer (2075))

f(A , x) = ǫ xT(A + ǫ I )−1x (584)

where the inverse always exists by (1628). This function is convex simultaneously in both
variables over the entire positive semidefinite cone Sn

+ and all x∈Rn. This is explained:
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Recall Schur-form (1689) from §A.4: for t∈R

G(A , z , t) =

[

A + ǫ I z
zT ǫ−1 t

]

º 0

⇔
t − ǫ zT(A + ǫ I )−1z ≥ 0

A + ǫ I ≻ 0

(585)

Inverse image of the positive semidefinite cone Sn+1
+ under affine mapping

G(A , z , t) is convex by Theorem 2.1.9.0.1. Function f(A , z) is convex on
Sn

+×Rn because its epigraph is that inverse image:

epi f(A , z) =
{

(A , z , t) | A + ǫ I ≻ 0 , ǫ zT(A + ǫ I )−1z ≤ t
}

= G−1
(

Sn+1
+

)

(586)

¨

3.5.2.1 matrix fractional projector

Consider nonlinear function f having orthogonal projector W as argument:

f(W , x) = ǫ xT(W + ǫ I )−1x (587)

Projection matrix W has property W † = WT = W º 0 (2133). Any orthogonal projector
can be decomposed into an outer product of orthonormal matrices W = UUT where
UTU = I as explained in §E.3.2. From (2075) for any ǫ > 0 and idempotent symmetric W ,
ǫ(W + ǫ I )−1 = I − (1 + ǫ)−1W from which

f(W , x) = ǫ xT(W + ǫ I )−1x = xT
(

I − (1 + ǫ)−1W
)

x (588)

lim
ǫ→0+

f(W , x) = lim
ǫ→0+

ǫ xT(W + ǫ I )−1x = xT(I − W )x (589)

where I − W is also an orthogonal projector (§E.2).
In §3.5.2 we learned that f(W , x)= ǫ xT(W + ǫ I )−1x is convex simultaneously in both

variables over all x∈Rn when W ∈ Sn
+ is confined to the entire positive semidefinite cone

(including its boundary). It is now our goal to incorporate f into an optimization problem
such that an optimal solution returned always comprises a projection matrix W . The set
of orthogonal-projection matrices is a nonconvex subset of the positive semidefinite cone.
So f cannot be convex on the projection matrices; its equivalent (for idempotent W )
f(W , x)= xT

(

I − (1+ ǫ)−1W
)

x cannot be convex simultaneously in both variables on
either the positive semidefinite cone or orthogonal-projection matrices.

Suppose we allow dom f to constitute the entire positive semidefinite cone but confine
W to a Fantope (93); e.g, for convex set C and Fantope parametrized by 0 < k < n

minimize
x∈R

n , W∈S
n

ǫ xT(W + ǫ I )−1x

subject to 0 ¹ W ¹ I

trW = k

x ∈ C

(590)

Although this is a convex problem, there is no guarantee that optimal W is a projection
matrix because only extreme points of a Fantope are orthogonal-projection matrices UUT.

Let’s try partitioning the problem into two convex parts (one for x and one for W ),
substitute equivalence (588), and then iterate solution of convex quadratic problem

minimize
x∈R

n
xT(I − (1 + ǫ)−1W )x

subject to x ∈ C
(591)
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with convex semidefinite problem

(a)

minimize
W∈S

n
x⋆T(I − (1 + ǫ)−1W )x⋆

subject to 0 ¹ W ¹ I

trW = k

≡
maximize

W∈S
n

x⋆TWx⋆

subject to 0 ¹ W ¹ I

trW = k

(592)

until convergence (x⋆ represents optimal solution to (591) at each successive iteration).
The idea is to optimally solve for the partitioned variables which are later combined to
solve the original problem (590). What makes this approach sound is that the constraints
are separable, the partitioned feasible sets are not interdependent, and the fact that the
original problem (though nonlinear) is convex simultaneously in both variables.3.18

But partitioning alone does not guarantee a projector as solution. To make orthogonal
projector W a certainty, we must invoke a known analytical solution to problem (592):
Diagonalize optimal solution from problem (591) x⋆x⋆T , QΛQT (§A.5.1), and set
U⋆ = Q(: , 1: k)∈Rn×k per (1901c);

W = U⋆U⋆T =
x⋆x⋆T

‖x⋆‖2
+ Q(: , 2: k)Q(: , 2: k)T (593)

Then optimal solution (W ⋆, x⋆) to problem (590) is found, for small ǫ , by iterating
solution to problem (591) with projector solution (593) to convex problem (592).

Proof. Optimal vector x⋆ is orthogonal to the last n−1 columns of orthogonal
matrix Q , so

f⋆
(591)

= ‖x⋆‖2(1 − (1 + ǫ)−1) (594)

after each iteration. Convergence of f⋆
(591)

is proven with the observation that iteration

(591) (592a) is a nonincreasing sequence bounded below by 0. Any bounded monotonic
sequence in R is convergent. [299, §1.2] [46, §1.1] Expression (593) holds for projector W
at each iteration, therefore ‖x⋆‖2(1 − (1 + ǫ)−1) must also represent the optimal objective
value f⋆

(591)
at convergence.

Because the objective f(590) from problem (590) is also bounded below by 0 on the

same domain, this convergent optimal objective value f⋆
(591)

(for positive ǫ arbitrarily

close to 0) is sufficiently optimal for (590); id est, by (1878)

f⋆
(591)

≥ f⋆
(590)

≥ 0 (595)

lim
ǫ→0+

f⋆
(591)

= 0 (596)

Since optimal (U⋆, x⋆) from problem (591) is feasible to problem (590), and because their
objectives are equivalent for projectors by (588), then converged (U⋆, x⋆) must also be
optimal to (590) in the limit. Because problem (590) is convex, this represents a globally
optimal solution. ¨

3.5.2.1.1 Exercise. Matrix fractional projector function class.
Show that there are larger positive values of ǫ for which iteration (591) (592a) is equivalent
to (590) and returns a projector W ; id est, ǫ→0+ can be unnecessary. H

3.18A convex problem has convex feasible set, and its real objective hypersurface has one and only one
global minimum. [349, p.123]

https://books.google.com/books?id=cqyHkkCxVtcC&pg=RA1-PA123&lpg=RA1-PA123&dq=convex+function+global+local+minimum&source=bl&ots=Y1Hv1x0vrK&sig=xS-nlzgCyKnn3wZNytK5PebXZUI&hl=en&ei=IRIwSoyRIo7mtAOZ1LG0CA&sa=X&oi=book_result&ct=result&resnum=6#PRA1-PA123,M1
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3.5.3 semidefinite program via Schur

Schur complement (1686) can be used to convert a projection problem to an optimization
problem in epigraph form. Suppose, for example, we are presented with the constrained
projection problem studied by Hayden & Wells in [219] (who provide analytical solution):
Given A∈RM×M and some full-rank matrix S∈RM×L with L < M

minimize
X∈ SM

‖A − X‖2
F

subject to STXS º 0
(597)

Variable X is constrained to be positive semidefinite, but only on a subspace determined
by S . First we write the epigraph form:

minimize
X∈ SM , t∈R

t

subject to ‖A − X‖2
F ≤ t

STXS º 0

(598)

Next we use Schur complement [320, §6.4.3] [288] and matrix vectorization (§2.2):

minimize
X∈ SM , t∈R

t

subject to

[

tI vec(A − X)
vec(A − X)T 1

]

º 0

STXS º 0

(599)

This semidefinite program (§4) is an epigraph form in disguise, equivalent to (597); it
demonstrates how a quadratic objective or constraint can be converted to a semidefinite
constraint.

Were problem (597) instead equivalently expressed without the norm square

minimize
X∈ SM

‖A − X‖F

subject to STXS º 0
(600)

then we get a subtle variation:

minimize
X∈ SM , t∈R

t

subject to ‖A − X‖F ≤ t

STXS º 0

(601)

that leads to an equivalent for (600) (and for (597) by (525))

minimize
X∈ SM , t∈R

t

subject to

[

tI vec(A − X)
vec(A − X)T t

]

º 0

STXS º 0

(602)
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3.5.3.0.1 Example. Schur anomaly.
Consider a problem, abstract in the convex constraint, given symmetric matrix A

minimize
X∈ SM

‖X‖2
F − ‖A − X‖2

F

subject to X∈ C
(603)

the minimization of a difference of two quadratic functions each convex in matrix X .
Observe equality

‖X‖2
F − ‖A − X‖2

F = 2 tr(XA) − ‖A‖2
F (604)

So problem (603) is equivalent to the convex optimization

minimize
X∈ SM

tr(XA)

subject to X∈ C
(605)

But this problem (603) does not have Schur-form

minimize
X∈ SM , α , t

t − α

subject to X∈ C
‖X‖2

F ≤ t

‖A − X‖2
F ≥ α

(606)

because the constraint in α is nonconvex. (§2.9.1.0.1) 2

Matrix 2-norm (spectral norm) coincides with largest singular value.

‖X‖2 , sup
‖a‖=1

‖Xa‖2 = σ(X)1 =
√

λ(XTX)1 = minimize
t∈R

t

subject to

[

tI X
XT tI

]

º 0

(607)

This supremum of a family of convex functions in X must be convex because it constitutes
an intersection of epigraphs of convex functions.

3.5.4 Log

Suppose we want a variable and its logarithm to appear in constraints simultaneously.
Such a problem formulation would generally be nonconvex. For example,

minimize
x∈intr R

n

+

αTx

subject to Ax ≤ b
Cy ≤ d
y = log x

(608)

where log x : intr Rn
+→ Rn operates on each entry individually. On the nonnegative

real line, the log function of real variable is concave having convex hypograph.
Nonconvex problem (608) is solvable by approximating the hypograph with many bounding
hyperplanes as in Figure 83. In the problem, assignment y= log x would be replaced with
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x

y

log x

{[

x
y

] ∣

∣

∣

∣

[−1 1 ]
[

x
y

]

= log(1)−1

}

{[

x
y

] ∣

∣

∣

∣

[−2 1 ]
[

x
y

]

= log(1
2 )−1

}

{[

x
y

] ∣

∣

∣

∣

[−4 1 ]
[

x
y

]

= log(1
4 )−1

}

Figure 83: Three hyperplanes bounding hypograph of real function log x from above.
log x≤ y for any [x y ]T belonging to a bounding hyperplane: log x ≤ x + log(1)−1 ,
log x ≤ 2x + log(1

2 )−1 , log x ≤ 4x + log(1
4 )−1 .

To succeed, this method requires nonnegative α in the objective.
One can visualize this optimization in one dimension by imagining an objective function

that pushes a feasible solution leftward along the x axis; driving toward the hypograph
boundary which is the log function. In higher dimension, the same bounding hyperplane
technique would be applied individually to each entry of log . Accuracy to within any
tolerance is ensured by increasing number of hyperplanes in vicinity of a solution.

3.6 Gradient

Gradient ∇f of any differentiable multidimensional function f (formally defined in §D.1)
maps each entry fi to a space having the same dimension as the ambient space of its
domain. Notation ∇f is shorthand for gradient ∇xf(x) of f with respect to x . ∇f(y)
can mean ∇yf(y) or gradient ∇xf(y) of f(x) with respect to x evaluated at y ; a
distinction that should become clear from context.

Gradient of a differentiable real function f(x) : RK→R , with respect to its vector
argument, is uniquely defined

∇f(x) =















∂f(x)
∂x1

∂f(x)
∂x2
...

∂f(x)
∂xK















∈ RK (1964)

Second-order gradient of a twice differentiable real function, with respect to its vector
argument, is traditionally called the Hessian3.19 (§D.1);

3.19Jacobian is the Hessian transpose, so commonly confused in matrix calculus.
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Figure 84: Contours are level sets; each defined by a constant function-value. Gradient
in R2 evaluated on grid over some open disc in domain of: (a) convex quadratic bowl
f(Y )= Y TY : R2→R illustrated in Figure 85 p.201, (b) 1-norm f(Z)= ‖Z‖1 : R2→R .

∇2f(x) =

















∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xK

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xK

...
...

. . .
...

∂2f(x)
∂xK∂x1

∂2f(x)
∂xK∂x2

· · · ∂2f(x)
∂x2

K

















∈ SK (1965)

Gradient (1964) can be interpreted as a vector pointing in the direction of greatest change;
[398, §15.6] polar to direction of steepest descent 3.20 [451]. Gradient can also be interpreted
as that vector normal to a sublevel set; e.g, Figure 86, Figure 71.

For the quadratic bowl in Figure 85, the gradient maps to R2 ; illustrated in Figure 84.
For a one-dimensional function of real variable, for example, the gradient evaluated at
any point in the function domain is just the slope (or derivative) of that function there.
(confer §D.1.4.1)

� For any differentiable multidimensional function, zero gradient ∇f = 0 is a condition
necessary for its unconstrained minimization [181, §3.2]:

3.6.0.0.1 Example. Projection on rank-1 subset.
For A∈SN having eigenvalues λ(A)= [λi]∈RN , consider the unconstrained nonconvex
optimization that is a projection on the rank-1 subset (§2.9.2.1) of positive semidefinite
cone SN

+ : Defining λ1 , maxi{λ(A)i} and corresponding eigenvector v1

3.20 a.k.a gradient descent . [68, §9.4.1] Newton’s direction −∇2f(x)−1∇f(x) is better for optimization
of nonlinear functions that are well approximated locally by a quadratic function. [181, p.105]
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minimize
x

‖xxT− A‖2
F = minimize

x
tr(xxT(xTx) − 2AxxT+ ATA)

=

{ ‖λ(A)‖2 , λ1 ≤ 0

‖λ(A)‖2 − λ2
1 , λ1 > 0

(1895)

arg minimize
x

‖xxT− A‖2
F =

{

0 , λ1 ≤ 0

v1

√
λ1 , λ1 > 0

(1896)

From (1995) and §D.2.1, the gradient of ‖xxT− A‖2
F is

∇x

(

(xTx)2 − 2xTA x
)

= 4(xTx)x − 4Ax (610)

Setting the gradient to 0
Ax = x(xTx) (611)

is necessary for optimal solution. Replace vector x with a normalized eigenvector vi

of A∈SN , corresponding to a positive eigenvalue λi , scaled by square root of that
eigenvalue. Then (611) is satisfied

x ← vi

√

λi ⇒ Avi = viλi (612)

xxT = λi viv
T
i is a rank-1 matrix on the positive semidefinite cone boundary, and the

minimum is achieved (§7.1.2) when λi =λ1 is the largest positive eigenvalue of A . If A
has no positive eigenvalue, then x=0 yields the minimum. 2

Differentiability is a prerequisite neither to convexity or to numerical solution of a
convex optimization problem. The gradient provides a necessary and sufficient condition
(359) (462) for optimality in the constrained case, nevertheless, as it does in the
unconstrained case:

� For any differentiable multidimensional convex function, zero gradient ∇f = 0 is a
necessary and sufficient condition for its unconstrained minimization [68, §5.5.3]:

3.6.0.0.2 Example. Pseudoinverse A† of matrix A .
The pseudoinverse matrix is one particular solution from a convex set of solutions to an
unconstrained convex optimization problem [189, §5.5.4]: given arbitrary A∈Rm×n

minimize
X∈R

n×m
‖XA − I‖2

F (613)

where
‖XA − I‖2

F = tr
(

ATXTXA − XA − ATXT+ I
)

(614)

whose gradient (§D.2.3)

∇X‖XA − I‖2
F = 2

(

XAAT − AT
)

(615)

vanishes when
XAAT = AT (616)

We can make AAT invertible by adding a positively scaled Identity: for any A∈Rm×n

X ≈ AT(AAT + t I )−1 (617)

Invertibility is guaranteed for any finite positive value of t by (1628).

X = lim
t→0+

(ATA + t I )−1AT = lim
t→0+

AT(AAT+ t I )−1 ∈ Rn×m (2076)

Then, in the limit t→ 0+, matrix X becomes the pseudoinverse: X → A† = X⋆.
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When matrix A is thin-or-square full-rank, in particular, then ATA is invertible,
(ATA)−1AT = X⋆ is the pseudoinverse A†, and A†A=I . Starting with a minimization
of ‖AX − I‖2

F , instead, invokes the second [sic ] flavor in (2076): When matrix A is wide
full-rank, then AAT is invertible, AT(AAT)−1 = X⋆ becomes the pseudoinverse A†, and
AA†= I . But (2076) always provides that unique pseudoinverse A†, regardless of shape
or rank, that simultaneously minimizes ‖AX − I‖2

F and ‖XA − I‖2
F . 2

3.6.0.0.3 Example. Hyperplane, line, described by affine function.
Consider the real affine function of vector variable, (confer Figure 80)

f(x) : Rp→R = aTx + b (618)

whose domain is Rp and whose gradient ∇f(x)= a is a vector constant (independent
of x). This function describes the real line R (its range), and it describes a nonvertical
[234, §B.1.2] hyperplane ∂H in the space Rp×R for any particular vector a (confer §2.4.2);

∂H =

{[

x
aTx + b

]

| x∈Rp

}

⊂ Rp×R (619)

having nonzero normal
η =

[

a
−1

]

∈ Rp×R (620)

This equivalence to a hyperplane holds only for real functions.3.21 Epigraph of real affine

function f(x) is therefore a halfspace in

[

Rp

R

]

, so we have:

The real affine function is to convex functions
as

the hyperplane is to convex sets.

Similarly, the matrix-valued affine function of real variable x , for any particular matrix
A∈RM×N

h(x) : R→RM×N = Ax + B (621)

describes a line in RM×N in direction A

{Ax + B | x∈R} ⊆ RM×N (622)

and describes a line in R×RM×N

{[

x
Ax + B

]

| x∈R

}

⊂ R×RM×N (623)

whose slope with respect to x is A . 2

3.21To prove that, consider a vector-valued affine function

f(x) : R
p→R

M = Ax + b

having gradient ∇f(x)=AT∈ R
p×M : The affine set

{[

x
Ax + b

]

| x∈R
p

}

⊂ R
p×R

M

is perpendicular to

η ,

[

∇f(x)
−I

]

∈ R
p×M × R

M×M

because

ηT

([

x
Ax + b

]

−
[

0
b

])

= 0 ∀x ∈ R
p

Yet η is a vector (in R
p×R

M ) only when M = 1. ¨
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3.6.1 monotonic function

A real function of real argument is called monotonic when it is exclusively nonincreasing or
nondecreasing over the whole of its domain. A real differentiable function of real argument
is monotonic when its first derivative (not necessarily continuous) maintains sign over the
function domain.

3.6.1.0.1 Definition. Monotonicity.
In pointed closed convex cone K , multidimensional function f(X) is

nondecreasing monotonic when Y ºK X ⇒ f(Y ) º f(X)
nonincreasing monotonic when Y ºK X ⇒ f(Y ) ¹ f(X)

(624)

∀X,Y ∈ dom f . Multidimensional function f(X) is

increasing monotonic when Y ≻K X ⇒ f(Y ) ≻ f(X)
decreasing monotonic when Y ≻K X ⇒ f(Y ) ≺ f(X)

(625)

These latter inequalities define strict monotonicity when they hold over all X,Y ∈ dom f .

△

For monotonicity of vector-valued functions, f compared with respect to the
nonnegative orthant, it is necessary and sufficient for each entry fi to be monotonic in the
same sense.

Any affine function is monotonic. In K= SM
+ , for example, tr(ZTX) is a nondecreasing

monotonic function of matrix X∈ SM when matrix constant Z is positive semidefinite;
which follows from a result (388) of Fejér.

3.6.1.0.2 Exercise. Quasiconcave monotonic functions.
Prove:

A º B º 0 ⇒ rankA ≥ rankB (1668)

x º y º 0 ⇒ cardx ≥ card y (626)

H

A convex function can be characterized by another kind of nondecreasing monotonicity of
its gradient:

3.6.1.0.3 Theorem. Gradient monotonicity. [234, §B.4.1.4] [61, §3.1 exer.20]
Given real differentiable function f(X) : Rp×k→R with matrix argument on open convex
domain, the condition

〈∇f(Y ) −∇f(X) , Y − X〉 ≥ 0 for each and every X,Y ∈ dom f (627)

is necessary and sufficient for convexity of f . Strict inequality and caveat Y 6= X
constitute necessary and sufficient conditions for strict convexity. ⋄

3.6.1.0.4 Example. Composition of functions. [68, §3.2.4] [234, §B.2.1]
Monotonic functions play a vital role determining convexity of functions constructed
by transformation. Given functions g : Rk→R and h : Rn→Rk, their composition
f = g(h) : Rn→R defined by
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f(x) = g(h(x)) , dom f = {x∈ dom h | h(x)∈ dom g} (628)

is convex if

� g is convex nondecreasing monotonic and h is convex

� g is convex nonincreasing monotonic and h is concave

is concave if

� g is concave nondecreasing monotonic and h is concave

� g is concave nonincreasing monotonic and h is convex

where ∞ (−∞) is assigned to convex (concave) g when evaluated outside its domain. For
differentiable functions, these rules are consequent to (1996).

� Convexity (concavity) of any g is preserved when h is affine. 2

In particular, nondecreasing affine transformation of a convex (concave) function remains
convex (concave). If f and g are nonnegative convex real functions, then (f(x)k + g(x)k)1/k

is also convex for integer k≥1. [289, p.44] A squared norm is convex having the
same minimum because a squaring operation is convex nondecreasing monotonic on the
nonnegative real line.

3.6.1.0.5 Exercise. Anomalous composition.
Composition of convex nondecreasing monotonic g=ex with concave h=−x2, each a real
function, corresponds to no rule in Example 3.6.1.0.4. But g(h) is quasiconcave. (§3.15)3.22

Does this kind of composition always produce quasiconcavity? H

3.6.1.0.6 Exercise. Order of composition.
Real function f =x−2 is convex on R+ but not predicted so by results in Example 3.6.1.0.4
when g=h(x)−1 and h=x2. Explain this anomaly. H

The following result, for product of real functions, is extensible to inner product of
multidimensional functions on real domain:

3.6.1.0.7 Exercise. Product and ratio of convex functions. [68, exer.3.32]
In general the product or ratio of two convex functions is not convex. [268] However, there
are some results that apply to functions on R [real domain]. Prove the following.3.23

(a) If f and g are convex, both nondecreasing (or nonincreasing), and positive functions
on an interval, then fg is convex.

(b) If f , g are concave, positive, with one nondecreasing and the other nonincreasing,
then fg is concave.

(c) If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and
positive, then f/g is convex. H

3.22Hint: §3.16.
3.23Hint: Prove §3.6.1.0.7a by verifying Jensen’s inequality ((507) at µ= 1

2
).
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∂H−

f(Y )

[

∇f(X)
−1

]

Figure 85: When a real function f is differentiable at each point in its open domain,
there is an intuitive geometric interpretation of function convexity in terms of its gradient
∇f (Figure 84 p.196) and its epigraph: Drawn is a convex quadratic bowl in R2×R
(confer Figure 191 p.563); f(Y )= Y TY : R2→R versus Y on some open disc in R2.
Unique strictly supporting hyperplane ∂H−⊂R2× R (only partially drawn) and its
normal vector [∇f(X)T −1 ]T, at the particular point of support [XT f(X) ]T, are
illustrated. The interpretation: At each and every coordinate Y , normal [∇f(Y )T −1 ]T

defines a unique hyperplane containing [Y T f(Y ) ]T and supporting the epigraph of
convex differentiable f .

3.7 First-order convexity condition, real function

Discretization of wº 0 in (508) invites refocus to the real-valued function:

3.7.0.0.1 Theorem. Necessary and sufficient convexity condition. [46, §1.2] [353, §3]
[68, §3.1.3] [156, §I.5.2] [377, §4.2] [467, §1.2.3] For f(X) : Rp×k→R a real differentiable
function with matrix argument on open convex domain, the condition (confer §D.1.7)

f(Y ) ≥ f(X) + 〈∇f(X) , Y − X〉 for each and every X,Y ∈ dom f (629)

is necessary and sufficient for convexity of f . Caveat Y 6= X and strict inequality again
constitute necessary and sufficient conditions for strict convexity. [234, §B.4.1.1] ⋄

When f(X) : Rp→R is a real differentiable convex function with vector argument on
open convex domain, there is simplification of the first-order condition (629); for each and
every X,Y ∈ dom f

f(Y ) ≥ f(X) + ∇f(X)T(Y − X) (630)

From this we can find a unique [447, p.220-229] nonvertical [234, §B.1.2] hyperplane ∂H−
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α

β

γ∇f(X)

Y−X

{Z | f(Z ) = α}

{Y | ∇f(X)T(Y − X) = 0 , f(X)=α} (634)

α ≥ β ≥ γ

Figure 86: (confer Figure 71) Shown is a plausible contour plot in R2 of some arbitrary
real differentiable convex function f(Z ) at selected levels α , β , and γ ; contours of equal
level f (level sets) drawn in the function’s domain. A convex function has convex sublevel
sets Lf(X)f (635). [354, §4.6] The sublevel set whose boundary is the level set at α , for
instance, comprises all shaded regions. For any particular convex function, the family
comprising all its sublevel sets is nested. [234, p.75] Were sublevel sets not convex, we
may certainly conclude the corresponding function is neither convex. Contour plots of
real affine functions are illustrated in Figure 29 and Figure 80.

(§2.4), expressed in terms of function gradient, supporting epi f at

[

X
f(X)

]

: videlicet,

defining f(Y /∈ dom f ) , ∞ [68, §3.1.7]
[

Y
t

]

∈ epi f ⇔ t ≥ f(Y ) ⇒
[

∇f(X)T −1
]

([

Y
t

]

−
[

X
f(X)

])

≤ 0 (631)

This means, for each and every point X in the domain of a convex real function f(X) ,

there exists a hyperplane ∂H− in Rp× R having normal

[

∇f(X)
−1

]

supporting the

function epigraph at

[

X
f(X)

]

∈ ∂H−

∂H− =

{[

Y
t

]

∈
[

Rp

R

]

[

∇f(X)T −1
]

([

Y
t

]

−
[

X
f(X)

])

= 0

}

(632)

Such a hyperplane is strictly supporting whenever a function is strictly convex. One
such supporting hyperplane (confer Figure 32a) is illustrated in Figure 85 for a convex
quadratic.

From (630) we deduce, for each and every X,Y ∈ dom f in the domain,

∇f(X)T(Y − X) ≥ 0 ⇒ f(Y ) ≥ f(X) (633)

meaning, the gradient at X identifies a supporting hyperplane there in Rp

{Y ∈ Rp | ∇f(X)T(Y − X) = 0} (634)
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z

x

y
η

vy

vx

R2× R

z(x, y) = x3− y3− 3x + 3y

Figure 87: Vector η∈R3 is normal to a hyperplane that is tangent to nonconvex surface
z(x, y) at [xo yo ]T. Each of three vectors illustrated (vx , vy , η) is translated to
[xo yo z(xo , yo) ]T = [−1 1 4 ]T.

to the convex sublevel sets of convex function f (confer (577))

Lf(X)f , {Z ∈ dom f | f(Z) ≤ f(X)} ⊆ Rp (635)

illustrated for an arbitrary convex real function in Figure 86 and Figure 71. That
supporting hyperplane is unique for twice differentiable f . [398, p.501]

3.7.0.0.2 Example. Tangent hyperplane to a nonconvex surface.
A two-dimensional surface described by third-order polynomial

z(x, y) = x3− y3− 3x + 3y : R2→R (636)

is plotted in Figure 87 over a small subset of its domain which we take as the entire
ambient space R2. Given arbitrary point

a ,

[

xo

yo

]

=

[

−1
1

]

(637)

in the domain, we seek a hyperplane ∂H tangent to the surface there.
A hyperplane can be uniquely identified by its offset from the origin and its normal

vector. To discern the normal, we first find derivatives of z(x, y) in unit direction of the
domain’s Cartesian axes x and y : (§D.1.6)
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→e1

dz (x, y) =
∇z(x, y)T

[

1
0

]

=
∂z

∂x
= 3x2− 3

→e2

dz (x, y) =
∇z(x, y)T

[

0
1

]

=
∂z

∂y
= −3y2+ 3

(638)

Then vectors, illustrated in Figure 87, are constructed from those derivatives:

vx =





1
0

∂z
∂x

∣

∣

a



=





1
0
0



 , vy =





0
1

∂z
∂y

∣

∣

a



=





0
1
0



 , η =−
[

∇z(x, y)|a
−1

]

=





0
0
1



 (639)

Vectors vx and vy always belong to the tangent hyperplane, when translated, but normal
η must be orthogonal; id est, η⊥vx and η⊥vy . The tangent hyperplane we seek is

∂H =







x, y, z

∣

∣

∣

∣

∣

∣

±ηT





x − xo

y − yo

z − z(xo , yo)



= 0







(640)

having offset [xo yo z(xo , yo) ]T from the origin in R2× R . Any tangent hyperplane
would support the epigraph of a convex function. But this tangent hyperplane does not
support the epigraph, so there are infinitely many more points of intersection elsewhere.

2

3.8 First-order convexity condition, vector-valued f

Now consider the first-order necessary and sufficient condition for convexity of a
vector-valued function: Differentiable function f(X) : Rp×k→RM is convex if and only if
dom f is open, convex, and for each and every X,Y ∈ dom f

f(Y ) º
R

M
+

f(X) +
→Y −X

df(X) , f(X) +
d

dt

∣

∣

∣

∣

t=0

f(X+ t (Y − X)) (641)

where
→Y −X

df(X) is the directional derivative3.24 [398] [380] of f at X in direction Y −X .
This, of course, follows from the real-valued function case: by dual generalized inequalities
(§2.13.2.0.1),

f(Y ) − f(X) −
→Y −X

df(X) º
R

M
+

0 ⇔
〈

f(Y ) − f(X) −
→Y −X

df(X) , w

〉

≥ 0 ∀w º
R

M∗

+

0 (642)

where

→Y −X

df(X) =













tr
(

∇f1(X)T(Y − X)
)

tr
(

∇f2(X)T(Y − X)
)

...

tr
(

∇fM (X)T(Y − X)
)













∈ RM (643)

Necessary and sufficient discretization (508) allows relaxation of the semiinfinite number of
conditions {wº 0} instead to {w∈ {ei , i=1 . . . M }} the extreme directions of the selfdual

nonnegative orthant. Each extreme direction picks out a real entry fi and
→Y −X

df(X) i from
the vector-valued function and its directional derivative, then Theorem 3.7.0.0.1 applies.

The vector-valued function case (641) is therefore a straightforward application of the
first-order convexity condition for real functions to each entry of the vector-valued function.

3.24We extend the traditional definition of directional derivative in §D.1.4 so that direction may be
indicated by a vector or a matrix, thereby broadening scope of the Taylor series (§D.1.7). The right side
of inequality (641) is the first-order Taylor series expansion of f about X .
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3.9 Second-order convexity condition, real function

Disclosed in §3.10 and §3.14, a second-order condition for convexity of a real function
corresponds to the one-dimensional case of a vector- or matrix-valued function.

For f(X) : Rp→R , a twice differentiable real function with vector argument on open
convex domain,

∇2f(X) º
S

p
+

0 ∀X∈ dom f (644)

is necessary and sufficient for convexity of f .

Condition (644) demands nonnegative curvature, intuitively, hence precluding points
of inflection as in Figure 89 (p.212).

3.10 Second-order convexity condition, vector-valued f

Again, by discretization (508), we are obliged only to consider each individual entry fi of
a vector-valued function f ; id est, the real functions {fi}.

For f(X) : Rp→RM , a twice differentiable vector-valued function with vector
argument on open convex domain,

∇2fi(X) º
S

p
+

0 ∀X∈ dom f , i=1 . . . M (645)

is necessary and sufficient for convexity of f .

Obviously, when M = 1 , this convexity condition (645) also serves for a real function.
Second-order convexity condition with matrix argument is deferred until §3.14.

Strict inequality in (645) provides only a sufficient condition (⇒) for strict convexity,
but that is nothing new; videlicet, strictly convex real function fi(x)=x4 does not have
positive second derivative at each and every x∈R . Quadratic forms constitute a notable
exception where the strict-case converse (⇐) holds reliably.

3.10.0.0.1 Example. Convex quadratic.
Real quadratic multivariate polynomial in matrix A and vector b

xTA x + 2bTx + c (646)

is convex if and only if Aº0. Proof follows by observing second-order gradient: (§D.2.1)

∇2
x

(

xTA x + 2bTx + c
)

= A +AT (647)

Because xT(A +AT)x = 2xTA x , matrix A can be assumed symmetric. 2

3.10.0.0.2 Exercise. Real fractional function. (confer §3.3, §3.5.2, §3.15.3.0.2)
Prove that real function f(x, y) = y/x is not convex on the first quadrant. Also exhibit
this in a plot of the function. (f is quasilinear (p.213) on {x > 0} and nonmonotonic;
even on the first quadrant.) H



206 CHAPTER 3. GEOMETRY OF CONVEX FUNCTIONS

3.10.0.0.3 Exercise. One-dimensional stress function.
Define |x−y|,

√

(x−y)2 and

X = [x1 · · · xN ] ∈ R1×N (79)

Given symmetric nonnegative data [hij ]∈ SN∩ RN×N
+ , consider function

f(vec X) =

N−1
∑

i=1

N
∑

j=i+1

(|xi − xj | − hij)
2 ∈ R (1427)

Find a gradient and Hessian for f . Then explain why f is not a convex function; id est,
why doesn’t second-order condition (645) apply to the constant positive semidefinite
Hessian matrix you found. For N = 6 and hij data from (1508), apply line theorem
3.14.0.0.1 to plot f along some arbitrary lines through its domain. H

3.10.0.1 second-order ⇒ first-order condition

For a twice-differentiable real function fi(X) : Rp→R having open domain, a consequence
of the mean value theorem from calculus allows compression of its complete Taylor series
expansion about X∈ dom fi (§D.1.7) to three terms: On some open interval of ‖Y ‖2 ,
so that each and every line segment [X,Y ] belongs to dom fi , there exists an α∈ [0 , 1]
such that [467, §1.2.3] [46, §1.1.4]

fi(Y ) = fi(X) + ∇fi(X)T(Y −X) +
1

2
(Y −X)T∇2fi(αX + (1 − α)Y )(Y −X) (648)

The first-order condition for convexity (630) follows directly from this and the second-order
condition (645).

3.11 Convex matrix-valued function

We need different tools for matrix argument: We are primarily interested in continuous
matrix-valued functions g(X). We choose symmetric g(X)∈ SM because matrix-valued
functions are most often compared (649) with respect to the positive semidefinite cone SM

+

in the ambient space of symmetric matrices.3.25

3.11.0.0.1 Definition. Convex matrix-valued function:
1) Matrix-definition.
A function g(X) : Rp×k→SM is convex in X iff dom g is a convex set and, for each and
every Y,Z∈dom g and all 0≤µ≤1 [251, §2.3.7]

g(µ Y + (1 − µ)Z) ¹
S

M
+

µ g(Y ) + (1 − µ)g(Z ) (649)

Reversing sense of the inequality flips this definition to concavity. Strict convexity is
defined less a stroke of the pen in (649) similarly to (510).

3.25Function symmetry is not a necessary requirement for convexity; indeed, for A∈R
m×p and B∈R

m×k,
g(X) = AX + B is a convex (affine) function in X on domain R

p×k with respect to the nonnegative orthant

R
m×k
+ . Symmetric convex functions share the same benefits as symmetric matrices. Horn & Johnson

[237, §7.7] liken symmetric matrices to real numbers, and (symmetric) positive definite matrices to positive
real numbers.
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2) Scalar-definition.
It follows that g(X) : Rp×k→SM is convex in X iff wTg(X)w : Rp×k→R is convex in X
for each and every ‖w‖= 1 ; shown by substituting the defining inequality (649). By dual
generalized inequalities we have the equivalent but more broad criterion, (§2.13.6)

g convex w.r.t SM
+ ⇔ 〈W , g〉 convex for each and every W º

S
M∗

+

0 (650)

Strict convexity on both sides requires caveat W 6= 0. Because the set of all extreme
directions for the selfdual positive semidefinite cone (§2.9.2.7) comprises a minimal set of
generators for that cone, discretization (§2.13.4.2.1) allows replacement of matrix W with
symmetric dyad wwT as proposed. △

3.11.0.0.2 Example. Taxicab distance matrix.
Consider an n-dimensional vector space Rn with metric induced by 1-norm. Then distance
between points x1 and x2 is the norm of their difference: ‖x1− x2‖1 . Given a list of points
arranged columnar in a matrix

X = [x1 · · · xN ] ∈ Rn×N (79)

then we could define a taxicab distance matrix

D1(X) , (I ⊗ 1T
n ) | vec(X)1T − 1⊗X | ∈ SN

h ∩ RN×N
+

=















0 ‖x1− x2‖1 ‖x1− x3‖1 · · · ‖x1− xN‖1

‖x1− x2‖1 0 ‖x2− x3‖1 · · · ‖x2− xN‖1

‖x1− x3‖1 ‖x2− x3‖1 0 ‖x3− xN‖1

...
...

. . .
...

‖x1− xN‖1 ‖x2− xN‖1 ‖x3− xN‖1 · · · 0















(651)

where 1n is a vector of ones having dim1n = n and where ⊗ represents Kronecker
product. This matrix-valued function is convex with respect to the nonnegative orthant
since, for each and every Y,Z∈Rn×N and all 0≤µ≤1

D1(µ Y + (1 − µ)Z) ¹
R

N×N
+

µ D1(Y ) + (1 − µ)D1(Z ) (652)

2

3.11.0.0.3 Exercise. 1-norm distance matrix.
The 1-norm is called taxicab distance because, to go from one point to another in a city
by car, road distance is a sum of grid lengths as in Figure 88. Prove (652). H

3.11.0.0.4 Exercise. Binary distance matrix.
Euclidean distance-square between n-dimensional real vectors xi∈Rn is

‖xi − xj‖2 = (xi − xj)
T(xi − xj) = xT

i xi + xT
j xj − 2xT

i xj (1002)

One-bit signals are common in audio (Figure 1) and image processing. When encoding
greyscale images, xi can represent the ith vectorized image with each entry corresponding
to a particular pixel intensity ranging over dark to light. When black and white images
are encoded, qi represents a vectorized image with each entry either 0 or 1. Such binary
images are known as halftone (newspaper) or fax (fac simile). For n-dimensional binary
vectors, si∈Bn

±= {−1, 1}n and qi∈Bn = {0, 1}n, distance-square is expressed

‖si − sj‖2 = (si − sj)
T(si − sj) = n + n − 2sT

i sj

‖qi − qj‖2 = (qi − qj)
T(qi − qj) = 1Tqi + 1Tqj − 2qT

i qj

(653)
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x

y
R2

Figure 88: Path length, along any illustrated route from x to y , is identical to ‖x − y‖1 .
The same would hold in higher dimension, assuming no backtracking.

Each expression satisfies first properties of a metric (§5.2); importantly, nonnegativity
and 0 selfdistance. Write a matrix expression, neater than (651), for a binary Bn

± distance
matrix. H

3.12 First-order convexity condition, matrix-valued f

From the scalar-definition (§3.11.0.0.1) of a convex matrix-valued function, for
differentiable function g and for each and every real vector w of unit norm ‖w‖ = 1 ,
we have

wTg(Y )w ≥ wTg(X)w + wT
→Y −X

dg(X) w (654)

that follows immediately from the first-order condition (629) for convexity of a real function
because

wT
→Y −X

dg(X) w =
〈

∇X wTg(X)w , Y − X
〉

(655)

where
→Y −X

dg(X) is the directional derivative (§D.1.4) of function g at X in direction Y −X .
By discretized dual generalized inequalities, (§2.13.6)

g(Y ) − g(X) −
→Y −X

dg(X) º
S

M
+

0 ⇔
〈

g(Y ) − g(X) −
→Y −X

dg(X) , wwT

〉

≥ 0 ∀wwT(º
S

M∗

+

0) (656)

For each and every X,Y ∈ dom g (confer (641))

g(Y ) º
S

M
+

g(X) +
→Y −X

dg(X) (657)

must therefore be necessary and sufficient for convexity of a matrix-valued function of
matrix variable on open convex domain.
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3.13 Epigraph of matrix-valued function, sublevel sets

We generalize epigraph to a continuous matrix-valued function g(X) : Rp×k→SM :
[38, p.155]

epi g , {(X , T )∈Rp×k× SM | X∈ dom g , g(X) ¹
S

M
+

T } (658)

from which it follows
g convex ⇔ epi g convex (659)

Proof of necessity is similar to that in §3.5 on page 189.
Sublevel sets of a convex matrix-valued function corresponding to each and every

S∈ SM (confer (577))

L
S
g , {X∈ dom g | g(X) ¹

S
M
+

S} ⊆ Rp×k (660)

are convex. There is no converse.

3.13.1 matrix fractional function redux

(confer §3.5.2) [38, p.155] Consider a matrix-valued function of two variables on
dom g = SN

+ ×Rn×N for small positive constant ǫ (confer (2075))

g(A , X) = ǫX(A + ǫ I )−1XT (661)

where the inverse always exists by (1628). This function is convex simultaneously in
both variables over the entire positive semidefinite cone SN

+ and all X∈ Rn×N . This is
explained:

Recall Schur-form (1689) from §A.4: for T∈ Sn

G(A , X , T ) =

[

A + ǫ I XT

X ǫ−1 T

]

º 0

⇔
T − ǫX(A + ǫ I )−1XT º 0

A + ǫ I ≻ 0

(662)

By Theorem 2.1.9.0.1, inverse image of the positive semidefinite cone SN+n
+

under affine mapping G(A , X , T ) is convex. Function g(A , X) is convex on
SN

+ ×Rn×N because its epigraph is that inverse image:

epi g(A , X) =
{

(A , X , T ) | A + ǫ I ≻ 0 , ǫX(A + ǫ I )−1XT¹ T
}

= G−1
(

SN+n
+

) (663)

¨

3.14 Second-order convexity condition, matrix-valued f

The following line theorem is a potent tool for establishing convexity of a multidimensional
function. To understand it, what is meant by line must first be solidified. Given a
function g(X) : Rp×k→SM and particular X , Y ∈ Rp×k not necessarily in that function’s
domain, then we say a line {X+ t Y | t∈R} (infinite in extent) passes through dom g
when X+ t Y ∈ dom g over some interval of t∈R .
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3.14.0.0.1 Theorem. Line theorem. (confer [68, §3.1.1])
Multidimensional function f(X) : Rp×k→RM or g(X) : Rp×k→SM is convex in X if and
only if it remains convex on the intersection of any line with its domain. ⋄

Now we assume a twice differentiable function.

3.14.0.0.2 Definition. Differentiable convex matrix-valued function.
Matrix-valued function g(X) : Rp×k→SM is convex in X iff dom g is an open convex set,
and its second derivative g′′(X+ t Y ) : R→SM is positive semidefinite on each point of
intersection along every line {X+ t Y | t∈R} that intersects dom g ; id est, iff for each
and every X , Y ∈ Rp×k such that X+ t Y ∈ dom g over some open interval of t∈R

d2

dt2
g(X+ t Y ) º

S
M
+

0 (664)

Similarly, if

d2

dt2
g(X+ t Y ) ≻

S
M
+

0 (665)

then g is strictly convex; the converse is generally false. [68, §3.1.4]3.26 △

3.14.0.0.3 Example. Convexity of matrix inverse. (confer §3.3.1)
The matrix-valued function Xµ is convex on intr SM

+ for −1≤µ≤0 or 1≤µ≤2 and
concave for 0≤µ≤1. [68, §3.6.2] In particular, the function g(X) = X−1 is convex on
intr SM

+ . For each and every Y ∈ SM (§D.2.1, §A.3.1.0.5)

d2

dt2
g(X+ t Y ) = 2(X+ t Y )−1 Y (X+ t Y )−1 Y (X+ t Y )−1 º

S
M
+

0 (666)

on some open interval of t∈R such that X + t Y ≻ 0. Hence, g(X) is convex in X .
This result is extensible;3.27 tr X−1 is convex on that same domain. [237, §7.6 prob.2]
[61, §3.1 exer.25] 2

3.14.0.0.4 Example. Matrix squared.
Iconic real function f(x)= x2 is strictly convex on R . The matrix-valued function
g(X)=X2 is convex on the domain of symmetric matrices; for X , Y ∈ SM and any open
interval of t∈R (§D.2.1)

d2

dt2
g(X+ t Y ) =

d2

dt2
(X+ t Y )2 = 2Y 2 (667)

which is positive semidefinite when Y is symmetric because then Y 2 = Y TY (1634).3.28

Perhaps a more appropriate matrix-valued counterpart for f is g(X)=XTX which
is a convex function on domain {X∈ Rm×n} , and strictly convex whenever X is
thin-or-square full-rank. This matrix-valued function can be generalized to g(X)=XTAX
which is convex whenever matrix A is positive semidefinite (p.572), and strictly convex
when A is positive definite and X is thin-or-square full-rank (Corollary A.3.1.0.5). 2

3.26The strict-case converse is reliably true for quadratic forms.
3.27 d/dt tr g(X+ t Y ) = tr d/dt g(X+ t Y ). [238, p.491]
3.28By (1652) in §A.3.1, changing the domain instead to all symmetric and nonsymmetric positive
semidefinite matrices, for example, will not produce a convex function.
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3.14.0.0.5 Exercise. Squared maps.
Give seven examples of distinct polyhedra P for which the set

{XTX | X∈ P} ⊆ Sn
+ (668)

were convex. Is this set convex, in general, for any polyhedron P ? (confer (1352)(1359))
Is the epigraph of function g(X)=XTX convex for any polyhedral domain? H

3.14.0.0.6 Exercise. Inverse square. (confer §3.13.1)
For positive scalar a , real function f(x)= ax−2 is convex on the nonnegative
real line. Given positive definite matrix constant A , prove via line theorem that
g(X)= tr

(

(XTA−1X)−1
)

is generally not convex unless X≻ 0 .3.29 From this result, show

how it follows via Definition 3.11.0.0.1-2 that h(X) = (XTA−1X)−1 is generally neither
convex. H

3.14.0.0.7 Example. Matrix exponential.
The matrix-valued function g(X) = eX : SM → SM is convex on the subspace of circulant
[201] symmetric matrices. Applying the line theorem, for all t∈R and circulant
X , Y ∈ SM , from Table D.2.7 we have

d2

dt2
eX+ t Y = Y eX+ t Y Y º

S
M
+

0 , (XY )T = XY (669)

because all circulant matrices are commutative and, for symmetric matrices,
XY = Y X ⇔ (XY )T = XY (1651). Given symmetric argument, the matrix exponential
always resides interior to the cone of positive semidefinite matrices in the symmetric matrix
subspace; eA≻ 0 ∀A∈SM (2073). Then for any matrix Y of compatible dimension,
Y TeAY is positive semidefinite. (§A.3.1.0.5)

The subspace of circulant symmetric matrices contains all diagonal matrices. The
matrix exponential of any diagonal matrix eΛ exponentiates each individual entry on
the main diagonal. [291, §5.3] So, changing the function domain to the subspace of
real diagonal matrices reduces the matrix exponential to a vector-valued function in
an isometrically isomorphic subspace RM ; known convex (§3.1) from the real-valued
function case [68, §3.1.5]. 2

There are more methods for determining function convexity; [46] [68] [156] one can be
more efficient than another depending on the function in hand.

3.14.0.0.8 Exercise. log det.
Matrix determinant is neither a convex or concave function, in general, but inverted
determinant detX−1 = 1/det X (2074) is convex when its domain is restricted to interior
of a positive semidefinite cone. [38, p.149] Show by three different methods: On interior
of a positive semidefinite cone, − log detX = log detX−1 is convex. H

3.15 Quasiconvex

Quasiconvex functions [234] [377] [447] [283, §2] are valuable, pragmatically, because they
are unimodal (by definition when nonmonotonic); a global minimum is guaranteed to exist
over any convex set in the function domain; e.g, Figure 89. That subset of the domain,
corresponding to a global minimum, is convex. Optimal solution to quasiconvex problems
is by method of bisection (a.k.a binary search). [68, §4.2.5]

3.29Hint: §D.2.3.
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Figure 89: Iconic unimodal differentiable quasiconvex function of two variables graphed
in R2× R on some open disc in R2. Note reversal of curvature in direction of gradient.
The negative of a quasiconvex function is quasiconcave, and vice versa.

3.15.0.0.1 Definition. Quasiconvex function. (confer (507))
f(X) : Rp×k→R is a quasiconvex function of matrix X iff dom f is a convex set and for
each and every Y,Z∈dom f and 0≤µ≤1

f(µY + (1 − µ)Z) ≤ max{f(Y ) , f(Z )} (670)

A quasiconcave function is similarly defined:

f(µY + (1 − µ)Z) ≥ min{f(Y ) , f(Z )} (671)

Caveat Y 6= Z and strict inequality on an open interval 0<µ<1 constitute necessary
and sufficient conditions for strict quasiconvexity. △

Unlike convex functions, quasiconvex functions are not necessarily continuous; e.g,
quasiconcave rank(X) on SM

+ (§2.9.2.9.2) and card(x) on RM
+ . Although insufficient

for convex functions, convexity of each and every sublevel set serves as a definition of
quasiconvexity:

3.15.0.0.2 Definition. Quasiconvex multidimensional function.
Scalar-, vector-, or matrix-valued function g(X) : Rp×k→SM is a quasiconvex function of
matrix X iff dom g is a convex set and its sublevel set

L
S
g = {X∈ dom g | g(X) ¹ S} ⊆ Rp×k (660)

(corresponding to each and every S∈ SM ) is convex. Vectors are compared with respect
to the nonnegative orthant RM

+ while matrices are with respect to the positive semidefinite

cone SM
+ . Likewise, convexity of each and every superlevel set

LSg = {X∈ dom g | g(X) º S} ⊆ Rp×k (672)

is necessary and sufficient for quasiconcavity. △
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3.15.0.0.3 Exercise. Nonconvexity of matrix product.
Consider real function f on a positive definite domain

f(X) = tr(X1X2) , X ,

[

X1

X2

]

∈ dom f ,

[

rel intr SN
+

rel intr SN
+

]

(673)

with superlevel sets

Lsf = {X ∈ dom f | 〈X1 , X2〉 ≥ s} (674)

Prove that f(X) is not quasiconcave except when N = 1 , nor is it quasiconvex unless
X1 = X2 . H

3.15.0.0.4 Definition. Differentiable quasiconvex function. [76, §3.2.1]
f(X) : Rp×k→R is a quasiconvex function of matrix X iff dom f is a convex set and for
each and every Y,Z∈dom f (§D.1.6)

f(Y ) ≥ f(Z ) ⇒ tr
(

∇f(Y )T(Z − Y )
)

≤ 0 (675)

A differentiable quasiconcave function is similarly defined:

f(Y ) ≥ f(Z ) ⇒ tr
(

∇f(Y )T(Z − Y )
)

≥ 0 (676)

Caveat ∇f(X) 6=0 on open convex domain and strict inequality on the right side constitute
necessary and sufficient conditions for strict quasiconvexity. △

3.15.1 unimodal differentiable quasiconvex

Unlike the convex case, ∇f(X)=0 does not necessarily locate the global minimum of a
strictly quasiconvex function f . Cambini & Martein enunciate conditions required for
global optimality by slight modification to quasiconvex function Definition 3.15.0.0.4:

3.15.1.0.1 Definition. Differentiable pseudoconvex function. [76, §3.2.2]
f(X) : Rp×k→R is a pseudoconvex function of matrix X iff dom f is an open convex set
and for each and every Y,Z∈dom f (§D.1.6)

f(Y ) > f(Z ) ⇒ tr
(

∇f(Y )T(Z − Y )
)

< 0 (677)

f(X) : Rp×k→ R is a strictly pseudoconvex function of matrix X iff dom f is an open
convex set and for each and every Y 6= Z∈dom f

f(Y ) ≥ f(Z ) ⇒ tr
(

∇f(Y )T(Z − Y )
)

< 0 (678)

△

If f is a pseudoconvex function, then ∇f(X)=0 identifies its global minimum at X .
If f is strictly pseudoconvex, then that X is unique.

3.15.2 quasilinear

When a function is simultaneously quasiconvex and quasiconcave, it is called quasilinear.
One-dimensional functions x3 and ex and vector-valued signum function sgn(x) , for
example, are quasilinear. Quasilinear functions are completely determined by convex
level sets. Multidimensional quasilinear functions are not necessarily monotonic; e.g,
Exercise 3.10.0.0.2.



214 CHAPTER 3. GEOMETRY OF CONVEX FUNCTIONS

x

u

xu

Figure 90: Quasiconcave strictly monotonic real product function xu is bowed (not affine)
on the nonnegative orthants.

3.15.3 bilinear

Real bilinear (inner product) function3.30 xTu of vectors x and u is quasiconcave and
strictly monotonic on the nonnegative orthants Rη

+× Rη
+ only when dimension η equals 1.

(Figure 90) x2u and xu2 and biquadratic x2u2 are quasiconcave strictly monotonic, but
over no more broad a domain.

√
xu is concave on the same nonnegative domain.

When variable x←β has dimension 1 but u is a vector of arbitrary dimension η , real
function f(β , u)=β1Tu=β tr δ(u) is quasiconcave strictly monotonic on the nonnegative
orthants R+× Rη

+ . f(β , u) is quasiconcave strictly monotonic on R+× Rη when 1Tu≥0.

3.15.3.0.1 Proof. Domain of function

f(β , u) : R+× Rη →R+ = β1Tu , 1Tu≥0 (679)

is a nonpointed polyhedral cone in Rη+1, its range a halfline R+ .
(quasiconcavity) Because this function spans an orthant, its 0-superlevel set is the

deepest superlevel set and identical to its domain. Higher superlevel sets of the function,
given some fixed nonzero scalar ζ≥ 0

{β , u | f(β , u) ≥ ζ , β>0 , 1Tu≥0} = {β , u | β1Tu ≥ ζ , β>0 , 1Tu≥0}
= {β , u | 1Tu ≥ ζ

β
, β>0} (680)

3.30Convex envelope of bilinear functions is well known. [4]
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are not polyhedral but they are convex because (§A.4)

1Tu ≥ ζ

β
, β > 0 ⇔

[

β
√

ζ√
ζ tr δ(u)

]

º 0 (681)

and because inverse image of a positive semidefinite cone under affine transformation
is convex by Theorem 2.1.9.0.1. Convex superlevel sets are necessary and sufficient for
quasiconcavity by Definition 3.15.0.0.2.

(monotonicity) By Definition 3.6.1.0.1,

f is increasing monotonic when

[

β
u

]

≻
[

τ
z

]

⇒ f(β , u) ≻ f(τ , z) (682)

for all β , u , τ , z in the domain. Assuming β>τ ≥0 and u≻z , it follows that
1Tu>1Tz . (Exercise 2.13.8.0.2) Therefore β1Tu>τ 1Tz and so f(β , u) = β1Tu is
strictly monotonic. ¨

3.15.3.0.2 Exercise. Quasiconcave product function. (confer §3.10.0.0.2)
Show that vector-valued function βu : R+× Rη

+→Rη
+ is quasiconcave and strictly

monotonic but not quasilinear. H

3.16 Salient properties

of convex and quasiconvex functions

1. � A convex function is assumed continuous but not necessarily differentiable on
the relative interior of its domain. [354, §10]

� A quasiconvex function is not necessarily a continuous function.

2. convex epigraph ⇔ convexity ⇒ quasiconvexity ⇔ convex sublevel sets.
convex hypograph ⇔ concavity ⇒ quasiconcavity ⇔ convex superlevel sets.

quasilinearity ⇔ convex level sets.

3.
log-convex ⇒ convex ⇒ quasiconvex.

concave ⇒ quasiconcave ⇐ log-concave ⇐ positive concave.
3.31

4. Line Theorem 3.14.0.0.1 translates identically to quasiconvexity (quasiconcavity).
[132]

5. � g convex ⇔ −g concave.
g quasiconvex ⇔ −g quasiconcave.
g log-convex ⇔ 1/g log-concave.

� (translation, homogeneity) Function convexity, concavity, quasiconvexity, and
quasiconcavity are invariant to offset and nonnegative scaling.

6. (affine transformation of argument) Composition g(h(X)) of (quasi) convex

(concave) function g with any affine function h : Rm×n → Rp×k remains (quasi)
convex (concave) in X∈ Rm×n, where h(Rm×n) ∩ dom g 6= ∅. [234, §B.2.1]

3.31Log-convex means: logarithm of function f is convex on dom f .
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R × R

0

0

· · ·

· · ·

+

=

f1

f2

f1+ f2

Figure 91: Nonnegatively weighted sum of convex functions is convex but can be
unbounded below if any one function is. Unboundedness of the illustrated sum of real
function f1(x)= |x| with f2(x)= ax depends upon slope of f2 . But g(x)= x2+ ax is
never unbounded below, for any slope a , achieving its minimum at x=−a/2 .

7. a. i. Nonnegatively weighted sum of convex (concave) functions remains convex
(concave).3.32 (Figure 91, §3.1.1.2.1)

ii. Nonnegatively weighted max (min) of convex3.33 (concave) functions
remains convex (concave).

iii. Pointwise supremum (infimum) of convex (concave) functions remains
convex (concave). (Figure 81) [354, §5]

iv. g convex nondecreasing monotonic and h convex ⇒ g(h) is convex.
g concave nondecreasing monotonic and h concave ⇒ g(h) is concave.

(§3.6.1.0.4)

b. i. Sum of quasiconvex functions is not necessarily quasiconvex.

ii. Nonnegatively weighted max (min) of quasiconvex (quasiconcave) functions
remains quasiconvex (quasiconcave).

iii. Pointwise supremum (infimum) of quasiconvex (quasiconcave) functions
remains quasiconvex (quasiconcave).

iv. g nondecreasing monotonic and h quasiconvex ⇒ g(h) is quasiconvex.
g nondecreasing monotonic and h (quasi)concave ⇒ g(h) is quasiconcave.

[sic ] [76, thm.2.2.6] [389, thm.8.5]

3.16.0.0.1 Exercise. Quasicomposition.
Fill in the blanks:
g nonincreasing monotonic and h quasiconcave ⇒ g(h) is .
g nonincreasing monotonic and h quasiconvex ⇒ g(h) is . H

3.32Nonnegatively weighted nonzero sum of strictly convex (concave) functions remains strictly convex
(concave).
3.33Supremum and maximum of convex functions are proven convex by intersection of epigraphs.

https://books.google.com/books?id=JEcwQgngoE8C&pg=PA27&lpg=PA27
https://books.google.com/books?id=yAfug81P-8YC&pg=PA206


Chapter 4

Semidefinite Programming

Prior to 1984, linear and nonlinear programming,4.1 one a subset of the other,
had evolved for the most part along unconnected paths, without even a common
terminology. (The use of “programming” to mean “optimization” serves as a
persistent reminder of these differences.)

−Forsgren, Gill, & Wright, 2002 [173]

Given some practical application of convex analysis, it may at first seem puzzling why
a search for its solution ends abruptly with a formalized statement of the problem itself
as a constrained optimization. The explanation is: typically we do not seek analytical
solution because there are relatively few. (§3.5.3, §C) If a problem can be expressed in
convex form, rather, then there exist computer programs providing efficient numerical
global solution. [199] [460] [461] [459] [400] [384] The goal, then, becomes conversion of a
given problem (perhaps a nonconvex or combinatorial problem statement) to an equivalent
convex form or to an alternation of convex subproblems convergent to a solution of the
original problem:

By the fundamental theorem of Convex Optimization, any locally optimal point
(solution) of a convex problem is globally optimal. [68, §4.2.2] [353, §1] Given convex real
objective function g and convex feasible set D⊆dom g , which is the set of all variable
values satisfying the problem constraints, we pose a generic convex optimization problem

minimize
X

g(X)

subject to X∈ D
(683)

where constraints are abstract here in membership of variable X to convex feasible set D .
Inequality constraint functions of a convex optimization problem are convex. Quasiconvex
inequality constraint functions are prohibited by prevailing methods for numerical solution.
Equality constraint functions are conventionally affine, but not necessarily so. Affine
equality constraint functions, as opposed to the superset of all convex equality constraint
functions having convex level sets (§3.4.0.0.4), make convex optimization tractable.

Similarly, the problem
maximize

X
g(X)

subject to X∈ D
(684)

is called convex were g a real concave function and feasible set D convex. As conversion
to convex form is not always possible, there is much ongoing research to determine which
problem types have convex expression or relaxation. [38] [66] [180] [320] [395] [177]

4.1 nascence of polynomial-time interior-point methods of solution [415] [457].
Linear programming ⊂ (convex ∩ nonlinear) programming.

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 217

https://ccrma.stanford.edu/~dattorro
https://www.convexoptimization.com


218 CHAPTER 4. SEMIDEFINITE PROGRAMMING

4.1 Conic problem

Still, we are surprised to see the relatively small number of submissions to
semidefinite programming (SDP) solvers, as this is an area of significant
current interest to the optimization community. We speculate that semidefinite
programming is simply experiencing the fate of most new areas: Users have
yet to understand how to pose their problems as semidefinite programs, and
the lack of support for SDP solvers in popular modelling languages likely
discourages submissions. −SIAM News, 2002 [138, p.9]

(confer p.127) Consider a conic problem (p) and its dual (d): [338, §3.3.1] [278, §2.1] [279]

(310) (p)

minimize
x

cTx

subject to x ∈ K
Ax = b

maximize
y,s

bTy

subject to s ∈ K∗

ATy + s = c

(d) (685)

where K is a closed convex cone, K∗ is its dual, matrix A is fixed, and the remaining
quantities are vectors.

When K is a polyhedral cone (§2.12.1), then each conic problem becomes a linear
program; the selfdual nonnegative orthant providing the prototypical primal linear
program and its dual. [107, §3-1]4.2 More generally, each optimization problem is convex
when K is a closed convex cone. Solution to each convex problem is not necessarily
unique; the optimal solution sets {x⋆} and {y⋆, s⋆} are convex and may comprise more
than a single point.

4.1.1 a semidefinite program

When K is the selfdual cone of positive semidefinite matrices Sn
+ in the subspace of

symmetric matrices Sn, then each conic problem is called semidefinite program (SDP);
[320, §6.4] primal problem (P) having matrix variable X∈ Sn while corresponding dual
(D) has slack variable S∈ Sn and vector variable y = [yi]∈Rm : [11] [12, §2] [467, §1.3.8]

(P)

minimize
X∈ S

n
〈C , X 〉

subject to X º 0

A svec X = b

maximize
y∈R

m, S∈S
n

〈b , y〉
subject to S º 0

svec−1(ATy) + S = C

(D) (686)

This is the prototypical primal semidefinite program and its dual, where matrix C∈ Sn

and vector b∈Rm are fixed as is

A ,







svec(A1)
T

...
svec(Am)T






∈ Rm×n(n+1)/2 (687)

because {Ai∈ Sn, i=1 . . . m} is given. Thus

A svec X =





〈A1 , X 〉
...

〈Am , X 〉





svec−1(ATy) =
m
∑

i=1

yiAi

(688)

4.2Dantzig explains reasoning behind a nonnegativity constraint: . . .negative quantities of activities are
not possible. . . . a negative number of cases cannot be shipped.
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The vector inner-product for matrices is defined in the Euclidean/Frobenius sense in the

isomorphic vector space Rn(n+1)/2 ; id est,

〈C , X 〉 , tr(CTX) = svec(C )Tsvec X (40)

where svec X defined by (59) denotes symmetric vectorization.

In a national planning problem of some size, one may easily run into several
hundred variables and perhaps a hundred or more degrees of freedom. . . . It
should always be remembered that any mathematical method and particularly
methods in linear programming must be judged with reference to the type of
computing machinery available. Our outlook may perhaps be changed when we
get used to the super modern, high capacity electronic computor that will be
available here from the middle of next year. −Ragnar Frisch, 1957 [175]

The Simplex method of solution for linear programming, invented by Dantzig in
1947 [107], is now integral to modern technology. The same cannot yet be said for
semidefinite programming whose roots trace back to systems of positive semidefinite linear
inequalities studied by Bellman & Fan in 1963 [33] [118] who provided saddle convergence
criteria. Interior-point methods for numerical solution of linear programs can be traced
back to the logarithmic barrier of Frisch in 1954 and Fiacco & McCormick in 1968 [168].
Karmarkar’s polynomial-time interior-point method sparked a log-barrier renaissance
in 1984, [317, §11] [457] [415] [320, p.3] but numerical performance of contemporary
general-purpose semidefinite program solvers remains limited: Computational intensity
for dense systems varies as O(m2n) (m constraints ≪ n variables) based on interior-point
methods that produce solutions no more relatively accurate than 1E-8. There are no
solvers capable of handling in excess of n=100,000 variables without significant, sometimes
crippling,

⌊

¸
⌋

loss of precision or time.4.3 [39] [319, p.258] [75, p.3]

Nevertheless, semidefinite programming has recently emerged to prominence because it
admits a new problem type previously unsolvable by convex optimization techniques [66]
and because it theoretically subsumes other convex types: (Figure 92) linear programming,
quadratic programming, second-order cone programming.4.4 Determination of the Riemann
mapping function from complex analysis [329] [31, §8, §13], for example, can be posed as
a semidefinite program.

4.1.2 Maximal complementarity

It has been shown [467, §2.5.3] that contemporary interior-point methods [458] [332]
[320] [12] [68, §11] [173] (developed circa 1990 [180] for numerical solution of semidefinite
programs) can converge to a solution of maximal complementarity ; [209, §5] [466] [293]
[187] not a vertex solution but a solution of highest cardinality or rank among all optimal
solutions.4.5

4.3Heuristics are not ruled out by SIOPT; indeed I would suspect that most successful methods have
(appropriately described) heuristics under the hood - my codes certainly do. . . . Of course, there are still
questions relating to high-accuracy and speed, but for many applications a few digits of accuracy suffices
and overnight runs for non-real-time delivery is acceptable.

−Nicholas I. M. Gould, Stanford alumnus, SIOPT Editor in Chief
4.4Second-order cone programming (SOCP) was born in the 1990s; it is not posable as a quadratic

program. [288]
4.5This characteristic might be regarded as a disadvantage to interior-point methods of numerical

solution, but this behavior is not certain and depends on solver implementation.

https://books.google.com/books?id=SdkCCAAAQBAJ&pg=PA1&lpg=PA1&dq=on+systems+of+linear+inequalities+in+hermitian+matrix+variables+bellman+fan&source=bl&ots=nl3w2eukzd&sig=d_jJsPlfXd30IvnYLd7_3qJevH8&hl=en&sa=X&ved=0ahUKEwivjdCdv4_LAhVFwmMKHTw6B7gQ6AEIQzAF#v=onepage&q=on%20systems%20of%20linear%20inequalities%20in%20hermitian%20matrix%20variables%20bellman%20fan&f=false
https://www.convexoptimization.com/TOOLS/basu.pdf
https://books.google.com/books?id=icWjpwgigkAC&printsec=frontcover#v=onepage&q&f=false
https://web.stanford.edu/class/ee364a/lectures/unconstrained.pdf
https://www2.isye.gatech.edu/~nemirovs/BeyondTheIPM.ppt
https://web.stanford.edu/group/SOL/alumni.html#alumni
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linear

second-order cone

semidefinite

quadratic

quadratically constrained

geometric

PC

Figure 92: Venn diagram of program hierarchy. Convex program PC represents broadest
class of convex optimization problem having efficient global solution methods. Semidefinite
program subsumes other convex program types excepting geometric program [67] [90].

This phenomenon can be explained by recognizing that, by design, interior-point
methods generally find solutions relatively interior to a feasible set.4.6 [7, p.3] Log barriers
are designed to fail numerically at the feasible set boundary. So low-rank solutions, all
on the boundary, are rendered more difficult to find as numerical error becomes more
prevalent there.

4.1.2.1 Reduced-rank solution

A simple rank reduction algorithm, for construction of a primal optimal solution X⋆ to
(686P) satisfying an upper bound on rank governed by Proposition 2.9.3.0.1, is presented
in §4.3. That proposition asserts existence of feasible solutions with an upper bound
on their rank; [28, §II.13.1] specifically, it asserts an extreme point (§2.6.0.0.1) of primal
feasible set A ∩ Sn

+ satisfies upper bound

rankX ≤
⌊√

8m + 1 − 1

2

⌋

(279)

where, given A∈Rm×n(n+1)/2 (687) and b∈Rm,

A , {X∈ Sn | A svec X = b} (2313)

is the affine subset from primal problem (686P).

4.1.2.2 Coexistence of low- and high-rank solutions; analogy

That low-rank and high-rank optimal solutions {X⋆} of (686P) coexist may be grasped
with the following analogy: We compare a proper polyhedral cone S3

+ in R3 (illustrated in

Figure 93) to the positive semidefinite cone S3

+ in isometrically isomorphic R6, difficult
to visualize. The analogy is good:

4.6Simplex methods, in contrast, find vertex solutions. [107, p.158] [17, p.2]
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Γ2

Γ1

S3
+

0

A=∂H

C

P

Figure 93: Visualizing positive semidefinite cone in high dimension: Proper polyhedral
cone S3

+⊂R3 representing positive semidefinite cone S3

+⊂ S3 ; analogizing its intersection

S3

+ ∩ ∂H with hyperplane. Number of facets is arbitrary (an analogy not inspired by
eigenvalue decomposition). The rank-0 positive semidefinite matrix corresponds to origin
in R3, rank-1 positive semidefinite matrices correspond to edges of polyhedral cone, rank-2
to facet relative interiors, and rank-3 to polyhedral cone interior. Vertices Γ1 and Γ2 are
extreme points of polyhedron P=∂H ∩ S3

+ , and extreme directions of S3
+ . A given vector

C is normal to another hyperplane (not illustrated but independent w.r.t ∂H) containing
line segment Γ1Γ2 minimizing real linear function 〈C , X 〉 on P . (confer Figure 29,
Figure 33)
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� intr S3

+ is constituted by rank-3 matrices.

intrS3
+ has three dimensions.

� boundary ∂S3

+ contains rank-0 , rank-1 , and rank-2 matrices.

boundary ∂S3
+ contains 0-, 1-, and 2-dimensional faces.

� the only rank-0 matrix resides in the vertex at the origin.

� Rank-1 matrices are in one-to-one correspondence with extreme directions of S3

+

and S3
+ . The set of all rank-1 symmetric matrices in this dimension

{

G ∈ S3

+ | rankG=1
}

(689)

is not a connected set.

� Rank of a sum of members F +G in Lemma 2.9.2.9.1 and location of a difference
F−G in §2.9.2.12.1 similarly hold for S3

+ and S3
+ .

� Euclidean distance from any particular rank-3 positive semidefinite matrix (in the
cone interior) to the closest rank-2 positive semidefinite matrix (on the boundary)
is generally less than the distance to the closest rank-1 positive semidefinite matrix.
(§7.1.2)

� distance from any point in ∂S3

+ to intr S3

+ is infinitesimal (§2.1.7.1.1).

distance from any point in ∂S3
+ to intrS3

+ is infinitesimal.

� faces of S3

+ correspond to faces of S3
+ (confer Table 2.9.2.3.1):

k dimF(S3
+) dimF(S3

+) dimF(S3

+∋ rank-k matrix)
0 0 0 0

boundary 1 1 1 1
2 2 3 3

interior 3 3 6 6

Integer k indexes k-dimensional faces F of S3
+ . Positive semidefinite cone S3

+

has four kinds of faces, including cone itself (k = 3 , boundary + interior), whose
dimensions in isometrically isomorphic R6 are listed under dimF(S3

+). Smallest

face F
(

S3

+∋ rank-k matrix
)

that contains a rank-k positive semidefinite matrix
has dimension k(k + 1)/2 by (230).

� For A equal to intersection of m hyperplanes having linearly independent normals,
and for X∈ S3

+ ∩ A , we have rankX ≤ m ; the analogue to (279).

Proof. With reference to Figure 93: Assume one (m = 1) hyperplane A= ∂H
intersects the polyhedral cone. Every intersecting plane contains at least one matrix
having rank less than or equal to 1 ; id est, from all X∈ ∂H ∩ S3

+ there exists an
X such that rankX≤ 1. Rank 1 is therefore an upper bound in this case.

Now visualize intersection of the polyhedral cone with two (m = 2) hyperplanes
having linearly independent normals. The hyperplane intersection A makes a
line. Every intersecting line contains at least one matrix having rank less than
or equal to 2 , providing an upper bound. In other words, there exists a positive
semidefinite matrix X belonging to any line intersecting the polyhedral cone such
that rankX ≤ 2.

In the case of three independent intersecting hyperplanes (m = 3), the hyperplane
intersection A makes a point that can reside anywhere in the polyhedral cone. The
upper bound on a point in S3

+ is also the greatest upper bound: rankX ≤ 3. ¨
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4.1.2.2.1 Example. Optimization over A ∩ S3
+ .

Consider minimization of the real linear function 〈C , X 〉 over

P , A ∩ S3

+ (690)

a polyhedral feasible set;

f⋆
0 , minimize

X
〈C , X 〉

subject to X ∈ A ∩ S3
+

(691)

As illustrated for particular vector C and hyperplane A= ∂H in Figure 93, this linear
function is minimized on any X belonging to the face of P containing extreme points
{Γ1 , Γ2} and all the rank-2 matrices in between; id est, on any X belonging to the face
of P

F(P) = {X | 〈C , X 〉 = f⋆
0 } ∩ A ∩ S3

+ (692)

exposed by the hyperplane {X | 〈C , X 〉 = f⋆
0 }. In other words, the set of all optimal

points X⋆ is a face of P
{X⋆} = F(P) = Γ1Γ2 (693)

comprising rank-1 and rank-2 positive semidefinite matrices. Rank 1 is the upper bound on
existence in the feasible set P for this case m = 1 hyperplane constituting A . The rank-1
matrices Γ1 and Γ2 in face F(P) are extreme points of that face and (by transitivity
(§2.6.1.2)) extreme points of the intersection P as well. As predicted by analogy to
Barvinok’s Proposition 2.9.3.0.1, the upper bound on rank of X existent in the feasible
set P is satisfied by an extreme point. The upper bound on rank of an optimal solution
X⋆ existent in F(P) is thereby also satisfied by an extreme point of P precisely because
{X⋆} constitutes F(P) ;4.7 in particular,

{X⋆∈ P | rankX⋆≤ 1} = {Γ1 , Γ2} ⊆ F(P) (694)

As all linear functions on a polyhedron are minimized on a face, [107] [292] [316] [323] by
analogy we so demonstrate coexistence of optimal solutions X⋆ of (686P) having assorted
rank. 2

4.1.2.3 Previous work

Barvinok showed, [26, §2.2] when given a positive definite matrix C and an arbitrarily
small neighborhood of C comprising positive definite matrices, there exists a matrix C̃
from that neighborhood such that optimal solution X⋆ to (686P) (substituting C̃ ) is an
extreme point of A ∩ Sn

+ and satisfies upper bound (279).4.8 Given arbitrary positive
definite C , this means: nothing inherently guarantees that an optimal solution X⋆ to
problem (686P) satisfies (279); certainly nothing given any symmetric matrix C , as the
problem is posed. This can be proved by example:

4.7 and every face contains a subset of the extreme points of P by the extreme existence theorem
(§2.6.0.0.2). This means: because the affine subset A and hyperplane {X | 〈C , X 〉 = f⋆

0 } must intersect
a whole face of P , calculation of an upper bound on rank of X⋆ ignores counting the hyperplane when
determining m in (279).
4.8Further, the set of all such C̃ in that neighborhood is open and dense.
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4.1.2.3.1 Example. (Ye) Maximal Complementarity.
Assume dimension n to be an even positive number. Then the particular instance of
problem (686P),

minimize
X∈ S

n

〈[

I 0
0 2I

]

, X

〉

subject to X º 0

〈I , X 〉 = n

(695)

has optimal solution

X⋆ =

[

2I 0
0 0

]

∈ Sn (696)

with an equal number of twos and zeros along the main diagonal. Indeed, optimal solution
(696) is a terminal solution along the central path taken by the interior-point method as
implemented in [467, §2.5.3]; it is also a solution of highest rank among all optimal solutions
to (695). Clearly, rank of this primal optimal solution exceeds by far a rank-1 solution
predicted by upper bound (279). 2

4.1.2.4 Later developments

This rational example (695) indicates the need for a more generally applicable and simple
algorithm to identify an optimal solution X⋆ satisfying Barvinok’s Proposition 2.9.3.0.1.
We will review such an algorithm in §4.3, but first we provide more background:

4.2 Framework

4.2.1 Feasible sets

Denote by D and D∗ the convex sets of primal and dual points respectively satisfying the
primal and dual constraints in (686), each assumed nonempty;

D =







X∈ Sn
+ |





〈A1 , X 〉
...

〈Am , X 〉



= b







= A ∩ Sn
+

D∗ =

{

S∈ Sn
+ , y = [yi]∈Rm |

m
∑

i=1

yiAi + S = C

}

(697)

These are the primal feasible set and dual feasible set. Geometrically, primal feasible
A ∩ Sn

+ represents an intersection of the positive semidefinite cone Sn
+ with an affine subset

A of the subspace of symmetric matrices Sn in isometrically isomorphic Rn(n+1)/2. A has
dimension n(n+1)/2−m when the vectorized Ai are linearly independent. Dual feasible
set D∗ is a Cartesian product of the positive semidefinite cone with its inverse image
(§2.1.9.0.1) under affine transformation4.9 C−∑

yiAi . Both feasible sets are convex, and
the objective functions are linear on a Euclidean vector space. Hence, (686P) and (686D)
are convex optimization problems.

4.9Inequality C−∑

yiAiº 0 follows directly from (686D) (§2.9.0.1.1) and is known as a linear matrix
inequality. (§2.13.6.1.1) Because

∑

yiAi¹C , matrix S is known as a slack variable (a term borrowed
from linear programming [107]) since its inclusion raises this inequality to equality.
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4.2.1.1 A ∩ Sn
+ emptiness determination via Farkas’ lemma

4.2.1.1.1 Lemma. Semidefinite Farkas’ lemma. (confer §4.2.1.1.2)
Given affine subset A = {X∈ Sn |〈Ai , X 〉= bi , i=1 . . . m} (2313), vector b = [bi]∈Rm,
and set {Ai∈ Sn, i=1 . . . m} such that {A svec X |Xº 0} (390) is closed, then primal
feasible set A ∩ Sn

+ is nonempty if and only if yTb≥ 0 holds for each and every vector

y = [yi]∈Rm such that
m
∑

i=1

yiAi º 0.

Equivalently, primal feasible set A ∩ Sn
+ is nonempty if and only if yTb≥ 0 holds for

each and every vector ‖y‖= 1 such that
m
∑

i=1

yiAi º 0. ⋄

Semidefinite Farkas’ lemma provides necessary and sufficient conditions for a set of
hyperplanes to have nonempty intersection A ∩ Sn

+ with the positive semidefinite cone.
Given

A =







svec(A1)
T

...
svec(Am)T






∈ Rm×n(n+1)/2 (687)

semidefinite Farkas’ lemma assumes that a convex cone

K = {A svec X | Xº 0} (390)

is closed per membership relation (327) from which the lemma springs: [270, §I] K closure
is attained when matrix A satisfies the cone closedness invariance corollary (p.143). Given
closed convex cone K and its dual from Example 2.13.6.1.1

K∗ = {y |
m

∑

j=1

yjAj º 0} (397)

then we can apply membership relation

b ∈ K ⇔ 〈y , b〉 ≥ 0 ∀ y ∈ K∗ (327)

to obtain the lemma

b ∈ K ⇔ ∃X º 0 Ä A svec X = b ⇔ A ∩ Sn
+ 6= ∅ (698)

b ∈ K ⇔ 〈y , b〉 ≥ 0 ∀ y ∈ K∗ ⇔ A ∩ Sn
+ 6= ∅ (699)

The final equivalence synopsizes semidefinite Farkas’ lemma.
While the lemma is correct as stated, a positive definite version is required for

semidefinite programming [467, §1.3.8] because existence of a feasible solution in the cone
interior A ∩ intr Sn

+ is required by Slater’s condition4.10 to achieve 0 duality gap (optimal
primal−dual objective difference, §4.2.3, Figure 64). Geometrically, a positive definite
lemma is required to insure that a point of intersection closest to the origin is not at
infinity; e.g, Figure 48. Then given A∈Rm×n(n+1)/2 having rank m , we wish to detect
existence of nonempty primal feasible set interior to the PSD cone;4.11 (393)

b ∈ intrK ⇔ 〈y , b〉 > 0 ∀ y ∈ K∗, y 6= 0 ⇔ A ∩ intr Sn
+ 6= ∅ (700)

Positive definite Farkas’ lemma is made from proper cones, K (390) and K∗ (397), and
membership relation (333) for which K closedness is unnecessary:

4.10Slater’s sufficient constraint qualification is satisfied whenever any primal or dual strictly feasible
solution exists; id est, any point satisfying the respective affine constraints and relatively interior to the
convex cone. [377, §6.6] [45, p.325] If the cone were polyhedral, then Slater’s constraint qualification is
satisfied when any feasible solution exists (relatively interior to the cone or on its relative boundary).
[68, §5.2.3]
4.11Detection of A ∩ intr S

n
+ 6= ∅ by examining intrK instead is a trick need not be lost.
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4.2.1.1.2 Lemma. Positive definite Farkas’ lemma. (confer §4.2.1.1.1)
Given l.i. set {Ai∈ Sn, i=1 . . . m} and vector b = [bi]∈Rm, make affine set

A = {X∈ Sn |〈Ai , X 〉= bi , i=1 . . . m} (2313)

Primal feasible cone interior A ∩ intr Sn
+ is nonempty if and only if yTb > 0 holds for each

and every vector y = [yi] 6= 0 such that
m
∑

i=1

yiAi º 0.

Equivalently, primal feasible cone interior A ∩ intr Sn
+ is nonempty if and only if

yTb > 0 holds for each and every vector ‖y‖= 1 Ä
m
∑

i=1

yiAi º 0. ⋄

4.2.1.1.3 Example. “New” Farkas’ lemma.
Lasserre [270, §III] presented an example in 1995, originally offered by Ben-Israel in 1969
[35, p.378], to support closedness in semidefinite Farkas’ Lemma 4.2.1.1.1:

A ,

[

svec(A1)
T

svec(A2)
T

]

=

[

0 1 0
0 0 1

]

, b =

[

1
0

]

(701)

Intersection A ∩ Sn
+ is practically empty because the solution set

{Xº 0 | A svec X = b} =

{[

α 1√
2

1√
2

0

]

º 0 | α∈R

}

(702)

is positive semidefinite only asymptotically (α→∞). Yet
m
∑

i=1

yiAiº 0 ⇒ yTb≥0 the dual

system erroneously indicates nonempty intersection because K (390) violates a closedness
condition of the lemma; videlicet, for ‖y‖= 1

y1

[

0 1√
2

1√
2

0

]

+ y2

[

0 0
0 1

]

º 0 ⇔ y =

[

0
1

]

⇒ yTb = 0 (703)

On the other hand, positive definite Farkas’ Lemma 4.2.1.1.2 certifies that A ∩ intr Sn
+ is

empty; what we need to know for semidefinite programming.
Lasserre suggested addition of another condition to semidefinite Farkas’ lemma

(§4.2.1.1.1) to make a new lemma having no closedness condition. But positive definite
Farkas’ lemma (§4.2.1.1.2) is simpler and obviates the additional condition proposed.

2

4.2.1.2 Theorem of the alternative for semidefinite programming

Because these Farkas’ lemmas follow from membership relations, we may construct
alternative systems from them. Applying the method of §2.13.2.1.1, then from positive
definite Farkas’ lemma we get

A ∩ intr Sn
+ 6= ∅

or in the alternative

yTb≤ 0 ,
m
∑

i=1

yiAi º 0 , y 6= 0

(704)

Any single vector y satisfying the alternative certifies A ∩ intr Sn
+ is empty. Such a vector

can be found as a solution to another semidefinite program: for linearly independent
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(vectorized) set {Ai∈ Sn, i=1 . . . m}

minimize
y

yTb

subject to
m
∑

i=1

yiAi º 0

‖y‖2 ≤ 1

(705)

If an optimal vector y⋆ 6= 0 can be found such that y⋆Tb≤ 0 , then primal feasible cone
interior A ∩ intr Sn

+ is empty.

4.2.1.3 Boundary-membership criterion

(confer (699)(700)) From boundary-membership relation (337), for proper cones K (390)
and K∗ (397) of linear matrix inequality,

b ∈ ∂K ⇔ ∃ y 6= 0 Ä 〈y , b〉= 0 , y ∈ K∗, b ∈ K ⇔ ∂Sn
+ ⊃ A ∩ Sn

+ 6= ∅ (706)

Whether vector b∈ ∂K belongs to cone K boundary, that is a determination we can indeed
make; one that is certainly expressible as a feasibility problem: Given linearly independent
set4.12 {Ai∈ Sn, i=1 . . . m} , for b∈ K (698)

find y 6= 0

subject to yTb = 0
m
∑

i=1

yiAi º 0

(707)

Any such nonzero solution y certifies that affine subset A (2313) intersects the positive
semidefinite cone Sn

+ only on its boundary; in other words, nonempty feasible set A ∩ Sn
+

belongs to the positive semidefinite cone boundary ∂Sn
+ .

4.2.2 Duals

The dual objective function from (686D) evaluated at any feasible solution represents a
lower bound on the primal optimal objective value from (686P). We can see this by direct
substitution: Assume the feasible sets A ∩ Sn

+ and D∗ are nonempty. Then it is always
true:

〈C , X 〉 ≥ 〈b , y〉
〈

∑

i

yiAi + S , X

〉

≥ [ 〈A1 , X 〉 · · · 〈Am , X 〉 ] y

〈S , X 〉 ≥ 0

(708)

The converse also follows because

X º 0 , S º 0 ⇒ 〈S , X 〉 ≥ 0 (1662)

Optimal value of the dual objective thus represents the greatest lower bound on the primal.
This fact is known as weak duality for semidefinite programming, [467, §1.3.8] and can be
used to detect convergence in any primal/dual numerical method of solution.

4.12From the results of Example 2.13.6.1.1, vector b on the boundary of K cannot be detected simply
by looking for 0 eigenvalues in matrix X . We do not consider a thin-or-square matrix A because then
feasible set A ∩ S

n
+ is at most a single point.
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P

D

P̃

D̃

duality
duality

transformation

Figure 94: Connectivity indicates paths between particular primal and dual problems
from Exercise 4.2.2.1.1. More generally, any path between primal problems P (and
equivalent P̃) and dual D (and equivalent D̃) is possible: implying, any given path is
not necessarily circuital; dual of a dual problem is not necessarily stated in precisely same
manner as corresponding primal convex problem, in other words, although its solution set
is equivalent to within some transformation.

4.2.2.1 Dual problem statement is not unique

Even subtle but equivalent restatements of a primal convex problem can lead to vastly
different statements of a corresponding dual problem. This phenomenon is of interest
because a particular instantiation of dual problem might be easier to solve numerically or
it might take one of few forms for which analytical solution is known.

Here is a canonical restatement of prototypical dual semidefinite program (686D), for
example, equivalent by (202):

(D)

maximize
y∈R

m, S∈S
n

〈b , y〉
subject to S º 0

svec−1(ATy) + S = C

≡
maximize

y∈R
m

〈b , y〉
subject to svec−1(ATy) ¹ C

(686D̃)

Dual feasible cone interior in intr Sn
+ (697) (688) thereby corresponds with canonical dual

(D̃) feasible interior

rel intr D̃∗ ,

{

y∈Rm |
m

∑

i=1

yiAi ≺ C

}

(709)

4.2.2.1.1 Exercise. Prototypical primal semidefinite program.
Derive prototypical primal (686P) from its canonical dual (686D̃); id est, demonstrate that
particular connectivity in Figure 94. H

4.2.3 Optimality conditions

When primal feasible cone interior A ∩ intr Sn
+ exists in Sn or when canonical dual

feasible interior rel intr D̃∗ exists in Rm, then these two problems (686P) (686D) become
strong duals by Slater’s sufficient condition (p.225). In other words, the primal optimal
objective value becomes equal to the dual optimal objective value: there is no duality gap
(Figure 64) and so determination of convergence is facilitated; id est, if ∃X∈ A ∩ intr Sn

+
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or ∃ y∈ rel intr D̃∗ then

〈C , X⋆〉 = 〈b , y⋆〉
〈

∑

i

y⋆
i Ai + S⋆ , X⋆

〉

= [ 〈A1 , X⋆〉 · · · 〈Am , X⋆〉 ] y⋆

〈S⋆ , X⋆〉 = 0

(710)

where S⋆, y⋆ denote a dual optimal solution.4.13 We summarize this:

4.2.3.0.1 Corollary. Optimality and strong duality. [411, §3.1] [467, §1.3.8]
For semidefinite programs (686P) and (686D), assume primal and dual feasible sets
A ∩ Sn

+⊂ Sn and D∗⊂ Sn× Rm (697) are nonempty. Then

� X⋆ is optimal for (686P)

� S⋆, y⋆ are optimal for (686D)

� duality gap 〈C,X⋆〉−〈b , y⋆〉 is 0

if and only if

i) ∃X∈ A ∩ intr Sn
+ or ∃ y ∈ rel intr D̃∗

and
ii) 〈S⋆ , X⋆〉 = 0 ⋄

For symmetric positive semidefinite matrices, requirement ii is equivalent to the
complementarity

〈S⋆ , X⋆〉 = 0 ⇔ S⋆X⋆ = X⋆S⋆ = 0 (1776)

Commutativity of diagonalizable matrices is necessary and sufficient [237, §1.3.12] for these
two optimal symmetric matrices to be simultaneously diagonalizable. Therefore

rankX⋆ + rankS⋆ ≤ n (711)

Proof. The product of symmetric optimal matrices X⋆, S⋆∈ Sn must itself be symmetric
because of commutativity. (1651) The symmetric product has diagonalization [12, cor.2.11]

S⋆X⋆ = X⋆S⋆ = Q ΛS⋆ ΛX⋆ QT = 0 ⇔ ΛX⋆ ΛS⋆ = 0 (712)

where Q is an orthogonal matrix. Product of the nonnegative diagonal Λ matrices can
be 0 if their main diagonal zeros are complementary or coincide. Due only to symmetry,
rankX⋆ = rank ΛX⋆ and rankS⋆ = rank ΛS⋆ for these optimal primal and dual solutions.
(1637) So total number of nonzero diagonal entries, from both Λ , cannot exceed n
because of the complementarity. ¨

When equality is attained in (711)

rankX⋆ + rankS⋆ = n (713)

there are no coinciding main diagonal zeros in ΛX⋆ ΛS⋆ , and so we have what is called
strict complementarity.4.14 Logically it follows that a necessary and sufficient condition
for strict complementarity of an optimal primal and dual solution is

X⋆+ S⋆ ≻ 0 (714)

4.13Optimality condition 〈S⋆, X⋆〉= 0 is called a complementary slackness condition, in keeping with LP
tradition [107], that forbids dual inequalities in (686) to simultaneously hold strictly. [353, §4]
4.14 distinct from maximal complementarity (§4.1.2).
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4.2.3.1 solving primal problem via dual

The beauty of Corollary 4.2.3.0.1 is its conjugacy; id est, one can solve either the primal or
dual problem in (686) and then find a solution to the other via the optimality conditions.
When a dual optimal solution is known, for example, a primal optimal solution is any
primal feasible solution in hyperplane {X | 〈S⋆ , X 〉=0}.

4.2.3.1.1 Example. Minimal cardinality Boolean. [106] [38, §4.3.4] [395]
(confer Example 4.6.1.5.1) Consider finding a minimal cardinality Boolean solution x to
the classic linear algebra problem Ax = b given noiseless data A∈Rm×n and b∈Rm ;

minimize
x

‖x‖0

subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(715)

where ‖x‖0 denotes cardinality of vector x (a.k.a 0-norm; not a convex function).
A minimal cardinality solution answers the question: “Which fewest linear combination

of columns in A constructs vector b ?” Cardinality problems have extraordinarily wide
appeal, arising in many fields of science and across many disciplines. [366] [250] [204] [203]
Yet designing an efficient algorithm to optimize cardinality has proved difficult. In this
example, we also constrain the variable to be Boolean. The Boolean constraint forces an
identical solution were the norm in problem (715) instead the 1-norm or 2-norm; id est,
the two problems

(715)

minimize
x

‖x‖0

subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

=

minimize
x

‖x‖1

subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(716)

are the same. The Boolean constraint makes the 1-norm problem nonconvex.
Given data

A =





−1 1 8 1 1 0

−3 2 8 1
2

1
3

1
2− 1

3

−9 4 8 1
4

1
9

1
4− 1

9



 , b =





1
1
2
1
4



 (717)

the obvious and desired solution to the problem posed,

x⋆ = e4 ∈ R6 (718)

has norm ‖x⋆‖2 =1 and minimal cardinality; the minimum number of nonzero entries in
vector x . The Matlab backslash command x=A\b , for example, finds

x
M

=

















2
128

0
5

128

0
90
128

0

















(719)

having norm ‖x
M
‖2 =0.7044 . Coincidentally, x

M
is a 1-norm solution; id est, an optimal

solution to
minimize

x
‖x‖1

subject to Ax = b
(531)

https://www.mathworks.com/help/techdoc/ref/mldivide.html
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The pseudoinverse solution (rounded)

x
P

= A†b =

















−0.0456
−0.1881

0.0623
0.2668
0.3770

−0.1102

















(720)

has least norm ‖x
P
‖2 =0.5165 ; id est, the optimal solution to (§E.0.1.0.1)

minimize
x

‖x‖2

subject to Ax = b
(721)

Certainly none of the traditional methods provide x⋆ = e4 (718).
We can reformulate this minimal cardinality Boolean problem (715) as a semidefinite

program: First transform the variable

x , (x̂ + 1) 1
2 (722)

so x̂i∈{−1, 1} ; equivalently,

minimize
x̂

‖(x̂ + 1) 1
2‖0

subject to A(x̂ + 1) 1
2 = b

δ(x̂x̂T) = 1

(723)

where δ is the main-diagonal linear operator (§A.1). By assigning (§B.1)

G =

[

x̂
1

]

[ x̂T 1 ]
=

[

X x̂
x̂T 1

]

,

[

x̂x̂T x̂
x̂T 1

]

∈ Sn+1 (724)

problem (723) becomes equivalent to: (Theorem A.3.1.0.7)

minimize
X∈ S

n , x̂∈R
n

1Tx̂

subject to A(x̂ + 1) 1
2 = b

G =

[

X x̂
x̂T 1

]

(º 0)

δ(X) = 1
rankG = 1

(725)

where solution is confined to rank-1 vertices of the elliptope in Sn+1 (§5.9.1.0.1) by the
rank constraint, the positive semidefiniteness, and the equality constraints δ(X)=1. The
rank constraint makes this problem nonconvex; by removing it4.15 we get the semidefinite
program

minimize
X∈ S

n , x̂∈R
n

1Tx̂

subject to A(x̂ + 1) 1
2 = b

G =

[

X x̂
x̂T 1

]

º 0

δ(X) = 1

(726)

4.15Relaxed problem (726) can also be derived via Lagrange duality; it is a dual of a dual program
[sic ] to (725). [351] [68, §5, exer.5.39] [453, §IV] [179, §11.3.4] The relaxed problem must therefore be
convex having a larger feasible set; its optimal objective value represents a generally loose lower bound
(1878) on the optimal objective of problem (725).
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whose optimal solution x⋆ (722) is identical to that of minimal cardinality Boolean problem
(715) if and only if rankG⋆ =1.

Hope4.16 of acquiring a rank-1 solution is not ill-founded because 2n elliptope vertices
have rank 1 and because we are minimizing an affine function on a subset of the elliptope
(Figure 152) containing rank-1 vertices; id est, by assumption that the feasible set of
minimal cardinality Boolean problem (715) is nonempty, a desired solution resides on the
elliptope relative boundary at a rank-1 vertex.4.17

For that data given in (717), our semidefinite program solver sdpsol [460] [461]
(accurate in solution to approximately 1E-8)4.18 finds optimal solution to (726)

round(G⋆) =





















1 1 1 −1 1 1 −1
1 1 1 −1 1 1 −1
1 1 1 −1 1 1 −1

−1 −1 −1 1 −1 −1 1
1 1 1 −1 1 1 −1
1 1 1 −1 1 1 −1

−1 −1 −1 1 −1 −1 1





















(727)

near a rank-1 vertex of the elliptope in Sn+1 (Theorem 5.9.1.0.2); its sorted eigenvalues,

λ(G⋆) =





















6.99999977799099
0.00000022687241
0.00000002250296
0.00000000262974

−0.00000000999738
−0.00000000999875
−0.00000001000000





















(728)

Negative eigenvalues are undoubtedly finite-precision effects. Because the largest
eigenvalue predominates by many orders of magnitude, we can expect to find a good
approximation to a minimal cardinality Boolean solution by truncating all smaller
eigenvalues. We find, indeed, the desired result (718)

x⋆ = round

































0.00000000127947
0.00000000527369
0.00000000181001
0.99999997469044
0.00000001408950
0.00000000482903

































= e4 (729)

These numerical results are solver dependent; insofar, not all SDP solvers will return a
rank-1 vertex solution. 2

4.16A more deterministic approach to constraining rank and cardinality is in §4.7.0.0.12.
4.17Confinement to the elliptope can be regarded as a kind of normalization akin to matrix A column
normalization suggested in [143] and explored in Example 4.2.3.1.2.
4.18A typically ignored limitation of interior-point solution methods is their relative accuracy of only about
1E-8 on a machine using 64-bit (double precision) floating-point arithmetic; id est, optimal solution x⋆

cannot be more accurate than square root of machine epsilon (ǫ=2.2204E-16). Nonzero primal−dual
objective difference is not a good measure of solution accuracy.
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4.2.3.1.2 Example. Optimization over elliptope versus 1-norm polyhedron
for minimal cardinality Boolean Example 4.2.3.1.1.

A minimal cardinality problem is typically formulated via, what is by now, a standard
practice [143] [77, §3.2, §3.4] of column normalization applied to a 1-norm problem
surrogate like (531). Suppose we define a diagonal matrix

Λ ,











‖A(: , 1)‖2 0
‖A(: , 2)‖2

. . .

0 ‖A(: , 6)‖2











∈ S6 (730)

used to normalize the columns (assumed nonzero) of given noiseless data matrix A . Then
approximate the minimal cardinality Boolean problem

minimize
x

‖x‖0

subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(715)

as
minimize

ỹ
‖ỹ‖1

subject to AΛ−1ỹ = b
1 º Λ−1ỹ º 0

(731)

where optimal solution
y⋆ = round(Λ−1ỹ⋆) (732)

The inequality in (731) relaxes Boolean constraint yi∈{0, 1} from (715); bounding any
solution y⋆ to a nonnegative unit hypercube whose vertices are binary numbers. Convex
problem (731) is justified by the convex envelope

cenv ‖x‖0 on {x∈Rn | ‖x‖∞≤κ} =
1

κ
‖x‖1 (1493)

Donoho concurs with this particular formulation, equivalently expressible as a linear
program via (526).

Approximation (731) is therefore equivalent to minimization of an affine function (§3.2)
on a bounded polyhedron, whereas semidefinite program

minimize
X∈ S

n , x̂∈R
n

1Tx̂

subject to A(x̂ + 1) 1
2 = b

G =

[

X x̂
x̂T 1

]

º 0

δ(X) = 1

(726)

minimizes an affine function on an intersection of the elliptope with hyperplanes. Although
the same Boolean solution is obtained from this approximation (731) as compared with
semidefinite program (726), when given that particular data from Example 4.2.3.1.1,
Singer confides a counterexample: Instead, given data

A =

[

1 0 1√
2

0 1 1√
2

]

, b =

[

1

1

]

(733)

then solving approximation (731) yields

y⋆ = round













1 − 1√
2

1 − 1√
2

1












=







0

0

1






(734)
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(infeasible, with or without rounding, with respect to original problem (715)) whereas
solving semidefinite program (726) produces

round(G⋆) =









1 1 −1 1
1 1 −1 1

−1 −1 1 −1
1 1 −1 1









(735)

with sorted eigenvalues

λ(G⋆) =









3.99999965057264
0.00000035942736

−0.00000000000000
−0.00000001000000









(736)

Truncating all but the largest eigenvalue, from (722) we obtain (confer y⋆)

x⋆ = round









0.99999999625299
0.99999999625299
0.00000001434518







 =





1
1
0



 (737)

the desired minimal cardinality Boolean result. 2

4.2.3.1.3 Exercise. Minimal cardinality Boolean art.
Assess general performance of standard-practice approximation (731) as compared with
the proposed semidefinite program (726). H

4.2.3.1.4 Exercise. Conic independence.
Matrix A from (717) is full-rank having three-dimensional nullspace. Find its four conically
independent columns. (§2.10)4.19 To what part of proper cone K= {Ax | xº 0} does
vector b belong? H

4.2.3.1.5 Exercise. Linear independence.
Show why wide matrix A , from compressed sensing problem (531) or (536), may be
regarded full-rank without loss of generality. In other words: Is a minimal cardinality
solution invariant to linear dependence of rows? H

4.3 Rank reduction

. . . it is not clear generally how to predict rankX⋆ or rankS⋆ before solving
the SDP problem.

−Farid Alizadeh, 1995 [12, p.22]

The premise of rank reduction in semidefinite programming is: an optimal solution X⋆

found does not satisfy Barvinok’s upper bound (279) on rank. The particular numerical
algorithm solving a semidefinite program may have instead returned a high-rank optimal
solution (§4.1.2; e.g, (696)) when a lower-rank optimal solution was expected. Rank
reduction is a means to adjust rank of an optimal solution to (686P), returned by a solver,
until it satisfies Barvinok’s upper bound with the optimal objective value unchanged.

4.19Hint: §4.4.2.0.2, §4.6.2.0.2.
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4.3.1 posit a perturbation of X⋆

Recall (§4.1.2.1) that there is an extreme point of A ∩ Sn
+ satisfying upper bound (279)

on rank. [26, §2.2] It is therefore sufficient to locate an extreme point of A ∩ Sn
+ whose

primal objective value (686P) is optimal:4.20 [131, §31.5.3] [278, §2.4] [279] [8, §3] [336]
Consider again affine subset

A = {X∈ Sn | A svec X = b} (2313)

where for Ai∈ Sn

A =







svec(A1)
T

...
svec(Am)T






∈ Rm×n(n+1)/2 (687)

Given any optimal solution X⋆ to SDP

minimize
X∈ S

n
〈C , X 〉

subject to X ∈ A ∩ Sn
+

(686P)

whose rank does not satisfy upper bound (279), we posit existence of a set of perturbations

{tjBj | tj ∈R , Bj ∈ Sn, j =1 . . . n} (738)

to X⋆ such that, for some 0≤ i≤n and scalars {tj , j =1 . . . i} ,

X⋆+
i

∑

j=1

tjBj (739)

becomes an extreme point of A ∩ Sn
+ and remains an optimal solution to (686P).

Membership of (739) to affine subset A is secured, for the ith perturbation, by demanding

〈Bi , Aj〉 = 0 , j =1 . . . m (740)

while membership to positive semidefinite cone Sn
+ is insured by small perturbation (749).

Feasibility of (739) is certified in this manner, whereas optimality is proved in §4.3.3.
The following simple algorithm has low computational intensity and locates an optimal

extreme point, assuming nontrivial solution: given optimal primal solution X⋆

4.3.1.0.1 Procedure. Rank reduction. [438]
initialize: Bi = 0 ∀ i
for iteration i=1...n

{
1. compute a nonzero perturbation matrix Bi (743) of X⋆+

i−1
∑

j=1

t⋆jBj

2. maximize ti (749)

subject to X⋆+
i−1
∑

j=1

t⋆jBj + tiBi ∈ Sn
+

} ¶

A rank-reduced optimal solution is then

X⋆ ← X⋆+
i

∑

j=1

t⋆jBj (741)

4.20There is no known construction for Barvinok’s tighter result (284). −Monique Laurent, 2004
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4.3.2 rank perturbation form

Perturbations of X⋆ are independent of constants C ∈ Sn and b∈Rm in primal and dual
problems (686). Numerical accuracy of any rank-reduced result, found by perturbation of
an initial optimal solution X⋆, is therefore quite dependent upon initial accuracy of X⋆.

4.3.2.0.1 Definition. Matrix step function. (confer §A.6.2.2.1)
Define the signum-like quasiconcave real function ψ : Sn→ R

ψ(Z ) ,

{

1 , Z º 0
−1 , otherwise

(742)

The value −1 is taken for indefinite or nonzero negative semidefinite argument.4.21 △

Deza & Laurent [131, §31.5.3] prove: every perturbation matrix Bi , i=1 . . . n , is of
the form

Bi = −ψ(Zi)RiZiR
T
i ∈ Sn (743)

where

X⋆ , R1R
T
1 , X⋆+

i−1
∑

j=1

t⋆jBj , Xi = RiR
T
i ∈ Sn (744)

where the optimal t⋆j are scalars and Ri∈Rn×ρ is full-rank and thin where

ρ , rank



X⋆+

i−1
∑

j=1

t⋆jBj



 = rankXi (745)

and where Zi∈ Sρ is found at each iteration i by solving a simple feasibility problem:4.22

find
Zi∈ S

ρ
RiZiR

T
i 6= 0

subject to 〈Zi , RT
i AjRi〉 = 0 , j =1 . . . m

(746)

Were there a sparsity pattern common to each member of set {RT
i AjRi∈ Sρ, j =1 . . . m} ,

then a good choice for Zi has 1 in each entry corresponding to a 0 in the pattern; id est,
a sparsity pattern complement. At iteration i

X⋆+

i−1
∑

j=1

t⋆jBj + tiBi = Ri(I − ti ψ(Zi)Zi)R
T
i (747)

By fact (1627), therefore

X⋆+

i−1
∑

j=1

t⋆jBj + tiBi º 0 ⇔ 1 − ti ψ(Zi)λ(Zi) º 0 (748)

where λ(Zi)∈Rρ denotes the eigenvalues of Zi . Necessity and sufficiency are due to the
facts: Ri can be completed to a nonsingular matrix (§A.3.1.0.5.c), and I − ti ψ(Zi)Zi can

4.21Because of how 0 and indefinites are handled, ψ is not an odd function; id est, ψ(−Z) 6= −ψ(Z).
4.22A simple method of solution is closed-form projection of a nonzero random point Zi on that
proper subspace of isometrically isomorphic R

ρ(ρ+1)/2 specified by the constraints. (§E.5.0.0.7) Such
a solution is nontrivial assuming the specified intersection of hyperplanes is not the origin; guaranteed
by ρ(ρ + 1)/2 > m . This geometric intuition, about forming a perturbation, is indeed what bounds any
solution’s rank from below; m is fixed by the number of equality constraints in (686P) while rank ρ
decreases with each iteration i . Otherwise, we might iterate indefinitely.
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be padded with zeros while maintaining equivalence in (747). Maximization of each ti , in
step 2 of Procedure 4.3.1.0.1, reduces rank of (747) so locates a new point on the boundary
∂(A ∩ Sn

+) .4.23 Maximization of ti thereby has closed form;

(t⋆i )
−1 = max {ψ(Zi)λ(Zi)k , k=1 . . . ρ} (749)

When Zi is indefinite, direction of perturbation (determined by ψ(Zi)) is arbitrary. We
may take an early exit, from the Procedure, were all feasible RiZiR

T
i to become {0} or

were ρ to become equal to 1 (assuming a nontrivial solution) or were

rank
[

svec RT
i A1Ri svec RT

i A2Ri · · · svec RT
i AmRi

]

= ρ(ρ + 1)/2 (750)

(281) which characterizes rank ρ of any [sic ] extreme point in A ∩ Sn
+ . [278, §2.4] [279]

Proof. Assuming the form of every perturbation matrix is indeed (743), then by (746)

svec Zi ⊥
[

svec(RT
i A1Ri) svec(RT

i A2Ri) · · · svec(RT
i AmRi)

]

(751)

By orthogonal complement we have

rank
[

svec(RT
i A1Ri) svec(RT

i A2Ri) · · · svec(RT
i AmRi)

]⊥

+ rank
[

svec(RT
i A1Ri) svec(RT

i A2Ri) · · · svec(RT
i AmRi)

]

= ρ(ρ + 1)/2
(752)

When Zi can only be 0 , then the perturbation is null because an extreme point has been
found; thus

[

svec(RT
i A1Ri) svec(RT

i A2Ri) · · · svec(RT
i AmRi)

]⊥
= 0 (753)

from which the stated result (750) directly follows. ¨

4.3.3 Optimality of perturbed X⋆

We show that the optimal objective value is unaltered by perturbation (743); id est,

〈C , X⋆+
i

∑

j=1

t⋆jBj〉 = 〈C , X⋆〉 (754)

Proof. From Corollary 4.2.3.0.1 we have the necessary and sufficient relationship between
optimal primal and dual solutions under assumption of nonempty primal feasible cone
interior A ∩ intr Sn

+ :

S⋆X⋆ = S⋆R1R
T
1 = X⋆S⋆ = R1R

T
1 S⋆ = 0 (755)

This means R(R1)⊆N (S⋆) and R(S⋆)⊆N (RT
1 ). From (744) and (747), after 0-padding

Zi for dimensional compatibility, come the sequence:

4.23This holds because rank of a positive semidefinite matrix in S
n is diminished below n by the number

of its 0 eigenvalues (1637), and because a positive semidefinite matrix having one or more 0 eigenvalues
corresponds to a point on the PSD cone boundary (200).
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X⋆ = R1R
T
1

X⋆+ t⋆1B1 = R2R
T
2 = R1(I − t⋆1ψ(Z1)Z1)R

T
1

X⋆+ t⋆1B1 + t⋆2B2 = R3R
T
3 = R2(I − t⋆2ψ(Z2)Z2)R

T
2 = R1

√

I − t⋆1ψ(Z1)Z1(I − t⋆2ψ(Z2)Z2)
√

I − t⋆1ψ(Z1)Z1R
T
1

...

X⋆+
i

∑

j=1

t⋆jBj = R1

(

i
∏

j=1

√

I − t⋆jψ(Zj)Zj

)(

1
∏

j=i

√

I − t⋆jψ(Zj)Zj

)

RT
1 , i > 0(756)

where second product counts backwards. Substituting C = svec−1(ATy⋆) + S⋆ from (686),

〈C , X⋆+
i

∑

j=1

t⋆jBj〉 =

〈

svec−1(ATy⋆) + S⋆ , R1

i
∏

j=1

√

I − t⋆jψ(Zj)Zj

1
∏

j=i

√

I − t⋆jψ(Zj)Zj RT
1

〉

=

〈

m
∑

k=1

y⋆
kAk , X⋆+

i
∑

j=1

t⋆jBj

〉

=

〈

m
∑

k=1

y⋆
kAk + S⋆ , X⋆

〉

= 〈C , X⋆〉

(757)

because 〈Bi , Aj〉=0 ∀ i , j by design (740). ¨

4.3.3.0.1 Example. Aδ(X) = b .
This academic example demonstrates that a solution found by rank reduction can certainly
have rank less than Barvinok’s upper bound (279): Assume that a given vector b belongs
to the conic hull of columns of a given matrix A

A =





−1 1 8 1 1

−3 2 8 1
2

1
3

−9 4 8 1
4

1
9



∈ Rm×n , b =





1
1
2
1
4



∈ Rm (758)

Consider the convex optimization problem

minimize
X∈ S5

tr X

subject to X º 0

Aδ(X) = b

(759)

that minimizes the 1-norm of the main diagonal; id est, problem (759) is the same as

minimize
X∈ S5

‖δ(X)‖1

subject to X º 0

Aδ(X) = b

(760)

that finds a solution to Aδ(X)= b . Rank-3 solution X⋆ = δ(x
M

) is optimal, where
(confer (719))

x
M

=













2
128

0
5

128

0
90
128













(761)
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Yet upper bound (279) predicts existence of at most a

rank-

(⌊
√

8m + 1 − 1

2

⌋

= 2

)

(762)

feasible solution from m = 3 equality constraints. To find a lower rank ρ optimal solution
to (759) (barring combinatorics), we invoke Procedure 4.3.1.0.1:

Initialize: C = I , ρ=3 , Aj , δ(A(j , :)) , j =1, 2 , 3, X⋆ = δ(x
M

) , m=3 , n=5.
{

Iteration i=1:

Step 1: R1 =



















√

2
128 0 0

0 0 0

0
√

5
128 0

0 0 0

0 0
√

90
128



















.

find
Z1∈ S3

R1Z1R
T
1 6= 0

subject to 〈Z1 , RT
1AjR1〉 = 0 , j =1, 2 , 3

(763)

A nonzero randomly selected matrix Z1 , having 0 main diagonal, is a solution
yielding nonzero perturbation matrix B1 . Choose arbitrarily

Z1 = 11T− I ∈ S3 (764)

Then (rounding)

B1 =













0 0 0.0247 0 0.1048
0 0 0 0 0

0.0247 0 0 0 0.1657
0 0 0 0 0

0.1048 0 0.1657 0 0













(765)

Step 2: t⋆1 = 1 because λ(Z1)= [−1 −1 2 ]T. So,

X⋆ ← δ(x
M

) + t⋆1B1 =













2
128 0 0.0247 0 0.1048
0 0 0 0 0

0.0247 0 5
128 0 0.1657

0 0 0 0 0
0.1048 0 0.1657 0 90

128













(766)

has rank ρ←1 and produces the same optimal objective value.

} 2

4.3.3.0.2 Exercise. Rank reduction of maximal complementarity.
Apply rank reduction Procedure 4.3.1.0.1 to the maximal complementarity example
(§4.1.2.3.1). Demonstrate a rank-1 solution; which can certainly be found (by Barvinok’s
Proposition 2.9.3.0.1) because there is only one equality constraint. H
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4.3.4 thoughts regarding rank reduction

Because rank reduction Procedure 4.3.1.0.1 is guaranteed only to produce another
optimal solution conforming to Barvinok’s upper bound (279), the Procedure will not
necessarily produce solutions of arbitrarily low rank; but if they exist, the Procedure
can. Arbitrariness of search direction, when matrix Zi becomes indefinite (mentioned on
page 237), and the enormity of choices for Zi (746) are liabilities for this algorithm.

4.3.4.1 inequality constraints

The question naturally arises: what to do when a semidefinite program (not in prototypical
form (686))4.24 has linear inequality constraints of the form

αT
i svec X¹ ϕi , i = 1 . . . k (767)

where {ϕi} are given scalars and {αi} are given vectors. One expedient way to handle this
circumstance is to convert the inequality constraints to equality constraints by introducing
a slack variable γ ; id est,

αT
i svec X + γi = ϕi , i = 1 . . . k , γ º 0 (768)

thereby converting the problem to prototypical form.
Alternatively, we say the ith inequality constraint is active when it is met with equality;

id est, when for particular i in (767), αT
i svec X⋆ = ϕi . An optimal high-rank solution

X⋆ is, of course, feasible (satisfying all the constraints). But for the purpose of rank
reduction, inactive inequality constraints are ignored while active inequality constraints are
interpreted as equality constraints. In other words, we take the union of active inequality
constraints (as equalities) with equality constraints A svec X = b to form a composite
affine subset Â substituting for (2313). Then we proceed with rank reduction of X⋆ as
though the semidefinite program were in prototypical form (686P).

4.4 Cardinality reduction

Analogous to rank reduction of semidefinite variable in SDP (§4.3), cardinality reduction
of vector variable in LP means: to lower cardinality of an optimal solution to (685p) (found
by numerical solver) while leaving the optimal objective value unchanged.

4.4.1 perturbation of x⋆

Given affine subset

A = {x∈Rn | Ax = b} (153)
where

A =





aT
1
...

aT
m



 ∈ Rm×n (152)

and given any optimal solution x⋆ to LP

minimize
x

cTx

subject to x º 0
Ax = b

(685p)

4.24Contemporary numerical packages for solving semidefinite programs can solve a range of problems
wider than prototype (686). Generally, they do so by transforming a given problem into prototypical form
by introducing new constraints and variables. [12] [461] We are momentarily considering a departure from
the primal prototype that augments the constraint set with linear inequalities.
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whose cardinality is not minimal, an extreme point of A ∩ Rn
+ (whose primal objective

value (685p) is optimal) would possess reduced cardinality. To reveal such an extreme
point, we posit existence of a set of perturbations to x⋆ (like those in §4.3.1)

{tjβj | tj ∈R , βj ∈ Rn, j =1 . . . n} (769)

such that, for some 0≤ i≤n and set of scalars {tj , j =1 . . . i} ,

x⋆+
i

∑

j=1

tjβj (770)

becomes extreme and optimal. Membership of (770) to affine subset A is guaranteed, for
the ith perturbation, by constraints

〈βi , aj〉 = 0 , j =1 . . . m (771)

while membership to nonnegative orthant Rn
+ is insured by small perturbation (780).

Thus, feasibility of (770) is certain.

4.4.2 cardinality perturbation form

Perturbation of x⋆ is independent of vector constants c∈Rn and b∈Rm in primal and
dual problems (685). Every perturbation βi , i=1 . . . n , is a vector of the form

βi = −ψ(δ(zi))zi ◦ xi ∈ Rn (772)

where

x⋆ , x1 , x⋆+

i−1
∑

j=1

t⋆jβj , xi ∈ Rn (773)

where the optimal t⋆j are scalars and where zi is found at each iteration i by solving a
simple feasibility problem:

find
zi∈R

n
zi ◦ xi 6= 0

subject to 〈zi , aj ◦ xi〉 = 0 , j =1 . . . m
(774)

Cardinality ρ of xi∈Rn is equivalent to number of its nonzero entries:

ρ , card



x⋆+

i−1
∑

j=1

t⋆jβj



 = cardxi (775)

At iteration i

x⋆+

i−1
∑

j=1

t⋆jβj + tiβi = (1 − ti ψ(δ(zi))zi) ◦ xi (776)

Hence, the sequence

x⋆ = x1

x⋆+ t⋆1β1 = x2 = (1 − t1ψ(δ(z1))z1) ◦ x1

x⋆+ t⋆1β1 + t⋆2β2 = x3 = (1 − t2ψ(δ(z2))z2) ◦ x2 = (1 − t1ψ(δ(z1))z1) ◦ (1 − t2ψ(δ(z2))z2) ◦ x1

...

x⋆+
i

∑

j=1

t⋆jβj =

(

i
∏

j=1

δ(1 − ti ψ(δ(zi))zi)

)

x1 , i > 0(777)
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from which it follows (in order of iteration):

x⋆+

i−1
∑

j=1

t⋆jβj + tiβi º 0 ⇔ 1 − ti ψ(δ(zi))zi º 0 , i=1 . . . n (778)

The following algorithm locates an optimal extreme point, assuming nontrivial solution:
given any optimal primal solution x⋆

4.4.2.0.1 Procedure. Cardinality reduction.
initialize: βi = 0 ∀ i
for iteration i=1...n

{
1. compute a nonzero perturbation vector βi (772) of x⋆+

i−1
∑

j=1

t⋆jβj

2. maximize ti (780)

subject to x⋆+
i−1
∑

j=1

t⋆jβj + tiβi º 0

} ¶

A cardinality-reduced optimal solution is then

x⋆ ← x⋆+

i
∑

j=1

t⋆jβj (779)

Maximization of ti , in step 2 of Procedure 4.4.2.0.1, reduces cardinality of (776) so locates
a new point on boundary ∂(A ∩ Rn

+). Maximization of ti thereby has closed form;

(t⋆i )
−1 = max {ψ(δ(zi))zi(k) , k=1 . . . n} (780)

We may exit early, from the Procedure, were all feasible zi ◦ xi to become {0} or were
cardinality ρ to become 1 or were

rank[ a1 ◦ xi a2 ◦ xi · · · am ◦ xi ] = ρ (781)

which characterizes cardinality ρ of any extreme point in A ∩ Rn
+ .

4.4.2.0.2 Example. Ax = b .
Cardinality minimization is often at odds with norm minimization because these two
objectives can compete; e.g, §4.2.3.1.1. Yet, prior knowledge of optimal norm objective
value may facilitate a cardinality minimization problem. If optimal solution x⋆ were known
to be binary with particular cardinality ρ , for example, then a linear constraint on the
variable 1Tx = ρ might be warranted because ρ = ‖x‖1 for a binary variable. Columns of
this particular A matrix

A =





−1 1 8 1 1 0

−3 2 8 1
2

1
3

1
2− 1

3

−9 4 8 1
4

1
9

1
4− 1

9



∈ Rm×n , b =





1
1
2
1
4



∈ Rm (717)

constitute generators of a pointed polyhedral cone K .4.25 Vector b predetermines optimal
1-norm, of a binary variable, to be 1 or 2. This convex feasibility problem

find x ∈ R6

subject to x º 0
Ax = b
cTx = 1

(782)

4.25Columns {1,5,2,6} are c.i. generators, {1,5} {5,2} {2,6} {6,1} generate facets, {3,4} are interior to K .



4.5. RANK CONSTRAINT BY CONVEX ITERATION 243

brings objective cTx (c=1) down into the constraints. Were cardinality-1 solution found,
feasible x would certainly be binary. Because minimization of cTx is forgone, conditions
for 0-duality gap (312) are unmet; objective value cannot be maintained as in §4.3.3.

x
G

=



















2
159

0
5

159

0
121
159
31
159



















(783)

Cardinality-4 x
G

solves (782). Ignoring norm constraint cTx=1 , Procedure 4.4.2.0.1
may be invoked to find a lesser cardinality solution:

Initialize: c = 1 , ρ=1 , aj , j =1, 2 , 3 (152)(p.240), x⋆ = x
G

, m=3 , n=6.
{

Iteration i=1:

Step 1: x1 = x⋆.
find

z1∈R6

z1 ◦ x1 6= 0

subject to 〈z1 , aj ◦ x1〉 = 0 , j =1, 2 , 3
(784)

Choose
z1 =

[

− 159
128 1 − 159

128 1 1546
3963

159
31

]T
(785)

Then (772)

β1 =
[

− 1
64 0 − 5

128 0 19
64 1

]T
(786)

Step 2: t⋆1 = 128
159 . So,

x⋆ ← x
G

+ t⋆1β1 = [ 0 0 0 0 1 1 ]
T

(787)

has cardinality ρ←2.

}

Further iterations i produce zi = 0. 2

As illustrated by Example 4.4.2.0.2, cardinality reduction can fail (at (772)) to find a
minimal cardinality solution when x1 has a 0-entry in a minimal cardinality coordinate.
This result instigates search for a new method:

4.5 Rank constraint by Convex Iteration

We generalize the trace heuristic (§7.2.2.1), for finding low-rank optimal solutions to
semidefinite programs of a more general form:

4.5.1 constraining rank of semidefinite matrices

Consider a semidefinite feasibility problem of the form

find
G∈SN

G

subject to G ∈ C
G º 0
rankG ≤ n

(788)
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where C is a convex set presumed to contain positive semidefinite matrices of rank n
or less; id est, C intersects the positive semidefinite cone boundary. We propose: this
rank-constrained feasibility problem can be equivalently expressed as iteration of the
convex problem sequence (789) and (1901a):

minimize
G∈SN

〈G , W 〉
subject to G ∈ C

G º 0

(789)

where direction vector 4.26 W ∈ SN is an optimal solution to a semidefinite program, for
0≤n≤N−1

N
∑

i=n+1

λ(G⋆)i = minimize
W∈ SN

〈G⋆, W 〉
subject to 0 ¹ W ¹ I

tr W = N − n

(1901a)

whose feasible set is a Fantope (§2.3.2.0.1),4.27 and where G⋆ is an optimal solution to
problem (789) given some iterate W . The idea is to iterate solution of (789) and (1901a)
until convergence as defined in §4.5.1.2: (confer (812))

N
∑

i=n+1

λ(G⋆)i = 〈G⋆, W ⋆〉 = λ(G⋆)Tλ(W ⋆) , 0 (790)

defines global optimality of the iteration; a vanishing objective that is a certificate of global
optimality but cannot be guaranteed. Inner product of eigenvalues follows from (1776)
and properties of commutative matrix products (p.500). Optimal direction vector W ⋆ is
defined as any positive semidefinite matrix yielding optimal solution G⋆ of rank n or less
to then convex equivalent (789) of feasibility problem (788):

(788)

find
G∈SN

G

subject to G ∈ C
G º 0
rankG ≤ n

≡
minimize

G∈SN
〈G , W ⋆〉

subject to G ∈ C
G º 0

(789)

id est, any direction vector for which the last N− n nonincreasingly ordered eigenvalues
λ of G⋆ are zero.

In any semidefinite feasibility problem, a solution of least rank must be an extreme
point of the feasible set.4.28 This means there exists a hyperplane supporting the feasible
set at that extreme point. (§2.11) Then there must exist a linear objective function such
that this least-rank feasible solution optimizes the resultant semidefinite program.

We emphasize that convex problem (789) is not a relaxation of rank-constrained
feasibility problem (788); at global optimality, convex iteration (789) (1901a) makes it
instead an equivalent problem.

4.26Search direction W is a hyperplane-normal pointing opposite to direction of movement describing
minimization of a real linear function 〈G , W 〉 (p.62).
4.27Sum of eigenvalues follows from a result of Ky Fan (p.545).
4.28 which follows by extremes theorem 2.8.1.1.1, by rank of a sum of positive semidefinite matrices (1643)
(266), and by definition of extreme point (172) for which no convex combination can produce it: If a least
rank solution were expressible as a convex combination of feasible points, then there could exist feasible
matrices of lesser rank.
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4.5.1.1 direction matrix interpretation

(confer §4.6.1.2) The feasible set of direction matrices in (1901a) is the convex hull of outer
product of all rank-(N− n) orthonormal matrices; videlicet,

conv
{

UUT | U ∈ RN×N−n, UTU = I
}

≡
{

A∈ SN | I º A º 0 , 〈I , A 〉= N− n
}

(93)

This set (95), argument to conv{ } , comprises the extreme points of this Fantope (93).
An optimal solution W to (1901a), that is an extreme point, is known in closed form
(p.545): Given ordered diagonalization G⋆ = QΛQT∈ SN

+ (§A.5.1), then direction matrix

W = U⋆U⋆T is optimal and extreme where U⋆ = Q(: , n+1:N)∈RN×N−n. Eigenvalue
vector λ(W ) has 1 in each entry corresponding to N− n smallest entries of δ(Λ) and
has 0 elsewhere. By (229) (232), polar direction −W can be regarded as pointing toward
the set of all rank-n (or less) positive semidefinite matrices whose nullspace contains that
of G⋆. For that particular closed-form solution W , consequent to Theobald (p.499),
(confer (814))

N
∑

i=n+1

λ(G⋆)i = 〈G⋆, W 〉 = λ(G⋆)Tλ(W ) ≥ 0 (791)

This is the connection to cardinality minimization of vectors;4.29 id est, eigenvalue λ
cardinality (rank) is analogous to vector x cardinality via (814): for positive semidefinite X

∑

i λ(X)i = tr X = ‖X‖∗2 ⇔ ‖x‖1
√

∑

i λ(X)2i =
√

trX2 = ‖X‖F ⇔ ‖x‖2

max
i

{λ(X)i} = ‖X‖2 ⇔ ‖x‖∞
(792)

So that this method, for constraining rank, will not be misconstrued under closed-form
solution W to (1901a): define (confer (229))

Sn , {(I−W )G(I−W ) |G∈ SN} = {X∈ SN | N (X) ⊇ N (G⋆)} (793)

as the symmetric subspace of rank≤n matrices whose nullspace contains N (G⋆).
Then projection of G⋆ on Sn is (I−W )G⋆(I−W ). (§E.7) Direction of projection is
−WG⋆W . (Figure 95) tr(WG⋆W ) is a measure of proximity to Sn because its orthogonal
complement is S⊥

n = {WGW |G∈ SN} ; the point being, convex iteration (incorporating
constrained tr(WGW )= 〈G , W 〉 minimization) is not a projection method: certainly,
not on these two subspaces. Proposed convex iteration is neither dual projection
(Figure 196) or alternating projection (Figure 200).

Closed-form solution W to problem (1901a), though efficient, comes with a caveat :
there exist cases where this projection matrix solution W does not provide the shortest
route to an optimal rank-n solution G⋆ ; id est, direction W is not unique. So we
sometimes choose to solve (1901a) instead of employing a known closed-form solution.

When direction matrix W = I , as in trace heuristic (§7.2.2.1) for example, then −W
points directly at the origin (the rank-0 PSD matrix, Figure 96). Vector inner-product of
an optimization variable with direction matrix W is therefore a generalization of the trace
heuristic for rank minimization; −W is instead trained toward boundary of the positive
semidefinite cone because there are better directions than the Identity [123, §III].

4.29 not trace minimization of a nonnegative diagonal matrix δ(x) as in [160, §1] [347, §2]. To make
rank-constrained problem (788) resemble cardinality problem (543), we could make C an affine subset:

find X∈ S
N

subject to A svec X = b
X º 0
rank X ≤ n
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Sn

S⊥
n

(I−W )G⋆(I−W )

WG⋆W

G⋆

Figure 95: (confer Figure 197) Projection of G⋆ on subspace Sn of rank≤n matrices
whose nullspace contains N (G⋆). This direction W is closed-form solution to (1901a).

I

0
S2

+

∂H = {G | 〈G , I 〉 = κ}

Figure 96: (confer Figure 111) Trace heuristic (§7.2.2.1) can be interpreted as
minimization of a hyperplane, with normal I , over positive semidefinite cone drawn
truncated here in isometrically isomorphic R3. Polar of direction vector W = I points
toward origin.
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4.5.1.2 convergence

We study convergence to ascertain conditions under which a direction matrix will reveal
a feasible solution G , of rank n or less, to semidefinite program (789). Denote by W ⋆

a particular optimal direction matrix from semidefinite program (1901a) such that (790)
holds (feasible rankG≤n found). Then we define global optimality of the iteration (789)
(1901a) to correspond with this vanishing vector inner-product (790) of optimal solutions.

Because this iterative technique for constraining rank is not a projection method, it
can find a rank-n solution G⋆ ((790) will be satisfied) only if at least one exists in the
feasible set of program (789).

4.5.1.2.1 Proof. Suppose 〈G⋆, W 〉= τ is satisfied for some nonnegative constant τ
after any particular iteration (789) (1901a) of the two minimization problems. Once
a particular value of τ is achieved, it can never be exceeded by subsequent iterations
because existence of feasible G and W having that vector inner-product τ has been
established simultaneously in each problem. Because the infimum of vector inner-product
of two positive semidefinite matrix variables is zero, the nonincreasing sequence of
iterations is thus bounded below hence convergent because any bounded monotonic
sequence in R is convergent. [299, §1.2] [46, §1.1] Local optimality to some nonnegative
objective value τ is thereby established. ¨

Local optimality, in this context, means convergence of 〈G⋆, W 〉 to a fixed point
of possibly infeasible rank. Only local optimality can be established because objective
〈G , W 〉 , when instead regarded simultaneously in two variables (G , W ) , is generally
multimodal. (§3.15.0.0.3)

Local optimality, convergence to 〈G⋆, W 〉= τ 6= 0 and definition of a stall, never
implies nonexistence of a rank-n feasible solution to (789). Conversely, a nonexistent
rank-n feasible solution would mean certain failure (τ 6= 0) to achieve global optimality by
definition (790). But, as proved, convex iteration always converges to a local optimum if
not a global one.

When a rank-n feasible solution to (789) exists, it remains an open problem to
state conditions under which 〈G⋆, W ⋆〉= τ =0 (790) is achieved by iterative solution of
semidefinite programs (789) and (1901a). Then rankG⋆≤ n and pair (G⋆, W ⋆) becomes
a globally optimal fixed point of iteration. There can be no proof of convergence to a
global optimum because of the implicit high-dimensional multimodal manifold in variables
(G , W ).

When stall occurs, direction vector W can be manipulated to steer out; e.g,
reversal of search direction as in Example 4.7.0.0.1, or reinitialization to a random
rank-(N− n) matrix in the same PSD cone face (§2.9.2.3) demanded by the current iterate:
Given ordered diagonalization G⋆ = QΛQT∈ SN , then W = U⋆ΦU⋆T as in (229) where
U⋆ = Q(: , n+1:N)∈RN×N−n and where eigenvalue vector λ(W )1:N−n = λ(Φ) is made
to have nonnegative uniformly distributed random entries in (0 , 1] (by discriminating
selection of Φ∈SN−n

+ ) while λ(W )N−n+1:N = 0. Zero eigenvalues act as memory while
randomness largely reduces likelihood of stall. When this direction works, rank and
objective sequence 〈G⋆, W 〉 (with respect to iteration) tend to be noisily monotonic.
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4.5.1.2.2 Exercise. Completely positive semidefinite matrix. [44]

Given rank-2 positive semidefinite matrix G =





0.50 0.55 0.20
0.55 0.61 0.22
0.20 0.22 0.08



, find a positive

factorization G = XTX (1015) by solving

find
X∈R2×3

X ≥ 0

subject to Z =

[

I X
XT G

]

º 0

rankZ ≤ 2

(794)

via convex iteration. H

4.5.1.2.3 Exercise. Nonnegative matrix factorization.

Given rank-2 nonnegative matrix X =





17 28 42
16 47 51
17 82 72



, find a nonnegative factorization

X = WH (795)

by solving

find
A∈S3, B∈S3, W∈R3×2, H∈R2×3

W , H

subject to Z =





I WT H
W A X
HT XT B



º 0

W ≥ 0
H ≥ 0
rankZ ≤ 2

(796)

which follows from the fact, at optimality,

Z⋆ =





I
W
HT





[ I WT H ]

(797)

Use the known closed-form solution for a direction vector Y to regulate rank by convex
iteration; set Z⋆ = QΛQT∈ S8 to an ordered diagonalization and U⋆ = Q(: , 3:8)∈R8×6,
then Y = U⋆U⋆T (§4.5.1.1).

In summary, initialize Y then iterate numerical solution of (convex) semidefinite
program

minimize
A∈S3, B∈S3, W∈R3×2, H∈R2×3

〈Z , Y 〉

subject to Z =





I WT H
W A X
HT XT B



º 0

W ≥ 0
H ≥ 0

(798)

with Y = U⋆U⋆T until convergence (which is to a global optimum, and occurs in very few
iterations for this instance). H

Now, an application to optimal regulation of affine dimension:
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Figure 97: Sensor-network localization in R2, illustrating connectivity and circular
radio-range per sensor. Smaller dark grey regions each hold an anchor at their center;
known fixed sensor positions. Sensor/anchor distance is measurable with negligible
uncertainty for sensor within those grey regions. (Graphic by Geoff Merrett.)

4.5.1.2.4 Example. Sensor-Network Localization and Wireless Location.
Heuristic solution to a sensor-network localization problem, proposed by Carter, Jin,
Saunders, & Ye in [81],4.30 is limited to two Euclidean dimensions and applies semidefinite
programming (SDP) to little subproblems. There, a large network is partitioned into
smaller subnetworks (as small as one sensor - a mobile point, whereabouts unknown) and
then semidefinite programming and heuristics called spaseloc are applied to localize each
and every partition by two-dimensional distance geometry. Their partitioning procedure
is one-pass, yet termed iterative; a term applicable only insofar as adjoining partitions can
share localized sensors and anchors (absolute sensor positions known a priori). But there
is no iteration on the entire network, hence the term “iterative” is perhaps inappropriate.
As partitions are selected based on “rule sets” (heuristics, not geographics), they also term
the partitioning adaptive. But no adaptation of a partition actually occurs once it has
been determined.

One can reasonably argue that semidefinite programming methods are unnecessary
for localization of small partitions of large sensor networks. [321] [98] In the past, these
nonlinear localization problems were solved algebraically and computed by least squares
solution to hyperbolic equations; called multilateration.4.31 [266] [308] Indeed, practical
contemporary numerical methods for global positioning (GPS) by satellite do not rely on

4.30The paper constitutes Jin’s dissertation for University of Toronto [252] although her name appears as
second author. Ye’s authorship is honorary.
4.31Multilateration - literally, having many sides; shape of a geometric figure formed by nearly intersecting
lines of position. In navigation systems, therefore: Obtaining a fix from multiple lines of position.
Multilateration can be regarded as noisy trilateration.

https://eprints.soton.ac.uk/260546/1/1046.pdf
https://web.stanford.edu/group/SOL/dissertations/holly-thesis.pdf
https://www.convexoptimization.com/TOOLS/multilateration.pdf
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convex optimization. [334]
Modern distance geometry is inextricably melded with semidefinite programming. The

beauty of semidefinite programming, as relates to localization, lies in convex expression
of classical multilateration: So & Ye showed [368] that the problem of finding unique
solution, to a noiseless nonlinear system describing the common point of intersection of
hyperspheres in real Euclidean vector space, can be expressed as a semidefinite program
via distance geometry.

But the need for SDP methods in Carter & Jin et alii is enigmatic for two more
reasons: 1) guessing solution to a partition whose intersensor measurement data
or connectivity is inadequate for localization by distance geometry, 2) reliance on
complicated and extensive heuristics for partitioning a large network that could instead
be efficiently solved whole by one semidefinite program [261, §3]. While partitions range
in size between 2 and 10 sensors, 5 sensors optimally, heuristics provided are only for
two spatial dimensions (no higher-dimensional heuristics are proposed). For these small
numbers it remains unclarified as to precisely what advantage is gained over traditional
least squares: it is difficult to determine what part of their noise performance is attributable
to SDP and what part is attributable to their heuristic geometry.

Partitioning of large sensor networks is a compromise to rapid growth of SDP
computational intensity with problem size. But when impact of noise on distance
measurement is of most concern, one is averse to a partitioning scheme because noise-effects
vary inversely with problem size. [59, §2.2] (§5.13.2) Since an individual partition’s solution
is not iterated in Carter & Jin and is interdependent with adjoining partitions, we expect
errors to propagate from one partition to the next; the ultimate partition solved, expected
to suffer most.

Heuristics often fail on real-world data because of unanticipated circumstances.
When heuristics fail, generally they are repaired by adding more heuristics. Tenuous
is any presumption, for example, that distance measurement errors have distribution
characterized by circular contours of equal probability about an unknown sensor-location.
(Figure 97) That presumption effectively appears within Carter & Jin’s optimization
problem statement as affine equality constraints relating unknowns to distance
measurements that are corrupted by noise. Yet in most all urban environments, this
measurement noise is more aptly characterized by ellipsoids of varying orientation and
eccentricity as one recedes from a sensor. (Figure 148) Each unknown sensor must
therefore instead be bound to its own particular range of distance, primarily determined
by the terrain.4.32 The nonconvex problem we must instead solve is:

find
i , j ∈ I

{xi , xj}
subject to dij ≤ ‖xi − xj‖2 ≤ dij

(799)

where xi represents sensor location, and where dij and dij respectively represent lower

and upper bounds on measured distance-square from ith to j th sensor (or from sensor
to anchor). Figure 102 illustrates contours of equal sensor-location uncertainty. By
establishing these individual upper and lower bounds, orientation and eccentricity can
effectively be incorporated into the problem statement.

Generally speaking, there can be no unique solution to the sensor-network localization
problem because there is no unique formulation; that is the art of Optimization. Any
optimal solution obtained depends on whether or how a network is partitioned, whether
distance data is complete, presence of noise, and how the problem is formulated. When
a particular formulation is a convex optimization problem, then the set of all optimal
solutions forms a convex set containing the actual or true localization. Measurement

4.32A distinct contour map corresponding to each anchor is required in practice.
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2
3

41

Figure 98: 2-lattice in R2, hand-drawn. Nodes 3 and 4 are anchors; remaining nodes are
sensors. Radio range of sensor 1 indicated by arc.

noise precludes equality constraints representing distance. The optimal solution set is
consequently expanded; necessitated by introduction of distance inequalities admitting
more and higher-rank solutions. Even were the optimal solution set a single point, it is
not necessarily the true localization because there is little hope of exact localization by
any algorithm once significant noise is introduced.

Carter & Jin gauge performance of their heuristics to the SDP formulation of author
Biswas whom they regard as vanguard to the art. [16, §1] Biswas posed localization as an
optimization problem minimizing a distance measure. [53] [51] Intuitively, minimization
of any distance measure yields compacted solutions; (confer §6.7.0.0.1) precisely the
anomaly motivating Carter & Jin. Their two-dimensional heuristics outperformed Biswas’
localizations both in execution-time and proximity to the desired result. Perhaps, instead
of heuristics, Biswas’ approach to localization can be improved: [50] [52].

The sensor-network localization problem is considered difficult. [16, §2] Rank
constraints in optimization are considered more difficult. Control of affine dimension
in Carter & Jin is suboptimal because of implicit projection on R2. In what follows, we
present the localization problem as a semidefinite program (equivalent to (799)) having an
explicit rank constraint which controls affine dimension of an optimal solution. We show
how to achieve that rank constraint only if the feasible set contains a matrix of desired
rank. Our problem formulation is extensible to any spatial dimension.

proposed standardized test

Jin proposes an academic test in two-dimensional real Euclidean space R2 that we adopt.
In essence, this test is a localization of sensors and anchors arranged in a regular triangular
lattice. Lattice connectivity is solely determined by sensor radio range; a connectivity
graph is assumed incomplete. In the interest of test standardization, we propose adoption
of a few small examples: Figure 98 through Figure 101 and their particular connectivity
represented by matrices (800) through (803) respectively.

0 • ? •
• 0 • •
? • 0 ◦
• • ◦ 0

(800)
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7

8

91 2

3 4

5 6

Figure 99: 3-lattice in R2, hand-drawn. Nodes 7, 8, and 9 are anchors; remaining nodes
are sensors. Radio range of sensor 1 indicated by arc.

Matrix entries dot • indicate measurable distance between nodes while unknown
distance is denoted by ? (question mark). Matrix entries hollow dot ◦ represent known
distance between anchors (to high accuracy) while zero distance is denoted 0. Because
measured distances are quite unreliable in practice, our solution to the localization problem
substitutes a distinct range of possible distance for each measurable distance; equality
constraints exist only for anchors.

Anchors are chosen so as to increase difficulty for algorithms dependent on existence
of sensors in their convex hull. The challenge is to find a solution in two dimensions close
to the true sensor positions given incomplete noisy intersensor distance information.

0 • • ? • ? ? • •
• 0 • • ? • ? • •
• • 0 • • • • • •
? • • 0 ? • • • •
• ? • ? 0 • • • •
? • • • • 0 • • •
? ? • • • • 0 ◦ ◦
• • • • • • ◦ 0 ◦
• • • • • • ◦ ◦ 0

(801)
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2

9

4

8

10

147

3161

15 5 6

13 11 12

Figure 100: 4-lattice in R2, hand-drawn. Nodes 13, 14, 15, and 16 are anchors; remaining
nodes are sensors. Radio range of sensor 1 indicated by arc.

0 ? ? • ? ? • ? ? ? ? ? ? ? • •
? 0 • • • • ? • ? ? ? ? ? • • •
? • 0 ? • • ? ? • ? ? ? ? ? • •
• • ? 0 • ? • • ? • ? ? • • • •
? • • • 0 • ? • • ? • • • • • •
? • • ? • 0 ? • • ? • • ? ? ? ?
• ? ? • ? ? 0 ? ? • ? ? • • • •
? • ? • • • ? 0 • • • • • • • •
? ? • ? • • ? • 0 ? • • • ? • ?
? ? ? • ? ? • • ? 0 • ? • • • ?
? ? ? ? • • ? • • • 0 • • • • ?
? ? ? ? • • ? • • ? • 0 ? ? ? ?
? ? ? • • ? • • • • • ? 0 ◦ ◦ ◦
? • ? • • ? • • ? • • ? ◦ 0 ◦ ◦
• • • • • ? • • • • • ? ◦ ◦ 0 ◦
• • • • • ? • • ? ? ? ? ◦ ◦ ◦ 0

(802)
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3

16

25

15

17

22

9

421

13 14

18 21 19 20

5 6 24 7 8

10 23 11 12

Figure 101: 5-lattice in R2. Nodes 21 through 25 are anchors.

0 • ? ? • • ? ? • ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
• 0 ? ? • • ? ? ? • ? ? ? ? ? ? ? ? ? ? ? ? ? • •
? ? 0 • ? • • • ? ? • • ? ? ? ? ? ? ? ? ? ? • • •
? ? • 0 ? ? • • ? ? ? • ? ? ? ? ? ? ? ? ? ? ? • ?
• • ? ? 0 • ? ? • • ? ? • • ? ? • ? ? ? ? ? • ? •
• • • ? • 0 • ? • • • ? ? • ? ? ? ? ? ? ? ? • • •
? ? • • ? • 0 • ? ? • • ? ? • • ? ? ? ? ? ? • • •
? ? • • ? ? • 0 ? ? • • ? ? • • ? ? ? ? ? ? ? • ?
• ? ? ? • • ? ? 0 • ? ? • • ? ? • • ? ? ? ? ? ? ?
? • ? ? • • ? ? • 0 • ? • • ? ? ? • ? ? • • • • •
? ? • ? ? • • • ? • 0 • ? • • • ? ? • ? ? • • • •
? ? • • ? ? • • ? ? • 0 ? ? • • ? ? • • ? • • • ?
? ? ? ? • ? ? ? • • ? ? 0 • ? ? • • ? ? • • ? ? ?
? ? ? ? • • ? ? • • • ? • 0 • ? • • • ? • • • • ?
? ? ? ? ? ? • • ? ? • • ? • 0 • ? ? • • • • • • ?
? ? ? ? ? ? • • ? ? • • ? ? • 0 ? ? • • ? • ? ? ?
? ? ? ? • ? ? ? • ? ? ? • • ? ? 0 • ? ? • ? ? ? ?
? ? ? ? ? ? ? ? • • ? ? • • ? ? • 0 • ? • • • ? ?
? ? ? ? ? ? ? ? ? ? • • ? • • • ? • 0 • • • • ? ?
? ? ? ? ? ? ? ? ? ? ? • ? ? • • ? ? • 0 • • ? ? ?
? ? ? ? ? ? ? ? ? • ? ? • • • ? • • • • 0 ◦ ◦ ◦ ◦
? ? ? ? ? ? ? ? ? • • • • • • • ? • • • ◦ 0 ◦ ◦ ◦
? ? • ? • • • ? ? • • • ? • • ? ? • • ? ◦ ◦ 0 ◦ ◦
? • • • ? • • • ? • • • ? • • ? ? ? ? ? ◦ ◦ ◦ 0 ◦
? • • ? • • • ? ? • • ? ? ? ? ? ? ? ? ? ◦ ◦ ◦ ◦ 0

(803)
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Figure 102: Location uncertainty ellipsoid in R2 for each of 15 sensors • within three city
blocks in downtown San Francisco. (Data by Polaris Wireless.)

problem statement

Ascribe points in a list {xℓ ∈ Rn, ℓ=1 . . . N} to the columns of a matrix X ;

X = [x1 · · · xN ] ∈ Rn×N (79)

where N is regarded as cardinality of list X . Positive semidefinite matrix XTX , formed
from inner product of the list, is a Gram matrix ; [290, §3.6]

G = XTX =



















‖x1‖2 xT
1x2 xT

1x3 · · · xT
1xN

xT
2x1 ‖x2‖2 xT

2x3 · · · xT
2xN

xT
3x1 xT

3x2 ‖x3‖2 . . . xT
3xN

...
...

. . .
. . .

...
xT
Nx1 xT

Nx2 xT
Nx3 · · · ‖xN‖2



















∈ SN
+ (1015)

where SN
+ is the convex cone of N ×N positive semidefinite matrices in the symmetric

matrix subspace SN .

Existence of noise precludes measured distance from the input data. We instead assign
measured distance to a range estimate specified by individual upper and lower bounds: dij

is an upper bound on distance-square from ith to j th sensor, while dij is a lower bound.
These bounds become the input data. Each measurement range is presumed different from
the others because of measurement uncertainty; e.g, Figure 102.

Our mathematical treatment of anchors and sensors is not dichotomized.4.33 A sensor
position that is known a priori to high accuracy (with absolute certainty) x̌i is called an
anchor. Then the sensor-network localization problem (799) can be expressed equivalently:
Given a number m of anchors and a set of indices I (corresponding to all measurable
distances • ), for 0 < n < N

4.33Wireless location problem thus stated identically; difference being: fewer sensors.

https://www.polariswireless.com
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find
G∈SN , X∈Rn×N

X

subject to dij ≤ 〈G , (ei − ej)(ei − ej)
T〉 ≤ dij ∀(i , j)∈ I

〈G , eie
T
i 〉 = ‖x̌i‖2 , i = N−m + 1 . . . N

〈G , (eie
T
j + ej e

T
i )/2〉 = x̌T

i x̌j , i < j , ∀ i , j∈{N−m + 1 . . . N}
X(: , N−m + 1:N) = [ x̌N−m+1 · · · x̌N ]

Z =

[

I X
XT G

]

º 0

rankZ = n (804)

where ei is the ith member of the standard basis for RN . Distance-square

dij = ‖xi − xj‖2
2 = 〈xi − xj , xi − xj〉 (1002)

is related to Gram matrix entries G, [gij ] by vector inner-product

dij = gii + gjj − 2gij

= 〈G , (ei − ej)(ei − ej)
T〉 = tr(GT(ei − ej)(ei − ej)

T)
(1017)

hence the scalar inequalities. Each linear equality constraint in G∈ SN represents a
hyperplane in isometrically isomorphic Euclidean vector space RN(N+1)/2, while each
linear inequality pair represents a convex Euclidean body known as slab.4.34 By Schur
complement (§A.4), any solution (G , X) provides comparison with respect to the positive
semidefinite cone

G º XTX (1055)

which is a convex relaxation of the desired equality constraint

[

I X
XT G

]

=

[

I
XT

]

[ I X ]
(1056)

The rank constraint insures this equality holds, by Theorem A.4.0.1.3, thus restricting
solution to Rn. Assuming full-rank solution (list) X

rankZ = rankG = rankX (805)

convex equivalent problem statement

Problem statement (804) is nonconvex because of the rank constraint. We do not eliminate
or ignore the rank constraint; rather, we find a convex way to enforce it: for 0 < n < N

minimize
G∈SN , X∈Rn×N

〈Z , W 〉
subject to dij ≤ 〈G , (ei − ej)(ei − ej)

T〉 ≤ dij ∀(i , j)∈ I
〈G , eie

T
i 〉 = ‖x̌i‖2 , i = N−m + 1 . . . N

〈G , (eie
T
j + ej e

T
i )/2〉 = x̌T

i x̌j , i < j , ∀ i , j∈{N−m + 1 . . . N}
X(: , N−m + 1:N) = [ x̌N−m+1 · · · x̌N ]

Z =

[

I X
XT G

]

º 0 (806)

4.34 an intersection of two parallel but opposing halfspaces (Figure 13). In terms of position X , this
distance slab can be thought of as a thick hypershell instead of a hypersphere boundary.
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Figure 103: Typical solution for 2-lattice in Figure 98 with noise factor η = 0.1 (809).
Two red rightmost nodes are anchors; two remaining nodes are sensors. Radio range of
sensor 1 indicated by arc; radius = 1.14 . Actual sensor indicated by target # while its
localization is indicated by bullet • . Rank-2 solution found in 1 iteration (806) (1901a)
subject to reflection error.

Convex function trZ is a well-known heuristic whose sole purpose is to represent convex
envelope of rankZ . (§7.2.2.1) In this convex optimization problem (806), a semidefinite
program, we substitute a vector inner-product objective function for trace;

trZ = 〈Z , I 〉 ← 〈Z , W 〉 (807)

a generalization of the trace heuristic for minimizing convex envelope of rank, where
W ∈ SN+n

+ is constant with respect to (806). Matrix W is normal to a hyperplane in

SN+n minimized over a convex feasible set specified by the constraints in (806). Matrix
W is chosen so −W points in direction of rank-n feasible solutions G . For properly
chosen W , problem (806) becomes an equivalent to (804). Thus the purpose of vector
inner-product objective (807) is to locate a rank-n feasible Gram matrix assumed existent
on the boundary of positive semidefinite cone SN

+ , as explained beginning in §4.5.1; how
to choose direction vector W is explained there and in what follows:

direction matrix W

Denote by Z⋆ an optimal composite matrix from semidefinite program (806). Then
for Z⋆∈ SN+n whose eigenvalues λ(Z⋆)∈RN+n are arranged in nonincreasing order,
(Ky Fan)

N+n
∑

i=n+1

λ(Z⋆)i = minimize
W∈ SN+n

〈Z⋆, W 〉
subject to 0 ¹ W ¹ I

trW = N

(1901a)

which has an optimal solution that is known in closed form (p.545, §4.5.1.1). This
eigenvalue sum is zero when Z⋆ has rank n or less.

Foreknowledge of optimal Z⋆, to make possible this search for W , implies iteration;
id est, semidefinite program (806) is solved for Z⋆ initializing W = I or W = 0. Once
found, Z⋆ becomes constant in semidefinite program (1901a) where a new normal direction
W is found as its optimal solution. Then this cycle (806) (1901a) iterates until convergence.
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Figure 104: Typical solution for 3-lattice in Figure 99 with noise factor η = 0.1 (809).
Three red vertical middle nodes are anchors; remaining nodes are sensors. Radio range of
sensor 1 indicated by arc; radius = 1.12 . Actual sensor indicated by target # while its
localization is indicated by bullet • . Rank-2 solution found in 2 iterations (806) (1901a).
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Figure 105: Typical solution for 4-lattice in Figure 100 with noise factor η = 0.1 (809).
Four red vertical middle-left nodes are anchors; remaining nodes are sensors. Radio range
of sensor 1 indicated by arc; radius = 0.75 . Actual sensor indicated by target # while its
localization is indicated by bullet • . Rank-2 solution found in 7 iterations (806) (1901a).
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Figure 106: Typical solution for 5-lattice in Figure 101 with noise factor η = 0.1 (809).
Five red vertical middle nodes are anchors; remaining nodes are sensors. Radio range of
sensor 1 indicated by arc; radius = 0.56 . Actual sensor indicated by target # while its
localization is indicated by bullet • . Rank-2 solution found in 3 iterations (806) (1901a).
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Figure 107: Typical solution for 10-lattice with noise factor η = 0.1 (809) compares better
than Carter & Jin [81, fig.4.2]. Ten red vertical middle nodes are anchors; the rest are
sensors. Radio range of sensor 1 indicated by arc; radius = 0.25 . Actual sensor indicated
by target # while its localization is indicated by bullet • . Rank-2 solution found in 5
iterations (806) (1901a).
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Figure 108: Typical localization of 100 randomized noiseless sensors (η = 0 (809)) is exact
despite incomplete EDM. Ten red vertical middle nodes are anchors; remaining nodes are
sensors. Radio range of sensor at origin indicated by arc; radius = 0.25 . Actual sensor
indicated by target # while its localization is indicated by bullet • . Rank-2 solution
found in 3 iterations (806) (1901a).

When rankZ⋆ = n , solution via this convex iteration solves sensor-network localization
problem (799) and its equivalent (804).

numerical solution

In all examples to follow, number of anchors

m =
√

N (808)

equals square root of cardinality N of list X . Indices set I identifying all measurable
distances • is ascertained from connectivity matrix (800), (801), (802), or (803). We
solve iteration (806) (1901a) in dimension n = 2 for each respective example illustrated
in Figure 98 through Figure 101.

In presence of negligible noise, true position is reliably localized for every standardized
example; noteworthy insofar as each example represents an incomplete graph. This implies
that the set of all optimal solutions having least rank must be small.

To make the examples interesting and consistent with previous work, we randomize
each range of distance-square that bounds 〈G , (ei−ej)(ei−ej)

T〉 in (806); id est, for each
and every (i , j)∈ I

dij = dij(1 +
√

3 η χ
l
)2

dij = dij(1 −
√

3 η χ
l+1

)2
(809)

where η = 0.1 is a constant noise factor, χ
l
is the lth sample of a noise process realization

uniformly distributed in the interval (0 , 1) like rand(1) from Matlab, and dij is actual
distance-square from ith to j th sensor. Because of distinct function calls to rand() , each
range of distance-square [ dij , dij ] is not necessarily centered on actual distance-square

dij . Multiplicative factor ±
√

3 provides unit variance of random variable χ having
standard uniform distribution.

Figure 103 through Figure 106 each illustrate one realization of numerical solution
to the standardized lattice problems posed by Figure 98 through Figure 101 respectively.
Exact localization, by any method, is impossible because of measurement noise. Certainly,
by inspection of their published graphical data, our results are better than those of
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Figure 109: Typical solution for 100 randomized sensors with noise factor η = 0.1 (809);
worst measured average sensor error ≈ 0.0044 compares better than Carter & Jin’s 0.0154
computed in 0.71s [81, p.19]. Ten red vertical middle nodes are anchors; same as before.
Remaining nodes are sensors. Interior anchor placement makes localization difficult. Radio
range of sensor at origin indicated by arc; radius = 0.25 . Actual sensor indicated by target
# while its localization is indicated by bullet • . After 1 iteration rankG=92 , after 2
iterations rankG=4. Rank-2 solution found in 3 iterations (806) (1901a). (Regular
lattice in Figure 107 is actually harder to solve, requiring more iterations.) Runtime for
SDPT3 [400] under cvx [199] is a few minutes on 2009 vintage laptop Core 2 Duo CPU
(Intel T6400@2GHz, 800MHz FSB).
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Carter & Jin. (Figure 107, 108, 109) Obviously our solutions do not suffer from those
compaction-type errors (clustering of localized sensors) exhibited by Biswas’ graphical
results for the same noise factor η .

localization example conclusion

Solution to this sensor-network localization problem became apparent by understanding
geometry of optimization. Trace of a matrix, to a student of linear algebra, is perhaps
a sum of eigenvalues. But to us, trace represents the normal I to some hyperplane in
Euclidean vector space. (Figure 96)

Our solutions are globally optimal, requiring: 1) no centralized-gradient postprocessing
heuristic refinement as in [50] because there is effectively no relaxation of (804) at global
optimality, 2) no implicit postprojection on rank-2 positive semidefinite matrices induced
by nonzero G−XTX denoting suboptimality as occurs in [51] [52] [53] [81] [252] [261];
indeed, G⋆ = X⋆TX⋆ by convex iteration.

Numerical solution to noisy problems, containing sensor variables well in excess of
100 , becomes difficult via the holistic semidefinite program we proposed. When problem
size is within reach of contemporary general-purpose semidefinite program solvers, then
the convex iteration we presented inherently overcomes limitations of Carter & Jin with
respect to both noise performance and ability to localize in any desired affine dimension.

The legacy of Carter, Jin, Saunders, & Ye [81] is a sobering demonstration of the need
for more efficient methods for solution of semidefinite programs, while that of So & Ye
[368] forever bonds distance geometry to semidefinite programming. Elegance of our
semidefinite problem statement (806), for constraining affine dimension of sensor-network
localization, should provide some impetus to focus more research on computational
intensity of general-purpose semidefinite program solvers. An approach different from
interior-point methods is required; higher speed and greater accuracy from a simplex-like
solver is what is needed. 2

4.5.2 regularization

We test the convex iteration technique, for constraining rank, over a wide range of problems
beyond localization of randomized positions (Figure 109); e.g, stress (§7.2.2.7.1), ball
packing (§5.4.2.2.6), and cardinality (§4.7). We have had some success introducing the
direction matrix inner-product (807) as a regularization term4.35

minimize
Z∈SN

f(Z) + w〈Z , W 〉
subject to Z ∈ C

Z º 0

(810)

minimize
W∈ SN

f(Z⋆) + w〈Z⋆, W 〉
subject to 0 ¹ W ¹ I

tr W = N − n

(811)

whose purpose is to constrain rank, affine dimension, or cardinality:
The abstraction, that is Figure 110, is a synopsis; a broad generalization of

accumulated empirical evidence: There exists a critical (smallest) weight wc • for which a
rank constraint is just met. Graphical discontinuity can subsequently exist when there is a
range of greater w providing required rank k but not necessarily increasing a minimization
objective function f ; e.g, §4.7.0.0.2. Positive scalar w is chosen via bisection so that
〈Z⋆, W ⋆〉 just vanishes.

4.35 called multiobjective- or vector optimization. Proof of convergence for this convex iteration is identical
to §4.5.1.2.1 because f is a convex real function, hence bounded below, and f(Z⋆) is constant in (811).
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Figure 110: Regularization curve, parametrized by weight w for real convex objective f
minimization (810) with rank constraint to k by convex iteration, illustrates discontinuity
in f .

4.6 Constraining cardinality

The convex iteration technique for constraining rank can be applied to cardinality
problems. There are parallels in its development analogous to how prototypical
semidefinite program (686) resembles linear program (685) on page 218 [458]:

4.6.1 nonnegative variable

Our goal has been to reliably constrain rank in a semidefinite program. There is a direct
analogy to linear programming that is simpler to present but, perhaps, more difficult to
solve. In Optimization, that analogy is known as the cardinality problem.

Consider a feasibility problem Ax = b , but with an upper bound k on cardinality
‖x‖0 of a nonnegative solution x : for A∈Rm×n and vector b∈R(A)

find x ∈ Rn

subject to Ax = b

x º 0

‖x‖0 ≤ k

(543)

where ‖x‖0 ≤ k means4.36 vector x has at most k nonzero entries; such a vector is
presumed existent in the feasible set. Nonnegativity constraint xº 0 is analogous to
positive semidefiniteness; the notation means vector x belongs to the nonnegative orthant
Rn

+ . Cardinality is quasiconcave on Rn
+ just as rank is quasiconcave on Sn

+ . [68, §3.4.2]

4.36Although it is a metric (§5.2), cardinality ‖x‖0 cannot be a norm (§3.2) because it is not positively
homogeneous.
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4.6.1.1 direction vector

We propose that cardinality-constrained feasibility problem (543) can be equivalently
expressed as iteration of a sequence of two convex problems: for 0≤k≤n−1

minimize
x∈R

n
〈x , y〉

subject to Ax = b

x º 0

(160)

n
∑

i=k+1

π(x⋆)i = minimize
y∈R

n
〈x⋆, y〉

subject to 0 ¹ y ¹ 1

yT1 = n − k

(538)

where π is the (nonincreasing) presorting function (1444), and where x⋆ solves problem
(160) given some iterate y . This sequence is iterated until x⋆Ty⋆ vanishes; id est, until
desired cardinality is achieved. But this global optimality cannot be guaranteed.4.37

Problem (538) is analogous to the rank constraint problem; (p.244)

N
∑

i=k+1

λ(G⋆)i = minimize
W∈ SN

〈G⋆, W 〉
subject to 0 ¹ W ¹ I

tr W = N − k

(1901a)

The feasible set of (538) is Linear Program’s analogue to Fantope (§2.3.2.0.1); its optimal
subset corresponds with a sum of n−k smallest entries from vector x . In context of
problem (543), we want n−k entries of x to sum to zero; id est, we want a globally
optimal objective x⋆Ty⋆ to vanish: more generally, (confer (790))

n
∑

i=k+1

π(|x⋆|)i = 〈|x⋆| , y⋆〉 = |x⋆|Ty⋆ , 0 (812)

defines global optimality for the iteration. Then n−k entries of x⋆ are themselves zero
whenever their absolute sum is, and cardinality of x⋆∈ Rn is at most k . Optimal direction
vector y⋆ is defined as any nonnegative vector for which

(543)

find x ∈ Rn

subject to Ax = b

x º 0

‖x‖0 ≤ k

≡
minimize

x∈R
n

〈x , y⋆〉
subject to Ax = b

x º 0

(160)

Existence of such a y⋆, whose nonzero entries are complementary to those of x⋆, is obvious
assuming existence of a cardinality-k solution x⋆.

4.6.1.2 direction vector interpretation

(confer §4.5.1.1) Vector y may be interpreted as a negative search direction; it points
opposite to direction of movement of hyperplane {x | 〈x , y〉= τ} in a minimization of
real linear function 〈x , y〉 over the feasible set in linear program (160). (p.62) Direction
vector y is not unique. The feasible set of direction vectors in (538) is the convex hull of
all cardinality-(n−k) binary vectors; videlicet,

conv{u∈Rn | cardu = n − k , ui∈{0, 1}} = {a∈Rn | 1 º a º 0 , 〈1 , a〉= n − k} (813)

4.37When it succeeds, a sequence may be regarded as a homotopy to minimal 0-norm.



4.6. CONSTRAINING CARDINALITY 265

1

0

R3

+

∂H = {x | 〈x , 1〉 = κ}

∂H

Figure 111: (confer Figure 96) 1-norm heuristic for cardinality minimization can be
interpreted as minimization of a hyperplane, ∂H with normal 1 , over nonnegative orthant
drawn truncated here in R3. Polar of direction vector y = 1 points toward origin.

This set, argument to conv{ } , comprises the extreme points of set (813) which is a
nonnegative hypercube slice. An optimal solution y to (538), that is an extreme point
of its feasible set, is known in closed form: it has 1 in each entry corresponding to n−k
smallest entries of x⋆ and has 0 elsewhere. That particular polar direction −y can be
interpreted4.38 (by Proposition 7.1.3.0.3) as pointing toward relative boundary of the
nonnegative orthant in a Cartesian subspace, whose basis is a subset of the Cartesian axes,
containing all cardinality k (or less) vectors having the same ordering as x⋆. Consequently,
for that closed-form solution, (confer (791))

n
∑

i=k+1

π(|x⋆|)i = 〈|x⋆| , y〉 = |x⋆|Ty ≥ 0 (814)

When y = 1 as in 1-norm minimization, then polar direction −y points directly at the
origin (the cardinality-0 nonnegative vector) as in Figure 111. Training polar direction
−y instead toward orthant boundary provides choice of direction generally better than
1-norm.4.39 We sometimes solve (538), instead of employing a known closed form, because
direction vector is not unique.

4.6.1.3 convergence can mean stalling

Convex iteration (160) (538) always converges to a locally optimal solution, a fixed point
of possibly infeasible cardinality, by virtue of a monotonically nonincreasing real objective
sequence. [299, §1.2] [46, §1.1] There can be no proof of global optimality, defined by (812).

Constraining cardinality (solution to problem (543)) can often be achieved, but simple
examples can be contrived that stall at a fixed point of infeasible cardinality; at a positive

4.38Convex iteration (160) (538) is not a projection method because there is no thresholding or discard of
variable-vector x entries. An optimal direction vector y must always reside on the feasible set boundary
in (538) page 264; id est, it is ill-advised to attempt simultaneous optimization of variables x and y .
4.39Setting direction vector y instead in accordance with an iterative inverse weighting scheme, reweighting
[192] for example, was described for 1-norm by Huo [243, §4.11.3] in 1999.
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objective value 〈x⋆, y〉= τ >0. Direction vector y is then manipulated, as countermeasure,
to steer out of local minima; e.g, complete randomization as in Example 4.6.1.5.1, or
reinitialization to a random cardinality-(n−k) vector in the same nonnegative orthant
face demanded by the current iterate: y has nonnegative uniformly distributed random
entries in (0 , 1] corresponding to the n−k smallest entries of x⋆ and has 0 elsewhere.
Zero entries behave like memory or state while randomness greatly diminishes likelihood
of a stall. When this particular heuristic is successful, cardinality and objective sequence
〈x⋆, y〉 versus iteration are characterized by noisy monotonicity.

4.6.1.4 algebraic derivation of direction vector for convex iteration

In §3.2.2.1.3, the compressed sensing problem was precisely represented as a nonconvex
difference of convex functions bounded below by 0

find x ∈ Rn

subject to Ax = b
x º 0
‖x‖0 ≤ k

≡
minimize

x∈R
n

‖x‖1 − ‖x‖n
k

subject to Ax = b
x º 0

(543)

where convex k-largest norm ‖x‖n
k

is monotonic on Rn
+ . There we showed how (543) is

equivalently stated in terms of gradients

minimize
x∈R

n

〈

x , ∇‖x‖1 − ∇‖x‖n
k

〉

subject to Ax = b
x º 0

(815)

because
‖x‖1 = xT∇‖x‖1 , ‖x‖n

k
= xT∇‖x‖n

k
, x º 0 (816)

The objective function from (815) is a directional derivative (at x in direction x , §D.1.6,
confer §D.1.4.1.1) of the objective function from (543) while the direction vector of convex
iteration

y = ∇‖x‖1 − ∇‖x‖n
k

(817)

is an objective gradient where ∇‖x‖1 =∇1Tx = 1 under nonnegativity and

∇‖x‖n
k

= ∇zTx = arg maximize
z∈R

n
zTx

subject to 0 ¹ z ¹ 1
zT1 = k











, x º 0 (546)

is not unique. Substituting 1 − z ← z the direction vector becomes

y = 1 − arg maximize
z∈R

n
zTx ← arg minimize

z∈R
n

zTx

subject to 0 ¹ z ¹ 1 subject to 0 ¹ z ¹ 1
zT1 = k zT1 = n − k

(538)

4.6.1.5 optimality conditions for minimal cardinality

Now we see how global optimality conditions can be stated without reference to a dual
problem: From conditions (479) for optimality of (543), it is necessary [68, §5.5.3] that

x⋆ º 0 (1)

Ax⋆ = b (2)

∇‖x⋆‖1 − ∇‖x⋆‖n
k

+ ATν⋆ º 0 (3)

〈∇‖x⋆‖1 − ∇‖x⋆‖n
k

+ ATν⋆, x⋆〉 = 0 (4L)

(818)
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m > k log2(1+n/k)

minimize
x

‖x‖1

subject to Ax = b
(531)

minimize
x

‖x‖1

subject to Ax = b
x º 0

(536)

hard

Figure 112: (confer Figure 78) For Gaussian random matrix A∈Rm×n, graph illustrates
Donoho/Tanner least lower bound on number of measurements m below which recovery
of k-sparse n-length signal x by linear programming fails with overwhelming probability.
Hard problems are below curve, but not the reverse; id est, failure above depends on
proximity. Inequality demarcates approximation (−−−) to empirical phase transition
from [25]. Problems having nonnegativity constraint (· · ·) are easier to solve. [145] [146]

These conditions must hold at any optimal solution (locally or globally). By (816), the
fourth condition is identical to

‖x⋆‖1 − ‖x⋆‖n
k

+ ν⋆TAx⋆ = 0 (4L) (819)

Because a 1-norm
‖x‖1 = ‖x‖n

k
+ ‖π(|x|)k+1:n‖1 (820)

is separable into k largest and n−k smallest absolute entries,

‖π(|x|)k+1:n‖1 = 0 ⇔ ‖x‖0 ≤ k (4g) (821)

is a necessary condition for global optimality. By assumption, matrix A is wide and
b 6= 0 ⇒ Ax⋆ 6= 0. This means ν⋆∈ N (AT)⊂ Rm, and ν⋆ = 0 when A is full-rank. By
definition, ∇‖x‖1 º ∇‖x‖n

k
always holds. Assuming existence of a cardinality-k solution,

then only three of the four conditions are necessary and sufficient for global optimality of
(543):

x⋆ º 0 (1)

Ax⋆ = b (2)

‖x⋆‖1 − ‖x⋆‖n
k

= 0 (4g)
(822)

meaning, global optimality of a feasible solution to (543) is identified by a zero objective.

4.6.1.5.1 Example. Sparsest solution to Ax = b . [79] [141]
(confer Example 4.6.2.0.2) Data (717) induces sparsest solution not easily recoverable by
least 1-norm; id est, not by compressed sensing because of proximity to a theoretical lower
bound on number of measurements m depicted in Figure 112: for A∈Rm×n
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� Given data from Example 4.2.3.1.1, for m=3 , n=6 , k=1

A =





−1 1 8 1 1 0

−3 2 8 1
2

1
3

1
2− 1

3

−9 4 8 1
4

1
9

1
4− 1

9



 , b =





1
1
2
1
4



 (717)

the sparsest solution to classical linear equation Ax = b is x = e4∈R6 (confer (729)).

Although the sparsest solution is recoverable by inspection, we discern it instead by convex
iteration; namely, by iterating problem sequence (160) (538) on page 264. From the
numerical data given, cardinality ‖x‖0 = 1 is expected. Iteration continues until xTy
vanishes (to within some numerical precision); id est, until desired cardinality is achieved.
But this comes not without a stall.

Stalling, whose occurrence is sensitive to initial conditions of convex iteration, is a
consequence of finding a local minimum of a multimodal objective 〈x , y〉 when regarded
as simultaneously variable in x and y . (§3.15.0.0.3) Stalls are simply detected as fixed
points x of infeasible cardinality, sometimes remedied by reinitializing direction vector y
to a random positive state.

Bolstered by success in breaking out of a stall, we then apply convex iteration to 22,000
randomized problems:

� Given random data for m=3 , n=6 , k=1 , in Matlab notation

A=randn(3 , 6), index=round(5∗rand(1)) + 1, b=rand(1)∗A(: , index) (823)

the sparsest solution x∝eindex is a scaled standard basis vector.

Without convex iteration or a nonnegativity constraint xº 0 , rate of failure for this
minimal cardinality problem Ax=b by 1-norm minimization of x is 22%. That failure
rate drops to 6% with a nonnegativity constraint. If we then engage convex iteration,
detect stalls, and randomly reinitialize the direction vector, failure rate drops to 0% but
the amount of computation is approximately doubled. 2

Stalling is not inevitable behavior. For some problem types (beyond mere Ax = b),
convex iteration succeeds nearly all the time. In §8.6 is a noisy audio cardinality problem
whose statement is just a bit more intricate but easy to solve in few convex iterations.

4.6.1.6 Compressed sensing geometry with nonnegative variable

It is well known that cardinality problem (543) (p.182) is easier to solve by linear
programming when variable x is nonnegatively constrained than when not. We postulate
a simple geometrical explanation:

Figure 77 illustrates 1-norm ball B1 in R3 and affine subset A defined {x∈R3 |Ax=b}.
Prototypical compressed sensing problem, for A∈Rm×n

minimize
x

‖x‖1

subject to Ax = b
(531)

is solved when the 1-norm ball B1 kisses the affine subset.
If variable x is constrained to the nonnegative orthant

minimize
x∈R

n
‖x‖1

subject to Ax = b
x º 0

≡
minimize

x∈R
n

1Tx

subject to Ax = b
x º 0

≡
minimize
c∈R , x∈R

n
c

subject to Ax = b
x ∈ cS

(536)
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R3

A= {x∈R3 |Ax=b}

F
y

cS = {x | x º 0 , 1Tx ≤ c}

Figure 113: Simplex S is convex hull of origin and all cardinality-1 nonnegative vectors of
unit norm (its vertices). Line A , intersecting two-dimensional (cardinality-2) face F of
nonnegative simplex cS , emerges from cS at a cardinality-1 vertex. S equals nonnegative
orthant R3

+ ∩ 1-norm ball B1 (Figure 77). Kissing point achieved when • (on edge) meets
A as simplex contracts (as scalar c diminishes) under optimization (536).
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then 1-norm ball B1 becomes nonnegative simplex S in Figure 113 where

cS = {[ I∈Rn×n 0∈Rn ]a | aT1= c , aº0} = {x | x º 0 , 1Tx ≤ c} (824)

Nonnegative simplex S is the convex hull of its vertices. All n+1 vertices of S are
constituted by standard basis vectors and the origin. In other words, all its nonzero
extreme points are cardinality-1.

Affine subset A kisses nonnegative simplex c⋆S at optimality of (536). A kissing point
is achieved at x⋆ for optimal c⋆ as B1 or S contracts. Whereas 1-norm ball B1 has
only six vertices in R3 corresponding to cardinality-1 solutions, simplex S has three edges
(along the Cartesian axes) containing an infinity of cardinality-1 solutions. And whereas
B1 has twelve edges containing cardinality-2 solutions, S has three (out of total four)
facets constituting cardinality-2 solutions. In other words, likelihood of a low-cardinality
solution is higher by kissing nonnegative simplex S (536) than by kissing 1-norm ball B1

(531) because facial dimension (corresponding to given cardinality) is higher in S .

Empirically, this observation also holds in other Euclidean dimensions; e.g, Figure 78,
Figure 112.

4.6.1.7 cardinality-1 compressed sensing problem always solvable

In the special case of cardinality-1 feasible solution to nonnegative compressed sensing
problem (536), there is a geometrical interpretation that leads to an algorithm.

Figure 113 illustrates a cardinality-1 feasible solution to problem (536) in R3 ; a vertex
solution. But first-octant S of 1-norm ball B1 does not kiss line A ; which would be an
optimality condition. How can we perform optimization and make A intersect S at a
vertex? Assuming that nonnegative cardinality-1 solutions exist in the feasible set, it so
happens:

4.6.1.7.1 Algorithm. Deprecation.
Columns of measurement matrix A , corresponding to high cardinality solution of
(536)4.40 found by Simplex method [107], may be deprecated and the problem solved
again with those columns missing. Such columns are recursively removed from A until a
cardinality-1 solution is found. ¶

This algorithm intimates that either a solution to problem (536) is cardinality-1 or
column indices of A , corresponding to a higher cardinality solution, do not intersect that
index corresponding to a cardinality-1 feasible solution.

When problem (536) is first solved, in the example of Figure 113, solution is
cardinality-2 at a kissing point on that edge of simplex cS indicated by • . Imagining
that the corresponding cardinality-2 face F has collapsed, as a result of zeroing those two
extreme points whose convex hull constructs that same edge • of F , then the simplex
collapses to a line segment along the y axis. When that line segment kisses A , then the
cardinality-1 vertex solution illustrated has been found.4.41

4.40Because signed compressed sensing problem (531) can be equivalently expressed in a nonnegative
variable, as we learned in Example 3.2.0.1.2 (p.180), and because a cardinality-1 constraint in (531)
transforms to a cardinality-1 constraint in its nonnegative equivalent (535), then this cardinality-1 recursive
reconstruction algorithm continues to hold for a signed variable as in (531).
4.41A similar argument holds for any orientation of line A and cardinality-1 point of emergence from
simplex cS . This cardinality-1 reconstruction algorithm also holds more generally when affine subset A
has any higher dimension n−m .
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4.6.1.7.2 Proof (pending). Deprecation algorithm 4.6.1.7.1.
We require proof that a cardinality-1 feasible solution to (536) cannot exist within
a higher cardinality optimal solution found by Simplex method; for only then can
corresponding columns of A be eliminated without precluding cardinality-1 at optimality
of the deprecated problem. Crucial is the Simplex method of solution because then an
optimal solution is guaranteed to reside at a vertex of the feasible set. [107, p.158] [17, p.2]

¥

Although it is more efficient (compared with our algorithm) to search over individual
columns of matrix A for a cardinality-1 solution known a priori to exist, tables are turned
when cardinality exceeds 1 :

4.6.2 cardinality-k geometric presolver

This idea of deprecating columns has foundation in convex cone theory. (§2.13.5) Removing
columns (and rows)4.42 from A∈Rm×n, in a linear program like (536) in §3.2, is known
in the industry as presolving ;4.43 the elimination of redundant constraints and identically
zero variables prior to numerical solution. We offer a different and geometric presolver
first introduced in §2.13.5:4.44

Two interpretations of the constraints from problem (536) are realized in Figure 114.
Assuming that a cardinality-k solution exists and matrix A describes a pointed polyhedral
cone K= {Ax | xº 0} , as in Figure 114b, columns are removed from A if they do not
belong to the smallest face F of K containing vector b ; those columns correspond to
0-entries in variable vector x (and vice versa). Generators of that smallest face always hold
a minimal cardinality solution, in other words, because a generator outside the smallest
face (having positive coefficient) would violate the assumption that b belongs to that face.

Benefit accrues when vector b does not belong to relative interior of K ; there would
be no columns to remove were b∈rel intrK since the smallest face becomes cone K itself
(Example 4.6.2.0.2). Were b an extreme direction, at the other end of the spectrum, then
the smallest face is an edge that is a ray containing b ; this geometrically describes a
cardinality-1 case where all columns, save one, would be removed from A .

When vector b resides in a face F of K that is not cone K itself, benefit is realized
as a reduction in computational intensity because the consequent equivalent problem has
smaller dimension. Number of columns removed depends completely on geometry of a
given problem; particularly, location of b within K . In the example of Figure 114b,
interpreted literally in R3, all but two columns of A are discarded by our presolver when
b belongs to facet F .

4.6.2.0.1 Exercise. Minimal cardinality generators.
Prove that generators of the smallest face F of K= {Ax | xº 0} , containing vector b ,
always hold a minimal cardinality solution to Ax = b . H

4.42Rows of matrix A are removed based upon linear dependence. Assuming b∈R(A) , corresponding
entries of vector b may also be removed without loss of generality.
4.43. . . presolving can in particular do the following:

1. Fix a variable, i.e, permanently set y=p .

2. Aggregate a variable, i.e, conclude that y=ax + c for some values a and c .

3. Multi-aggregate a variable, i.e, conclude that y=a1x1 + . . . + akxk + c .

In all cases, y will be removed from the set of “active” variables and instead added to the set of “fixed”
variables. −Tobias Achterberg
4.44Comparison of computational intensity to a brute force search would pit combinatorial complexity, a

binomial coefficient ∝
(

n
k

)

, against polynomial complexity of this conic presolver.

https://listserv.zib.de/pipermail/scip/2010-March/000355.html
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A
P

Rn
+

0

Rn (a)

K

b

0

F

Rm

(b)

Figure 114: Constraint interpretations: (a) Halfspace-description of feasible set in problem
(536) is a polyhedron P formed by intersection of nonnegative orthant Rn

+with hyperplanes
A prescribed by equality constraint. (Drawing by Pedro Sánchez.) (b) Vertex-description
of constraints in problem (536): point b belongs to polyhedral cone K= {Ax | xº 0}.
Number of extreme directions in K may exceed dimensionality of ambient space.

https://commons.wikimedia.org/wiki/File:Half_Space.svg
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4.6.2.0.2 Example. Presolving for cardinality-2 solution to Ax = b .
(confer Example 4.6.1.5.1) Again taking data from Example 4.2.3.1.1 (A∈Rm×n, desired
cardinality of x is k), for m=3 , n=6 , k=2

A =





−1 1 8 1 1 0

−3 2 8 1
2

1
3

1
2− 1

3

−9 4 8 1
4

1
9

1
4− 1

9



 , b =





1
1
2
1
4



 (717)

proper cone K= {Ax | xº 0} is pointed as proven by method of §2.12.2.2. A cardinality-2
solution is known to exist; sum of the last two columns of matrix A . Generators of
the smallest face that contains vector b , found by the method in Example 2.13.5.0.1,
comprise the entire A matrix because b∈ intrK (§2.13.4.2.4). So geometry of this
particular problem does not permit number of generators to be reduced below n by
discerning the smallest face.4.45 2

There is wondrous bonus to presolving when a constraint matrix is sparse. After
columns are removed by theory of convex cones (finding the smallest face), some remaining
rows may become 0T, identical to other rows, or nonnegative. When nonnegative
rows appear in an equality constraint to 0 , all nonnegative variables corresponding to
nonnegative entries in those rows must vanish (§A.7.1); meaning, more columns may be
removed. Once rows and columns have been removed from a constraint matrix, even more
rows and columns may be removed by repeating the presolver procedure.

4.6.3 constraining cardinality of signed variable

Now consider a feasibility problem equivalent to the classical problem from linear algebra
Ax = b , but with an upper bound k on cardinality ‖x‖0 : for vector b∈R(A)

find x ∈ Rn

subject to Ax = b

‖x‖0 ≤ k

(825)

where ‖x‖0≤ k means vector x has at most k nonzero entries; such a vector is presumed
existent in the feasible set. Convex iteration (§4.6.1) utilizes a nonnegative variable; so
absolute value |x| is needed here. We propose that nonconvex problem (825) can be
equivalently written as a sequence of convex problems that move the cardinality constraint
to the objective:

minimize
x∈R

n
〈|x| , y〉

subject to Ax = b
≡

minimize
x∈R

n , t∈R
n

〈t , y + ε1〉
subject to Ax = b

−t ¹ x ¹ t

(826)

minimize
y∈R

n
〈t⋆, y + ε1〉

subject to 0 ¹ y ¹ 1

yT1 = n − k

(538)

where ε is a relatively small positive constant. This sequence is iterated until a direction
vector y is found that makes |x⋆|Ty⋆ vanish. The term 〈t , ε1〉 in (826) is necessary to
determine absolute value |x⋆|= t⋆ (§3.2) because vector y can have zero-valued entries.

4.45But a canonical set of conically independent generators of K comprise only the first two and last two
columns of A .
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By initializing y to (1−ε)1 , the first iteration of problem (826) is a 1-norm problem
(526); id est,

minimize
x∈R

n , t∈R
n

〈t , 1〉
subject to Ax = b

−t ¹ x ¹ t

≡
minimize

x∈R
n

‖x‖1

subject to Ax = b
(531)

Subsequent iterations of problem (826) engaging cardinality term 〈t , y〉 can be interpreted
as corrections to this 1-norm problem leading to a 0-norm solution; vector y can be
interpreted as a direction of search.

4.6.3.1 local optimality

As before (§4.6.1.3), convex iteration (826) (538) always converges to a locally optimal
solution; a fixed point of possibly infeasible cardinality.

4.6.3.2 simple variations on a signed variable

Several useful equivalents to linear programs (826) (538) are easily devised, but their
geometrical interpretation is not as apparent: e.g, equivalent in the limit ε→0+

minimize
x∈R

n , t∈R
n

〈t , y〉
subject to Ax = b

−t ¹ x ¹ t

(827)

minimize
y∈R

n
〈|x⋆| , y〉

subject to 0 ¹ y ¹ 1

yT1 = n − k

(538)

We get another equivalent to linear programs (826) (538), in the limit, by interpreting
problem (531) as infimum to a vertex-description of the 1-norm ball (Figure 77,
Example 3.2.0.1.2, confer (529)):

minimize
x∈R

n
‖x‖1

subject to Ax = b
≡

minimize
a∈R2n

〈a , y〉
subject to [A −A ]a = b

a º 0

(828)

minimize
y∈R2n

〈a⋆, y〉
subject to 0 ¹ y ¹ 1

yT1 = 2n − k

(538)

where x⋆ = [ I −I ]a⋆ ; from which it may be rightfully construed that any vector 1-norm
minimization problem has equivalent expression in a nonnegative variable.

4.7 Cardinality and rank constraint examples

4.7.0.0.1 Example. Projection on ellipsoid boundary. [58] [176, §5.1] [287, §2]
Consider classical linear equation Ax = b but with constraint on norm of solution x , given
matrices C and wide A and vector b∈R(A)

find x ∈ RN

subject to Ax = b

‖Cx‖ = 1

(829)
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The set {x | ‖Cx‖=1} (27) describes an ellipsoid boundary (Figure 15). This problem is
nonconvex because solution is constrained to that boundary. Assign

G =

[

Cx
1

]

[xTCT 1 ]
=

[

X Cx
xTCT 1

]

,

[

CxxTCT Cx
xTCT 1

]

∈ SN+1 (830)

Any rank-1 solution must have this form. (§B.1.0.2) Ellipsoidally constrained feasibility
problem (829) is equivalent to:

find
X∈SN

x ∈ RN

subject to Ax = b

G =

[

X Cx
xTCT 1

]

(º 0)

rankG = 1

tr X = 1

(831)

This is transformed to an equivalent convex problem by moving the rank constraint to the
objective: We iterate solution of

minimize
X∈SN , x∈RN

〈G , Y 〉
subject to Ax = b

G =

[

X Cx
xTCT 1

]

º 0

tr X = 1

(832)

with
minimize
Y ∈ SN+1

〈G⋆, Y 〉
subject to 0 ¹ Y ¹ I

tr Y = N

(833)

until convergence. Initially 0 , direction matrix Y ∈ SN+1 regulates rank. (1901a)
Singular value decomposition G⋆ = UΣQT∈ SN+1

+ (§A.6) provides a new direction matrix
Y = U(: , 2:N+1)U(: , 2:N+1)T that optimally solves (833) at each iteration. An optimal
solution to (829) is thereby found in a few iterations, making convex problem (832) its
equivalent.

It remains possible for the iteration to stall; were a rank-1 G matrix not found. In
that case, the current search direction is momentarily reversed with an added randomized
element:

Y = −U(: , 2 :N+1) ∗ (U(: , 2 :N+1)′ + randn(N , 1) ∗ U(: , 1)′) (834)

in Matlab notation. This heuristic is quite effective for problem (829) which is
exceptionally easy to solve by convex iteration.

When b /∈R(A) then problem (829) must be restated as a projection:

minimize
x∈RN

‖Ax − b‖
subject to ‖Cx‖ = 1

(835)

This is a projection of point b on an ellipsoid boundary because any affine transformation
of an ellipsoid remains an ellipsoid. Problem (832) in turn becomes

minimize
X∈SN , x∈RN

〈G , Y 〉 + ‖Ax − b‖

subject to G =

[

X Cx
xTCT 1

]

º 0

tr X = 1

(836)

We iterate this with calculation (833) of direction matrix Y as before until a rank-1
G matrix is found. 2
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4.7.0.0.2 Example. Orthonormal Procrustes. [58]
Example 4.7.0.0.1 is extensible. An orthonormal matrix Q∈Rn×p is characterized
QTQ = I . Consider the particular case Q = [x y ]∈Rn×2 as variable to a Procrustes
problem (§C.3): given A∈Rm×n and B∈Rm×2

minimize
Q∈R

n×2

‖AQ − B‖F

subject to QTQ = I
(837)

which is nonconvex. By vectorizing matrix Q we can make the assignment:

G =





x
y

1





[xT yT 1 ]
=





X Z x
ZT Y y
xT yT 1



,





xxT xyT x
yxT yyT y
xT yT 1



∈ S2n+1 (838)

Now orthonormal Procrustes problem (837) can be equivalently restated:

minimize
X , Y ∈ S , Z , x , y

‖A[x y ] − B‖F

subject to G =





X Z x
ZT Y y
xT yT 1



(º 0)

rankG = 1

trX = 1

trY = 1

trZ = 0

(839)

To solve this, we form the convex problem sequence:

minimize
X , Y , Z , x , y

‖A[x y ]−B‖F + 〈G , W 〉

subject to G =





X Z x
ZT Y y
xT yT 1



 º 0

trX = 1

trY = 1

trZ = 0

(840)

and
minimize
W∈ S2n+1

〈G⋆, W 〉
subject to 0 ¹ W ¹ I

tr W = 2n

(841)

which has an optimal solution W that is known in closed form (p.545). These two problems
are iterated until convergence and a rank-1 G matrix is found. A good initial value for
direction matrix W is 0. Optimal Q⋆ equals [x⋆ y⋆ ].

Numerically, this Procrustes problem is easy to solve; a solution seems always to be
found in one or few iterations. This problem formulation is extensible, of course, to
orthogonal (square) matrices Q . 2

4.7.0.0.3 Example. Combinatorial Procrustes problem.
In case A,B∈Rn, when vector A = ΞB is known to be a permutation of vector B ,
solution to orthogonal Procrustes problem

minimize
X∈R

n×n
‖A − XB‖F

subject to XT = X−1
(1913)
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{X(: , i) | 1TX(: , i) = 1}

{X(: , i) | X(: , i)TX(: , i) = 1}

Figure 115: Permutation matrix ith column-norm and column-sum constraint, abstract
in two dimensions, when rank-1 constraint is satisfied. Optimal solutions reside at
intersection of hyperplane with unit circle.

is not necessarily a permutation matrix Ξ even though an optimal objective value of 0
is found by the known analytical solution (§C.3). The simplest method of solution finds
permutation matrix X⋆ = Ξ simply by sorting vector B with respect to A .

Instead of sorting, we design two different convex problems each of whose optimal
solution is a permutation matrix: one design is based on rank constraint, the other on
cardinality. Because permutation matrices are sparse by definition, we depart from a
traditional Procrustes problem by instead demanding a vector 1-norm which is known to
produce solutions more sparse than Frobenius’ norm.

There are two principal facts exploited by the convex iteration design (§4.5.1) that we
first propose. Permutation matrices Ξ constitute:

1) the set of all nonnegative orthogonal matrices,

2) all points extreme to the polyhedron (104) of doubly stochastic matrices.

That means:

1) norm of each row and column is 1 ,4.46

‖Ξ(: , i)‖ = 1 , ‖Ξ(i , :)‖ = 1 , i=1 . . . n (842)

2) sum of each nonnegative row and column is 1 , (§2.3.2.0.4)

ΞT1=1 , Ξ1=1 , Ξ≥ 0 (843)

4.46This fact would be superfluous were the objective of minimization linear, because the permutation
matrices reside at the extreme points of a polyhedron (104) implied by (843). But as posed, only
either rows or columns need be constrained to unit norm because matrix orthogonality implies transpose
orthogonality. (§B.5.2) Absence of vanishing inner product constraints that help define orthogonality, like
tr Z = 0 from Example 4.7.0.0.2, is a consequence of nonnegativity; id est, the only orthogonal matrices
having exclusively nonnegative entries are permutations of the Identity.
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solution via rank constraint
The idea is to individually constrain each column of variable matrix X to have unity
norm. Matrix X must also belong to that polyhedron, (104) in the nonnegative orthant,
implied by constraints (843); so each row-sum and column-sum of X must also be unity.
It is this combination of nonnegativity, sum, and sum square constraints that extracts the
permutation matrices: (Figure 115) given nonzero vectors A,B

minimize
X∈R

n×n, Gi∈ S
n+1

‖A − XB‖1 + w
n
∑

i=1

〈Gi , Wi〉

subject to
Gi =

[

Gi(1 :n , 1:n) X(: , i)
X(: , i)T 1

]

º 0

tr Gi = 2







, i=1 . . . n

XT1 = 1
X1 = 1
X ≥ 0

(844)

where w≈ 10 positively weights the rank regularization term. Optimal solutions G⋆
i are

key to finding direction matrices Wi for the next iteration of semidefinite programs
(844) (845):

minimize
Wi∈ S

n+1
〈G⋆

i , Wi 〉
subject to 0 ¹ Wi ¹ I

tr Wi = n











, i=1 . . . n (845)

Direction matrices thus found lead toward rank-1 matrices G⋆
i on subsequent iterations.

Constraint on trace of G⋆
i normalizes the ith column of X⋆ to unity because (confer p.347)

G⋆
i =

[

X⋆(: , i)
1

]

[X⋆(: , i)T 1 ]
(846)

at convergence. Binary-valued X⋆ column entries result from the further sum constraint
X1=1. Columnar orthogonality is a consequence of the further transpose-sum constraint
XT1=1 in conjunction with nonnegativity constraint X≥ 0 ; but we leave proof of
orthogonality an exercise. The optimal objective value is 0 for both semidefinite programs
when vectors A and B are related by permutation. In any case, optimal solution X⋆

becomes a permutation matrix Ξ .
Because there are n direction matrices Wi to find, it can be advantageous to invoke

a known closed-form solution for each from page 545. What makes this combinatorial
problem more tractable are relatively small semidefinite constraints in (844). (confer (840))
When a permutation A of vector B exists, number of iterations can be as small as 1. But
this combinatorial Procrustes problem can be made even more challenging when vector A
has repeated entries.

solution via cardinality constraint
Now the idea is to force solution at a vertex of permutation polyhedron (104) by finding
a solution of desired sparsity. Because permutation matrix X is n-sparse by assumption,
this combinatorial Procrustes problem may instead be formulated as a compressed sensing
problem with convex iteration on cardinality of vectorized X (§4.6.1): given nonzero
vectors A,B

minimize
X∈R

n×n
‖A − XB‖1 + w〈X , Y 〉

subject to XT1 = 1
X1 = 1
X ≥ 0

(847)
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where direction vector Y is an optimal solution to

minimize
Y ∈R

n×n
〈X⋆, Y 〉

subject to 0 ≤ Y ≤ 1

1TY 1 = n2− n

(538)

each a linear program. In this circumstance, use of closed-form solution for direction
vector Y is discouraged. When vector A is a permutation of B , both linear programs
have objectives that converge to 0. When vectors A and B are permutations and no entries
of A are repeated, optimal solution X⋆ can be found as soon as the first iteration.

In any case, X⋆ = Ξ is a permutation matrix. 2

4.7.0.0.4 Exercise. Combinatorial Procrustes constraints.
Assume that the objective of semidefinite program (844) is 0 at optimality. Prove that the
constraints in program (844) are necessary and sufficient to produce a permutation matrix
as optimal solution. Alternatively and equivalently, prove those constraints necessary and
sufficient to optimally produce a nonnegative orthogonal matrix. H

4.7.0.0.5 Example. Tractable polynomial constraint.
The set of all coefficients for which a multivariate polynomial were convex is generally
difficult to determine. But the ability to handle rank constraints makes any nonconvex
polynomial constraint transformable to a convex constraint. All optimization problems
having polynomial objective and polynomial constraints can be reformulated as a
semidefinite program with a rank-1 constraint . [328] Suppose we require

3 + 2x − xy ≤ 0 (848)

Identify

G =





x
y

1





[x y 1 ]
=





x2 xy x
xy y2 y

x y 1



∈ S3 (849)

Then nonconvex polynomial constraint (848) is equivalent to constraint set

tr(GA) ≤ 0
G33 = 1
(G º 0)
rankG = 1

(850)

with direct correspondence to sense of trace inequality where G is assumed symmetric
(§B.1.0.2) and

A =





0 − 1
2 1

− 1
2 0 0
1 0 3



∈ S3 (851)

Then the method of convex iteration from §4.5.1 is applied to implement the rank
constraint. 2

4.7.0.0.6 Exercise. Binary Pythagorean theorem.
The technique in Example 4.7.0.0.5 is extensible to any quadratic constraint; e.g,
xTA x + 2bTx + c ≤ 0 , xTA x + 2bTx + c ≥ 0 , and xTA x + 2bTx + c = 0. Write a
rank-constrained semidefinite program to find the intersection of a line with a circle:

{

x + y = 1
x2+ y2 = 1

(852)
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(Figure 115) a set that is not connected. Implement this system in cvx4.47 by convex
iteration. This particular system has no xy terms, so instead of (849) we may assign [158]

G =

[

a − x y
y a + x

]

∈ S2 (853)

Employ the fact that G is positive semidefinite rank-1 iff
√

x2+ y2 = a ; which holds,

by (1627), because G is positive semidefinite iff eigenvalues λ(G)= a ±
√

x2+ y2 are
nonnegative. a∈R is nonnegatively constrained, implicitly, and vanishes iff rank equals 0.

H

4.7.0.0.7 Example. High order polynomials.
Consider nonconvex problem from Canadian Mathematical Olympiad 1999:

find
x , y , z∈R

x , y , z

subject to x2y + y2z + z2x = 22

33

x + y + z = 1
x , y , z ≥ 0

(854)

We wish to solve for, what is known to be, a tight upper bound 22

33
on the constrained

polynomial x2y+y2z+z2x by transformation to a rank-constrained semidefinite program.
First identify

G =









x
y
z
1









[x y z 1 ]

=









x2 xy zx x
xy y2 yz y
zx yz z2 z
x y z 1









∈ S4 (855)

X =





















x2

y2

z2

x
y
z
1





















[x2 y2 z2 x y z 1 ]

=





















x4 x2y2 z2x2 x3 x2y zx2 x2

x2y2 y4 y2z2 xy2 y3 y2z y2

z2x2 y2z2 z4 z2x yz2 z3 z2

x3 xy2 z2x x2 xy zx x
x2y y3 yz2 xy y2 yz y
zx2 y2z z3 zx yz z2 z
x2 y2 z2 x y z 1





















∈ S7

(856)

then apply convex iteration (§4.5.1) to implement rank constraints:

find
A , C∈S , b

b

subject to tr(XE) = 22

33

G =

[

A b
bT 1

]

(º 0)

X =





C

[

δ(A)
b

]

[

δ(A)T bT
]

1



(º 0)

1Tb = 1
b º 0
rankG = 1
rankX = 1

(857)

4.47 cvx is a high-level prototyping language [199] for Optimization that runs under Matlab.

https://www.math.ucla.edu/~tao/putnam
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where

E =





















0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0





















1

2
∈ S7 (858)

[434, Matlab code]. Positive semidefiniteness is optional only when rank-1 constraints
are explicit by Theorem A.3.1.0.7. Optimal solution (x , y , z)=(0 , 2

3 , 1
3 ) to problem (854)

is not unique. 2

4.7.0.0.8 Exercise. Motzkin polynomial.
Prove xy2+ x2y − 3xy + 1 to be nonnegative on the nonnegative orthant. H

4.7.0.0.9 Example. Boolean vector satisfying Ax ¹ b . (confer §4.2.3.1.1)
Now we consider solution to a discrete problem whose only known analytical method of
solution is combinatorial in complexity: given A∈RM×N and b∈RM

find x ∈ RN

subject to Ax¹ b

δ(xxT) = 1

(859)

This nonconvex problem demands a Boolean solution [xi =±1 , i=1 . . . N ].
Assign a rank-1 matrix of variables; symmetric variable matrix X and solution

vector x :

G =

[

x
1

]

[xT 1 ]
=

[

X x
xT 1

]

,

[

xxT x
xT 1

]

∈ SN+1 (860)

Then design an equivalent semidefinite feasibility problem to find a Boolean solution to
Ax¹ b :

find
X∈SN

x ∈ RN

subject to Ax¹ b

G =

[

X x
xT 1

]

(º 0)

rankG = 1

δ(X) = 1

(861)

where x⋆
i ∈ {−1, 1} , i=1 . . . N . The two variables X and x are made dependent via

their assignment to rank-1 matrix G . By (1807), an optimal rank-1 matrix G⋆ must take
the form (860).

As before, we regularize the rank constraint by introducing a direction matrix Y into
the objective:

minimize
X∈SN , x∈RN

〈G , Y 〉
subject to Ax¹ b

G =

[

X x
xT 1

]

º 0

δ(X) = 1

(862)

Solution of this semidefinite program is iterated with calculation of the direction matrix
Y from semidefinite program (833). At convergence, in the sense (790), convex problem
(862) becomes equivalent to nonconvex Boolean problem (859).

https://web.archive.org/web/20150908055538/https://lids.mit.edu/research/research-highlights/sum-squares-and-polynomial-convexity
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Direction matrix Y can be an orthogonal projector having closed-form expression, by
(1901a), although convex iteration is not a projection method. (§4.5.1.1) Given randomized
data A and b for a large problem, we find that stalling becomes likely (convergence of
the iteration to a positive objective 〈G⋆, Y 〉). To overcome this behavior, we introduce
a heuristic into the implementation on Wıκımization [423] that momentarily reverses
direction of search (like (834)) upon stall detection. We find that rate of convergence can
be sped significantly by detecting stalls early. 2

4.7.0.0.10 Example. Variable-vector normalization.
Suppose, within some convex optimization problem, we want vector variables x , y∈RN

constrained by a nonconvex equality:

x‖y‖ = y (863)

id est, ‖x‖= 1 and x points in the same direction as y 6=0 ; e.g,

minimize
x , y

f(x , y)

subject to (x , y)∈ C
x‖y‖ = y

(864)

where f is some convex function and C is some convex set. We can realize the nonconvex
equality by constraining rank and adding a regularization term to the objective. Make the
assignment:

G =





x
y

1





[xT yT 1 ]
=





X Z x
Z Y y
xT yT 1



,





xxT xyT x
yxT yyT y
xT yT 1



∈ S2N+1 (865)

where X , Y ∈ SN , also Z∈ SN [sic ]. Any rank-1 solution must take the form of (865).
(§B.1) The problem statement equivalent to (864) is then written

minimize
X , Y ∈ S , Z , x , y

f(x , y) + ‖X − Y ‖F

subject to (x , y)∈ C

G =





X Z x
Z Y y
xT yT 1



(º 0)

rankG = 1

tr(X) = 1

δ(Z) º 0

(866)

The trace constraint on X normalizes vector x while the diagonal constraint on Z
maintains sign between respective entries of x and y . Regularization term ‖X−Y ‖F

then makes x equal to y to within a real scalar; (§C.2.0.0.2) in this case, a positive scalar.
To make this program solvable by convex iteration, as explained in Example 4.5.1.2.4 and
other previous examples, we move the rank constraint to the objective

minimize
X , Y , Z , x , y

f(x , y) + ‖X − Y ‖F + 〈G , W 〉
subject to (x , y)∈ C

G =





X Z x
Z Y y
xT yT 1



º 0

tr(X) = 1

δ(Z) º 0

(867)
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Figure 116: A cut partitions nodes {i=1 . . . 16} of this graph into Mc and M′
c . Linear

arcs have circled weights. The problem is to find a cut maximizing total weight of all arcs
linking partitions made by the cut.

by introducing a direction matrix W found from (1901a):

minimize
W∈ S2N+1

〈G⋆, W 〉
subject to 0 ¹ W ¹ I

trW = 2N

(868)

This semidefinite program has an optimal solution that is known in closed form. Iteration
(867) (868) terminates when rankG = 1 and linear regularization 〈G , W 〉 vanishes to
within some numerical tolerance in (867); typically, in two iterations. If function f
competes too much with the regularization, positively weighting each regularization term
will become required. At convergence, problem (867) becomes a convex equivalent to the
original nonconvex problem (864). 2
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4.7.0.0.11 Example. fast max cut. [131]

Let Γ be an n-node graph, and let the arcs (i , j) of the graph be associated
with . . . weights aij . The problem is to find a cut of the largest possible weight,
i.e, to partition the set of nodes into two parts Mc , M′

c in such a way that the
total weight of all arcs linking Mc and M′

c (i.e, with one incident node in Mc

and the other one in M′
c [Figure 116]) is as large as possible. −[38, §4.3.3]

Literature on the max cut problem is vast because this problem has elegant primal
and dual formulation, its solution is very difficult, and there exist many commercial
applications; e.g, semiconductor design [148], quantum computing [463].

Our purpose here is to demonstrate how iteration of two simple convex problems can
quickly converge to an optimal solution of the max cut problem with a 98% success rate,
on average.4.48 max cut is stated:

maximize
x∈R

n

∑

1≤i<j≤n

aij(1 − xi xj)
1
2

subject to δ(xxT) = 1
(869)

where [aij ] are real arc weights, and vector x = [xi]∈Rn corresponds to the n nodes;
specifically,

node i ∈ Mc ⇔ xi = 1
node i ∈ M′

c ⇔ xi = −1
(870)

If nodes i and j have the same binary value xi and xj , then they belong to the same
partition and contribute nothing to the cut. Arc (i , j) traverses the cut, otherwise, adding
its weight aij to the cut.

max cut statement (869) is the same as, for A = [aij ]∈ Sn

maximize
x∈R

n

1
4 〈11T− xxT, A〉

subject to δ(xxT) = 1
(871)

Because of Boolean assumption δ(xxT) = 1

〈11T− xxT, A〉 = 〈xxT, δ(A1) − A〉 (872)

so problem (871) is the same as

maximize
x∈R

n

1
4 〈xxT, δ(A1) − A〉

subject to δ(xxT) = 1
(873)

This max cut problem is combinatorial (nonconvex).

Because an estimate of upper bound to max cut is needed to ascertain
convergence when vector x has large dimension, we digress to derive the dual
problem: Directly from (873), its Lagrangian is [68, §5.1.5] (1595)

L(x , ν) = 1
4 〈xxT, δ(A1) − A〉 + 〈ν , δ(xxT) − 1〉

= 1
4 〈xxT, δ(A1) − A〉 + 〈δ(ν) , xxT〉 − 〈ν , 1〉

= 1
4 〈xxT, δ(A1 + 4ν) − A〉 − 〈ν , 1〉

(874)

4.48We term our solution to max cut fast because we sacrifice a little accuracy to achieve speed; id est,
only about two or three convex iterations, achieved by heavily weighting a rank regularization term.

https://books.google.com/books?id=CENjbXz2SDQC&pg=PA170&lpg=PA170&dq=Let+be+an+n-node+graph,+and+let+the+arcs+of+the+graph%5Cindex%7Bnode%7D+be+associated+with+weights+The+problem+is+to+find+a+cut+of+the+largest+possible+weight,+i.e,+to+partition+the+set+of+nodes+into&source=bl&ots=fP4gYSo1fg&sig=lRKXpao1fugjLMfU87pe9FUytRc&hl=en&sa=X&ved=0ahUKEwi_h7HO94fKAhVEz2MKHTNaCpkQ6AEIHTAA#v=onepage&q=Let%20be%20an%20n-node%20graph%2C%20and%20let%20the%20arcs%20of%20the%20graph%5Cindex%7Bnode%7D%20be%20associated%20with%20weights%20The%20problem%20is%20to%20find%20a%20cut%20of%20the%20largest%20possible%20weight%2C%20i.e%2C%20to%20partition%20the%20set%20of%20nodes%20into&f=false
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where quadratic xT(δ(A1+ 4ν)−A)x has supremum 0 if δ(A1+ 4ν)−A is
assumed negative semidefinite, and has supremum ∞ otherwise. The finite
supremum

g(ν) = sup
x∈R

n
L(x , ν) =

{

−〈ν , 1〉 , assuming A − δ(A1 + 4ν) º 0
∞ otherwise

(875)

is chosen as the objective of minimization to dual (convex semidefinite) problem

minimize
ν∈R

n
−νT1

subject to A − δ(A1 + 4ν) º 0
(876)

whose optimal value (−ν⋆T1) provides an upper bound to max cut but is not
tight4.49 ( 1

4 〈xxT, δ(A1)−A〉< g(ν) , duality gap is nonzero); [186] problem
(876) is not a strong dual to (873).4.50

To transform max cut to its convex equivalent, first define

X = xxT∈ Sn (881)

then max cut (873) becomes

maximize
X∈ S

n

1
4 〈X , δ(A1) − A〉

subject to δ(X) = 1
(X º 0)
rankX = 1

(877)

whose rank constraint can be regularized as in

maximize
X∈ S

n

1
4 〈X , δ(A1) − A〉 − w〈X , W 〉

subject to δ(X) = 1
X º 0

(878)

where w≈1000 is a nonnegative fixed weight, and W is a direction matrix determined
from

n
∑

i=2

λ(X⋆)i = minimize
W∈ S

n
〈X⋆, W 〉

subject to 0 ¹ W ¹ I

trW = n − 1

(1901a)

which has an optimal solution that is known in closed form. These two problems (878)
and (1901a) are iterated until convergence as defined on page 244.

Because convex problem statement (878) is so elegant, it is numerically solvable for
large binary vectors within reasonable time.4.51 To test our convex iterative method, we
compare an optimal convex result to an actual solution of the max cut problem found
by performing a brute force combinatorial search of (873)4.52 for a tight upper bound.

4.49Taking the dual of dual problem (876) would provide (877) but without the rank constraint. [179]
Dual of a dual of even a convex primal problem is not necessarily the same primal problem; although,
optimal solution of one can be obtained from the other.
4.50Even so, empirically, binary solution arg supx∈B

n

±
L(x , ν⋆) to (874) is optimal to (873).

4.51We solved for a length-250 binary vector in only a few minutes and convex iterations on a 2006 vintage
laptop Core 2 CPU (Intel T7400@2.16GHz, 666MHz FSB).
4.52 more computationally intensive than the proposed convex iteration by many orders of magnitude.
Solving max cut by searching over all binary vectors of length 100, for example, would occupy a
contemporary supercomputer for a million years.
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Search-time limits binary vector lengths to 24 bits (about five days CPU time). 98%
accuracy, actually obtained, is independent of binary vector length (12 , 13 , 20 , 24) when
averaged over more than 231 problem instances including planar, randomized, and toroidal
graphs.4.53 When failure occurred, large and small errors were manifest. That same 98%
average accuracy is presumed maintained when binary vector length is further increased.
A Matlab program is provided on Wıκımization [429]. 2

4.7.0.0.12 Example. Cardinality/rank problem.
d’Aspremont, El Ghaoui, Jordan, & Lanckriet [108] propose approximating a positive
semidefinite matrix A∈ SN

+ by a rank-1 matrix having constraint on cardinality c : for
0 < c < N

minimize
z

‖A − zzT‖F

subject to card z ≤ c
(879)

which, they explain, is a hard problem equivalent to

maximize
x

xTA x

subject to ‖x‖ = 1

card x ≤ c

(880)

where z ,
√

λx and where optimal solution x⋆ is a principal eigenvector (1894) (§A.5.1.1)
of A and λ = x⋆TA x⋆ is the principal eigenvalue [189, p.331] when c is true cardinality of
that eigenvector. This is principal component analysis with a cardinality constraint which
controls solution sparsity. Define the matrix variable

X , xxT∈ SN (881)

whose desired rank is 1 , and whose desired diagonal cardinality

card δ(X) ≡ card x (882)

is equivalent to cardinality c of vector x . Then we can transform cardinality problem
(880) to an equivalent in new variable X :4.54

maximize
X∈SN

〈X , A〉
subject to 〈X , I 〉 = 1

(X º 0)

rankX = 1

card δ(X) ≤ c

(883)

We transform problem (883) to an equivalent convex problem by introducing two
direction matrices into regularization terms: W to achieve desired cardinality card δ(X) ,
and Y to find an approximating rank-1 matrix X :

maximize
X∈SN

〈X , A − w1Y 〉 − w2〈δ(X) , δ(W )〉
subject to 〈X , I 〉 = 1

X º 0

(884)

4.53Existence of a polynomial-time approximation to max cut with accuracy provably better than 94.11%
would refute NP-hardness; which H̊astad believes to be highly unlikely. [216, thm.8.2] [217]
4.54A semidefiniteness constraint Xº 0 is not required, theoretically, because positive semidefiniteness
of a rank-1 matrix is enforced by symmetry. (Theorem A.3.1.0.7)
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phantom(256)

Figure 117: Shepp-Logan phantom from Matlab image processing toolbox.

where w1 and w2 are positive scalars respectively weighting tr(XY ) and δ(X)Tδ(W )
just enough to insure that they vanish to within some numerical precision, where direction
matrix Y is an optimal solution to semidefinite program

minimize
Y ∈ SN

〈X⋆, Y 〉
subject to 0 ¹ Y ¹ I

trY = N − 1

(885)

and where diagonal direction matrix W ∈ SN optimally solves linear program

minimize
W=δ2(W )

〈δ(X⋆) , δ(W )〉
subject to 0 ¹ δ(W ) ¹ 1

trW = N − c

(886)

Both direction matrix programs are derived from (1901a) whose analytical solution is
known but is not necessarily unique. We emphasize (confer p.244): because this iteration
(884) (885) (886) (initial Y,W = 0) is not a projection method (§4.5.1.1), success relies
on existence of matrices in the feasible set of (884) having desired rank and diagonal
cardinality. In particular, the feasible set of convex problem (884) is a Fantope (94) whose
extreme points constitute the set of all normalized rank-1 matrices; among those are found
rank-1 matrices of any desired diagonal cardinality.

Convex problem (884) is neither a relaxation of cardinality problem (880); instead,
problem (884) becomes a convex equivalent to (880) at global optimality of iteration (884)
(885) (886). Because the feasible set of problem (884) contains all normalized rank-1 (§B.1)
symmetric matrices of every nonzero diagonal cardinality, a constraint too low or high in
cardinality c will not prevent solution. An optimal rank-1 solution X⋆, whose diagonal
cardinality is equal to cardinality of a principal eigenvector of matrix A , will produce the
least residual Frobenius norm (to within machine noise processes) in the original problem
statement (879). 2

4.7.0.0.13 Example. Compressive sampling of a phantom.
In Summer 2004, Candès, Romberg, & Tao [79] and Donoho [141] released papers on
perfect signal reconstruction from samples that stand in violation of Shannon’s classical
sampling theorem. These defiant signals are assumed sparse inherently or under some
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sparsifying affine transformation. Essentially, they proposed sparse sampling theorems
asserting average sample rate less than Shannon’s and independent of signal bandwidth:

minimum sampling rate:

� of Ω-bandlimited signal: 2Ω ([327, §3.2] Shannon)

� of k-sparse length-n signal: k log2(1+n/k) (Figure 112 Candès/Donoho)

In essence, Candès and Donoho provide conditions under which 1-norm minimization
provides solution equivalent, with high probability, to 0-norm (cardinality) minimization.

Certainly, much was already known about nonuniform or random sampling [40] [298]
and about subsampling or multirate systems [103] [409]. Vetterli, Marziliano, & Blu
[418] had congealed a theory of noiseless signal reconstruction, in May 2001, from
samples that violate the Shannon rate. [439, Sampling Sparsity ] They anticipated the
sparsifying transform by recognizing: it is the innovation (onset) of functions constituting
a (not necessarily bandlimited) signal that determines minimum sampling rate for perfect
reconstruction. Average onset (sparsity), Vetterli et alii call, the rate of innovation.
Vector inner-products that Candès/Donoho call samples or measurements, Vetterli
calls projections. From those projections Vetterli demonstrates reconstruction (by
digital signal processing and “root finding”) of a Dirac comb, the very same
prototypical signal from which Candès probabilistically derives minimum sampling
rate [Compressive Sampling and Frontiers in Signal Processing , University of Minnesota,
June 6, 2007]. Combining their terminology, we paraphrase a sparse sampling theorem:

� Minimum sampling rate, asserted by Candès/Donoho, ∝ Vetterli’s rate of innovation
(a.k.a: information rate, degrees of freedom [ibidem, June 5, 2007]).

What distinguishes these researchers are their methods of reconstruction.
Properties of 1-norm were also well understood by June 2004 finding application in

deconvolution of linear systems [94], regularized linear regression (Lasso) [399] [366], and
basis pursuit [87] [88] [249]. But never before had there been a formalized and rigorous
sense that perfect reconstruction were possible by convex optimization of 1-norm when
information lost in a subsampling process became nonrecoverable by classical methods.
Donoho named this discovery compressed sensing to describe a nonadaptive perfect
reconstruction method by means of linear programming. By the time Candès’ and
Donoho’s landmark papers were finally published by IEEE in 2006, compressed sensing was
old news that had spawned intense research which still persists; notably, from prominent
members of the wavelet community.

Reconstruction of the Shepp-Logan phantom (Figure 117), from a severely aliased
image (Figure 119) obtained by Magnetic Resonance Imaging (MRI), was the impetus
driving Candès’ quest for a sparse sampling theorem. He realized that line segments
appearing in the aliased image were regions of high total variation. There is great
motivation, in the medical community, to apply compressed sensing to MRI because it
translates to reduced scan-time which brings great technological and physiological benefits.
The beginnings of MRI came in 1973 with Nobel laureate Paul Lauterbur from Stony
Brook USA. There has been much progress in MRI and compressed sensing since 2004,
but there have also been indications of 1-norm abandonment (indigenous to reconstruction
by compressed sensing) in favor of criteria closer to 0-norm because of a correspondingly
smaller number of measurements required to accurately reconstruct a sparse signal:4.55

5481 complex samples (22 radial lines, ≈256 complex samples per) were required in
June 2004 to reconstruct a noiseless 256×256-pixel Shepp-Logan phantom by 1-norm

4.55Efficient techniques continually emerge urging 1-norm criteria abandonment; [91] [408] [407, §IID] e.g,
five techniques for compressed sensing are compared in [41] demonstrating that 1-norm performance limits
for cardinality minimization can be reliably exceeded.

https://www.convexoptimization.com/wikimization/index.php/Video#Compressive_Sampling.2C_Compressed_Sensing_-_Emmanuel_Candes_.28California_Institute_of_Technology.29_University_of_Minnesota.2C_Summer_2007
https://www.convexoptimization.com/wikimization/index.php/Video#Compressive_Sampling.2C_Compressed_Sensing_-_Emmanuel_Candes_.28California_Institute_of_Technology.29_University_of_Minnesota.2C_Summer_2007
https://www.convexoptimization.com/wikimization/index.php/Optimization_Videos#June_5_2007_.C2.A0Underdetermined_Systems_of_Linear_Equations
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minimization of an image-gradient integral estimate called total variation; id est, 8.4%
subsampling of 65536 data. [79, §1.1] [78, §3.2] It was soon discovered that reconstruction
of the Shepp-Logan phantom were possible with only 2521 complex samples (10 radial
lines, Figure 118); 3.8% subsampled data input to a (nonconvex) 1

2 -norm total-variation
minimization. [85, §IIIA] The closer to 0-norm, the fewer the samples required for perfect
reconstruction.

Passage of a few years witnessed an algorithmic speedup and dramatic reduction
in minimum number of samples required for perfect reconstruction of the noiseless
Shepp-Logan phantom. But minimization of total variation is ideally suited to recovery of
any piecewise-constant image, like a phantom, because gradient of such images is highly
sparse by design.

There is no inherent characteristic of real-life MRI images that would make reasonable
an expectation of sparse gradient. Sparsification of a discrete image-gradient tends to
preserve edges. Then minimization of total variation seeks an image having fewest edges.
There is no deeper theoretical foundation than that. When applied to human brain scan or
angiogram, with as much as 20% of 256×256 Fourier samples, we have observed4.56 a 30dB
image/reconstruction-error ratio4.57 barrier that seems impenetrable by the total-variation
objective. Total-variation minimization has met with moderate success, in retrospect,
only because some medical images are moderately piecewise-constant signals. One simply
hopes a reconstruction, that is in some sense equal to a known subset of samples and
whose gradient is most sparse, is that unique image we seek.4.58

The total-variation objective, operating on an image, is expressible as norm of a linear
transformation (905). It is natural to ask whether there exist other sparsifying transforms
that might break the real-life 30dB barrier (any sampling pattern @20% 256×256 data)
in MRI. There has been much research into application of wavelets, discrete cosine
transform (DCT), randomized orthogonal bases, splines, etcetera, but with suspiciously
little focus on objective measures like image/error or illustration of difference images; the
predominant basis of comparison instead being subjectively visual (Duensing & Huang,
ISMRM Toronto 2008).4.59 Despite choice of transform, there seems yet to have been a
breakthrough of the 30dB barrier. Application of compressed sensing to MRI, therefore,
remains fertile in 2008 for continued research.

regularized form of compressed sensing in imaging
We now repeat Candès’ image reconstruction experiment from 2004 which led to discovery
of sparse sampling theorems. [79, §1.2] But we achieve perfect reconstruction with an
algorithm based on vanishing gradient of a compressed sensing problem’s regularization,
which is computationally efficient. Our contraction method (p.294) is fast also because
matrix multiplications are replaced by fast Fourier transform, and number of constraints is
cut in half by sampling symmetrically. Convex iteration for cardinality minimization (§4.6)

4.56Experiments with real-life images were performed by Christine S.W. Law at Lucas Center for Imaging,
Stanford University.
4.57Noise considered here is due only to the reconstruction process itself; id est, noise in excess of that
produced by the best reconstruction of an image from a complete set of samples in the sense of Shannon.
At less than 30dB image/error, artifacts generally remain visible to the naked eye. We estimate that
about 50dB is required to eliminate noticeable distortion in a visual A/B comparison.
4.58In vascular radiology, diagnoses are almost exclusively based on morphology of vessels and, in
particular, presence of stenoses. There is a compelling argument for total-variation reconstruction of
magnetic resonance angiogram because it helps isolate structures of particular interest.
4.59I have never calculated the PSNR of these reconstructed images [of Barbara]. −Jean-Luc Starck
The sparsity of the image is the percentage of transform coefficients sufficient for diagnostic-quality
reconstruction. Of course the term “diagnostic quality” is subjective. . . . I have yet to see an “objective”
measure of image quality. Difference images, in my experience, definitely do not tell the whole story.
Often I would show people some of my results and get mixed responses, but when I add artificial Gaussian
noise to an image, often people say that it looks better. −Michael Lustig

https://www.convexoptimization.com/wikimization/index.php/Video#International_Society_for_Magnetic_Resonance_in_Medicine_.28ISMRM_Toronto_2008.29
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is incorporated which allows perfect reconstruction of a phantom at 4.1% subsampling
rate; 50% Candès’ rate. By making neighboring-pixel selection adaptive, convex iteration
reduces discrete image-gradient sparsity of the Shepp-Logan phantom to 1.9% ; 33% lower
than previously reported.

We demonstrate application of discrete image-gradient sparsification to the
n×n=256×256 Shepp-Logan phantom, simulating idealized acquisition of MRI data by
radial sampling in the Fourier domain (Figure 118).4.60 Define a Nyquist-centric discrete
Fourier transform (DFT) matrix

F ,

















1 1 1 1 · · · 1
1 e−2π/n e−4π/n e−6π/n · · · e−(n−1)2π/n

1 e−4π/n e−8π/n e−12π/n · · · e−(n−1)4π/n

1 e−6π/n e−12π/n e−18π/n · · · e−(n−1)6π/n

...
...

...
...

. . .
...

1 e−(n−1)2π/n e−(n−1)4π/n e−(n−1)6π/n · · · e−(n−1)22π/n

















1√
n
∈ Cn×n

(887)

a symmetric (nonHermitian) unitary matrix characterized

F = FT

F−1 = FH (888)

Denoting an unknown image U ∈Rn×n, its two-dimensional discrete Fourier transform F

is
F(U) , F UF (889)

hence the inverse discrete transform

U = FHF(U)FH (890)

From §A.1.1 no.33 we have a vectorized two-dimensional DFT via Kronecker product ⊗

vec F(U) , (F⊗F ) vecU (891)

and from (890) its inverse [198, p.24]

vecU = (FH⊗FH)(F⊗F ) vecU = (FHF ⊗ FHF ) vecU (892)

Idealized radial sampling in the Fourier domain can be simulated by Hadamard product
◦ with a binary mask Φ∈ Rn×n whose nonzero entries could, for example, correspond
with the radial line segments in Figure 118. To make the mask Nyquist-centric, like DFT
matrix F , define a circulant [201] symmetric permutation matrix4.61

Θ ,

[

0 I
I 0

]

∈ Sn (893)

Then given subsampled Fourier domain (MRI k-space) measurements in incomplete
K∈Cn×n, we might constrain F(U) thus:

ΘΦΘ ◦ F UF = K (894)

and in vector form, (44) (1993)

δ(vec ΘΦΘ)(F⊗F ) vecU = vec K (895)

4.60 k-space is conventional acquisition terminology indicating domain of the continuous raw data provided
by an MRI machine. An image is reconstructed by inverse discrete Fourier transform of that data
interpolated on a Cartesian grid in two dimensions.
4.61Matlab fftshift()
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Φ

Figure 118: MRI radial sampling pattern, in DC-centric Fourier domain, representing 4.1%
(10 lines) subsampled data. Only half of these complex samples, in any halfspace about
the origin in theory, need be acquired for a real image because of conjugate symmetry.
Due to MRI machine imperfections, samples are generally taken over full extent of each
radial line segment. MRI acquisition time (total readout duration) ∝ number of lines.

Because measurements K are complex, there are actually twice the number of equality
constraints as there are measurements.

We can cut that number of constraints in half via vertical and horizontal mask Φ
symmetry which forces the imaginary inverse transform to 0 : The inverse subsampled
transform in matrix form is

FH(ΘΦΘ ◦ F UF )FH = FHKFH (896)

and in vector form

(FH⊗FH)δ(vec ΘΦΘ)(F⊗F ) vecU = (FH⊗FH) vec K (897)

later abbreviated
P vecU = f (898)

where
P , (FH⊗FH)δ(vec ΘΦΘ)(F⊗F ) ∈ Cn2×n2

(899)

Because of idempotence P = P 2, P is a projection matrix. Because of its Hermitian
symmetry [198, p.24]

P = (FH⊗FH)δ(vec ΘΦΘ)(F⊗F ) = (F⊗F )Hδ(vec ΘΦΘ)(FH⊗FH)H = PH (900)

P is an orthogonal projector.4.62 P vecU is real when P is real; id est, when for positive
even integer n

Φ =

[

Φ11 Φ(1 , 2:n)Ξ
ΞΦ(2:n , 1) ΞΦ(2:n , 2:n)Ξ

]

∈ Rn×n (901)

where Ξ∈Sn−1 is the order-reversing permutation matrix (1933). In words, this necessary
and sufficient condition on Φ (for a real inverse subsampled transform [327, p.53]) demands
vertical symmetry about row n

2 +1 and horizontal symmetry4.63 about column n
2 +1.

4.62 (899) is a diagonalization of matrix P whose binary eigenvalues are δ(vec ΘΦΘ) while the
corresponding eigenvectors constitute the columns of unitary matrix FH⊗FH.
4.63This condition on Φ applies to both DC- and Nyquist-centric DFT matrices.
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vec−1 f

Figure 119: Aliasing of Shepp-Logan phantom in Figure 117 resulting from k-space
subsampling pattern in Figure 118. This image is real because binary mask Φ is vertically
and horizontally symmetric. It is remarkable that the phantom can be reconstructed, by
convex iteration, given only U0 = vec−1f .

Define

∆ ,



























1 0 0

−1 1 0

−1 1
. . .
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. . . 1 0

0T −1 1



























∈ Rn×n (902)

Express an image-gradient estimate

∇U ,









U ∆
U ∆T

∆ U
∆T U









∈ R4n×n (903)

that is a simple first-order difference of neighboring pixels (Figure 120) to the right, left,

above, and below.4.64 By §A.1.1 no.33, its vectorization: for Ψi∈Rn2×n2

vec∇U =









∆T⊗ I
∆ ⊗ I
I ⊗ ∆
I ⊗ ∆T









vecU ,









Ψ1

ΨT
1

Ψ2

ΨT
2









vecU , ΨvecU ∈ R4n2

(904)

where Ψ∈R4n2×n2

. A total-variation minimization for reconstructing MRI image U ,
that is known suboptimal [243] [80], may be concisely posed

minimize
U

‖ΨvecU‖1

subject to P vecU = f
(905)

4.64There is significant improvement in reconstruction quality by augmentation of a nominally two-point
discrete image-gradient estimate to four points per pixel by inclusion of two polar directions. Improvement
is due to centering; symmetry of discrete differences about a central pixel. We find small improvement on
real-life images, ≈1dB empirically, by further augmentation with diagonally adjacent pixel differences.
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where
f = (FH⊗FH) vec K ∈ Cn2

(906)

is the known inverse subsampled Fourier data (a vectorized aliased image, Figure 119),
and where a norm of discrete image-gradient ∇U is equivalently expressed as norm of a
linear transformation ΨvecU .

Although this simple problem statement (905) is equivalent to a linear program (§3.2),
its numerical solution is beyond the capability of even the most highly regarded of
contemporary commercial solvers.4.65 Our recourse is to recast the problem in regularized
form and write customized code to solve it:

minimize
U

〈|ΨvecU| , y〉
subject to P vecU = f

(a)

≡
minimize

U
〈|ΨvecU| , y〉 + 1

2λ‖P vecU − f‖2
2 (b)

(907)

where multiobjective parameter λ∈R+ is quite large (λ≈1E8) so as to enforce the equality
constraint: P vecU−f = 0 ⇔ ‖P vecU−f‖2

2 =0 (§A.7.1). We introduce a direction

vector y∈R4n2

+ as part of a convex iteration (§4.6.3) to overcome that known suboptimal
minimization of discrete image-gradient cardinality: id est, there exists a vector y⋆ with
entries y⋆

i ∈ {0, 1} such that

minimize
U

‖ΨvecU‖0

subject to P vecU = f
≡ minimize

U
〈|ΨvecU| , y⋆〉 + 1

2λ‖P vecU − f‖2
2 (908)

Existence of such a y⋆, complementary to an optimal vector ΨvecU⋆, is obvious by
definition of global optimality 〈|ΨvecU⋆| , y⋆〉= 0 (812) under which a cardinality-c
optimal objective ‖ΨvecU⋆‖0 is assumed to exist.

Because (907b) is an unconstrained convex problem, a zero objective function gradient
is necessary and sufficient for optimality (§2.13.3); id est, (§D.2.1)

ΨTδ(y) sgn(ΨvecU ) + λPH(P vecU − f ) = 0 (909)

Because of P idempotence and Hermitian symmetry and sgn() definition (p.646), this is
equivalent to

lim
ǫ→0

(

ΨTδ(y)δ(|ΨvecU| + ǫ1)−1 Ψ + λP
)

vecU = λPf (910)

where small positive constant ǫ∈R+ has been introduced for invertibility. Speaking
more analytically, introduction of ǫ serves to uniquely define the objective’s gradient
everywhere in the function domain; id est, it transforms absolute value in (907b) from a
function differentiable almost everywhere into a differentiable function. An example of
such a transformation in one dimension is illustrated in Figure 121. When small enough
for practical purposes4.66 (ǫ≈1E-3), we may ignore the limiting operation. Then the
mapping, for 0¹ y¹ 1

vecU t+1 =
(

ΨTδ(y)δ(|ΨvecU t| + ǫ1)−1 Ψ + λP
)−1

λPf (911)

4.65 for images as small as 128×128 pixels. Obstacle to numerical solution is not a computer resource:
e.g, execution time, memory. The obstacle is, in fact, inadequate numerical precision. Even when all
dependent equality constraints are manually removed, the best commercial solvers fail simply because
computer numerics become nonsense; id est, numerical errors enter significant digits and the algorithm
exits prematurely, loops indefinitely, or produces an infeasible solution.
4.66We are looking for at least 50dB image/error ratio from only 4.1% subsampled data (10 radial lines in
k-space). With this setting of ǫ , we actually attain in excess of 100dB from a simple Matlab program in
about a minute on a 2006 vintage laptop Core 2 CPU (Intel T7400@2.16GHz, 666MHz FSB). By trading
execution time and treating discrete image-gradient cardinality as a known quantity for this phantom,
over 160dB is achievable.
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Figure 120: Neighboring-pixel stencil [408] for image-gradient estimation on Cartesian
grid. Implementation selects adaptively from darkest four • about central. Continuous
image-gradient from two pixels holds only in a limit. For discrete differences, better
practical estimates are obtained when centered.

is a contraction in U t that can be solved recursively in t for its unique fixed point ; id est,
until U t+1→ U t . [264, p.300] [238, p.155] Calculating this inversion directly is not possible
for large matrices on contemporary computers because of numerical precision, so instead
we apply the conjugate gradient method of solution to

(

ΨTδ(y)δ(|ΨvecU t| + ǫ1)−1 Ψ + λP
)

vecU t+1 = λPf (912)

which is linear in U t+1 at each recursion in the Matlab program [424].4.67

Observe that P (899), in the equality constraint from problem (907a), is not a
wide matrix.4.68 Although number of Fourier samples taken is equal to the number
of nonzero entries in binary mask Φ , matrix P is square but never actually formed
during computation. Rather, a two-dimensional fast Fourier transform of U is computed

4.67Conjugate gradient method requires positive definiteness. [181, §4.8.3.2]
4.68Wide is typical of compressed sensing problems; e.g, [78] [85].

∫ x

−1
y

|y|+ǫ dy

|x|

Figure 121: Real absolute value function f2(x)= |x| on x∈ [−1, 1] (from Figure 74b)
superimposed upon integral of its derivative at ǫ=0.05 which smooths objective function.

https://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry#Compressive_Sampling_of_Images_by_Convex_Iteration__Shepp-Logan_phantom
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followed by masking with ΘΦΘ and then an inverse fast Fourier transform. This technique
significantly reduces memory requirements and, together with contraction method of
solution, is the principal reason for relatively fast computation.

convex iteration
By convex iteration we mean alternation of solution to (907a) and (913) until convergence.
Direction vector y is initialized to 1 until the first fixed point is found; which means, the
contraction recursion begins calculating a (1-norm) solution U⋆ to (905) via problem
(907b). Once U⋆ is found, vector y is updated according to an estimate of discrete

image-gradient cardinality c : Sum of the 4n2− c smallest entries of |ΨvecU⋆|∈R4n2

is
the optimal objective value from a linear program, for 0≤c≤ 4n2− 1 (538)

4n2
∑

i=c+1

π(|ΨvecU⋆|)i = minimize
y∈R4n2

〈|ΨvecU⋆| , y〉
subject to 0 ¹ y ¹ 1

yT1 = 4n2− c

(913)

where π is the nonlinear permutation-operator sorting its vector argument into
nonincreasing order. An optimal solution y to (913), that is an extreme point of its feasible
set, is known in closed form: it has 1 in each entry corresponding to the 4n2− c smallest
entries of |ΨvecU⋆| and has 0 elsewhere. −p.265 Updated image U⋆ is assigned to U t ,
the contraction is recomputed solving (907b), direction vector y is updated again, and so
on until convergence which is guaranteed by virtue of a monotonically nonincreasing real
sequence of objective values in (907a) and (913).

There are two features that distinguish problem formulation (907b) and our particular
implementation of it [424, Matlab code]:

1) An image-gradient estimate may engage any combination of four adjacent pixels.
In other words, the algorithm is not locked into a four-point gradient estimate
(Figure 120); number of points constituting an estimate is directly determined by
direction vector y .4.69 Indeed, we find only c = 5092 zero entries in y⋆ for the
Shepp-Logan phantom; meaning, discrete image-gradient sparsity is actually closer
to 1.9% than the 3% reported elsewhere; e.g, [407, §IIB].

2) Numerical precision of the fixed point of contraction (911) (≈1E-2 for perfect
reconstruction @−103dB error) is a parameter to the implementation; meaning,
direction vector y is updated after contraction begins but prior to its culmination.
Impact of this idiosyncrasy tends toward simultaneous optimization in variables U
and y while insuring y settles on a boundary point of its feasible set (nonnegative
hypercube slice) in (913) at every iteration; for only a boundary point4.70 can yield
the sum of smallest entries in |ΨvecU⋆|.

Perfect reconstruction of the Shepp-Logan phantom (at 103dB image/error) is achieved
in a Matlab minute with 4.1% subsampled data (2671 complex samples); well below an
11% least lower bound predicted by the sparse sampling theorem. Because reconstruction
approaches optimal solution to a 0-norm problem, minimum number of Fourier-domain
samples is bounded below by cardinality of discrete image-gradient at 1.9%. 2

4.69This adaptive gradient was not contrived. It is an artifact of the convex iteration method for minimal
cardinality solution; in this case, cardinality minimization of a discrete image-gradient.
4.70Simultaneous optimization of these two variables U and y should never be a pinnacle of aspiration;
for then, optimal y might not attain a boundary point.



296 CHAPTER 4. SEMIDEFINITE PROGRAMMING

4.7.0.0.14 Exercise. Contraction operator.
Determine conditions on λ and ǫ under which ΨTδ(y)δ(|ΨvecU t| + ǫ1)−1 Ψ + λP from
(912) is positive definite and (911) is a contraction. H

4.8 Eternity II

A tessellation puzzle game, playable by children, commenced world-wide in July 2007;
introduced in London by Christopher Walter Monckton, 3rd Viscount Monckton of
Brenchley. Called Eternity II, its name derives from an estimate of time that would pass
while trying all allowable tilings of puzzle pieces before obtaining a complete solution. By
the end of 2008, a complete solution had not yet been found although a $10,000 USD
prize was awarded for a high score 467 (out of 480=2

√
M(

√
M−1)) obtained by heuristic

methods.4.71 No prize was awarded for 2009 and 2010. Game-rules state that a $2M prize
would be awarded to the first person who completely solves the puzzle before December 31,
2010, but the prize went unclaimed and solution remains yet to be found.

The full game comprises M = 256 square pieces and 16×16 gridded board (Figure 123)
whose complete tessellation is considered NP-hard.4.72 [393] [124] A player may tile, retile,
and rotate pieces, indexed 1 through 256, in any order face-up on the square board. Pieces
are immutable in the sense that each is characterized by four colors (and their uniquely
associated British symbols), one at each edge, which are not necessarily the same per piece
or from piece to piece; id est, different pieces may or may not have some edge-colors in
common. There are L = 22 distinct edge-colors plus a solid grey. The game’s objective is to
completely tile its board with pieces whose touching edges have identical color. Boundary
of the board must be colored grey.

4.8.1 full-game rules

1) Any puzzle piece may be rotated face-up in quadrature and placed or replaced on
the square board.

2) Only one piece may occupy any particular cell on the board.

3) All adjacent pieces must match in color (and symbol) at their touching edges.

4) Solid grey edges must appear all along the board’s boundary.

5) One mandatory piece (numbered 139) must have a predetermined rotation in a
predetermined cell (number 121) on the board (Figure 123).

6) The board must be tiled completely (covered).

A scaled-down demonstration version of the game is illustrated in Figure 122.
Differences between the full game (Figure 123) and scaled-down game are: number of
edge-colors L (22 versus 4, ignoring solid grey), number of pieces M (256 versus 16), and a
single mandatory piece placement interior to the board for the full game. The scaled-down
game has four distinct edge-colors, plus a solid grey, whose coding is illustrated in
Figure 122c.

4.71That score means all but a few of the 256 pieces had been placed successfully (including the mandatory
piece). Although distance between 467 to 480 is relatively small, there is apparently vast distance to a
solution because no complete solution followed in 2009.
4.72Even so, combinatorial-intensity brute-force backtracking methods can solve similar puzzles in minutes
given M =196 pieces on a 14×14 test board; as demonstrated by Yannick Kirschhoffer. There is a steep
rise in level of difficulty going to a 15×15 board.

https://sourceforge.net/projects/eternityii
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(a) pieces

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

(b) one solution

13 4 16 5

3 2 10 11

12 14 6 8

1 15 7 9

(c) colors

e1

e2

e3

e4

Figure 122: Eternity II is a board game in the puzzle genre. (a) Shown are all of the
16 puzzle pieces (indexed as in the tableau alongside) from a scaled-down computerized
demonstration game version from the TOMY website. Puzzle pieces are square and
partitioned into four colors (with associated symbols). Pieces may be moved, removed,
and rotated at random on a 4×4 board. (b) Illustrated is one complete solution to this
puzzle whose solution is not unique. Piece 10, whose border is lightly outlined, was placed
last in this realization. There is no mandatory piece placement, as for the full game, except
the grey board-boundary. Solution time for a human is typically on the order of a minute.
(c) This puzzle has four colors, indexed 1 through 4 ; grey corresponds to 0.

http://www.playzgame.com/online-flash-games/Eternity-II.php
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 33 49 65 81 97 113 129 145 161 177 193 209 225

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

32 48 64 80 96 112 128 144 160 176 192 208 224 240

Figure 123: Eternity II full-game board (16×16 , M = 256 , L= 22) illustrating boundary
cell numbers. Grid facilitates piece placement within unit-square cell; one piece per cell.
Cell 121 (shaded) holds mandatory puzzle-piece P139 designated by Monckton.

� For the full game board, there are L = 22 distinct edge-colors and M = 256 puzzle
pieces with board-dimension

√
M ×

√
M = 16×16.

� For the scaled-down demonstration game board, there are L = 4 distinct edge-colors
and M = 16 puzzle pieces with board-dimension

√
M ×

√
M = 4×4.

4.8.2 Euclidean distance intractability

If each square puzzle piece were characterized by four points in quadrature, one point
representing board coordinates and color per edge, then Euclidean distance geometry
would be suitable for solving this puzzle. Since all interpoint distances per piece are
known, this game may be regarded as a Euclidean distance matrix completion problem4.73

in EDM4M . Because distance information provides for reconstruction of point position to
within an isometry (§5.5), piece translation and rotation are isometric transformations that
abide by rules of the game.4.74 Convex constraints can be devised to prevent puzzle-piece
reflection and to quantize rotation such that piece-edges stay aligned with the board
boundary. (§5.5.2.0.1)

But manipulating such a large EDM is too numerically difficult for contemporary
general-purpose semidefinite program (SDP) solvers which incorporate interior-point
methods; indeed, they are hard-pressed to find a solution for variable matrices of dimension
as small as 100. Our challenge, therefore, is to express this game’s rules as constraints in a

4.73(§6.7) This EDM would have a block-diagonal structure of known entries were edge-points ordered
sequentially with piece number.
4.74Translation occurs when a piece moves on the board in Figure 123, rotation occurs when colors are
aligned with an adjacent piece.
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p61

p62

p63

p64

P6 =









pT
61

pT
62

pT
63

pT
64









∈ R4×L

Figure 124: Demo-game piece P6 illustrating edge-color • p6j ∈RL counterclockwise
ordering in j beginning from right. For all game boards, edge-color index j =1 . . . 4.

convex and numerically tractable way so as to find one solution from a googol of possible
combinations.4.75

4.8.3 piece P permutation Ξ rotation Π strategy

To each puzzle piece, from a given set of M pieces {Pi , i=1 . . . M } , assign an index
i representing a unique piece-number. Each square piece is characterized by four given
colors, in quadrature, corresponding to its four edges. Each color pij ∈RL is represented

by eℓ∈RL an L-dimensional standard basis vector or 0 if grey. These four edge-colors are
represented in a 4×L-dimensional matrix; one matrix per piece

Pi ,









pT
i1

pT
i2

pT
i3

pT
i4









∈ R4×L, i=1 . . . M (914)

In other words, each distinct nongrey color is assigned a unique corresponding index
ℓ∈ {1 . . . L} identifying a standard basis vector eℓ∈RL (Figure 122c) that becomes a
vector pij ∈ {e1 . . . eL , 0}⊂RL constituting matrix Pi representing a particular piece.
Rows {pT

ij , j =1 . . . 4} of Pi are ordered counterclockwise as in Figure 124. Color data is

given in Figure 125 for the demonstration game board. Then matrix Pi describes the ith

piece, excepting its rotation and position on the board.

Our intent is to show how to vectorize the board, with respect to whole pieces, and
then express Eternity II as a very hard combinatorial objective with linear constraints:
All pieces are initially placed in order of their given index i assigned by Monckton. The
vectorized game-board has initial state represented within a matrix

P ,





P1
...

PM



∈ R4M×L (915)

enumerated in Figure 125 for the demonstration game. Moving pieces all at once about
the square board corresponds to permuting pieces Pi on the vectorized board represented
by matrix P , while rotating the ith piece is equivalent to circularly shifting row indices of
Pi (rowwise permutation). This permutation problem, as stated, is doubly combinatorial
(M ! 4M combinations) because we must find a permutation of pieces (M !)

Ξ ∈ RM×M (916)

4.75Oliver Riordan asserts that at least one solution exists; I suspect there is only one solution although
Monckton insists they number in the thousands. Ignoring board-boundary constraints and the full game’s
single mandatory piece placement, a loose upper bound on number of combinations is M ! 4M = 256! 4256.
That number gets further loosened: 150638!/(256!(150638−256)!) after presolving Eternity II (941).

https://www.youtube.com/watch?v=qxNucOJunys
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[ e3 0 0 e1 ]T

[ e2 e4 e4 e4 ]T

[ e2 e1 0 e1 ]T

[ e4 e1 0 e1 ]T

[0 0 e3 e1 ]T

[ e2 e2 e4 e2 ]T

[ e2 e3 0 e3 ]T

[ e4 e3 0 e3 ]T

[0 e3 e3 0 ]T

[ e2 e2 e4 e4 ]T

[ e2 e3 0 e1 ]T

[ e4 e1 0 e3 ]T

[0 e1 e1 0 ]T

[ e2 e2 e4 e4 ]T

[ e2 e1 0 e3 ]T

[ e4 e3 0 e1 ]T

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

Figure 125: Vectorized demo-game board illustrating M = 16 matrices in R4×L describing
initial state P ∈R4M×L of puzzle pieces; four colors per puzzle-piece (Figure 124), L=4
colors total in game (Figure 122c). Standard basis vectors eℓ in RL represent color so that
color difference measurement remains unweighted.
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Figure 126: All pieces in their initial state on vectorized demo-game board. Line segments
indicate differences ∆ (922), © indicate edges on board boundary β (924). Entries are
indices ℓ identifying standard basis vectors eℓ∈RL from Figure 125.

and quadrature rotation Πi∈R4×4 of each individual piece (4M ) that solve the puzzle;

(Ξ ⊗ I4)ΠP = (Ξ ⊗ I4)





Π1P1
...

ΠMPM



∈ R4M×L (917)

where

Πi∈ {π1 , π2 , π3 , π4} ,























1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









,









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









,









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0























(918)

Π ,







Π1 0
. . .

0 ΠM






∈ R4M×4M (919)
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and where I4 , I∈ S4 and π1 = I4 . Initial game-board state P (915) corresponds to
Ξ = I and Πi = π1 ∀ i . Circulant [201] permutation matrices {π1 , π2 , π3 , π4}⊂ R4×4

correspond to clockwise piece-rotations {0◦, 90◦, 180◦, 270◦}.

4.8.4 piece edge adjacency ∆

Rules of the game dictate that adjacent pieces on the square board have colors that
match at their touching edges as in Figure 122b.4.76 A complete match is therefore
equivalent to demanding that a constraint, comprising numeric color differences between
2
√

M(
√

M−1) touching edges, vanish. Because vectorized board layout is fixed and its
cells are loaded or reloaded with pieces during play, locations of adjacent edges in R4M×L

(917) are known a priori. We need simply form differences between colors from adjacent
edges of pieces loaded into those known locations. Each difference may be represented
by a constant cardinality-2 vector ∆i , whose entries belong to {−1, 0, 1} , from a set
{∆i∈R4M , i=1 . . . 2

√
M(

√
M−1)}. Defining sparse constant wide matrix

∆ ,







∆T
1
...

∆T
2
√

M(
√

M−1)






∈ R2

√
M(

√
M−1)×4M (920)

then the desired constraint is

∆(Ξ ⊗ I4)ΠP = 0 ∈ R2
√

M(
√

M−1)×L (921)

For the demonstration game, the first twelve entries of ∆ correspond to blue line segments
(leftmost) in Figure 126 while the twelve remaining entries correspond to red lines: for
ei∈R64

∆ =

























































































eT
1 − eT

19

eT
5 − eT

23

eT
9 − eT

27

eT
13− eT

31

eT
17− eT

35

eT
21− eT

39

eT
25− eT

43

eT
29− eT

47

eT
33− eT

51

eT
37− eT

55
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∈ R24×64 (922)

4.76Piece adjacencies on the square board map linearly to the vectorized board, of course.
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Figure 127: Sparsity pattern for composite permutation matrix Φ⋆∈R4M×4M representing
solution from Figure 122b. Each four-point cluster represents a circulant permutation
matrix from (918). Any M =16-piece solution may be verified by the TOMY demo.

4.8.5 game board boundary β

Boundary of the square board must be colored grey. This means there are 4
√

M boundary
locations in R4M×L (917) that must have value 0T. Because (Ξ ⊗ I4)ΠP ≥0 , these may
all be lumped into one equality constraint

βT(Ξ ⊗ I4)ΠP 1 = 0 (923)

where β∈R4M
+ is a sparse vector constant having entries in {0, 1} complementary to the

known 4
√

M zeros. For the demonstration game board Figure 126, for example,

β= [0110001000100011010000000000000101000000000000011100100010001001]T∈R64 (924)

4.8.6 consolidating permutations Φ

By defining

Φ , (Ξ ⊗ I4)Π ∈ R4M×4M (925)

this square matrix becomes a structured permutation matrix replacing the product of
permutation matrices. Then puzzle piece edge adjacency constraint (921) becomes

∆ΦP = 0 ∈ R2
√

M(
√

M−1)×L (926)

while game board boundary constraint (923) becomes

βTΦP 1 = 0 ∈ R (927)

Now partition composite permutation matrix variable Φ into 4×4 blocks

Φ ,







φ11 · · · φ1M

...
. . .

...
φM1 · · · φMM






∈ R4M×4M (928)

http://www.playzgame.com/online-flash-games/Eternity-II.php
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where Φ⋆
ij ∈ {0, 1} because (918)

φ⋆
ij ∈ {0 , π1 , π2 , π3 , π4}⊂ R4×4 (929)

An optimal composite permutation matrix Φ⋆ is represented pictorially in Figure 127.
Now we ask what are necessary conditions on Φ⋆ at optimality:

� 4M -sparse4.77 (cardinality-1 per row or column) and nonnegativity.

� Each column has one 1. Each row has one 1.

� Entries along each and every diagonal of each and every 4×4 block φ⋆
ij are equal.

� Corner pair of 2×2 submatrices on antidiagonal of each and every 4×4 block φ⋆
ij

are equal.

We want an objective function whose global optimum, when attained, certifies that the
puzzle has been solved. Then, in terms of this Φ partitioning (928), the Eternity II problem
is a minimization of cardinality with optimal objective value 8M :4.78

minimize
Φ∈R4M×4M

4M
∑

i=1

‖Φ(i , :)T‖0 + ‖Φ(: , i)‖0

subject to ∆ΦP = 0
βTΦP 1 = 0
Φ1 = 1
ΦT1 = 1
(IM ⊗ Rd)Φ(IM ⊗ RT

d ) = (IM ⊗ Sd)Φ(IM ⊗ ST
d )

(IM ⊗ Rφ)Φ(IM ⊗ ST
φ ) = (IM ⊗ Sφ)Φ(IM ⊗ RT

φ )

(e121⊗ I4)TΦ(e139⊗ I4) = π3

Φ ≥ 0

(930)

which is convex in the constraints where e121 , e139∈RM are members of the standard
basis representing mandatory piece P139 placement in the full game,4.79 where

Rd ,





1 0 0
1 0

0 1 0



∈ R3×4, Sd ,





0 1 0
0 1

0 0 1



∈ R3×4 (931)

Rφ ,

[

1 0 0 0
0 1 0 0

]

∈ R2×4, Sφ ,

[

0 0 1 0
0 0 0 1

]

∈ R2×4 (932)

and where Φ≥0 denotes entrywise nonnegativity. These matrices R and S enforce
circulance.4.80 Full game mandatory-piece rotation requires equality constraint π3 .

4.77Define sparsity as ratio of number of nonzero entries to matrix-dimension product. For matrices, the
average number of nonzeros per row or column is easier to understand and likely to be small for typical
LP problems, independent of the dimensions. −Michael Saunders
4.78A nonobvious method to transform cardinality minimization, in permutation problems, to rank
minimization is disclosed in Example 4.7.0.0.3 with reference to Figure 115.
4.79 meaning that piece P139 (numbered 139 by Monckton) must be placed in cell 121 on the board
(Figure 123) with rotation π3 (p.302).
4.80Since 0 is the trivial circulant matrix, application is democratic over all blocks φij .

https://web.stanford.edu/~saunders
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4.8.7 permutation polyhedron

Constraints Φ1=1 and ΦT1=1 and Φ≥0 confine Φ to a permutation polyhedron (104)
in R4M×4M ; which is, the convex hull of permutation matrices. The objective enforces
minimal cardinality per row and column. Slicing the permutation polyhedron, by looking
at a particular row or column subspace of Φ , looks like intersection of a 1-norm ball
with a nonnegative orthant. Cardinality 1 vectors reside at vertices of a one norm ball.
(Figure 77)4.81 Hence, the optimal objective is a sum of cardinalities 1.

Any vertex, of the permutation polyhedron, is a permutation matrix having minimal
cardinality 4M .4.82 The feasible set of problem (930) is an intersection of the polyhedron
with a number of hyperplanes. Feasible solutions exist that are not permutation matrices.
But the intersection must contain a vertex of the permutation polyhedron because a
solution Φ⋆ cannot otherwise be a permutation matrix; such a solution is presumed to
exist, so it must also be a vertex (extreme point)4.83 of the intersection.

In vectorized variable, by §A.1.1 no.33, problem (930) is equivalent to

minimize
Φ∈R4M×4M

4M
∑

i=1

‖Φ(i , :)T‖0 + ‖Φ(: , i)‖0

subject to (PT⊗ ∆)vec Φ = 0
(P 1 ⊗ β)Tvec Φ = 0
(1T

4M ⊗ I4M ) vec Φ = 1
(I4M ⊗ 1T

4M ) vec Φ = 1
(IM ⊗ Rd ⊗ IM ⊗ Rd − IM ⊗ Sd ⊗ IM ⊗ Sd) vec Φ = 0
(IM ⊗ Sφ ⊗ IM ⊗ Rφ − IM ⊗ Rφ ⊗ IM ⊗ Sφ) vec Φ = 0

(e139⊗ I4 ⊗ e121⊗ I4)Tvec Φ = vec π3

vec Φ º 0

(933)

whose optimal objective value is 8M ; cardinality of permutation matrix Φ⋆ is 4M .
With respect to an orthant, º connotes entrywise nonnegativity (p.647). This problem is
abbreviated:

minimize
Φ∈R4M×4M

4M
∑

i=1

‖Φ(i , :)T‖0 + ‖Φ(: , i)‖0

subject to E vec Φ = τ
vec Φ º 0

(934)

where E∈R17+2L
√

M(
√

M−1)+8M+13M2×16M2

is highly sparse having 4,784,144 nonzero
entries in {−1, 0, 1}.

dim E = 864,593 × 1,048,576 (935)

� Any feasible binary solution is minimal cardinality and vice versa because it is a
vertex of the feasible set. (§2.3.2.0.4)

But number of equality constraints is too large for contemporary binary solvers.4.84 So
again, we reformulate the problem:

4.81This means: each vertex of the permutation polyhedron, in isometrically isomorphic R
16M2

, is
coincident with a vertex of 8M 1-norm balls in 4M -dimensional subspaces.
4.82 but maximal Frobenius norm (p.311).
4.83Vertex means zero-dimensional exposed face (§2.6.1.0.1); intersection with a strictly supporting
hyperplane. There can be no further intersection with a feasible affine subset that would enlarge that
face; id est, a vertex of the permutation polyhedron persists in the feasible set.
4.84Saunders’ program lusol can reduce that number to 797,508 constraints by eliminating linearly
dependent rows of matrix E , but that is not enough to overcome numerical issues with the best solvers.

https://www.convexoptimization.com/wikimization/index.php/Saunders
https://web.stanford.edu/group/SOL/software/lusol
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4.8.8 canonical Eternity II

Because each block φij of Φ (928) is optimally circulant, comprising four permutation
matrices (929) uniquely identifiable by their first column (918), we may take as variable
every fourth column of Φ :

Φ̃ , [ Φ(: , 1) Φ(: , 5) Φ(: , 9) · · · Φ(: , 4M−3) ] ∈ R4M×M (936)

where Φ̃ij ∈ {0, 1}. Then, for ei∈R4

Φ = (Φ̃⊗eT
1 )+(IM⊗π4)(Φ̃⊗eT

2 )+(IM⊗π3)(Φ̃⊗eT
3 )+(IM⊗π2)(Φ̃⊗eT

4 ) ∈ R4M×4M (937)

This formula describes replication (+), columnar upsampling & shifting (ei∈R4), and
rotation (πi∈R4×4) of Φ̃ . By §A.1.1 no.45 and no.46

vec Φ = (IM ⊗ e1 ⊗ I4M + IM ⊗ e2 ⊗ IM ⊗ π4 + IM ⊗ e3 ⊗ IM ⊗ π3 + IM ⊗ e4 ⊗ IM ⊗ π2) vec Φ̃

, Y vec Φ̃ ∈ R16M2

(938)

where Y∈R16M2×4M2

. Because three out of every four rows (per consecutive quadruple
adjacent rows of Φ̃) equal 0T, permutation polyhedron (104) demands that each quadruple
and each column sum to 1 : respectively, (IM ⊗ 1T

4 )Φ̃1=1 and Φ̃T1=1 where Φ̃ is now
variable and optimally binary. By substitution of columnar subsampled matrix Φ̃ (936) for
permutation matrix Φ (925), circulance constraints in R and S (which are most numerous)
may be dropped from Eternity II problem (930) because circulance of φij is built into
Φ-reconstruction formula (937). We are left with a feasibility problem equivalent to (930),
for e121 , e139∈RM

find Φ̃∈B4M×M

subject to ∆ΦP = 0
βTΦP 1 = 0

(IM ⊗ 1T
4 )Φ̃1 = 1

Φ̃T1 = 1
(e121⊗ I4)TΦ(e139⊗ I4) = π3

(939)

where ∆∈R2
√

M(
√

M−1)×4M (920) (identifying adjacent edges) is evaluated in (922), initial
piece placement P ∈R4M×L is defined in (915) and enumerated in Figure 125, β∈R4M

+

defining a game board boundary in Figure 126 has corresponding value (924), and where
π3 (918) determines mandatory-piece rotation. Thus, Eternity II (933) is equivalently
transformed

minimize
Φ̃∈R4M×M

4M
∑

i=1

‖Φ̃(i , :)T‖0 +
M
∑

j=1

‖Φ̃(: , j)‖0

subject to (PT⊗ ∆)Y vec Φ̃ = 0

(P 1 ⊗ β)TY vec Φ̃ = 0

(1T
M ⊗ IM ⊗ 1T

4 ) vec Φ̃ = 1

(IM ⊗ 1T
4M ) vec Φ̃ = 1

(e139⊗ e121⊗ I4)Tvec Φ̃ = π3e1

vec Φ̃ º 0

(940)

whose optimal objective value is 2M since optimal cardinality of Φ̃⋆ (with entries in {0, 1})
is M , where matrix constant Y maps subsampled Φ̃ to Φ via (938), and where e1∈ R4.
In abbreviation of reformulation (940)

minimize
Φ̃∈R4M×M

4M
∑

i=1

‖Φ̃(i , :)T‖0 +
M
∑

j=1

‖Φ̃(: , j)‖0

subject to Ẽ vec Φ̃ = τ̃

vec Φ̃ º 0

(941)
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number of equality constraints is now 11,077 ; an order of magnitude fewer constraints

than (934). Sparse Ẽ∈R5+2L
√

M(
√

M−1)+2M×4M2

replaces matrix E . Number of columns
has also been reduced, down from more than a million:

dim Ẽ = 11,077 × 262,144 (942)

But this dimension remains out of reach of most highly regarded academic and commercial
binary solvers; especially disappointing insofar as sparsity of Ẽ is high with 1,503,732
nonzero entries in {−1, 0, 1, 2} ; element {2} arising only in the β constraint which is soon
to disappear after presolving.

4.8.9 presolving: game board’s edge

Any process of discarding rows and columns, prior to numerical optimization, is called
presolving. The constraint in β , which zeroes the board at its edges, has all positive
coefficients. The zero sum means that all vec Φ̃ entries, corresponding to nonzero entries in
row vector (P 1 ⊗ β)TY , must be zero. For the full game, this means we may immediately
eliminate 57,840 variables from 262,144. After zero-row and dependent-row (two) removal,

dim Ẽ → 10,054 × 204,304 (943)

with entries in {−1, 0, 1}.

4.8.10 geometric presolver: polyhedral cone theory

Eternity II problem (941) constraints are interpretable in the language of convex cones:
The columns of matrix Ẽ constitute a set of generators for a pointed (§2.12.2.2) polyhedral
cone

K = {Ẽ vec Φ̃ | vec Φ̃º 0} (944)

Even more intriguing is the observation: vector τ̃ resides on that polyhedral cone’s
boundary.4.85 (§2.13.4.2.4) We may apply techniques from §2.13.5 to prune generators
not belonging to the smallest face of that cone, to which τ̃ belongs, because generators of
that smallest face must hold a minimal cardinality solution. Matrix dimension is thereby
reduced:4.86

Designate I as the set of all surviving column indices of Ẽ from 4M2 =262,144 columns:

I ⊂
{

1 . . . 4M2
}

(945)

The ith column Ẽ(: , i) of matrix Ẽ belongs to the smallest face F of K that contains τ̃ if
and only if

find vec Φ̃∈Rdim I , µ∈R
subject to µτ̃ − Ẽ(: , i) = Ẽ vec Φ̃

vec Φ̃ º 0

(384)

is feasible. By a transformation of Saunders, this linear feasibility problem is the same as

find vec Φ̃∈Rdim I , µ∈R
subject to Ẽ vec Φ̃ = µτ̃

vec Φ̃ º 0

(vec Φ̃)i ≥ 1

(946)

4.85This observation applies equally well to cones generated by both (942) and (943). And τ is on the
boundary of the polyhedral cone generated by E (935).
4.86Column elimination can be quite dramatic but is dependent upon problem geometry. By method of
convex cones, we will discard 53,666 more columns via Saunders’ pdco; a total of 111,506 columns will
have been removed from 262,144. Following dependent-row removal via lusol, dimension of Ẽ becomes
7,362× 150,638.

https://www.convexoptimization.com/wikimization/index.php/Saunders
https://web.stanford.edu/group/SOL/software/pdco
https://web.stanford.edu/group/SOL/software/lusol
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Figure 128: Directed graph of adjacency matrix for Ẽ (948) (Ẽ =A in [427]) representing
reduced equality constraint in Eternity II problem. “Movie”

⌊

¸
⌋

from [240] shows
realization in 3D; color corresponding to line-segment length. (Realization by Yifan Hu.)

A minimal cardinality solution to Eternity II (941) implicitly constrains Φ̃⋆ to be binary.
So this test (946) of membership to F(K∋ τ̃ ) may be tightened to a test of (vec Φ̃)i =1 ;
id est, for i=1 . . . dim I=1 . . . 204,304 distinct linear feasibility problems

find vec Φ̃∈Rdim I

subject to Ẽ vec Φ̃ = τ̃

vec Φ̃ º 0

(vec Φ̃)i = 1

(947)

whose feasible set is a proper subset of that in (946). Real variable µ can be set to 1
because if it must not be, then feasible (vec Φ̃)i =1 could not be feasible to Eternity II
(941).

If infeasible here in (947), then the only choice remaining for (vec Φ̃)i is 0 ; meaning,
column Ẽ(: , i) may be discarded but only after all columns have been tested. This
tightened problem (947) therefore tells us two things when feasible: Ẽ(: , i) belongs to the
smallest face of K that contains τ̃ , and (vec Φ̃)i constitutes a nonzero vertex-coordinate
of permutation polyhedron (104). After presolving via this conic pruning method (with
subsequent zero-row and dependent-row removal),

dim Ẽ → 7,362 × 150,638 (948)

http://mathworld.wolfram.com/AdjacencyMatrix.html
https://www.convexoptimization.com/wikimization/index.php/Dattorro_Convex_Optimization_of_Eternity_II
https://www.convexoptimization.com/TOOLS/EternityIImovie.zip
https://www.cise.ufl.edu/research/sparse/matrices/Dattorro/EternityII_A.html
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Entries in vec Φ̃ , corresponding to discarded columns of Ẽ , are optimally 0. But now τ̃
resides relatively interior to the polyhedral cone (944) generated by this reduction Ẽ . Its
binary nature is evident in Hu’s depiction of our reduced “A” matrix in Figure 128.

4.8.10.1 c.i. presolver: Generators of smallest face are conically independent

Matrix Ẽ now accounts for the board’s edge and holds what remains after discard of
all generators not in the smallest face F of cone K that contains τ̃ . To further prune
generators relatively interior to that smallest face, we may subsequently test for conic
dependence as described in §2.10: for i=1 . . . dim I = 1 . . . 150,638

find vec Φ̃∈Rdim I

subject to Ẽ vec Φ̃ = Ẽ(: , i)

vec Φ̃ º 0

(vec Φ̃)i = 0

(287)

If feasible, then column Ẽ(: , i) is a conically dependent generator of the smallest face and
must be discarded from matrix Ẽ before proceeding with test of remaining columns.

Generators interior to a smallest face could provide a lower cardinality solution, so it
might be imprudent to prune. It turns out, for Eternity II: generators of the smallest face,
previously found via (947), comprise a minimal set; id est, (287) is never feasible; no more
columns of Ẽ can be discarded.4.87

m × dim I , dim Ẽ = 7,362 × 150,638 (948)

Successive reductions of E and τ can be found on Wıκımization [427] in Matlab
format.

Incorporating more Clue Pieces, provided by Monckton, makes the Eternity II problem
harder in the sense that solution set is diminished; the target gets smaller.4.88

4.8.11 affinity for maximization

Reversing tack, Eternity II optimization resembles Figure 33a (not (b)) because variable
Φ̃ is implicitly bounded above by design; 1º vec Φ̃ by confinement of Φ in (930) to the
permutation polyhedron (104), for i=1 . . . dim I=1 . . . 150,638

1 = maximize
Φ̃

(vec Φ̃)i

subject to Ẽ vec Φ̃ = τ̃

vec Φ̃ º 0

(949)

Unity is always attainable, by (947). By (936) this means (§4.6.1.4)

M = maximize
y(Φ̃) , Φ̃

(1 − y)Tvec Φ̃

subject to Ẽ vec Φ̃ = τ̃

vec Φ̃ º 0

≡
maximize

Φ̃
‖vec Φ̃‖dim I

M

subject to Ẽ vec Φ̃ = τ̃

vec Φ̃ º 0

(950)

where
y = 1 − ∇‖vec Φ̃‖dim I

M
(817)

4.87One cannot help but notice a binary selection of variable by tests (947) and (287): Geometrical test
(947) (smallest face) checks feasibility of vector entry 1 while geometrical test (287) (conic independence)
checks feasibility of 0. Changing 1 to 0 in (947) is always feasible for Eternity II.
4.88But given the four clues provided, our geometric presolver (p.307) produces a 15% smaller face; a
total very nearly half the 262,144 columns can be proven to correspond to 0 coefficients.



310 CHAPTER 4. SEMIDEFINITE PROGRAMMING

Figure 129: Polyhedron vertices • inscribed on sphere skeleton in R3 for visualization of
permutation matrices in abstract isomorphic space. Vertices represent matrices, of the
same dimension, all equidistant from origin. Sphere about origin represents level set at
maximum of simple quadratic xTx where vertices intersect sphere. Permutation matrices
are represented by those vertices in nonnegative orthant. If sphere expands, intersection
with polyhedron becomes empty. (Drawing by Robert Austin using Stella4D.)

is a direction vector from the cardinality minimization technique of convex iteration in
§4.6.1.1 and where ‖vec Φ̃‖dim I

M
is a k-largest norm (§3.2.2.1, k=M). When upper bound

M in (950) is met, solution vec Φ̃⋆ will be optimal for Eternity II because it must then be
a Boolean vector with minimal cardinality M .

Maximization of convex function ‖vec Φ̃‖dim I
M

(monotonic on Rdim I
+ ) is not a convex

problem, though the constraints are convex. [354, §32] Geometrical visualization of this
problem formulation is clear. We therefore choose to work with a complementary
direction vector z , in what follows, in predilection for a mental picture of convex function
maximization.

4.8.11.1 complementary direction vector is optimal solution of Eternity II

Instead of solving (950), which is difficult, we propose iterating a convex problem sequence:
for 1 − y ← z

maximize
vec Φ̃∈R

dim I
zTvec Φ̃

subject to Ẽ vec Φ̃ = τ̃

vec Φ̃ º 0

(951)

maximize
z∈R

dim I
zTvec Φ̃⋆

subject to 0 ¹ z ¹ 1

zT1 = M

(539)

Variable Φ̃ is implicitly bounded above at 1 by design of Ẽ . A globally optimal
complementary direction vector z⋆ will always exactly match an optimal solution vec Φ̃⋆

for convex iteration of any problem formulated as maximization of a Boolean variable:

https://robertlovespi.wordpress.com/2014/09/21/an-unsolved-problem-involving-the-icosahedron-and-the-dodecahedron-and-their-circumscribed-spheres
https://www.software3d.com/Stella.php
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here we have
z⋆Tvec Φ̃⋆ , M (952)

Because z⋆ = vec Φ̃⋆, Eternity II can be equivalently formulated as maximization of a
convex quadratic instead:

maximize
vec Φ̃∈R

dim I
(vec Φ̃)Tvec Φ̃

subject to Ẽ vec Φ̃ = τ̃

vec Φ̃ º 0

(953)

a nonconvex problem but requiring no convex iteration. The optimal objective is known:
(vec Φ̃⋆)Tvec Φ̃⋆ = ‖Φ̃⋆‖2

F = 1Tvec Φ̃⋆ = M with vec Φ̃⋆ binary and cardinality-M attained
at a vertex of the permutation polyhedron (p.305). (Figure 129)

4.8.11.2 rumination

If it were possible to form a nullspace basis Z for Ẽ , of about equal sparsity such that

vec Φ̃ = Z ξ + vec Φ̃p (119)

then a problem formulation equivalent to (953)

maximize
ξ

(Z ξ + vec Φ̃p)T(Z ξ + vec Φ̃p)

subject to Z ξ + vec Φ̃p º 0
(954)

might invoke optimality conditions as obtained in [232, thm.8].

4.9 Quantum optimization

There was a time when the newspapers said that only twelve men understood
the theory of relativity. I don’t believe there ever was such a time. . . . a lot
of people kind of understood the theory of relativity in some way or other, but
more than twelve. On the other hand, I think I can safely say that nobody
understands quantum mechanics. −Richard Feynman, 1964

A superconducting quantum annealer is the physical embodiment of an optimizer that
globally minimizes a hypersurface4.89 whose modes increase factorially with dimension.

Note that this architecture is very different from conventional computing. The
processor has no large areas of memory (cache), rather each qubit has a tiny
piece of memory of its own. In fact, the chip is architected more like a biological
brain than the common ‘Von Neumann’ architecture of a conventional silicon
processor. One can think of the qubits as being like neurons, and the couplers as
being like synapses that control the flow of information between those neurons.

−[dwavesys.com , §1.3]

A quantum annealer is unlike a von Neumann computer architecture insofar as it does not
solve equations, there are no conditionally executable instructions, one qubit (the quantum
analogue to bit) can be in the two binary states at once,4.90 and qubit values may not be
set by a programmer [105, §2]. There is no clock in a quantum annealer which operates at
a temperature colder than outer space: near 0◦ Kelvin. The first commercially available

4.89 an n−1-dimensional manifold in R
n.

4.90 the qubit’s superposition state.

https://www.youtube.com/watch?v=aAgcqgDc-YM
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
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Figure 130: N×N = 12×12 Chimera topology for D:Wave 1152-qubit • chip architecture
illustrating 3,360(= 16x12x12 + 2x11x4x12) couplers •−−−• by line segments between
qubits (lines cross without intersection). Coupled qubits are neighbors, but distance is
not preserved by this map. (Drawing by Diane Carr.)

https://www.dwavesys.com
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Figure 131: Chimera circuit chip layout abstract, topological dimension N = 1 illustrated.
Eight qubits comprise hollow slabs <= whereas couplers are represented by sixteen blue
discs • . Chip layout is dual to graph topology in Figure 130. Up/down arrows connote
final qubit states.

quantum annealer was delivered in 2011.4.91 Even though its magnetic superconducting
niobium qubits are etched on a silicon substrate, a chip, the D:Wave quantum annealer is
actually the first analog computer of its kind.4.92

Ising’s spin model [49, §2.1] [359, p.297] is a measure of molecular energy for a magnetic
material, for bipolar binary s∈Bn

±= {−1, 1}n

E(s) = 1
2

〈

J , ssT
〉

+ 〈h , s〉 (955)

Given applied field strength h∈Rn and interaction field strength J ∈Sn
h , a quantum

annealer minimizes this energy E which is always bounded because vector variable s
is bounded above and below.

A graph of the D:Wave N×N Chimera topology (N = 12) is represented in Figure 130;
a neighboring qubit topology. Hollow matrix J represents coupling that occurs among
physically neighboring qubits. Scalar 1

2 accounts for bidirectional coupling implied by J
matrix symmetry. Coupling, which is an application of entanglement in quantum physics,
can be controlled only for physically neighboring qubits. Increasing number of neighbors is
therefore of practical importance. [48] Effective coupling of distant qubits is implemented
by replicating qubits redundantly. [105, §3.4] As rule of thumb, complete coupling of n
qubits (highest density J ) would leave O(

√
n) qubits available.4.93

4.91It is not capable of solving Eternity II in 2016 because of qubits insufficient in number and coupling.
4.92At present, there are two emergent technologies for harnessing quantum phenomena: adiabatic model
(analog annealer) and gate model (analogue to Boolean logic gates of digital computers).
4.931152-qubit architecture machines, having 3,360 physical couplers, became available in 2015 for $10M
USD. In 2016, 2048-qubit chips (6,016 couplers) were announced. If qubit growth continues following Rose’
law, we should see million-qubit chips in 2025. Given n qubits, complete coupling requires n(n−1)/2
couplers. Insufficient coupler population, not qubits, will become the bottleneck. In the near term,
innovating a three-dimensional qubit topology would accelerate ratio of coupler to qubit growth.

https://www.dwavesys.com/news/d-wave-systems-sells-its-first-quantum-computing-system-lockheed-martin-corporation
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://www.dwavesys.com
https://books.google.com/books?id=2OCiLCwwPxQC&pg=PA297&lpg=PA297&dq=ising+spin+model+symmetric+matrix&source=bl&ots=_VPew3n2l1&sig=Ln-HEHC3YNtR7ViRKUr-Jki1Xnc&hl=en&sa=X&ved=0ahUKEwiZg7exh57JAhVWMYgKHbuaB6UQ6AEIPzAF#v=onepage&q=ising%20spin%20model%20symmetric%20matrix&f=false
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Chimera provides 8N2 qubits having N(24N−8) physical couplers; coupler
qubit = 3 − 1

N

approaches three couplers per qubit on average, as topological dimension N increases,
although it has no complete circuit of three qubits. Because couplers are bidirectional,
each qubit effectively sees twice the coupler/qubit ratio:4.94

6 − 2

N
couplings/qubit (956)

For 1≤N≤ 2 , this coupling number is exact. For N > 2 , this real number should be
regarded as average number of couplings seen by a qubit. Physical layout of Chimera
reveals a duality with graph topology: In chip layout Figure 131, physical qubits are
represented by hollow slabs <= and couplers by discs • . But in the topological graph in
Figure 130, qubits are represented by discs • and couplers by line segments ------ .

The D:Wave machine performs physical, not simulated, annealing. The system is
initialized to a superposition (a 2n simultaneity) of all possible states [470, p.2] by
application of a globally transverse magnetic field [213, slide 8/45]. At its outset, the
energy hypersurface appears globally convex but settles into the Ising model after about
20µs [446] with 2015 technology.4.95 A globally optimal solution cannot be guaranteed
because present understanding of the quantum annealing process is nondeterministic. To
increase probability of finding a global solution, the same problem is sequentially executed
thousands of times on the quantum annealer. The minimum, from each run, becomes a
sample in proximity to the global minimum of binary quadratic function (955).4.96

By change of variable, for binary q∈Bn = {0, 1}n

s ← 2q − 1 (957)

the resulting quadratic unconstrained binary optimization (QUBO)

2 minimize
q∈{0, 1}n

〈

J , qqT
〉

+ 〈h − J1 , q〉 (958)

remains an equivalent energy minimization whose constant term 1T(J1 1
2 − h) is ignored.

Whereas

δ(ssT) = 1 , δ
(

qqT
)

= q (959)

this latter equality in q means that QUBO (958) is the same as

2 minimize
q∈{0, 1}n

〈

J , qqT
〉

+
〈

δ(h − J1) , qqT
〉

= 2 minimize
q∈{0, 1}n

〈

J + δ(h − J1) , qqT
〉

(960)

Coefficient matrix J+ δ(h−J1) can be indefinite.
To abstract problem formulation away from the machine a little more (to simplify

presentation), a QUBO shall be generalized

minimize
q∈{0, 1}n

qTBq + aTq (961)

where a∈Rn is a coefficient vector and where hollow matrix B∈Rn×n (comprising
quadratic coefficients) is not necessarily symmetric; its main diagonal may be assumed
0 and its lower triangular part empty.

4.94Complete coupling is impossible with current technology; it would require an
8N2(8N2−1)

2
line-segment

topology: were coupler
qubit

= 8N2−1
2

, each qubit would effectively see 8N2− 1 couplings.
4.95 2011 saw 128-qubit machines with settling time at about 75µs [255].
4.96Sampling is necessary because successive minima can be offset by as much as a few percent from the
global minimum.
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4.9.1 quantum gap maximization by linear programming

To further increase probability of finding a globally optimal solution, the discrete gap
between optimal objective and least suboptimal objective is maximized by problem design
[48] (963); by discriminating coefficients as in Example 4.9.2.0.1 and Example 4.9.2.0.2.
D:Wave quantum annealer coefficient quantization is coarse, encoded by application of an
external magnetic field whose resolution is about 4 or 5 bits over [−2 , 2].

Because the Eternity II puzzle (§4.8) can be formulated as a permutation problem, it is
of interest to express a permutation polyhedron constraint (p.305). To illustrate realization
of just one row of a permutation matrix in QUBO form (961), consider an n-qubit vector
q that is allowed to have only one nonzero; id est, a discrete impulse (a.k.a Kronecker
delta) over a vector of qubits. In other words, we need to translate this program

find q∈Bn

subject to qT1 = 1
(962)

into a QUBO. First we analyze a three-qubit case, then generalize to n in (965):

quantum impulse:
·

· · · · · ·
q1 q2 q3 B12q1q2 + B13q1q3 + B23q2q3 + a1q1 + a2q2 + a3q3

desirable
0 0 1 a3

0 1 0 a2

1 0 0 a1

undesirable
0 0 0 0
0 1 1 B23 + a2 + a3

1 0 1 B13 + a1 + a3

1 1 0 B12 + a1 + a2

1 1 1 B12 + B13 + B23 + a1 + a2 + a3

Coefficients B and a (961) are selected by solution to a linear program whose undesirable
objectives always exceed the objective for each and every desirable state:

maximize
B , a , gap

gap

subject to 0 ≥ a3 + gap
0 ≥ a2 + gap
0 ≥ a1 + gap
B23 + a2 + a3 ≥ a3 + gap
B23 + a2 + a3 ≥ a2 + gap
B23 + a2 + a3 ≥ a1 + gap
B13 + a1 + a3 ≥ a3 + gap
B13 + a1 + a3 ≥ a2 + gap
B13 + a1 + a3 ≥ a1 + gap
B12 + a1 + a2 ≥ a3 + gap
B12 + a1 + a2 ≥ a2 + gap
B12 + a1 + a2 ≥ a1 + gap
B12 + B13 + B23 + a1 + a2 + a3 ≥ a3 + gap
B12 + B13 + B23 + a1 + a2 + a3 ≥ a2 + gap
B12 + B13 + B23 + a1 + a2 + a3 ≥ a1 + gap

−2 ≤ a ≤ 2
−2 ≤ B ≤ 2

(963)
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having solution:

a⋆ =





−1
−1
−1



 , B⋆ =





0 2 2
0 0 2
0 0 0



 , gap⋆ = 1 (964)

easily found by cvx [199] under Matlab. For higher-dimensional q vectors (by induction),

a⋆ = −1∈Rn, B⋆ =





0 2
. . .

0 0



∈ Rn×n, gap⋆ = 1 (965)

4.9.2 quantum Eternity II

Any equality of the form Ax = b , having binary solution x , may be expressed as a QUBO

minimize
x∈{0, 1}n

xTATAx − 2xTATb (966)

(§E.0.1.0.1) where B,ATA−δ2(ATA) and a,δ(ATA)−2ATb from (961). An adiabatic
quantum annealer (like D:Wave’s) is theoretically capable of solving Eternity II because
it may be expressed Ẽq = τ̃ (941) assuming that any feasible binary solution is minimal
cardinality (p.305). This formulation (966) decreases sparsity, from that of A , which
increases required qubit coupling.4.97

4.9.2.0.1 Example. (E. D. Dahl) Nonincreasing discrete step.

quantum step:
· · ·

· · ·
q1 q2 B12q1q2 + a1q1 + a2q2

desirable
0 0 0
1 0 a1

1 1 B12 + a1 + a2

undesirable
0 1 a2

maximize
B , a , gap

gap

subject to a2 ≥ 0 + gap
a2 ≥ a1 + gap
a2 ≥ B12 + a1 + a2 + gap

−1 ≤ a ≤ 1
−1 ≤ B ≤ 1

(967)

Upper and lower bounds are 1 , on each entrywise inequality, because gap is sufficient;

a⋆ =

[

−1
1

]

, B⋆ =

[

0 −1
0 0

]

, gap⋆ = 1 (968)

Extensible to higher dimension; e.g, {000 , 100 , 110 , 111}T are desirable q∈R3. 2

4.97For sparsity as defined on page 304, for nonsymmetric B matrix, and for:

� matrix E corresponding to (935), sparsity decreases from 0.0000052771 to 0.002683

� matrix Ẽ corresponding to (942), sparsity decreases from 0.00051786 to 0.027965

� matrix Ẽ corresponding to (943), sparsity decreases from 0.00056985 to 0.0047694

� matrix Ẽ corresponding to (948), sparsity decreases from 0.00070522 to 0.0042453 .

https://www.convexoptimization.com/TOOLS/Canary.pdf
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4.9.2.0.2 Example. (E. D. Dahl) Boolean qubit and function.
We consider the case where second argument to and is complemented:

quantum and function: q3 = q1 · \q2

q1 q2 q3 B12q1q2 + B13q1q3 + B23q2q3 + a1q1 + a2q2 + a3q3

desirable
0 0 0 0
0 1 0 a2

1 0 1 B13 + a1 + a3

1 1 0 B12 + a1 + a2

undesirable
0 0 1 a3

0 1 1 B23 + a2 + a3

1 0 0 a1

1 1 1 B12 + B13 + B23 + a1 + a2 + a3

maximize
B , a , gap

gap

subject to a3 ≥ 0 + gap
a3 ≥ a2 + gap
a3 ≥ B13 + a1 + a3 + gap
a3 ≥ B12 + a1 + a2 + gap
B23 + a2 + a3 ≥ 0 + gap
B23 + a2 + a3 ≥ a2 + gap
B23 + a2 + a3 ≥ B13 + a1 + a3 + gap
B23 + a2 + a3 ≥ B12 + a1 + a2 + gap
a1 ≥ 0 + gap
a1 ≥ a2 + gap
a1 ≥ B13 + a1 + a3 + gap
a1 ≥ B12 + a1 + a2 + gap
B12 + B13 + B23 + a1 + a2 + a3 ≥ 0 + gap
B12 + B13 + B23 + a1 + a2 + a3 ≥ a2 + gap
B12 + B13 + B23 + a1 + a2 + a3 ≥ B13 + a1 + a3 + gap
B12 + B13 + B23 + a1 + a2 + a3 ≥ B12 + a1 + a2 + gap

−2 ≤ a ≤ 2
−2 ≤ B ≤ 2

(969)

Optimal coefficients are not unique, but optimal objective gap is:

a⋆ =





1
−2

1



 , B⋆ =





0 1 −2
0 0 2
0 0 0



 , gap⋆ = 1 (970)

This optimal B matrix represents required coupling for and but cannot be implemented
in Chimera directly because there is no completely coupled three-qubit circuit. 2

https://www.convexoptimization.com/TOOLS/Canary.pdf
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4.10 Constraining rank of indefinite matrices

Example 4.10.0.0.1, which follows, demonstrates that convex iteration is more generally
applicable to indefinite or nonsquare matrices X∈ Rm×n ; not only to positive semidefinite
matrices. Indeed,

find
X∈R

m×n
X

subject to X ∈ C
rankX ≤ k

≡

find
X, Y, Z

X

subject to X ∈ C
G =

[

Y X
XT Z

]

rankG ≤ k

(971)

Proof. rankG ≤ k ⇒ rankX ≤ k because X is the projection of composite matrix G on
subspace Rm×n. For symmetric Y and Z , any rank-k positive semidefinite composite
matrix G can be factored into rank-k terms R : G = RTR where R , [B C ] and
rankB, rankC ≤ rankR and B∈Rk×m and C∈Rk×n. Because Y and Z and X = BTC
are variable, (1642) rankX ≤ rankB, rank C ≤ rankR = rankG is tight. ¨

So, there must exist an optimal direction vector W ⋆ such that

find
X, Y, Z

X

subject to X ∈ C
G =

[

Y X
XT Z

]

rankG ≤ k

≡

minimize
X, Y, Z

〈G , W ⋆〉

subject to X ∈ C
G =

[

Y X
XT Z

]

º 0

(972)

Were W ⋆ = I , then the optimal resulting trace objective would be equivalent to the
minimization of nuclear norm of X over C by (1886). This means:

� (confer p.180) The argument of any nuclear norm minimization problem may be
replaced with a composite semidefinite variable of the same optimal rank but doubly
dimensioned.

Then Figure 96 becomes an accurate geometrical description of a consequent composite
semidefinite problem objective. But there are better direction vectors than Identity I
[123, §III] which occurs only under special conditions:

4.10.0.0.1 Example. Compressed sensing, compressive sampling. [347]
As our modern technology-driven civilization acquires and exploits ever-increasing
amounts of data, everyone now knows that most of the data we acquire can be thrown
away with almost no perceptual loss - witness the broad success of lossy compression
formats for sounds, images, and specialized technical data. The phenomenon of ubiquitous
compressibility raises very natural questions: Why go to so much effort to acquire all the
data when most of what we get will be thrown away? Can’t we just directly measure the
part that won’t end up being thrown away? −David Donoho [141]

Lossy data compression techniques like JPEG are popular, but it is also well known that
compression artifacts become quite perceptible with signal postprocessing that goes beyond
mere playback of a compressed signal. [256] [284] Spatial or audio frequencies presumed
masked by a simultaneity are not encoded, for example, so rendered imperceptible even
with significant postfiltering (of the decompressed signal) that is meant to reveal them;
id est, desirable artifacts are forever lost, so lossy compressed data is not amenable
to search, analysis, or postprocessing: e.g, sound effects [112] [113] [115] or image
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Figure 132: Massachusetts Institute of Technology (MIT) logo, including its white
boundary, may be interpreted as a rank-5 matrix. This constitutes Scene Y observed
by the one-pixel camera in Figure 133 for Example 4.10.0.0.1.

Y

yi

Figure 133: One-pixel camera. Compressive imaging camera block diagram. Incident
lightfield (corresponding to the desired image Y ) is reflected off a digital micromirror
device (DMD) array whose mirror orientations are modulated in the pseudorandom pattern
supplied by the random number generators (RNG). Each different mirror pattern produces
a voltage at the single photodiode that corresponds to one measurement yi . −[394] [445]

enhancement (Adobe Photoshop).4.98 Further, there can be no universally acceptable
unique metric of perception for gauging exactly how much data can be tossed. For these
reasons, there will always be need for raw (noncompressed) data.

In this example, only so much information is thrown out as to leave perfect
reconstruction within reach. Specifically, the MIT logo in Figure 132 is perfectly
reconstructed from 700 time-sequential samples {yi} acquired by the one-pixel camera
illustrated in Figure 133. The MIT-logo image in this example impinges a 46×81
array micromirror device. This mirror array is modulated by a pseudonoise source
that independently positions all the individual mirrors. A single photodiode (one pixel)
integrates incident light from all mirrors. After stabilizing the mirrors to a fixed
but pseudorandom pattern, light so collected is then digitized into one sample yi

by analog-to-digital (A/D) conversion. This sampling process is repeated with the
micromirror array modulated to a new pseudorandom pattern.

The most important questions are: How many samples are needed for perfect
reconstruction? Does that number of samples represent compression of the original data?

4.98As simple a process as upward scaling, of signal amplitude or image size, will always introduce noise;
even to a noncompressed signal. But scaling-noise is particularly noticeable in a JPEG-compressed image;
e.g, text or any sharp edge.
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0 1000 2000 3000 3726

1 2 3 4 5

samples

Figure 134: Estimates of compression for various encoding methods:
1) linear interpolation (140 samples),
2) minimal columnar basis (311 samples),
3) convex iteration (700 samples) can achieve lower bound predicted by compressed sensing

(670 samples, n=46×81 , k =140 , Figure 112) whereas nuclear norm minimization
alone does not [347, §6],

4) JPEG @100% quality (2588 samples),
5) no compression (3726 samples).

We claim that perfect reconstruction of the MIT logo can be achieved reliably with as
few as 700 samples y=[yi]∈R700 from this one-pixel camera. That number represents
only 19% of information obtainable from 3726 micromirrors.4.99 (Figure 134)

Our approach to reconstruction is to look for low-rank solution to an underdetermined
system:

find
X∈R46×81

X

subject to A vec X = y
rankX ≤ 5

(973)

where vec X is the vectorized (39) unknown image matrix. Each row of wide matrix
A is one realization of a pseudorandom pattern applied to the micromirrors. Since
these patterns are deterministic (known), then the ith sample yi equals A(i , :) vec Y ;
id est, y = A vec Y . Perfect reconstruction here means optimal solution X⋆ equals scene
Y ∈ R46×81 to within machine precision.

Because variable matrix X is generally not square or positive semidefinite, we constrain
its rank by rewriting the problem equivalently

find
W1∈R46×46, W2∈R81×81, X∈R46×81

X

subject to A vec X = y

rank

[

W1 X
XT W2

]

≤ 5

(974)

This rank constraint on the composite (block) matrix insures rankX≤ 5 for any choice
of dimensionally compatible matrices W1 and W2 . But to solve this problem by convex
iteration, we alternate solution of semidefinite program

4.99That number (700 samples) is difficult to achieve, as reported in [347, §6]. If a minimal basis for the
MIT logo were instead constructed, only five rows or columns worth of data (from a 46×81 matrix) are
linearly independent. This means a lower bound on achievable compression is about 5×46 = 230 samples
plus 81 samples column encoding; which corresponds to 8% of the original information. (Figure 134)
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minimize
W1∈ S46, W2∈ S81, X∈R46×81

tr

([

W1 X
XT W2

]

Z

)

subject to A vec X = y
[

W1 X
XT W2

]

º 0

(975)

with semidefinite program

minimize
Z∈ S46+81

tr

([

W1 X
XT W2

]⋆

Z

)

subject to 0 ¹ Z ¹ I

trZ = 46 + 81 − 5

(976)

(which has an optimal solution known in closed form, p.545) until a rank-5 composite
matrix is found.

With 1000 samples {yi} , convergence occurs in two iterations; 700 samples require
more than ten iterations but reconstruction remains perfect. Iterating more admits taking
of fewer samples. Reconstruction is independent of pseudorandom sequence parameters;
e.g, binary sequences succeed with the same efficiency as Gaussian or uniformly distributed
sequences. 2

4.10.1 rank-constraint midsummary

We find that this direction matrix idea works well and quite independently of desired
rank or affine dimension. This idea of direction matrix is good principally because of
its simplicity: When confronted with a problem otherwise convex if not for a rank or
cardinality constraint, then that constraint becomes a linear regularization term in the
objective.

There exists a common thread through all these Examples; that being, convex iteration
with a direction matrix as normal to a linear regularization (a generalization of the
well-known trace heuristic). But each problem type (per Example) possesses its own
idiosyncrasies that slightly modify how a rank-constrained optimal solution is actually
obtained: The ball packing problem in Chapter 5.4.2.2.6, for example, requires a problem
sequence in a progressively larger number of balls to find a good initial value for the
direction matrix, whereas many of the examples in the present chapter require an initial
value of 0. Finding a Boolean solution in Example 4.7.0.0.9 requires a procedure to detect
stalls, while other problems have no such requirement. The combinatorial Procrustes
problem in Example 4.7.0.0.3 allows use of a known closed-form solution for direction
vector when solved via rank constraint, but not when solved via cardinality constraint.
Some problems require a careful weighting of the regularization term, whereas other
problems do not, and so on. It would be nice if there were a universally applicable method
for constraining rank; one that is less susceptible to quirks of a particular problem type.

Poor initialization of the direction matrix from the regularization can lead to an
erroneous result. We speculate one reason to be a simple dearth of optimal solutions
of desired rank or cardinality;4.100 an unfortunate choice of initial search direction leading
astray. Ease of solution by convex iteration occurs when optimal solutions abound. With
this speculation in mind, we now propose a further generalization of convex iteration for
constraining rank that attempts to ameliorate quirks and unify problem types:

4.100In Convex Optimization, an optimal solution generally comes from a convex set of optimal solutions;
(§3.1.1.1) that set can be large.
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4.11 Convex Iteration rank-1

We now develop a general method for constraining rank that first decomposes a given
problem via standard diagonalization of matrices (§A.5). This method is motivated
by observation (§4.5.1.1) that an optimal direction matrix can be simultaneously
diagonalizable with an optimal variable matrix. This suggests minimization of an
objective function directly in terms of eigenvalues. A second motivating observation is
that variable orthogonal matrices seem easily found by convex iteration; e.g, Procrustes
Example 4.7.0.0.2.

4.11.1 rank-1 transformation

It turns out that this general method always requires solution to a rank-1 constrained
problem regardless of desired rank ρ from the original problem. To demonstrate, we pose
a semidefinite feasibility problem

find X∈ Sn

subject to A svec X = b

X º 0

rankX ≤ ρ

(977)

given an upper bound 0 < ρ < n on rank, a vector b∈Rm, and typically wide full-rank

A =







svec(A1)
T

...
svec(Am)T






∈ Rm×n(n+1)/2 (687)

where Ai∈ Sn, i=1 . . . m . So, for symmetric matrix vectorization svec as defined in (59),

A svec X =





tr(A1 X)
...

tr(Am X)



 (688)

This program (977) is a statement of the classical problem of finding a matrix X of
maximum rank ρ in the intersection of the positive semidefinite cone with a given number
m of hyperplanes in the subspace of symmetric matrices Sn. [28, §II.13] [26, §2.2] Such a
matrix is presumed to exist.

To begin transformation of (977), express the nonincreasingly ordered diagonalization
(§A.5.1) of positive semidefinite variable matrix

X , QΛQT =

n
∑

i=1

λi Qii ∈ Sn (978)

which is a sum of rank-1 orthogonal-projection matrices Qii weighted by eigenvalues λi

where Qij , qiq
T
j ∈ Rn×n, Q = [ q1 · · · qn ]∈Rn×n, QT = Q−1, Λii = λi ∈ R , and

Λ =











λ1 0
λ2

. . .

0T λn











∈ Sn (979)

where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Recall the fact:

Λ º 0 ⇔ X º 0 (1627)
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From orthogonal matrix Q in ordered diagonalization (978) of variable X , take a matrix

U , [u1 · · · uρ ] , Q(: , 1:ρ)
√

Λ(1:ρ , 1:ρ) =
[

√

λ1 q1 · · ·
√

λρ qρ

]

∈ Rn×ρ (980)

Then U has orthogonal but unnormalized columns;

X = UUT =

ρ
∑

i=1

uiu
T
i ,

ρ
∑

i=1

Uii =

ρ
∑

i=1

λi qiq
T
i ∈ Sn (981)

Make an assignment

Z =







u1

...
uρ







[uT
1 · · · uT

ρ ]
∈ Snρ

=







U11 · · · U1ρ
...

. . .
...

UT
1ρ · · · Uρρ






,







u1u
T
1 · · · u1u

T
ρ

...
. . .

...
uρu

T
1 · · · uρu

T
ρ







(982)

Then transformation of (977) to its rank-1 equivalent is:

find
Uii∈S

n , Uij∈R
n×n

X =

ρ
∑

i=1

Uii

subject to Z =







U11 · · · U1ρ
...

. . .
...

UT
1ρ · · · Uρρ






(º 0)

A svec

ρ
∑

i=1

Uii = b

tr Uij = 0 i < j = 2 . . . ρ

rankZ = 1

(983)

Symmetry is necessary and sufficient for positive semidefiniteness of a rank-1 matrix.
(§A.3.1.0.7) Matrix X is positive semidefinite whenever Z is. (§A.3.1.0.4, §A.3.1.0.2) This
new problem always enforces a rank-1 constraint on matrix Z ; id est, regardless of upper
bound on rank ρ of variable matrix X , this equivalent problem always poses a rank-1
constraint. Upper bound ρ on rank of positive semidefinite matrix X is assured by rank-1
optimal matrix Z .

We propose solving (983) by iteration of convex problem

minimize
Uii∈S

n , Uij∈R
n×n

tr(Z W )

subject to Z =







U11 · · · U1ρ
...

. . .
...

UT
1ρ · · · Uρρ






º 0

A svec

ρ
∑

i=1

Uii = b

tr Uij = 0 i < j = 2 . . . ρ

(984)

with convex problem
minimize

W∈ S
nρ

tr(Z⋆ W )

subject to 0 ¹ W ¹ I

trW = nρ − 1

(985)
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the latter providing direction of search W for a rank-1 matrix Z in (984). These convex
problems (984) (985) are iterated until a rank-1 Z matrix is found (until the objective
of (984) vanishes). Initial value of direction matrix W is the Identity. For subsequent
iterations, an optimal solution to (985) has closed form (p.545).

Because of the nonconvex nature of a rank-constrained problem, there can be no proof
of convergence of this convex iteration to a feasible point of (983). But the iteration
always converges to a local minimum because the sequence of objective values is monotonic
and nonincreasing; any monotonically nonincreasing real sequence converges. [299, §1.2]
[46, §1.1] A rank ρ matrix X solving the original problem (977) is found when the objective
in (984) converges to 0 : a certificate of global optimality for the convex iteration. In
practice, incidence of success is quite high (99.99% [426]); failures being mostly attributable
to numerical accuracy.

4.11.2 singular value decomposition by convex iteration

This diagonal decomposition technique (transformation to a rank-1 problem) is extensible
to other problem types; e.g, [262, §III]. Rank-1 transformation makes singular value
decomposition (SVD, §A.6) possible by convex iteration because orthogonality constraints
may then be introduced. We learn that any uniqueness properties, the SVD of rank-ρ
matrix

X , US V T∈ Rm×n (986)

might enjoy, stem from demand for singular vector orthonormality.4.101

Assignment Z∈ S2mρ+nρ+ρ+1
+ is key to finding the SVD of X by convex optimization:

find
H , J

U , δ(S) , V

subject to Z =













1 vec(H)T vec(U)T δ(S)T vec(V )T

vec H
vec U J
δ(S)
vec V













º 0

δ(S) º 0
H = US ⊂ J
X = HV T∈ J
HUT symmetry
UTH perpendicularity
tr

(

H(: , i)H(: , i)T
)

= S(i , i)2 i=1 . . . ρ
tr

(

H(: , i)U(: , i)T
)

= S(i , i) i=1 . . . ρ
H orthogonality
U orthonormality
V orthonormality
rankZ = 1

(987)

where variable matrix J ∈ S2mρ+nρ+ρ
+ is a large partition of Z , where given rank-ρ matrix

X∈ Rm×n is subject to SVD in unknown orthonormal matrices U ∈ Rm×ρ and V ∈ Rn×ρ

and unknown diagonal matrix of singular values S∈Rρ×ρ, and where introduction of
variable

H , US∈Rm×ρ (988)

4.101Otherwise, there exist many similarly structured tripartite nonorthogonal matrix decompositions; in
place of ρ nonzero singular values, diagonal matrix S would instead hold exactly ρ coordinates; orthonormal
columns in U and V would become merely linearly independent.
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Figure 135: Typical convergence of SVD by convex iteration for a 2×2 random X matrix.
Matrix W represents a direction vector of convex iteration rank-1.

makes identification of input X = HV T possible within partition J . Orthogonality
constraints on columns of H , within J , and orthonormality constraints on columns of
U and V are critical; videlicet, h⊥ v ⇔ tr(hvT)=0 ; vTv=1 ⇔ tr(vvT)=1.

Symmetric matrix Z is positive semidefinite rank-1 at optimality, regardless of rank ρ .
That rank constraint is the only nonconvex constraint in (987); the only constraint that
cannot be directly implemented in a convex manner per partition J . But the rank
constraint is handled well by convex iteration. Matlab implementation of SVD by convex
iteration [442] is intricate although incidence of success is 99.99%, barring numerical error.

4.11.2.0.1 Example. SVD of X by convex iteration. (confer [188])
Given rank-2 matrix X = US V T∈ R2×2, we now make explicit every constraint in (987):

find
H∈R2×2, J∈S14

U ∈R2×2, S =

[

σ1 0
0 σ2

]

∈ S2, V ∈R2×2

subject to Z =





























1 hT
1 hT

2 uT
1 uT

2 [σ1 σ2 ] vT
1 vT

2

h1 J11 J12 J13 J14 J15 J16 J17

h2 JT
12 J22 J23 J24 J25 J26 J27

u1 JT
13 JT

23 J33 J34 J35 J36 J37

u2 JT
14 JT

24 JT
34 J44 J45 J46 J47

[

σ1

σ2

]

JT
15 JT

25 JT
35 JT

45 J55 J56 J57

v1 JT
16 JT

26 JT
36 JT

46 JT
56 J66 J67

v2 JT
17 JT

27 JT
37 JT

47 JT
57 JT

67 J77





























º 0

σ1, σ2 ≥ 0
H = [J35(: , 1) J45(: , 2) ]
X = J16 + J27

J13 = JT
13 , J24 = JT

24

tr J14 = 0 , tr J23 = 0
tr J11 = J55(1 , 1) , tr J22 = J55(2 , 2)
tr J13 = σ1 , tr J24 = σ2

tr J12 = 0
tr J33 = 1 , tr J44 = 1 , trJ34 = 0
tr J66 = 1 , tr J77 = 1 , trJ67 = 0
rankZ = 1

(989)
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where H , [h1 h2 ] , U , [u1 u2 ] , S , δ([σ1 σ2 ]T) , V , [ v1 v2 ] , and Z∈ S15.
Observe how, excepting the rank constraint, constraints are written as affine expressions
of variable matrix J . [442] Convergence is illustrated in Figure 135. 2

4.11.2.0.2 Example. SVD of X∈ R2×2 in closed form. (confer §A.5.1.4.1)

Singular value decomposition of X =

[

a c
b d

]

is analytically determinable (Mathematica):

X = US V T =






2bcd+a(a2+b2+c2−d2−γ)√
(2bcd+a(a2+b2+c2−d2−γ))2+(2acd+b(a2+b2−c2+d2−γ))2

2bcd+a(a2+b2+c2−d2+γ)√
(2bcd+a(a2+b2+c2−d2+γ))2+(2acd+b(a2+b2−c2+d2+γ))2

2acd+b(a2+b2−c2+d2−γ)√
(2bcd+a(a2+b2+c2−d2−γ))2+(2acd+b(a2+b2−c2+d2−γ))2

2acd+b(a2+b2−c2+d2+γ)√
(2bcd+a(a2+b2+c2−d2+γ))2+(2acd+b(a2+b2−c2+d2+γ))2











√
a2+b2+c2+d2−γ√

2
0

0

√
a2+b2+c2+d2+γ√

2











a2+b2−c2−d2−γ√
4(ac+bd)2+(a2+b2−c2−d2−γ)2

2(ac+bd)√
4(ac+bd)2+(a2+b2−c2−d2−γ)2

a2+b2−c2−d2+γ√
4(ac+bd)2+(a2+b2−c2−d2+γ)2

2(ac+bd)√
4(ac+bd)2+(a2+b2−c2−d2+γ)2







(990)

where
γ ,

√

((b + c)2+ (a − d)2) ((b − c)2+ (a + d)2) (991)

2

4.11.2.0.3 Example. Closed-form SVD of X∈ R2×2 rank-1.
Singular value decomposition of a real 2×2 rank-1 matrix is especially simple.

X =

[

a
b

]

[ c d ]
=

[

ac ad
bc bd

]

(992)

X = US V T = 1√
a2+b2

[

a −b
b a

] [√
a2+ b2

√
c2+ d2 0

0 0

] [

c d
−d c

]

1√
c2+d2

(993)

2

4.11.2.0.4 Exercise. Constraints required for SVD calculation by Optimization.
Given matrix X , prove that constraints in (987) are necessary and sufficient for its singular
value decomposition. H

4.11.3 Convex Iteration accelerant

Convex iteration can be made to converge faster; sometimes, by orders of magnitude. The
idea here is to determine whether the last three direction vectors are close to their fit to
a straight line. When three direction vectors are close to a straight line, then the last
direction vector may be replaced with its extrapolation along that line.

To reduce computation time, a fitted line is not a best fit. Instead, the midpoint
between each pair of iteration-adjacent direction vectors is calculated (Figure 136). A
straight line is uniquely defined by two midpoints in any dimension. Distance of each
direction vector to the line is calculated, then those three distances summed into a program
variable called straight . When a sum is small, three direction vectors are deemed close
to the line determined by them. What is meant by close and small depends on problem
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svec W1

svec W2

svec W3

m1

m2

Figure 136: W1 , W2 , and W3 represent the last three direction vectors in a sequence.
m1 represents the midpoint between direction vectors W1 and W2 ; m2 is the midpoint
of W2 and W3 . Straight line passes through midpoints.

type and data. For the parameters and normalized random data chosen for two Matlab
realizations [426] [442] on Wıκımization (corresponding to problems (983) and (987)),
small is numerically defined to be 1 or less in the statement if straight < 1 whose
purpose is to determine straightness of the last three direction vectors of convex iteration.
The smaller the value of sum straight , the closer the last three direction vectors are
to a straight line. Variable straight is inherently bounded below by 0 which indicates
three direction vectors precisely on the line going through them.

If linear extrapolation goes too far, then an objective of convex iteration will increase
or a solver may fail numerically. In either case, one must forget the last iteration then back
up the linear extrapolation until the objective decreases. These techniques are illustrated
by the Matlab programs; [426] Figure 135 is one representative. [442]
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Chapter 5

Euclidean Distance Matrix

These results [(1025)] were obtained by Schoenberg (1935 ), a surprisingly late
date for such a fundamental property of Euclidean geometry.

−John Clifford Gower [194, §3]

By itself, distance information between many points in Euclidean space is lacking.
We might want to know more; such as, relative or absolute position or dimension of
some hull. A question naturally arising in some fields (e.g, geodesy, economics, genetics,
psychology, biochemistry, engineering) [120] asks what facts can be deduced given only
distance information. What can we know about the underlying points that the distance
information purports to describe? We also ask what it means when given distance
information is incomplete; or suppose the distance information is not reliable, available, or
specified only by certain tolerances (affine inequalities). These questions motivate a study
of interpoint distance, well represented in any spatial dimension by a simple matrix from
linear algebra.5.1 In what follows, we will answer some of these questions via Euclidean
distance matrices.

5.1 EDM

Euclidean space Rn is a finite-dimensional real vector space having an inner product defined
on it, inducing a metric. [264, §3.1] A Euclidean distance matrix, an EDM in RN×N

+ , is
an exhaustive table of distance-square dij between points taken by pair from a list of N
points {xℓ , ℓ=1 . . . N} in Rn ; the squared metric, the measure of distance-square:

dij = ‖xi − xj‖2
2 , 〈xi − xj , xi − xj〉 (994)

Each point is labelled ordinally, hence the row or column index of an EDM, i or j =1 . . . N ,
individually addresses all points in the list.

Consider the following example of an EDM for the case N = 3 :

5.1 e.g, ◦
√

D∈R
N×N , a classical two-dimensional matrix representation of absolute interpoint distance

because its entries (in ordered rows and columns) can be written neatly on a piece of paper. Matrix D
will be reserved throughout to hold distance-square.

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 329

https://ccrma.stanford.edu/~dattorro
https://www.convexoptimization.com
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√
5

2

1

D =

1 2 3





0 1 5
1 0 4
5 4 0





1

2

3

Figure 137: Convex hull of three points (N = 3) is shaded in R3 (n=3). Dotted lines are
imagined vectors to points whose affine dimension is 2.

D = [dij ] =





d11 d12 d13

d21 d22 d23

d31 d32 d33



 =





0 d12 d13

d12 0 d23

d13 d23 0



 =





0 1 5
1 0 4
5 4 0



 (995)

Matrix D has N 2 entries but only N(N−1)/2 pieces of information. In Figure 137 are
shown three points in R3 that can be arranged in a list to correspond to D in (995). But
such a list is not unique because any rotation, reflection, or translation (§5.5) of those
points would produce the same EDM D .

5.2 First metric properties

For i , j =1 . . . N , absolute distance between points xi and xj must satisfy the defining
requirements imposed upon any metric space: [264, §1.1] [299, §1.7] namely, for Euclidean
metric

√

dij (§5.4) in Rn

1.
√

dij ≥ 0 , i 6= j nonnegativity

2.
√

dij = 0 ⇔ xi = xj selfdistance

3.
√

dij =
√

dji symmetry

4.
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k triangle inequality

Then all entries of an EDM must be in concord with these Euclidean metric properties:
specifically, each entry must be nonnegative,5.2 the main diagonal must be 0 ,5.3 and an
EDM must be symmetric. The fourth property provides upper and lower bounds for each
entry. Property 4 is true more generally when there are no restrictions on indices i,j,k ,
but furnishes no new information.
5.2Implicit from the terminology,

√

dij ≥ 0 ⇔ dij ≥ 0 is always assumed.
5.3What we call selfdistance, Marsden calls nondegeneracy. [299, §1.6] Kreyszig calls these first metric

properties axioms of the metric; [264, p.4] Blumenthal refers to them as postulates. [57, p.15]
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5.3 ∃ fifth Euclidean metric property

The four properties of the Euclidean metric provide information insufficient to certify
that a bounded convex polyhedron more complicated than a triangle has a Euclidean
realization. [194, §2] Yet any list of points or the vertices of any bounded convex polyhedron
must conform to the properties.

5.3.0.0.1 Example. Triangle.
Consider the EDM in (995), but missing one of its entries:

D =





0 1 d13

1 0 4
d31 4 0



 (996)

Can we determine unknown entries of D by applying the metric properties? Property 1
demands

√
d13 ,

√
d31≥ 0 , property 2 requires the main diagonal be 0 , while property 3

makes
√

d31 =
√

d13 . The fourth property tells us

1 ≤
√

d13 ≤ 3 (997)

Indeed, described over that closed interval [1, 3] is a family of triangular polyhedra whose
angle at vertex x2 varies from 0 to π radians. So, yes we can determine the unknown
entries of D , but they are not unique; nor should they be from the information given for
this example. 2

5.3.0.0.2 Example. Small completion problem, I.
Now consider the polyhedron in Figure 138b formed from an unknown list {x1 , x2 , x3 , x4}.
The corresponding EDM less one critical piece of information, d14 , is given by

D =









0 1 5 d14

1 0 4 1
5 4 0 1

d14 1 1 0









(998)

From metric property 4 we may write a few inequalities for the two triangles common to
d14 ; we find √

5−1 ≤
√

d14 ≤ 2 (999)

We cannot further narrow those bounds on
√

d14 using only the four metric properties
(§5.8.3.1.1). Yet there is only one possible choice for

√
d14 because points x2 , x3 , x4

must be collinear. All other values of
√

d14 in the interval [
√

5−1, 2] specify impossible
distances in any dimension; id est, in this particular example the triangle inequality
does not yield an interval for

√
d14 over which a family of convex polyhedra can be

reconstructed. 2

We will return to this simple Example 5.3.0.0.2 to illustrate more elegant methods of
solution in §5.8.3.1.1, §5.9.2.0.1, and §5.14.4.1.1. Until then, we can deduce some general
principles from the foregoing examples:

� Unknown dij of an EDM are not necessarily uniquely determinable.

� The triangle inequality does not produce necessarily tight bounds.5.4

� Four Euclidean metric properties are insufficient for reconstruction.

5.4The term tight with reference to an inequality means equality is achievable.
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x1 x2

x3

x4

√
5

1

1

1

2

x1 x2

x3

x4 (b)(a)

Figure 138: (a) Complete dimensionless EDM graph. (b) Emphasizing obscured segments
x2x4 , x4x3 , and x2x3 , now only five (2N−3) absolute distances are specified. EDM
so represented is incomplete, missing d14 as in (998), yet the isometric reconstruction
(§5.4.2.2.10) is unique as proved in §5.9.2.0.1 and §5.14.4.1.1. First four properties of
Euclidean metric are not a recipe for reconstruction of this polyhedron.

5.3.1 lookahead

There must exist at least one requirement more than the four properties of the Euclidean
metric that makes them altogether necessary and sufficient to certify realizability of
bounded convex polyhedra. Indeed, there are infinitely many more; there are precisely
N +1 necessary and sufficient Euclidean metric requirements for N points constituting a
generating list (§2.3.2). Here is the fifth requirement:

5.3.1.0.1 Fifth Euclidean metric property. Relative-angle inequality.
(confer §5.14.2.1.1) Augmenting the four fundamental properties of the Euclidean metric
in Rn, for all i, j, ℓ 6= k∈{1 . . . N} , i<j <ℓ , and for N ≥ 4 distinct points {xk} , the
inequalities

cos(θikℓ + θℓkj) ≤ cos θikj ≤ cos(θikℓ − θℓkj)

0 ≤ θikℓ , θℓkj , θikj ≤ π
(1000)

where θikj = θjki represents angle between vectors at vertex xk (1072) (Figure 139),
must be satisfied at each point xk regardless of affine dimension. ⋄

We will explore this in §5.14. One of our early goals is to determine matrix criteria
that subsume all the Euclidean metric properties and any further requirements. Looking
ahead, we will find (1351) (1025) (1029)

−zTDz ≥ 0
1Tz = 0

(∀ ‖z‖ = 1)

D ∈ SN
h















⇔ D ∈ EDMN (1001)

where the convex cone of Euclidean distance matrices EDMN ⊆ SN
h belongs to the subspace

of symmetric hollow5.5 matrices (§2.2.3.0.1).5.6 Having found equivalent matrix criteria,

5.5 0 main diagonal.
5.6Numerical test isedm() is provided on Wıκımization [444].
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θ
ikj θjkℓ

θikℓ

k

i

j

ℓ

Figure 139: Fifth Euclidean metric property nomenclature. Each angle θ is made by
a vector pair at vertex k while i , j , k, ℓ index four points at the vertices of a generally
irregular tetrahedron. The fifth property is necessary for realization of four or more points;
a reckoning by three angles in any dimension. Together with the first four Euclidean metric
properties, this fifth property is necessary and sufficient for realization of four points.
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we will see there is a bridge from bounded convex polyhedra to EDMs in §5.9.5.7

Now we develop some invaluable concepts, moving toward a link of the Euclidean
metric properties to matrix criteria.

5.4 EDM definition

Ascribe points in a list {xℓ ∈ Rn, ℓ=1 . . . N} to the columns of a matrix

X = [x1 · · · xN ] ∈ Rn×N (79)

where N is regarded as cardinality of list X . Entries of an EDM matrix D=[dij ] must be
related to those points constituting the list by Euclidean distance-square: for i , j =1 . . . N
(§A.1.1 no.36)

dij = ‖xi − xj‖2 = (xi − xj)
T(xi − xj) = ‖xi‖2 + ‖xj‖2 − 2xT

i xj

=
[

xT
i xT

j

]

[

I −I
−I I

] [

xi

xj

]

= vec(X)T(Φij ⊗ I ) vec X = 〈Φij , XTX 〉

(1002)

where

vec X =











x1

x2

...
xN











∈ RnN (1003)

and where ⊗ signifies Kronecker product (§D.1.2.1). Φij ⊗ I is positive semidefinite (1659)
having I∈ Sn in its iith and jj th block of entries while −I∈ Sn fills its ij th and jith block;
id est,

Φij , δ((eie
T
j + ej e

T
i )1) − (eie

T
j + ej e

T
i ) ∈ SN

+

= eie
T
i + eje

T
j − eie

T
j − eje

T
i

= (ei − ej)(ei − ej)
T

(1004)

where {ei∈RN , i=1 . . . N} is the set of standard basis vectors. Thus each entry dij is a
convex quadratic function (§A.4.0.0.2) of vec X (39). [354, §6]

The collection of all Euclidean distance matrices EDMN is a convex subset of RN×N
+

called the EDM cone (§6, Figure 174 p.445);

0 ∈ EDMN ⊆ SN
h ∩ RN×N

+ ⊂ SN (1005)

An EDM D must be expressible as a function of some list X ; id est, it must have the
form

D(X) , δ(XTX)1T+ 1δ(XTX)T− 2XTX ∈ EDMN (1006)

= [vec(X)T(Φij ⊗ I ) vec X , i, j =1 . . . N ] (1007)

Function D(X) will make an EDM given any X∈ Rn×N , conversely, but D(X) is not a
convex function of X (§5.4.1). Now the EDM cone may be described:

EDMN =
{

D(X) | X∈ RN−1×N
}

(1008)

5.7From an EDM, a generating list (§2.3.2, §2.12.2) for a polyhedron can be found (§5.12) correct to
within a rotation, reflection, and translation (§5.5).
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Expression D(X) is a matrix definition of EDM and so conforms to the Euclidean metric
properties:

Nonnegativity of EDM entries (property 1, §5.2) is obvious from the distance-square
definition (1002), so holds for any D expressible in the form D(X) in (1006).

When we say D is an EDM, reading from (1006), it implicitly means the main diagonal
must be 0 (property 2, selfdistance) and D must be symmetric (property 3); δ(D) = 0
and DT = D or, equivalently, D∈ SN

h are necessary matrix criteria.

5.4.0.1 homogeneity

Function D(X) is homogeneous in the sense, for ζ∈R

◦
√

D(ζX) = |ζ| ◦
√

D(X) (1009)

where the positive square root is entrywise (◦).
Any nonnegatively scaled EDM remains an EDM; id est, the matrix class EDM is

invariant to nonnegative scaling (αD(X) for α≥0) because all EDMs of dimension N
constitute a convex cone EDMN (§6, Figure 166).

5.4.1 −V T
N D(X)VN convexity

We saw that EDM entries dij

([

xi

xj

])

are convex quadratic functions. Yet −D(X) (1006)

is not a quasiconvex function of matrix X∈ Rn×N because the second directional derivative
(§3.15)

− d2

dt2

∣

∣

∣

∣

t=0

D(X+ t Y ) = 2
(

−δ(Y TY )1T − 1δ(Y TY )T + 2 Y TY
)

(1010)

is indefinite for any Y ∈ Rn×N since its main diagonal is 0. [189, §4.2.8] [237, §7.1 prob.2]
Hence −D(X) can neither be convex in X .

The outcome is different when instead we consider

−V T
N D(X)VN = 2V T

NXTXVN (1011)

where we introduce the full-rank thin Schoenberg auxiliary matrix (§B.4.2)

VN ,
1√
2















−1 −1 · · · −1
1 0

1
. . .

0 1















=
1√
2

[

−1T

I

]

∈ RN×N−1 (1012)

(N (VN )=0) having range

R(VN ) = N (1T) , V T
N 1 = 0 (1013)

Matrix-valued function (1011) meets the criterion for convexity in §3.14.0.0.2 over its
domain that is all of Rn×N ; videlicet, for any Y ∈ Rn×N

− d2

dt2
V T
N D(X + t Y )VN = 4V T

N Y TY VN º 0 (1014)

Quadratic matrix-valued function −V T
N D(X)VN is therefore convex in X achieving its

minimum, with respect to a positive semidefinite cone (§2.7.2.2), at X = 0. When
the penultimate number of points exceeds the dimension of the space n < N−1 , strict
convexity of the quadratic (1011) becomes impossible because (1014) could not then be
positive definite.
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5.4.2 Gram-form EDM definition

Positive semidefinite matrix XTX in (1006), formed from inner product of list X∈ Rn×N ,
is known as a Gram matrix ; [290, §3.6]

G , XTX =







xT
1
...

xT
N







[x1 · · · xN ]

=



















‖x1‖2 xT
1x2 xT

1x3 · · · xT
1xN

xT
2x1 ‖x2‖2 xT

2x3 · · · xT
2xN

xT
3x1 xT

3x2 ‖x3‖2 . . . xT
3xN

...
...

. . .
. . .

...
xT
Nx1 xT

Nx2 xT
Nx3 · · · ‖xN‖2



















∈ SN
+

= δ





















‖x1‖
‖x2‖

...
‖xN‖







































1 cos ψ12 cos ψ13 · · · cos ψ1N

cos ψ12 1 cos ψ23 · · · cos ψ2N

cos ψ13 cos ψ23 1
. . . cos ψ3N

...
...

. . .
. . .

...
cos ψ1N cos ψ2N cos ψ3N · · · 1



















δ





















‖x1‖
‖x2‖

...
‖xN‖





















,
√

δ2(G) Ψ
√

δ2(G)

(1015)

where ψij (1034) is angle between vectors xi and xj , and where δ2 denotes a diagonal
matrix in this case. Positive semidefiniteness of interpoint angle matrix Ψ implies positive
semidefiniteness of Gram matrix G ;

G º 0 ⇐ Ψ º 0 (1016)

When δ2(G) is nonsingular, then Gº 0 ⇔ Ψº 0. (§A.3.1.0.5)
Distance-square dij (1002) is related to Gram matrix entries GT = G , [gij ]

dij = gii + gjj − 2gij

= 〈Φij , G〉 (1017)

where Φij is defined in (1004). Hence the linear EDM definition

D(G) , δ(G)1T+ 1δ(G)T− 2G ∈ EDMN

= [〈Φij , G〉 , i , j =1 . . . N ]

}

⇐ G º 0 (1018)

The EDM cone may be described, (confer (1107)(1113))

EDMN =
{

D(G) | G ∈ SN
+

}

(1019)

5.4.2.1 First point at origin

Assume that the first point x1 in an unknown list X∈ Rn×N resides at the origin;

Xe1 = 0 ⇔ Ge1 = 0 (1020)

Consider the symmetric translation (I − 1eT
1 )D(G)(I − e11

T) that shifts the first row
and column of D(G) to the origin; setting Gram-form EDM operator D(G) = D for
convenience,

−
(

D − (De11
T+ 1eT

1D) + 1eT
1De11

T
)

1
2 = G − (Ge11

T+ 1eT
1G) + 1eT

1Ge11
T (1021)
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where

e1 ,







1
0...
0






(1022)

is the first vector from the standard basis. Then it follows, for D∈ SN
h

G = −
(

D − (De11
T+ 1eT

1D)
)

1
2 , x1 = 0

= −
[

0
√

2VN
]T

D
[

0
√

2VN
]

1
2

=

[

0 0T

0 −V T
NDVN

]

V T
N GVN = −V T

NDVN 1
2 ∀X

(1023)

where
I − e11

T =
[

0
√

2VN
]

(1024)

is a projector (§B.4.2 no.7) nonorthogonally projecting (§E.1, §E.8) on subspace

SN
0 = {G∈ SN | Ge1 = 0}

=
{

[

0
√

2VN
]T

Y
[

0
√

2VN
]

| Y ∈ SN
} (2233)

in the Euclidean sense. From (1023) we get sufficiency of the first matrix criterion for an
EDM proved by Schoenberg in 1935; [360]5.8

D ∈ EDMN ⇔
{

−V T
NDVN ∈ SN−1

+

D ∈ SN
h

(1025)

We provide a rigorous complete more geometric proof of this fundamental Schoenberg
criterion in §5.9.1.0.4. [444, isedm()]

By substituting G =

[

0 0T

0 −V T
NDVN

]

(1023) into D(G) (1018),

D =

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(1127)

assuming x1 = 0. Details of this bijection are provided in §5.6.2.

5.4.2.2 0 geometric center

Assume the geometric center (§5.5.1.0.1) of an unknown list X∈ Rn×N to be the origin;

X1 = 0 ⇔ G1 = 0 (1026)

Now consider the calculation (I − 1
N 11T)D(G)(I − 1

N 11T) , a geometric centering or
projection operation. (§E.7.2.0.2) Setting D(G) = D for convenience as in §5.4.2.1,

G = −
(

D − 1
N (D11T+ 11TD) + 1

N2 11TD11T
)

1
2 , X1 = 0

= −V D V 1
2

V GV = −V D V 1
2 ∀X

(1027)

5.8From (1013) we know R(VN )=N (1T) , so (1025) is the same as (1001). In fact, any matrix V in
place of VN will satisfy (1025) whenever R(V )=R(VN )=N (1T). But VN is the matrix implicit in
Schoenberg’s seminal exposition.
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where more properties of the auxiliary (geometric centering, projection) matrix

V , I − 1

N
11T ∈ SN (1028)

are found in §B.4. From (1027) and the assumption D∈ SN
h we get sufficiency of the more

popular form of Schoenberg criterion:

D ∈ EDMN ⇔
{ −V D V ∈ SN

+

D ∈ SN
h

(1029)

Of particular utility when D∈EDMN is the fact, (§B.4.2 no.20) (1002)

tr
(

−V D V 1
2

)

= 1
2N

∑

i,j

dij = 1
2N vec(X)T

(

∑

i,j

Φij ⊗ I

)

vec X

= tr(V GV ) , G º 0

= tr G =
N
∑

ℓ=1

‖xℓ‖2 = ‖X‖2
F , X1 = 0

(1030)

where
∑

Φij ∈ SN
+ (1004), therefore convex in vec X . We will find this trace useful as a

heuristic to minimize affine dimension of an unknown list arranged columnar in X (§7.2.2),
but it tends to facilitate reconstruction of a list configuration having least energy; id est,
it compacts a reconstructed list by minimizing total norm-square of the vertices.

By substituting G=−V D V 1
2 (1027) into D(G) (1018), assuming X1=0

D = δ
(

−V D V 1
2

)

1T + 1δ
(

−V D V 1
2

)T − 2
(

−V D V 1
2

)

(1117)

Details of this bijection can be found in §5.6.1.1.

5.4.2.2.1 Example. Hypersphere.
These foregoing relationships allow combination of distance and Gram constraints in any
optimization problem we might pose:

� Interpoint angle Ψ can be constrained by fixing all individual point lengths ◦
√

δ(G) ;
then

Ψ = −
√

δ2(G)
−1

V D V 1
2

√

δ2(G)
−1

, X1 = 0 (1031)

� (confer §5.9.1.0.3, (1216) (1360)) Constraining all main diagonal entries gii of a Gram
matrix to 1 , for example, is equivalent to the constraint that all points lie on a
hypersphere of radius 1 centered at the origin.

D = 2(g1111T− G) ∈ EDMN (1032)

Requiring 0 geometric center then becomes equivalent to the constraint: D1 = 2N1.
[101, p.116] Any further constraint on that Gram matrix applies only to interpoint
angle matrix Ψ = G .

Because any point list may be constrained to lie on a hypersphere boundary whose affine
dimension exceeds that of the list, a Gram matrix may always be constrained to have equal
positive values along its main diagonal. (Laura Klanfer 1933 [360, §3]) This observation
renewed interest in the elliptope (§5.9.1.0.1). 2
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5.4.2.2.2 Example. List-member constraints via Gram matrix.
Capitalizing on identity (1027) relating Gram and EDM D matrices, a constraint set such
as

tr
(

− 1
2V D V eie

T
i

)

= ‖xi‖2

tr
(

− 1
2V D V (eie

T
j + eje

T
i ) 1

2

)

= xT
i xj

tr
(

− 1
2V D V eje

T
j

)

= ‖xj‖2











(1033)

relates list member xi to xj to within an isometry through inner-product identity (35)
[456, §1-7]

cos ψij =
xT

i xj

‖xi‖ ‖xj‖
(1034)

where ψij is angle between the two vectors as in (1015). For M list members, there total
M(M + 1)/2 such constraints. Angle constraints are incorporated in Example 5.4.2.2.5
and Example 5.4.2.2.13. 2

5.4.2.2.3 Example. Gram matrix as optimization problem.
Consider the academic problem of finding a Gram matrix (1027) subject to constraints on
each and every entry of the corresponding EDM:

find
D∈SN

h

−V D V 1
2 ∈ SN

subject to
〈

D , (eie
T
j + eje

T
i ) 1

2

〉

= ďij , i , j =1 . . . N , i < j

−V D V º 0

(1035)

where the ďij are given nonnegative constants. EDM D can, of course, be replaced with
the equivalent Gram-form (1018). Requiring only the selfadjointness property (1595) of
the main-diagonal linear operator δ we get, for A∈ SN

〈D , A〉 =
〈

δ(G)1T+ 1δ(G)T− 2G , A
〉

= 2 〈G , δ(A1) − A〉 (1036)

Then the problem equivalent to (1035) becomes, for G∈ SN
c ⇔ G1=0

find
G∈SN

c

G ∈ SN

subject to
〈

G , δ
(

(eie
T
j + eje

T
i )1

)

− (eie
T
j + eje

T
i )

〉

= ďij , i , j =1 . . . N , i < j

G º 0 (1037)

Barvinok’s Proposition 2.9.3.0.1 predicts existence for either formulation (1035) or (1037)
such that implicit equality constraints (induced by subspace membership) are ignored

rankG , rankV D V ≤
⌊

√

8(N(N−1)/2) + 1 − 1

2

⌋

= N − 1 (1038)

because, in each case, the Gram matrix is confined to a face of positive semidefinite cone
SN

+ isomorphic with SN−1
+ (§6.6.1). (§E.7.2.0.2) This bound is tight (§5.7.1.1) and is the

greatest upper bound.5.9 2

5.4.2.2.4 Example. First duality.
Kuhn reports that the first dual optimization problem5.10 to be recorded in the literature

5.9 −V DV |N←1 = 0 (§B.4.1)
5.10By dual problem is meant, in the strongest sense: the optimal objective achieved by a maximization
problem, dual to a given (primal) minimization problem, is always equal to the optimal objective achieved
by the minimization. (Figure 64 Example 2.13.1.1.2) A dual problem is always convex when derived from
a primal via Lagrangian function.

https://www.convexoptimization.com/wikimization/index.php/Harold_W._Kuhn
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Figure 140: Rendering of Fermat point in acrylic on canvas by Suman Vaze. Three circles
intersect at Fermat point of minimum total distance from three vertices of (and interior
to) red/black/white triangle.

dates back to 1755. [431] Perhaps more intriguing is the fact: this earliest instance of
duality is a two-dimensional Euclidean distance geometry problem known as Fermat point
(Figure 140) named after the French mathematician. Given N distinct points in the plane
{xi∈R2, i=1 . . . N} , the Fermat point y is an optimal solution to

minimize
y

N
∑

i=1

‖y − xi‖ (1039)

a convex minimization of total distance. The historically first dual problem formulation
asks for the smallest equilateral triangle encompassing (N = 3) three points xi . Another
problem dual to (1039) (Kuhn 1967)

maximize
{zi}

N
∑

i=1

〈zi , xi〉

subject to
N
∑

i=1

zi = 0

‖zi‖ ≤ 1 ∀ i

(1040)

has interpretation as minimization of work required to balance potential energy in an
N -way tug-of-war between equally matched opponents situated at {xi}. [450]

It is not so straightforward to write the Fermat point problem (1039) equivalently in
terms of a Gram matrix from this section. Squaring instead

minimize
α

N
∑

i=1

‖α − xi‖2 ≡
minimize
D∈SN+1

〈−V , D〉
subject to 〈D , eie

T
j + ej e

T
i 〉 1

2 = ďij ∀(i , j)∈ I
−V D V º 0

(1041)

yields an inequivalent convex geometric centering problem whose equality constraints
comprise EDM D main-diagonal zeros and known distances-square.5.11 Going the other

5.11 α⋆ is geometric center of points xi (1091). For three points, I = {1, 2 , 3} ; optimal affine dimension

http://vazeart.googlepages.com/theorems&constructions
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x1

x2

x3

x4

x5

x6

Figure 141: Arbitrary hexagon in R3 whose vertices are labelled clockwise.

way, a problem dual to total distance-square maximization (Example 6.7.0.0.1) is a
penultimate minimum eigenvalue problem having application to PageRank calculation
by search engines [269, §4]. [388]

Fermat function (1039) is empirically compared with (1041) in [68, §8.7.3], but for
multiple unknowns in R2, where propensity of (1039) for producing zero distance
between unknowns is revealed. An optimal solution to (1039) gravitates toward gradient
discontinuities (§D.2.1), as in Figure 79, whereas optimal solution to (1041) is less compact
in the unknowns.5.12 2

5.4.2.2.5 Example. Hexagon.
Barvinok [27, §2.6] poses a problem in geometric realizability of an arbitrary hexagon
(Figure 141) having:

1. prescribed (one-dimensional) face-lengths l

2. prescribed angles ϕ between the three pairs of opposing faces

3. a constraint on the sum of norm-square of each and every vertex x ;

ten affine equality constraints in all on a Gram matrix G∈ S6 (1027). Let’s realize this as
a convex feasibility problem (with constraints written in the same order) also assuming 0
geometric center (1026):

find
D∈S6

h

−V D V 1
2 ∈ S6

subject to tr
(

D(eie
T
j + eje

T
i ) 1

2

)

= l2ij , j−1 = (i = 1 . . . 6)mod 6

tr
(

− 1
2V D V (Ai + AT

i ) 1
2

)

= cos ϕi , i = 1, 2 , 3

tr(− 1
2V D V ) = 1

−V D V º 0

(1042)

where, for Ai∈ R6×6 (1034)

A1 = (e1 − e6)(e3 − e4)
T/(l61 l34)

A2 = (e2 − e1)(e4 − e5)
T/(l12 l45)

A3 = (e3 − e2)(e5 − e6)
T/(l23 l56)

(1043)

(§5.7) must be 2 because a third dimension can only increase total distance. Minimization of 〈−V, D〉 is
a heuristic for rank minimization. (§7.2.2)
5.12Optimal solution to (1039) has mechanical interpretation in terms of interconnecting springs with
constant force when distance is nonzero; otherwise, 0 force. Problem (1041) is interpreted instead using
linear springs.
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Figure 142: Sphere-packing illustration from [449, kissing number ]. Translucent balls
illustrated all have the same diameter.

and where the first constraint on length-square l2ij can be equivalently written as a

constraint on the Gram matrix −V D V 1
2 via (1036). We show how to numerically solve

such a problem by alternating projection in §E.11.2.1.2. Barvinok’s Proposition 2.9.3.0.1
asserts existence of a list, corresponding to Gram matrix G solving this feasibility problem,
whose affine dimension (§5.7.1.1) does not exceed 3 because the convex feasible set is
bounded by the third constraint tr(− 1

2V D V ) = 1 (1030). 2

5.4.2.2.6 Example. Kissing number of sphere packing.
Two nonoverlapping Euclidean balls are said to kiss if they touch. An elementary
geometrical problem can be posed: Given hyperspheres, each having the same diameter 1 ,
how many hyperspheres can simultaneously kiss one central hypersphere? [471] Noncentral
hyperspheres are allowed, but not required, to kiss.

As posed, the problem seeks the maximal number of spheres K kissing a central sphere
in a particular dimension. The total number of spheres is N = K + 1. In one dimension,
the answer to this kissing problem is 2. In two dimensions, 6. (Figure 9)

The question was presented, in three dimensions, to Isaac Newton by David Gregory
in the context of celestial mechanics. And so was born a controversy between the two
scholars on the campus of Trinity College Cambridge in 1694. Newton correctly identified
the kissing number as 12 (Figure 142) while Gregory argued for 13. Their dispute was
finally resolved in 1953 by Schütte & van der Waerden. [345] In 2003, Oleg Musin tightened
the upper bound on kissing number K in four dimensions from 25 to K = 24 by refining a
method of Philippe Delsarte from 1973. Delsarte’s method provides an infinite number [18]
of linear inequalities necessary for converting a rank-constrained semidefinite program5.13

to a linear program.5.14 [315]
There are no proofs known for kissing number in higher dimension excepting dimensions

eight and twenty four. Interest persists [96] because sphere packing has found application
to error correcting codes from the fields of communications and information theory;
specifically to quantum computing. [104]

Translating this problem to an EDM graph realization (Figure 138, Figure 143) is
suggested by Pfender & Ziegler. Imagine the center of each sphere to be connected to
every other by line segments. Then distance between centers must obey simple criteria:

5.13 whose feasible set belongs to that elliptope subset (§5.9.1.0.1) bounded above by some desired rank.
5.14Simplex-method solvers for linear programs produce numerically better results than contemporary
log-barrier (interior-point method) solvers, for semidefinite programs, by about 7 orders of magnitude;
they are far more predisposed to vertex solutions [107, p.158].

http://mathworld.wolfram.com/KissingNumber.html
https://www.convexoptimization.com/wikimization/index.php/Isaac_Newton
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Each sphere touching the central sphere has a line segment of length exactly 1 joining its
center to the central sphere’s center. All spheres, excepting the central sphere, must have
centers separated by a distance of at least 1.

From this perspective, the kissing problem can be posed as a semidefinite program.
Assign index 1 to the central sphere assuming a total of N spheres:

minimize
D∈SN

− tr(W V T
NDVN )

subject to D1j = 1 , j = 2 . . . N

Dij ≥ 1 , 2 ≤ i < j = 3 . . . N

D ∈ EDMN

(1044)

Then kissing number

K = Nmax − 1 (1045)

is found from the maximal number N of spheres that solve this semidefinite program in a
given affine dimension r whose realization is assured by 0 optimal objective. Matrix W is
constant, in this program, determined by a method disclosed in §4.5.1. Matrix W ∈ SN−1

+

can be interpreted as direction of search through the positive semidefinite cone for a rank-r
optimal solution −V T

ND⋆VN ∈ SN−1
+ : In one dimension, optimal direction matrix W ⋆ has

rank = K− r = 2−1 = 1 ;

W ⋆ =

[

1 1
1 1

]

1

2
(1046)

In two dimensions, optimal W ⋆ has rank = K− r = 6−2 = 4 ;

W ⋆ =

















4 1 2 −1 −1 1
1 4 −1 −1 2 1
2 −1 4 1 1 −1

−1 −1 1 4 1 2
−1 2 1 1 4 −1

1 1 −1 2 −1 4

















1

6
(1047)

In three dimensions, we leave it an exercise to find a rational optimal direction matrix W ⋆

having rank = K− r = 12−3 = 9. Here is a full-rank rational optimal direction matrix:

W
⋆ =









































9 1 −2 −1 3 −1 −1 1 2 1 −2 1
1 9 3 −1 −1 1 1 −2 1 2 −1 −1

−2 3 9 1 2 −1 −1 2 −1 −1 1 2
−1 −1 1 9 1 −1 1 −1 3 2 −1 1

3 −1 2 1 9 1 1 −1 −1 −1 1 −1
−1 1 −1 −1 1 9 2 −1 2 −1 2 3
−1 1 −1 1 1 2 9 3 −1 1 −2 −1

1 −2 2 −1 −1 −1 3 9 2 −1 1 1
2 1 −1 3 −1 2 −1 2 9 −1 1 −1
1 2 −1 2 −1 −1 1 −1 −1 9 3 1

−2 −1 1 −1 1 2 −2 1 1 3 9 −1
1 −1 2 1 −1 3 −1 1 −1 1 −1 9









































1

12
(1048)

A four-dimensional solution also has rational optimal direction matrix W ⋆ having
rank = K− r = 24−4 = 20 ;
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W
⋆

=























































































20 −2 2 −2 0 0 −2 2 2 −2 2 0 2 4 2 2 0 −2 −2 −2 2 0 0 −2
−2 20 2 0 2 −2 −2 0 2 0 2 −2 0 2 −2 4 2 −2 2 0 0 −2 2 −2

2 2 20 2 2 2 0 2 0 −2 0 2 −2 −2 0 −2 −2 0 0 2 −2 −2 −2 4
−2 0 2 20 −2 2 −2 0 −2 0 2 −2 4 2 2 0 −2 2 −2 0 0 2 2 −2

0 2 2 −2 20 0 2 −2 −2 2 −2 0 2 0 2 −2 0 2 −2 −2 2 4 0 −2
0 −2 2 2 0 20 2 −2 2 2 −2 0 −2 0 −2 2 4 −2 2 −2 2 0 0 −2

−2 −2 0 −2 2 2 20 2 0 −2 4 −2 2 2 0 2 −2 0 0 2 −2 −2 2 0
2 0 2 0 −2 −2 2 20 −2 4 −2 −2 0 −2 −2 0 2 2 2 0 0 2 2 −2
2 2 0 −2 −2 2 0 −2 20 2 0 −2 2 −2 0 −2 −2 4 0 2 −2 2 2 0

−2 0 −2 0 2 2 −2 4 2 20 2 2 0 2 2 0 −2 −2 −2 0 0 −2 −2 2
2 2 0 2 −2 −2 4 −2 0 2 20 2 −2 −2 0 −2 2 0 0 −2 2 2 −2 0
0 −2 2 −2 0 0 −2 −2 −2 2 2 20 2 0 −2 2 0 2 2 2 −2 0 4 −2
2 0 −2 4 2 −2 2 0 2 0 −2 2 20 −2 −2 0 2 −2 2 0 0 −2 −2 2
4 2 −2 2 0 0 2 −2 −2 2 −2 0 −2 20 −2 −2 0 2 2 2 −2 0 0 2
2 −2 0 2 2 −2 0 −2 0 2 0 −2 −2 −2 20 2 2 0 4 2 −2 −2 2 0
2 4 −2 0 −2 2 2 0 −2 0 −2 2 0 −2 2 20 −2 2 −2 0 0 2 −2 2
0 2 −2 −2 0 4 −2 2 −2 −2 2 0 2 0 2 −2 20 2 −2 2 −2 0 0 2

−2 −2 0 2 2 −2 0 2 4 −2 0 2 −2 2 0 2 2 20 0 −2 2 −2 −2 0
−2 2 0 −2 −2 2 0 2 0 −2 0 2 2 2 4 −2 −2 0 20 −2 2 2 −2 0
−2 0 2 0 −2 −2 2 0 2 0 −2 2 0 2 2 0 2 −2 −2 20 4 2 −2 −2

2 0 −2 0 2 2 −2 0 −2 0 2 −2 0 −2 −2 0 −2 2 2 4 20 −2 2 2
0 −2 −2 2 4 0 −2 2 2 −2 2 0 −2 0 −2 2 0 −2 2 2 −2 20 0 2
0 2 −2 2 0 0 2 2 2 −2 −2 4 −2 0 2 −2 0 −2 −2 −2 2 0 20 2

−2 −2 4 −2 −2 −2 0 −2 0 2 0 −2 2 2 0 2 2 0 0 −2 2 2 2 20























































































1

24

(1049)

but these direction matrices are not unique and their precision not critical. Here is an
optimal four-dimensional point list,5.15 in Matlab output format, reconstructed by a
method in §5.12:

Columns 1 through 6

X = 0 -0.1983 -0.4584 0.1657 0.9399 0.7416

0 0.6863 0.2936 0.6239 -0.2936 0.3927

0 -0.4835 0.8146 -0.6448 0.0611 -0.4224

0 0.5059 0.2004 -0.4093 -0.1632 0.3427

Columns 7 through 12

-0.4815 -0.9399 -0.7416 0.1983 0.4584 -0.2832

0 0.2936 -0.3927 -0.6863 -0.2936 -0.6863

-0.8756 -0.0611 0.4224 0.4835 -0.8146 -0.3922

-0.0372 0.1632 -0.3427 -0.5059 -0.2004 -0.5431

Columns 13 through 18

0.2832 -0.2926 -0.6473 0.0943 0.3640 -0.3640

0.6863 0.9176 -0.6239 -0.2313 -0.0624 0.0624

0.3922 0.1698 -0.2309 -0.6533 -0.1613 0.1613

0.5431 -0.2088 0.3721 0.7147 -0.9152 0.9152

Columns 19 through 25

-0.0943 0.6473 -0.1657 0.2926 -0.5759 0.5759 0.4815

0.2313 0.6239 -0.6239 -0.9176 0.2313 -0.2313 0

0.6533 0.2309 0.6448 -0.1698 -0.2224 0.2224 0.8756

-0.7147 -0.3721 0.4093 0.2088 -0.7520 0.7520 0.0372

The r nonzero optimal eigenvalues of −V T
ND⋆VN are equal; remaining eigenvalues are

zero as per − tr(W ⋆V T
ND⋆VN ) = 0 (790). Numerical problems begin to arise with matrices

of this size due to interior-point methods of solution to (1044). By eliminating some
equality constraints from the kissing number problem, matrix size can be reduced: From

5.15An optimal five-dimensional point list is known: The answer was known at least 175 years ago. I
believe Gauss knew it. Moreover, Korkine & Zolotarev proved in 1882 that D5 is the densest lattice in
five dimensions. So they proved that if a kissing arrangement in five dimensions can be extended to
some lattice, then k(5)= 40. Of course, the conjecture in the general case also is: k(5)= 40. You
would like to see coordinates? Easily. Let A=

√
2 . Then p(1)=(A, A, 0, 0, 0) , p(2)=(−A, A, 0, 0, 0) ,

p(3)=(A,−A, 0, 0, 0) , . . . p(40)=(0, 0, 0,−A,−A) ; i.e, we are considering points with coordinates that
have two A and three 0 with any choice of signs and any ordering of the coordinates; the same
coordinates-expression in dimensions 3 and 4.

The first miracle happens in dimension 6. There are better packings than D6 (Conjecture: k(6)= 72).
It’s a real miracle how dense the packing is in eight dimensions (E8=Korkine & Zolotarev packing that
was discovered in 1880s) and especially in dimension 24 , that is the so-called Leech lattice.

Actually, people in coding theory have conjectures on the kissing numbers for dimensions up to 32 (or
even greater?). However, sometimes they found better lower bounds. I know that Ericson & Zinoviev a
few years ago discovered (by hand, no computer) in dimensions 13 and 14 better kissing arrangements
than were known before. −Oleg Musin, 2006
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§5.8.3 we have

−V T
NDVN = 11T− [ 0 I ] D

[

0T

I

]

1
2 (1050)

(which does not hold more generally) where Identity matrix I∈ SN−1 has one less
dimension than EDM D . By defining an EDM principal submatrix

D̂ , [ 0 I ] D

[

0T

I

]

∈ SN−1
h (1051)

so that
−V T

NDVN = 11T− D̂ 1
2 (1052)

we get a convex problem equivalent to (1044)

minimize
D̂∈SK

− tr(WD̂)

subject to D̂ij ≥ 1 , 1 ≤ i < j = 2 . . . K

11T− D̂ 1
2 º 0

δ(D̂) = 0

(1053)

Any feasible solution 11T− D̂ 1
2 belongs to an elliptope (§5.9.1.0.1). 2

5.4.2.2.7 Exercise. Rational optimal kissing direction matrix W ⋆.
Replace (1048) with a rational W ⋆ having rank = K− r = 12−3 = 9 , main diagonal 9 ,
and common denominator 12. H

This next example shows how finding the common point of intersection for three circles
in a plane, a nonlinear problem, has convex expression.

5.4.2.2.8 Example. Trilateration in wireless sensor network. [193]
Given three known absolute point positions in R2 (three anchors x̌2 , x̌3 , x̌4) and only
one unknown point (one sensor x1), the sensor’s absolute position is determined from its
noiseless measured distance-square ďi1 to each of three anchors (Figure 4, Figure 143a).
This trilateration can be expressed as a convex optimization problem in terms of list
X , [x1 x̌2 x̌3 x̌4 ]∈R2×4 and Gram matrix G∈ S4 (1015):

minimize
G∈S4, X∈R2×4

tr G

subject to tr(GΦi1) = ďi1 , i = 2 , 3, 4

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i = 2 , 3, 4

tr(G(eie
T
j + ej e

T
i )/2) = x̌T

i x̌j , 2≤ i < j = 3, 4

X(: , 2:4) = [ x̌2 x̌3 x̌4 ]
[

I X
XT G

]

º 0

(1054)

where
Φij = (ei − ej)(ei − ej)

T∈ SN
+ (1004)

and where the constraint on distance-square ďi1 is equivalently written as a constraint on
the Gram matrix via (1017). There are 9 linearly independent affine equality constraints
on that Gram matrix while the sensor is constrained, only by dimensioning, to lie in R2.
Although the objective trG of minimization5.16 insures a solution on the boundary of
positive semidefinite cone S4

+ , for this problem,

5.16Trace (tr G = 〈I , G〉) minimization is a heuristic for rank minimization. (§7.2.2.1) It may be
interpreted as squashing G which is bounded below by XTX as in (1055); id est, G−XTXº 0 ⇒
tr G ≥ tr XTX (1666). δ(G−XTX)= 0 ⇔ G=XTX (§A.7.2) ⇒ tr G = tr XTX which is a condition
necessary for equality.
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(a) (b)

(c) (d)

x1

x1

x1
x1

x̌2

x̌3 x̌4

x2

x2

x2

x3

x3

x3

x4

x4

x4

x5

x5

x6

√
d12

√
d13

√
d14

Figure 143: (a) Given three distances indicated with absolute point positions x̌2 , x̌3 , x̌4

known and noncollinear, absolute position of x1 in R2 can be precisely and uniquely
determined by trilateration; solution to a system of nonlinear equations. Dimensionless
EDM graphs (b) (c) (d) represent EDMs in various states of completion. Line
segments represent known absolute distances and may cross without vertex at intersection.
(b) Four-point list must always be embeddable in affine subset having dimension
rankV T

NDVN not exceeding 3. To determine relative position of x2 , x3 , x4 , triangle
inequality is necessary and sufficient (§5.14.1). Knowing all distance information, then (by
injectivity of D (§5.6)) point position x1 is uniquely determined to within an isometry
in any dimension. (c) When fifth point is introduced, only distances to x3 , x4 , x5 are
required to determine relative position of x2 in R2. Graph represents first instance of
missing distance information;

√
d12 . (d) Three distances are absent (

√
d12 ,

√
d13 ,

√
d23 )

from complete set of interpoint distances, yet unique isometric reconstruction (§5.4.2.2.10)
of six points in R2 is certain.
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� we claim that the set of feasible Gram matrices forms a line, (§2.5.1.1) in isomorphic
R10, tangent (§2.1.7.1.2) to the positive semidefinite cone boundary. (§5.4.2.2.9,
confer §4.2.1.3)

By Schur complement (§A.4, §2.9.1.0.1), any feasible G and X provide

G º XTX (1055)

which is a convex relaxation of the desired (nonconvex) equality constraint

[

I X
XT G

]

=

[

I
XT

]

[ I X ]
(1056)

expected positive semidefinite rank-2 under noiseless conditions. But, by (1668), the
relaxation admits

(3 ≥) rank G ≥ rankX (1057)

(a third dimension corresponding to an intersection of three spheres, not circles, were there
noise). If rank of an optimal solution equals 2 ,

rank

[

I X⋆

X⋆T G⋆

]

= 2 (1058)

then G⋆ = X⋆TX⋆ by Theorem A.4.0.1.3.
As posed, this localization problem does not require affinely independent (Figure 30,

three noncollinear) anchors. Assuming the anchors exhibit no rotational or reflective
symmetry in their affine hull (§5.5.2) and assuming the sensor x1 lies in that affine hull,
then sensor position solution x⋆

1 = X⋆(: , 1) is unique under noiseless measurement. [368]
2

This preceding transformation of trilateration to a semidefinite program works all the time
((1058) holds) despite relaxation (1055) because the optimal solution set is a unique point.

5.4.2.2.9 Proof (sketch). Only the sensor location x1 is unknown. The objective
function together with the equality constraints make a linear system of equations in Gram
matrix variable G

tr G = ‖x1‖2 + ‖x̌2‖2 + ‖x̌3‖2 + ‖x̌4‖2

tr(GΦi1) = ďi1 , i = 2 , 3, 4

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i = 2 , 3, 4

tr(G(eie
T
j + ej e

T
i )/2) = x̌T

i x̌j , 2≤ i < j = 3, 4

(1059)

which is invertible:

svec G =
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(1060)
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That line in the ambient space S4 of G , claimed on page 347, is traced by ‖x1‖2∈R on
the right side, as it turns out. One must show this line to be tangential (§2.1.7.1.2) to
S4

+ in order to prove uniqueness. Tangency is possible for affine dimension 1 or 2 while
its occurrence depends completely on the known measurement data. ¥

But as soon as significant noise is introduced or whenever distance data is incomplete, such
problems can remain convex although the set of all optimal solutions generally becomes a
convex set bigger than a single point (and still containing the noiseless solution).

5.4.2.2.10 Definition. Isometric reconstruction. (confer §5.5.3)
Isometric reconstruction from an EDM means building a list X correct to within a
rotation, reflection, and translation; in other terms, reconstruction of relative position,
unique to within an isometry, correct to within a rigid transformation. △

How much distance information is needed to uniquely localize a sensor (to recover
actual relative position)? The narrative in Figure 143 helps dispel any notion of
distance data proliferation in low affine dimension (r<N−2).5.17 Huang, Liang, and
Pardalos [241, §4.2] claim O(2N ) distances is a least lower bound (independent of
affine dimension r) for unique isometric reconstruction; achievable under certain noiseless
conditions on graph connectivity and point position. Alfakih shows how to ascertain
uniqueness over all affine dimensions via Gale matrix. [10] [5] [6] Figure 138b (p.332,
from small completion problem Example 5.3.0.0.2) is an example in R2 requiring only
2N− 3 = 5 known symmetric entries for unique isometric reconstruction, although the
four-point example in Figure 143b will not yield a unique reconstruction when any one of
the distances is left unspecified.

The list represented by the particular dimensionless EDM graph in Figure 144, having
only 2N− 3 = 9 absolute distances specified, has only one realization in R2 but has
more realizations in higher dimensions. Unique r-dimensional isometric reconstruction
by semidefinite relaxation like (1055) occurs iff realization in Rr is unique and there exist
no nontrivial higher-dimensional realizations. [368] For sake of reference, we provide the
complete corresponding EDM:

D =

















0 50641 56129 8245 18457 26645
50641 0 49300 25994 8810 20612
56129 49300 0 24202 31330 9160
8245 25994 24202 0 4680 5290

18457 8810 31330 4680 0 6658
26645 20612 9160 5290 6658 0

















(1061)

We consider paucity of distance information in this next example which shows it is
possible to recover exact relative position given incomplete noiseless distance information.
An ad hoc method for recovery of the least-rank optimal solution is introduced:

5.17When affine dimension r reaches N− 2 , then all distances-square in the EDM must be known for
unique isometric reconstruction in R

r ; going the other way, when r = 1 then the condition that the
dimensionless EDM graph be connected is necessary and sufficient. [222, §2.2]
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x5

x2
x3

x1

x4

x6

Figure 144: (confer (1061)) Incomplete EDM corresponding to this dimensionless EDM
graph (drawn freehand; no symmetry intended) provides unique isometric reconstruction
in R2.

x̌4

x̌5
x̌3

x1

x2

Figure 145: (Ye) Two sensors • and three anchors ◦ in R2. Connecting line-segments
denote known absolute distances. Incomplete EDM corresponding to this dimensionless
EDM graph provides unique isometric reconstruction in R2.
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−6 −4 −2 0 2 4 6 8
−15

−10

−5

0

5

10

x̌4

x̌5x̌3

x2

x1

Figure 146: Given in red # are two discrete linear trajectories of sensors x1 and x2 in
R2 localized by algorithm (1062) as indicated by blue bullets • . Anchors x̌3 , x̌4 , x̌5 ,
corresponding to Figure 145, are indicated by ⊗ . When targets # and bullets • coincide,
under these noiseless conditions, localization is successful. On this run, two visible
localization errors are due to rank-3 Gram optimal solutions. These errors can be corrected
by choosing a different normal in objective of minimization.
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5.4.2.2.11 Example. Tandem trilateration in wireless sensor network.
Given three known absolute point-positions in R2 (three anchors x̌3 , x̌4 , x̌5), two
unknown sensors x1 , x2∈R2 have absolute position determinable from their noiseless
distances-square (as indicated in Figure 145) assuming the anchors exhibit no rotational
or reflective symmetry in their affine hull (§5.5.2). This example differs from
Example 5.4.2.2.8 insofar as trilateration of each sensor is now in terms of one unknown
position: the other sensor. We express this localization as a convex optimization problem
(a semidefinite program, §4.1) in terms of list X , [x1 x2 x̌3 x̌4 x̌5 ]∈R2×5 and Gram
matrix G∈ S5 (1015) via relaxation (1055):

minimize
G∈S5, X∈R2×5

trG

subject to tr(GΦi1) = ďi1 , i = 2 , 4 , 5

tr(GΦi2) = ďi2 , i = 3, 5

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i = 3, 4 , 5

tr(G(eie
T
j + ej e

T
i )/2) = x̌T

i x̌j , 3≤ i < j = 4 , 5

X(: , 3:5) = [ x̌3 x̌4 x̌5 ]
[

I X
XT G

]

º 0

(1062)

where

Φij = (ei − ej)(ei − ej)
T∈ SN

+ (1004)

This problem realization is fragile because of the unknown distances between sensors and
anchors. Yet there is no more information we may include beyond the 11 independent
equality constraints on the Gram matrix (nonredundant constraints not antithetical) to
reduce the feasible set.5.18

Exhibited in Figure 146 are two mistakes in solution X⋆(: , 1:2) due to a rank-3
optimal Gram matrix G⋆. The trace objective is a heuristic minimizing convex envelope
of quasiconcave function5.19 rankG . (§2.9.2.9.2, §7.2.2.1) A rank-2 optimal Gram matrix
can be found and the errors corrected by choosing a different normal for the linear objective
function, now implicitly the Identity matrix I ; id est,

tr G = 〈G , I 〉 ← 〈G , δ(u)〉 (1063)

where vector u∈R5 is randomly selected. A random search for a good normal δ(u) in
only a few iterations is quite easy and effective because: the problem is small, an optimal
solution is known a priori to exist in two dimensions, a good normal direction is not
necessarily unique, and (we speculate) because the feasible affine-subset slices the positive
semidefinite cone thinly in the Euclidean sense.5.20 2

We explore ramifications of noise and incomplete data throughout; their individual
effect being to expand the optimal solution set, introducing more solutions and higher-rank
solutions. Hence our focus shifts in §4.5 to discovery of a reliable means for diminishing
the optimal solution set by introduction of a rank constraint.

Now we illustrate how a problem in distance geometry can be solved without equality
constraints representing measured distance; instead, we have only upper and lower bounds
on distances measured:

5.18By virtue of their dimensioning, the sensors are already constrained to R
2 the affine hull of the anchors.

5.19Projection on that nonconvex subset of all N×N-dimensional positive semidefinite matrices, in an
affine subset, whose rank does not exceed 2 is a problem considered difficult to solve. [405, §4]
5.20The log det rank-heuristic from §7.2.2.4 does not work here because it chooses the wrong normal.
Rank reduction (§4.1.2.1) is unsuccessful here because Barvinok’s upper bound (§2.9.3.0.1) on rank of G⋆

is 4.
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5.4.2.2.12 Example. Wireless location in a cellular telephone network.
Utilizing measurements of distance, time of flight, angle of arrival, or signal power in
the context of wireless telephony, multilateration is the process of localizing (determining
absolute position of) a radio signal source • by inferring geometry relative to multiple
fixed base stations ◦ whose locations are known.

We consider localization of a cellular telephone by distance geometry, so we assume
distance to any particular base station can be inferred from received signal power. On
a large open flat expanse of terrain, signal-power measurement corresponds well with
inverse distance. But it is not uncommon for measurement of signal power to suffer
20 decibels in loss caused by factors such as multipath interference (signal reflections),
mountainous terrain, man-made structures, turning one’s head, or rolling the windows up
in an automobile. Consequently, contours of equal signal power are no longer circular;
their geometry is irregular and would more aptly be approximated by translated ellipsoids
of graduated orientation and eccentricity as in Figure 148.

Depicted in Figure 147 is one cell phone x1 whose signal power is automatically and
repeatedly measured by 6 base stations ◦ nearby.5.21 Those signal power measurements
are transmitted from that cell phone to base station x̌2 who decides whether to transfer
(hand-off or hand-over) responsibility for that call should the user roam outside its cell.5.22

Due to noise, at least one distance measurement more than the minimum number
of measurements is required for reliable localization in practice; 3 measurements are
minimum in two dimensions, 4 in three.5.23 Existence of noise precludes measured distance
from the input data. We instead assign measured distance to a range estimate specified
by individual upper and lower bounds: di1 is the upper bound on distance-square from
the cell phone to ith base station, while di1 is the lower bound. These bounds become the
input data. Each measurement range is presumed different from the others.

Then convex problem (1054) takes the form:

minimize
G∈S7, X∈R2×7

trG

subject to di1 ≤ tr(GΦi1) ≤ di1 , i = 2 . . . 7

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i = 2 . . . 7

tr(G(eie
T
j + ej e

T
i )/2) = x̌T

i x̌j , 2≤ i < j = 3 . . . 7

X(: , 2:7) = [ x̌2 x̌3 x̌4 x̌5 x̌6 x̌7 ]
[

I X
XT G

]

º 0 (1064)

where

Φij = (ei − ej)(ei − ej)
T∈ SN

+ (1004)

This semidefinite program realizes the wireless location problem illustrated in Figure 147.
Location X⋆(: , 1) is taken as solution, although measurement noise will often cause
rankG⋆ to exceed 2. Randomized search for a rank-2 optimal solution is not so easy
here as in Example 5.4.2.2.11. We introduce a method in §4.5 for enforcing the stronger
rank-constraint (1058). To formulate this same problem in three dimensions, point list X
is simply redimensioned in the semidefinite program. 2

5.21Cell phone signal power is typically encoded logarithmically with 1-decibel increment and 64-decibel
dynamic range.
5.22Because distance to base station is quite difficult to infer from signal power measurements in an urban
environment, localization of a particular cell phone • by distance geometry would be far easier were the
whole cellular system instead conceived so cell phone x1 also transmits (to base station x̌2) its signal
power as received by all other cell phones within range.
5.23In Example 4.5.1.2.4, we explore how this convex optimization algorithm fares in the face of
measurement noise.
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x1

x̌2

x̌3

x̌4

x̌5x̌6

x̌7

Figure 147: Regions of coverage by base stations ◦ in a cellular telephone network. The
term cellular arises from packing of regions best covered by neighboring base stations.
Illustrated is a pentagonal cell best covered by base station x̌2 . Like a Voronoi diagram,
cell geometry depends on base-station arrangement. In some US urban environments, it
is not unusual to find base stations spaced approximately 1 mile apart. There can be as
many as 20 base-station antennae capable of receiving signal from any given cell phone • ;
practically, that number is closer to 6.

Figure 148: Some fitted contours of equal signal power in R2 transmitted from a commercial
cellular telephone • over about 1 mile suburban terrain outside San Francisco in 2005.
(Data by courtesy of Polaris Wireless.)

https://www.polariswireless.com
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Figure 149: A depiction of molecular conformation. [139]

5.4.2.2.13 Example. (Biswas, Nigam, Ye) Molecular Conformation.
The subatomic measurement technique called nuclear magnetic resonance spectroscopy
(NMR) is employed to ascertain physical conformation of molecules; e.g, Figure 5,
Figure 149. From this technique, distance, angle, and dihedral angle measurements can
be obtained. Dihedral angles arise consequent to a phenomenon where atom subsets are
physically constrained to Euclidean planes.

In the rigid covalent geometry approximation, the bond lengths and angles are
treated as completely fixed, so that a given spatial structure can be described very
compactly indeed by a list of torsion angles alone. . . These are the dihedral
angles between the planes spanned by the two consecutive triples in a chain of
four covalently bonded atoms.

−G. M. Crippen & T. F. Havel, 1988 [100, §1.1]

Crippen & Havel recommend working exclusively with distance data because they consider
angle data to be mathematically cumbersome. The present example shows instead how
inclusion of dihedral angle data into a problem statement can be made elegant and convex.

As before, ascribe position information to the matrix

X = [x1 · · · xN ] ∈ R3×N (79)

and introduce a matrix ℵ holding normals η to planes respecting dihedral angles ϕ :

ℵ , [ η1 · · · ηM ] ∈ R3×M (1065)

As in the other examples, we preferentially work with Gram matrices G because of the
bridge they provide between other variables; we define

[

Gℵ Z
ZT GX

]

,

[

ℵTℵ ℵTX
XTℵ XTX

]

=

[

ℵT

XT

]

[ℵ X ] ∈ RN+M×N+M (1066)

whose rank is 3 by assumption. So our problem’s variables are the two Gram matrices GX

and Gℵ and matrix Z = ℵTX of cross products. Then measurements of distance-square d
can be expressed as linear constraints on GX as in (1064), dihedral angle ϕ measurements
can be expressed as linear constraints on Gℵ by (1034), and normal-vector η conditions
can be expressed by vanishing linear constraints on cross-product matrix Z : Consider

https://www.cs.duke.edu/brd/Teaching/Previous/Bio
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three points x labelled 1 , 2 , 3 assumed to lie in the ℓth plane whose normal is ηℓ . There
might occur, for example, the independent constraints

ηT
ℓ (x1 − x2) = 0

ηT
ℓ (x2 − x3) = 0

(1067)

which are expressible in terms of constant matrices Ak∈RM×N ;

〈Z , Aℓ12〉 = 0
〈Z , Aℓ23〉 = 0

(1068)

Although normals η can be constrained exactly to unit length,

δ(Gℵ) = 1 (1069)

NMR data is noisy; so measurements are given as upper and lower bounds. Given bounds
on dihedral angles respecting 0≤ϕj ≤ π and bounds on distances di and given constant
matrices Ak (1068) and symmetric matrices Φi (1004) and Bj per (1034), then a
molecular conformation problem can be expressed:

find
Gℵ∈SM , GX∈SN , Z∈RM×N

GX

subject to di ≤ tr(GX Φi) ≤ di ∀ i∈ I1

cos ϕj ≤ tr(Gℵ Bj) ≤ cos ϕj ∀ j∈ I2

〈Z , Ak〉 = 0 ∀ k∈ I3

GX1 = 0

δ(Gℵ) = 1
[

Gℵ Z
ZT GX

]

º 0

rank

[

Gℵ Z
ZT GX

]

= 3

(1070)

where GX1=0 provides a geometrically centered list X (§5.4.2.2). Ignoring the rank
constraint would tend to force cross-product matrix Z to zero. What binds these three
variables is the rank constraint; we show how to satisfy it in §4.5. 2

5.4.3 Inner-product form EDM definition

We might, for example, want to realize a constellation given only interstellar
distance (or, equivalently, parsecs from our Sun and relative angular
measurement; the Sun as vertex to two distant stars); called stellar
cartography. . . −p.19

Equivalent to (1002) is [456, §1-7] [379, §3.2]

dij = dik + dkj − 2
√

dikdkj cos θikj

=
[√

dik

√

dkj

]

[

1 −eıθikj

−e−ıθikj 1

]

[
√

dik
√

dkj

]

(1071)

called law of cosines where ı ,
√
−1 , i , j , k are positive integers, and θikj is the angle

at vertex xk formed by vectors xi − xk and xj − xk ; id est, the angle relative to xk

cos θikj =
1
2 (dik + dkj − dij)

√

dikdkj

=
(xi − xk)T(xj − xk)

‖xi − xk‖ ‖xj − xk‖
(1072)
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where the numerator forms an inner product of vectors. Distance-square dij

([ √

dik
√

dkj

])

is a convex quadratic function5.24 on R2

+ whereas dij(θikj) is quasiconvex (§3.15)
minimized over domain {−π≤ θikj ≤π} by θ⋆

ikj =0 , we get the Pythagorean theorem when
θikj =±π/2 , and dij(θikj) is maximized when θ⋆

ikj =±π ;

dij =
(√

dik +
√

dkj

)2
, θikj = ±π

dij = dik + dkj , θikj = ±π
2

dij =
(√

dik −
√

dkj

)2
, θikj = 0

(1073)

so

|
√

dik −
√

dkj | ≤
√

dij ≤
√

dik +
√

dkj (1074)

Hence the triangle inequality, Euclidean metric property 4, holds for any EDM D .

We may construct an inner-product form of the EDM definition for matrices by
evaluating (1071) for k=1 : By defining

ΘTΘ ,
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d12d13 cos θ213
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√

d12d1N cos θ21N
√
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√
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. . .
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∈ SN−1

(1075)
then any EDM may be expressed

D(Θ) ,

[

0
δ(ΘTΘ)

]

1T + 1
[

0 δ(ΘTΘ)T
]

− 2

[

0 0T

0 ΘTΘ

]

∈ EDMN

=

[

0 δ(ΘTΘ)T

δ(ΘTΘ) δ(ΘTΘ)1T+ 1δ(ΘTΘ)T− 2ΘTΘ

] (1076)

EDMN =
{

D(Θ) | Θ ∈ RN−1×N−1
}

(1077)

for which all Euclidean metric properties hold. Entries of ΘTΘ result from vector
inner-products as in (1072); id est,

Θ = [x2 − x1 x3 − x1 · · · xN − x1 ] = X
√

2VN ∈ Rn×N−1 (1078)

Inner product ΘTΘ is obviously related to a Gram matrix (1015),

G =

[

0 0T

0 ΘTΘ

]

, x1 = 0 (1079)

For D = D(Θ) and no condition on the list X (confer (1023) (1027))

ΘTΘ = −V T
NDVN ∈ RN−1×N−1 (1080)

5.24

[

1 −eıθikj

−e−ıθikj 1

]

º 0 , having eigenvalues {0, 2}.

Minimum is attained for

[ √

dik
√

dkj

]

=

{

µ1 , µ ≥ 0 , θikj = 0
0 , −π ≤ θikj ≤ π , θikj 6= 0

(§D.2.1, [68, exmp.4.5]).
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5.4.3.1 Relative-angle form

The inner-product form EDM definition is not a unique definition of Euclidean distance
matrix; there are approximately five flavors distinguished by their argument to operator
D . Here is another one:

Like D(X) (1006), D(Θ) will make an EDM given any Θ∈Rn×N−1, it is neither a
convex function of Θ (§5.4.3.2), and it is homogeneous in the sense (1009). Scrutinizing
ΘTΘ (1075) we find that because of the arbitrary choice k = 1 , distances therein are all
with respect to point x1 . Similarly, relative angles in ΘTΘ are between all vector pairs
having vertex x1 . Yet picking arbitrary θi1j to fill ΘTΘ will not necessarily make an
EDM; inner product (1075) must be positive semidefinite.

ΘTΘ =
√

δ(d) Ω
√

δ(d) ,













√
d12 0

√
d13

. . .

0
√

d1N

























1 cos θ213 · · · cos θ21N

cos θ213 1
. . . cos θ31N

...
. . .

. . .
...

cos θ21N cos θ31N · · · 1

























√
d12 0

√
d13

. . .

0
√

d1N













(1081)

Expression D(Θ) defines an EDM for any positive semidefinite relative-angle matrix

Ω = [cos θi1j , i, j = 2 . . . N ] ∈ SN−1 (1082)

and any nonnegative distance vector

d = [d1j , j = 2 . . . N ] = δ(ΘTΘ) ∈ RN−1 (1083)

because (§A.3.1.0.5)
Ω º 0 ⇒ ΘTΘ º 0 (1084)

Decomposition (1081) and the relative-angle matrix inequality Ωº 0 lead to a different
expression of an inner-product form EDM definition (1076)

D(Ω , d) ,

[

0
d

]

1T + 1
[

0 dT
]

− 2

√

δ

([

0
d

])[

0 0T

0 Ω

]

√

δ

([

0
d

])

=

[

0 dT

d d1T+ 1dT− 2
√

δ(d) Ω
√

δ(d)

]

∈ EDMN

(1085)

and another expression of the EDM cone:

EDMN =
{

D(Ω , d) | Ω º 0 ,
√

δ(d) º 0
}

(1086)

In the particular circumstance x1 = 0 , we can relate interpoint angle matrix Ψ from the
Gram decomposition in (1015) to relative-angle matrix Ω in (1081). Thus,

Ψ ≡
[

1 0T

0 Ω

]

, x1 = 0 (1087)

5.4.3.2 Inner-product form −V T
N D(Θ)VN convexity

On page 356 we saw that each EDM entry dij is a convex quadratic function of

[ √

dik
√

dkj

]

and a quasiconvex function of θikj . Here the situation for inner-product form EDM
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operator D(Θ) (1076) is identical to that in §5.4.1 for list-form D(X) ; −D(Θ) is not a
quasiconvex function of Θ by the same reasoning, and from (1080)

−V T
N D(Θ)VN = ΘTΘ (1088)

is a convex quadratic function of Θ on domain Rn×N−1 achieving its minimum at Θ = 0.

5.4.3.3 Inner-product form, discussion

We deduce that knowledge of interpoint distance is equivalent to knowledge of distance
and angle from the perspective of one point, x1 in our chosen case. The total amount of
information N(N−1)/2 in ΘTΘ is unchanged5.25 with respect to EDM D .

5.5 Invariance

When D is an EDM, there exist an infinite number of corresponding N -point lists X
(79) in Euclidean space. All those lists are related by isometric transformation: rotation,
reflection, and translation (offset or shift).

5.5.1 Translation

Any translation common among all the points xℓ in a list will be cancelled in the formation
of each dij . Proof follows directly from (1002). Knowing that translation α in advance,
we may remove it from the list constituting the columns of X by subtracting α1T. Then
it stands to reason by list-form definition (1006) of an EDM, for any translation α∈Rn

D(X − α1T) = D(X) (1089)

In words, interpoint distances are unaffected by offset; EDM D is translation invariant.
When α = x1 in particular,

[x2−x1 x3−x1 · · · xN −x1 ] = X
√

2VN ∈ Rn×N−1 (1078)

and so

D(X − x11
T) = D(X − Xe11

T) = D
(

X
[

0
√

2VN
])

= D(X) (1090)

5.5.1.0.1 Example. Translating geometric center to origin.
We might choose to shift the geometric center αc of an N -point list {xℓ} (arranged
columnar in X) to the origin; [404] [195]

α = αc , Xbc , X1 1
N ∈ P ⊆ A (1091)

where A represents the list’s affine hull. If we were to associate a point-mass mℓ

with each of the points xℓ in the list, then their center of mass (or gravity) would be
(
∑

xℓ mℓ) /
∑

mℓ . The geometric center is the same as the center of mass under the
assumption of uniform mass density across points. [398] The geometric center always lies in

5.25The reason for amount O(N 2) information is because of the relative measurements. Use of a fixed
reference in measurement of angles and distances would reduce required information but is antithetical.
In the particular case n = 2 , for example, ordering all points xℓ (in a length-N list) by increasing angle

of vector xℓ − x1 with respect to x2 − x1 , θi1j becomes equivalent to
∑j−1

k=i θk,1,k+1 ≤ 2π and the
amount of information is reduced to 2N−3 ; rather, O(N ).
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the convex hull P of the list; id est, αc∈ P because bT
c 1=1 and bcº 0 .5.26 Subtracting

the geometric center from every list member,

X − αc1
T = X − 1

N X11T = X(I − 1
N 11T) = XV ∈ Rn×N (1092)

where V is the geometric centering matrix (1028). So we have (confer (1006))

D(X) = D(XV ) = δ(V TXTXV )1T+ 1δ(V TXTXV )T− 2V TXTXV ∈ EDMN (1093)

2

5.5.1.1 Gram-form invariance

Following from (1093) and the linear Gram-form EDM operator (1018):

D(G) = D(V GV ) = δ(V GV )1T+ 1δ(V GV )T− 2V GV ∈ EDMN (1094)

The Gram-form consequently exhibits invariance to translation by a doublet u1T+ 1uT

(§B.2)

D(G) = D(G − (u1T+ 1uT)) (1095)

because, for any u∈RN , D(u1T+ 1uT)=0. The collection of all such doublets forms
the nullspace (1111) to the operator; the translation-invariant subspace SN⊥

c (2231) of
the symmetric matrices SN . This means matrix G is not unique and can belong to an
expanse more broad than a positive semidefinite cone; id est, G∈ SN

+ − SN⊥
c . So explains

Gram matrix sufficiency in EDM definition (1018).5.27

5.5.2 Rotation/Reflection

Rotation of the list X∈ Rn×N about some arbitrary point α∈Rn, or reflection through
some affine subset containing α , can be accomplished via Q(X−α1T) where Q is an
orthogonal matrix (§B.5).

We rightfully expect

D
(

Q(X − α1T)
)

= D(QX − β1T) = D(QX) = D(X) (1096)

Because list-form D(X) is translation invariant, we may safely ignore offset and consider
only the impact of matrices that premultiply X . Interpoint distances are unaffected by
rotation or reflection; we say, EDM D is rotation/reflection invariant. Proof follows from
the fact: QT=Q−1 ⇒ XTQTQX =XTX . So (1096) follows directly from (1006).

The class of premultiplying matrices, for which interpoint distances are unaffected, is a
little more broad than orthogonal matrices. Looking at EDM definition (1006), it appears
that any matrix Qp such that

XTQT
pQp X = XTX (1097)

will have the property

D(Qp X) = D(X) (1098)

An example is thin Qp∈Rm×n (m>n) having orthonormal columns; an orthonormal
matrix.

5.26Any b from α = Xb chosen such that bT1 = 1 , more generally, makes an auxiliary V -matrix.
(§B.4.1.1)
5.27A constraint G1=0 would prevent excursion into the translation-invariant subspace (numerical
unboundedness).
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x1 x1

x2 x2

x3 x3

x4 x4

(a) (b) (c)

Figure 150: (a) Four points in quadrature in two dimensions about their geometric center.
(b) Complete EDM graph of diamond-shaped vertices. (c) Quadrature rotation of
Euclidean body in R2 first requires shroud: the smallest Cartesian square containing it.

5.5.2.0.1 Example. Reflection prevention and quadrature rotation.
Consider the EDM graph in Figure 150b representing known distance between vertices
(Figure 150a) of a tilted-square diamond in R2. Suppose some geometrical optimization
problem were posed where isometric transformation is allowed excepting reflection, and
where rotation must be quantized so that only quadrature rotations are allowed; only
multiples of π/2.

Counterclockwise rotation of any vector about the origin by angle θ is prescribed in
two dimensions by orthogonal matrix

Q =

[

cos θ −sin θ
sin θ cos θ

]

(1099)

clockwise rotation is prescribed by negating angle, rather QT, whereas reflection of any
point through a hyperplane containing the origin

∂H =

{

x∈R2

∣

∣

∣

∣

∣

[

cos θ
sin θ

]T

x = 0

}

(1100)

is accomplished by multiplication with symmetric orthogonal matrix (§B.5.3)

R =

[

sin(θ)2− cos(θ)2 −2 sin(θ) cos(θ)
−2 sin(θ) cos(θ) cos(θ)2− sin(θ)2

]

(1101)

Rotation matrix Q is characterized by identical diagonal entries and by antidiagonal entries
equal but opposite in sign, whereas reflection matrix R is characterized in the reverse sense.

Assign the diamond vertices
{

xℓ ∈ R2, ℓ=1 . . . 4
}

to columns of a matrix

X = [x1 x2 x3 x4 ] ∈ R2×4 (79)

Our scheme, to prevent reflection, enforces a rotation matrix characteristic upon the
coordinates of adjacent points themselves: First, shift geometric center of X to the origin;
for geometric centering matrix V ∈ S4 (§5.5.1.0.1), define

Y , XV ∈ R2×4 (1102)

To maintain relative quadrature between points (Figure 150a) and to prevent reflection,
it is sufficient that all interpoint distances be specified and that adjacencies Y (: , 1: 2) ,
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Y (: , 2:3) , and Y (: , 3:4) be proportional to 2×2 rotation matrices; any clockwise rotation
would ascribe a reflection matrix characteristic. Counterclockwise rotation is thereby
enforced by constraining equality among diagonal and antidiagonal entries as prescribed
by (1099);

Y (: , 1: 3) =

[

0 1
−1 0

]

Y (: , 2:4) (1103)

Quadrature quantization of rotation can be regarded as a constraint on tilt of the
smallest Cartesian square containing the diamond as in Figure 150c. Our scheme to
quantize rotation requires that all square vertices be described by vectors whose entries are
nonnegative when the square is translated anywhere interior to the nonnegative orthant.
We capture the four square vertices as columns of a product Y C where

C =









1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1









(1104)

Then, assuming a unit-square shroud, the affine constraint

Y C +

[

1/2
1/2

]

1T≥ 0 (1105)

quantizes rotation, as desired. 2

5.5.2.1 Inner-product form invariance

Likewise, D(Θ) (1076) is rotation/reflection invariant;

D(QpΘ) = D(QΘ) = D(Θ) (1106)

so (1097) and (1098) similarly apply.

5.5.3 Invariance conclusion

In the making of an EDM, absolute rotation, reflection, and translation information is lost.
Given an EDM, reconstruction of point position (§5.12, the list X) can be guaranteed
correct only in affine dimension r and relative position. Given a noiseless complete EDM,
this isometric reconstruction is unique insofar as every realization of a corresponding list
X is congruent :

5.6 Injectivity of D & unique reconstruction

Injectivity implies uniqueness of isometric reconstruction (§5.4.2.2.10); hence, we endeavor
to demonstrate it.

EDM operators list-form D(X) (1006), Gram-form D(G) (1018), and inner-product
form D(Θ) (1076) are many-to-one surjections (§5.5) onto the same range; the EDM cone
(§6): (confer (1019) (1113))

EDMN =
{

D(X) : RN−1×N → SN
h | X∈ RN−1×N

}

=
{

D(G) : SN → SN
h | G ∈ SN

+ − SN⊥
c

}

=
{

D(Θ) : RN−1×N−1→ SN
h | Θ ∈ RN−1×N−1

}

(1107)

where (§5.5.1.1)

SN⊥
c = {u1T+ 1uT | u∈RN} ⊆ SN (2231)
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basis SN⊥
c

∈basis SN⊥
h

∈basis SN⊥
h

SN
c

SN
h

dim SN
c = dim SN

h = N(N−1)
2 in RN(N+1)/2

dim SN⊥
c = dim SN⊥

h = N in RN(N+1)/2

basis SN
c = V {Eij}V (confer (62))

Figure 151: Orthogonal complements in SN abstractly oriented in isometrically isomorphic
RN(N+1)/2. Case N = 2 accurately illustrated in R3. Orthogonal projection of basis for
SN⊥

h on SN⊥
c yields another basis for SN⊥

c . (Basis vectors for SN⊥
c are illustrated lying in

a plane orthogonal to SN
c in this dimension. Basis vectors for each ⊥ space outnumber

those for its respective orthogonal complement; such is not the case in higher dimension.)
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5.6.1 Gram-form bijectivity

Because linear Gram-form EDM operator

D(G) = δ(G)1T+ 1δ(G)T− 2G (1018)

has no nullspace [97, §A.1] on the geometric center subspace5.28 (§E.7.2.0.2)

SN
c , {G∈ SN | G1 = 0} (2229)

= {G∈ SN | N (G) ⊇ 1} = {G∈ SN | R(G) ⊆ N (1T)}
= {V Y V | Y ∈ SN} ⊂ SN (2230)

≡ {VNAV T
N | A∈ SN−1}

(1108)

then D(G) on that subspace is injective.

To prove injectivity of D(G) on SN
c : Any matrix Y ∈ SN can be decomposed

into orthogonal components in SN ;

Y = V Y V + (Y − V Y V ) (1109)

where V Y V ∈ SN
c and Y −V Y V ∈ SN⊥

c (2231). Because of translation
invariance (§5.5.1.1) and linearity, D(Y −V Y V )=0 hence N (D)⊇ SN⊥

c . It
remains only to show

D(V Y V ) = 0 ⇔ V Y V = 0 (1110)

( ⇔ Y = u1T+ 1uT for some u∈RN). D(V Y V ) will vanish whenever
2V Y V = δ(V Y V )1T+ 1δ(V Y V )T. But this implies R(1) (§B.2) were a subset
of R(V Y V ) , which is contradictory. Thus we have

N (D) = {Y | D(Y )=0} = {Y | V Y V = 0} = SN⊥
c (1111)

¨

Since G1=0 ⇔ X1=0 (1026) simply means that list X is geometrically centered at the
origin, and because the Gram-form EDM operator D is translation invariant with N (D)
being the translation-invariant subspace SN⊥

c , then EDM definition D(G) (1107) on5.29

(confer §6.5.1, §6.6.1, §A.7.4.0.1)

SN
c ∩ SN

+ = {V Y V º 0 | Y ∈ SN} ≡ {VNAV T
N | A∈ SN−1

+ } ⊂ SN (1112)

must be surjective onto EDMN ; (confer (1019))

EDMN =
{

D(G) | G ∈ SN
c ∩ SN

+

}

(1113)

5.28Equivalence ≡ in (1108) follows from the fact: Given B = V Y V = VNAV T
N ∈ S

N
c with only matrix

A∈ S
N−1 unknown, then V †

NBV †T
N = A or V †

NY V †T
N = A .

5.29Equivalence ≡ in (1112) follows from the fact: Given B = V Y V = VNAV T
N ∈ S

N
+ with only matrix

A unknown, then V †
NBV †T

N = A and A∈ S
N−1
+ must be positive semidefinite by positive semidefiniteness

of B and Corollary A.3.1.0.5.
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5.6.1.1 Gram-form operator D inversion

Define the linear geometric centering operator V : (confer (1027))

V(D) : SN → SN , −V D V 1
2 (1114)

[101, §4.3]5.30 This orthogonal projector V has no nullspace on

SN
h = aff EDMN (1368)

because the projection of −D/2 on SN
c (2229) can be 0 if and only if D ∈ SN⊥

c ; but
SN⊥

c ∩ SN
h = 0 (Figure 151). Projector V on SN

h is therefore injective hence uniquely
invertible. Further, −V SN

h V/2 is equivalent to the geometric center subspace SN
c in the

ambient space of symmetric matrices; a surjection,

SN
c = V(SN ) = V

(

SN
h ⊕ SN⊥

h

)

= V
(

SN
h

)

(1115)

because (75)

V
(

SN
h

)

⊇ V
(

SN⊥
h

)

= V
(

δ2(SN )
)

(1116)

Because D(G) on SN
c is injective, and aff D

(

V(EDMN )
)

= D
(

V(aff EDMN )
)

by property

(131) of the affine hull, we find for D∈ SN
h

D(−V D V 1
2 ) = δ(−V D V 1

2 )1T + 1δ(−V D V 1
2 )T − 2(−V D V 1

2 ) (1117)

id est,

D = D
(

V(D)
)

(1118)

−V D V = V
(

D(−V D V )
)

(1119)

or
SN

h = D
(

V(SN
h )

)

(1120)

−V SN
h V = V

(

D(−V SN
h V )

)

(1121)

These operators V and D are mutual inverses.

The Gram-form D
(

SN
c

)

(1018) is equivalent to SN
h ;

D
(

SN
c

)

= D
(

V(SN
h ⊕ SN⊥

h )
)

= SN
h + D

(

V(SN⊥
h )

)

= SN
h (1122)

because SN
h ⊇ D

(

V(SN⊥
h )

)

. In summary, for the Gram-form we have the isomorphisms

[102, §2] [101, p.76, p.107] [8, §2.1]5.31 [7, §2] [9, §18.2.1] [3, §2.1]

SN
h = D(SN

c ) (1123)

SN
c = V(SN

h ) (1124)

and from bijectivity results in §5.6.1,

EDMN = D(SN
c ∩ SN

+ ) (1125)

SN
c ∩ SN

+ = V(EDMN ) (1126)

5.30Critchley cites Torgerson, 1958 [401, ch.11, §2], for a history and derivation of (1114).
5.31In [8, p.6, line 20], delete sentence: Since G is also . . . not a singleton set.
[8, p.10, line 11] x3 = 2 (not 1).
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5.6.2 Inner-product form bijectivity

The Gram-form EDM operator D(G)= δ(G)1T+ 1δ(G)T− 2G (1018) is an injective map,
for example, on the domain that is the subspace of symmetric matrices having all zeros in
the first row and column

SN
0 = {G∈ SN | Ge1 = 0}

=

{[

0 0T

0 I

]

Y

[

0 0T

0 I

]

| Y ∈ SN

}

(2233)

because it obviously has no nullspace there. Since Ge1 = 0 ⇔ Xe1 = 0 (1020) means the
first point in list X resides at the origin, then D(G) on SN

0 ∩ SN
+ must be surjective onto

EDMN .
Substituting ΘTΘ ← −V T

NDVN (1088) into inner-product form EDM definition D(Θ)
(1076), it may be further decomposed:

D(D) =

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(1127)

This linear operator D is another flavor of inner-product form and an injective map
of the EDM cone onto itself. Yet when its domain is instead the entire symmetric
hollow subspace SN

h = aff EDMN , D(D) becomes an injective map onto that same
subspace. Proof follows directly from the fact: linear D has no nullspace [97, §A.1] on
SN

h = aff D(EDMN )= D(aff EDMN ) (131).

5.6.2.1 Inversion of D
(

−V T
NDVN

)

Injectivity of D(D) suggests inversion of (confer (1023))

VN (D) : SN → SN−1 , −V T
NDVN (1128)

a linear surjective5.32 mapping onto SN−1 having nullspace5.33 SN⊥
c ;

VN (SN
h ) = SN−1 (1129)

injective on domain SN
h because SN⊥

c ∩ SN
h = 0. Revising the argument of this

inner-product form (1127), we get another flavor

D
(

−V T
NDVN

)

=

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(1130)
and we obtain mutual inversion of operators VN and D , for D∈ SN

h

D = D
(

VN (D)
)

(1131)

−V T
NDVN = VN

(

D(−V T
NDVN )

)

(1132)

5.32Surjectivity of VN (D) is demonstrated via the Gram-form EDM operator D(G) : Since S
N
h = D(SN

c )

(1122), then for any Y ∈ S
N−1, −V T

N D(V †T
N Y V †

N /2)VN = Y .
5.33 N (VN ) ⊇ S

N⊥
c is apparent. There exists a linear mapping

T (VN (D)) , V †T
N VN (D)V †

N = −V DV 1
2

= V(D)
such that

N (T (VN )) = N (V) ⊇ N (VN ) ⊇ S
N⊥
c = N (V)

where the equality S
N⊥
c =N (V) is known (§E.7.2.0.2). ¨
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or
SN

h = D
(

VN (SN
h )

)

(1133)

−V T
N SN

h VN = VN
(

D(−V T
N SN

h VN )
)

(1134)

Substituting ΘTΘ←Φ into inner-product form EDM definition (1076), any EDM may
be expressed by the new flavor

D(Φ) ,

[

0
δ(Φ)

]

1T + 1
[

0 δ(Φ)T
]

− 2

[

0 0T

0 Φ

]

∈ EDMN

⇔
Φ º 0

(1135)

where this D is a linear surjective operator onto EDMN by definition, injective because it
has no nullspace on domain SN−1

+ . More broadly, aff D(SN−1
+ )= D(aff SN−1

+ ) (131),

SN
h = D(SN−1)

SN−1 = VN (SN
h )

(1136)

demonstrably isomorphisms, and by bijectivity of this inner-product form:

EDMN = D(SN−1
+ ) (1137)

SN−1
+ = VN (EDMN ) (1138)

5.7 Embedding in affine hull

The affine hull A (81) of a point list {xℓ} (arranged columnar in X∈ Rn×N (79)) is
identical to the affine hull of that polyhedron P (89) formed from all convex combinations
of the xℓ ; [68, §2] [354, §17]

A = aff X = aff P (1139)

Comparing hull definitions (81) and (89), it becomes obvious that the xℓ and their convex
hull P are embedded in their unique affine hull A ;

A ⊇ P ⊇ {xℓ} (1140)

Recall: affine dimension r is a lower bound on embedding, equal to dimension of the
subspace parallel to that nonempty affine set A in which the points are embedded. (§2.3.1)
We define dimension of the convex hull P to be the same as dimension r of the affine hull
A [354, §2], but r is not necessarily equal to rank of X (1159).

For the particular example illustrated in Figure 137, P is the triangle in union with
its relative interior while its three vertices constitute the entire list X . Affine hull A is
the unique plane that contains the triangle, so affine dimension r = 2 in that example
while rank of X is 3. Were there only two points in Figure 137, then the affine hull would
instead be the unique line passing through them; r would become 1 while rank would then
be 2.

5.7.1 Determining affine dimension

Knowledge of affine dimension r becomes important because we lose any absolute offset
common to all the generating xℓ in Rn when reconstructing convex polyhedra given only
distance information. (§5.5.1) To calculate r , we first remove any offset that serves to
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increase dimensionality of the subspace required to contain polyhedron P ; subtracting
any α∈A in the affine hull from every list member will work,

X − α1T (1141)

translating A to the origin:5.34

A− α = aff(X − α1T) = aff(X) − α (1142)

P − α = conv(X − α1T) = conv(X) − α (1143)

Because (1139) and (1140) translate,

Rn ⊇ A− α = aff(X − α1T) = aff(P − α) ⊇ P − α ⊇ {xℓ − α} (1144)

where from the previous relations it is easily shown

aff(P − α) = aff(P) − α (1145)

Translating A neither changes its dimension or the dimension of the embedded polyhedron
P ; (80)

r , dimA = dim(A− α) , dim(P − α) = dimP (1146)

For any α∈ Rn, (1142)-(1146) remain true. [354, p.4, p.12] Yet when α ∈ A , the affine
set A− α becomes a unique subspace of Rn in which the {xℓ − α} and their convex hull
P − α are embedded (1144), and whose dimension is more easily calculated.

5.7.1.0.1 Example. Translating first list-member to origin.
Subtracting the first member α , x1 from every list member will translate their affine hull
A and their convex hull P and, in particular, x1∈ P ⊆ A to the origin in Rn ; videlicet,

X − x11
T = X − Xe11

T = X(I − e11
T) = X

[

0
√

2VN
]

∈ Rn×N (1147)

where VN is defined in (1012), and e1 in (1022). Applying (1144) to (1147),

Rn ⊇ R(XVN ) = A− x1 = aff(X − x11
T) = aff(P − x1) ⊇ P − x1 ∋ 0 (1148)

where XVN ∈ Rn×N−1. Hence

r = dimR(XVN ) (1149)

2

Since shifting the geometric center to the origin (§5.5.1.0.1) translates the affine hull
to the origin as well, then it must also be true

r = dimR(XV ) (1150)

For any matrix whose range is R(V )=N (1T) we get the same result; e.g,

r = dimR(XV †T
N ) (1151)

because
R(XV ) = {Xz | z∈N (1T)} (1152)

and R(V ) = R(VN ) = R(V †T
N ) (§E). These auxiliary matrices (§B.4.2) are more closely

related;
V = VNV †

N (1845)

5.34Manipulation of hull functions aff and conv follows from their definitions.
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5.7.1.1 Affine dimension r versus rank

Now, suppose D is an EDM as defined by

D(X) = δ(XTX)1T+ 1δ(XTX)T− 2XTX ∈ EDMN (1006)

and we premultiply by −V T
N and postmultiply by VN . Then because V T

N 1=0 (1013), it
is always true that

−V T
NDVN = 2V T

NXTXVN = 2V T
N GVN ∈ SN−1 (1153)

where G is a Gram matrix. Similarly pre- and postmultiplying by V (confer (1027))

−V D V = 2V XTX V = 2V GV ∈ SN (1154)

always holds because V 1=0 (1832). Likewise, multiplying inner-product form EDM
definition (1076), it always holds:

−V T
NDVN = ΘTΘ ∈ SN−1 (1080)

For any matrix A , rankATA = rankA = rankAT. (1645) [237, §0.4]5.35 So, by (1152),
affine dimension

r = rankXV = rankXVN = rankXV †T
N = rank Θ

= rankV D V = rankV GV = rankV T
NDVN = rankV T

N GVN
(1155)

By conservation of dimension, (§A.7.3.0.1)

r + dimN (V T
NDVN ) = N−1 (1156)

r + dimN (V D V ) = N (1157)

For D∈EDMN

−V T
NDVN ≻ 0 ⇔ r = N−1 (1158)

but −V D V ⊁ 0. The general fact5.36 (confer (1038))

r ≤ min{n , N−1} (1159)

is evident from (1147) but can be visualized in the example illustrated in Figure 137.
There we imagine a vector from the origin to each point in the list. Those three vectors
are linearly independent in R3, but affine dimension r is 2 because the three points lie
in a plane. When that plane is translated to the origin, it becomes the only subspace of
dimension r=2 that can contain the translated triangular polyhedron.

5.35For A∈R
m×n, N (ATA) = N (A). [379, §3.3]

5.36 rank X ≤ min{n , N}
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5.7.2 Précis

We collect expressions for affine dimension r : for list X∈ Rn×N and Gram matrix G∈ SN
+

r , dim(P − α) = dimP = dim conv X (1146)
= dim(A− α) = dimA = dim aff X
= rank(X − x11

T) = rank(X − 1
N X11T)

= rank Θ (1078)
= rankXVN = rankXV = rankXV †T

N
= rankX , Xe1 = 0 or X1=0

= rankV T
N GVN = rankV GV = rankV †

NGVN
= rankG , Ge1 = 0 (1023) or G1=0 (1027)

= rankV T
NDVN = rankV D V = rankV †

NDVN = rankVN (V T
NDVN )V T

N
= rank Λ (1246)

= N−1 − dimN
([

0 1T

1 −D

])

= rank

[

0 1T

1 −D

]

− 2 (1167)















D ∈ EDMN

(1160)

5.7.3 Eigenvalues of −V DV versus −V
†
NDVN

Suppose for D∈EDMN we are given eigenvectors vi∈RN of −V D V and corresponding
eigenvalues λ∈RN so that

−V D V vi = λi vi , i = 1 . . . N (1161)

From these we can determine the eigenvectors and eigenvalues of −V †
NDVN : Define

νi , V †
N vi , λi 6= 0 (1162)

Then we have:

−V DVNV †
N vi = λi vi (1163)

−V †
NV DVN νi = λiV

†
N vi (1164)

−V †
NDVN νi = λi νi (1165)

the eigenvectors of −V †
NDVN are given by (1162) while its corresponding nonzero

eigenvalues are identical to those of −V D V although −V †
NDVN is not necessarily positive

semidefinite. In contrast, −V T
NDVN is positive semidefinite but its nonzero eigenvalues

are generally different.

5.7.3.0.1 Theorem. EDM rank versus affine dimension r . [195, §3] [219, §3]
[194, §3] For D∈EDMN (confer (1320))

1) r = rank(D) − 1 ⇔ 1TD†1 6= 0
Points constituting a list X generating the polyhedron corresponding to D lie on the
relative boundary of an r-dimensional circumhypersphere having

diameter =
√

2
(

1TD†1
)−1/2

circumcenter = XD†
1

1TD†1

(1166)

2) r = rank(D) − 2 ⇔ 1TD†1 = 0
There can be no circumhypersphere whose relative boundary contains a generating
list for the corresponding polyhedron.
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3) In Cayley-Menger form [131, §6.2] [100, §3.3] [57, §40] (§5.11.2),

r = N−1 − dimN
([

0 1T

1 −D

])

= rank

[

0 1T

1 −D

]

− 2 (1167)

Circumhyperspheres exist for r< rank(D)−2. [397, §7] ⋄

For all practical purposes, (1159)

max{0 , rank(D)− 2} ≤ r ≤ min{n , N−1} (1168)

5.8 Euclidean metric versus matrix criteria

5.8.1 Nonnegativity property 1

When D=[dij ] is an EDM (1006), then it is apparent from (1153)

2V T
NXTXVN = −V T

NDVN º 0 (1169)

because for any matrix A , ATAº0 .5.37 We claim nonnegativity of the dij is enforced
primarily by the matrix inequality (1169);5.38 id est,

−V T
NDVN º 0

D ∈ SN
h

}

⇒ dij ≥ 0 , i 6= j (1170)

We now support our claim: If any matrix A∈Rm×m is positive semidefinite,
then its main diagonal δ(A)∈Rm must have all nonnegative entries. [189, §4.2]
Given D∈ SN

h

−V T
NDVN =



















d12
1
2 (d12+d13−d23)

1
2 (d1,i+1+d1,j+1−di+1,j+1) · · · 1

2 (d12+d1N−d2N )
1
2 (d12+d13−d23) d13

1
2 (d1,i+1+d1,j+1−di+1,j+1) · · · 1

2 (d13+d1N−d3N )

1
2 (d1,j+1+d1,i+1−dj+1,i+1)

1
2 (d1,j+1+d1,i+1−dj+1,i+1) d1,i+1

. . . 1
2 (d14+d1N−d4N )

...
...

. . .
. . .

...
1
2 (d12+d1N−d2N ) 1

2 (d13+d1N−d3N ) 1
2 (d14+d1N−d4N ) · · · d1N



















= 1
2 (1D1,2:N + D2:N,11

T− D2:N,2:N ) ∈ SN−1 (1171)

where row,column indices i,j∈{1 . . . N−1}. [360] It follows:

−V T
NDVN º 0

D ∈ SN
h

}

⇒ δ(−V T
NDVN ) =











d12

d13

...
d1N











º 0 (1172)

Multiplication of VN by any permutation matrix Ξ has null effect on its range
and nullspace. In other words, any permutation of the rows or columns of VN
produces a basis for N (1T) ; id est, R(ΞrVN )=R(VN Ξc)=R(VN )=N (1T).

5.37For A∈R
m×n, ATA º 0 ⇔ yTATAy = ‖Ay‖2 ≥ 0 for all ‖y‖ = 1. When A is full-rank

thin-or-square, ATA ≻ 0.
5.38The matrix inequality to enforce strict positivity differs by a stroke of the pen. (1173)
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Hence, −V T
NDVN º 0 ⇔ −V T

N ΞT
rDΞrVN º 0 (⇔ −ΞT

c V T
NDVN Ξc º 0).

Various permutation matrices will sift5.39 remaining dij similarly to (1172)
thereby proving their nonnegativity. Hence −V T

NDVN º 0 is a sufficient test
for the first property (§5.2) of the Euclidean metric, nonnegativity. ¨

When affine dimension r equals 1 , in particular, nonnegativity symmetry and hollowness
become necessary and sufficient criteria satisfying matrix inequality (1169). (§6.5.0.0.1)

5.8.1.1 Strict positivity

Should we require the points in Rn to be distinct, then entries of D off the main diagonal
must be strictly positive {dij > 0 , i 6= j} and only those entries along the main diagonal
of D are 0. By similar argument, the strict matrix inequality is a sufficient test for strict
positivity of Euclidean distance-square;

−V T
NDVN ≻ 0

D ∈ SN
h

}

⇒ dij > 0 , i 6= j (1173)

5.8.2 Triangle inequality property 4

In light of Kreyszig’s observation [264, §1.1 prob.15] that properties 2 through 4 of the
Euclidean metric (§5.2) together imply nonnegativity property 1,

2
√

djk =
√

djk +
√

dkj ≥
√

djj = 0 , j 6=k (1174)

nonnegativity criterion (1170) suggests that matrix inequality −V T
NDVN º 0 might

somehow take on the role of triangle inequality; id est,

δ(D) = 0
DT = D

−V T
NDVN º 0







⇒
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k (1175)

We now show that is indeed the case: Let T be the leading principal submatrix in S2 of
−V T

NDVN (upper left 2×2 submatrix from (1171));

T ,

[

d12
1
2 (d12+d13−d23)

1
2 (d12+d13−d23) d13

]

(1176)

Submatrix T must be positive (semi)definite whenever −V T
NDVN is. (§A.3.1.0.4, §5.8.3)

Now we have,
−V T

NDVN º 0 ⇒ T º 0 ⇔ λ1 ≥ λ2 ≥ 0

−V T
NDVN ≻ 0 ⇒ T ≻ 0 ⇔ λ1 ≥ λ2 > 0

(1177)

where λ1 and λ2 are the eigenvalues of T , real due only to symmetry of T :

λ1 = 1
2

(

d12 + d13 +
√

d 2
23 − 2(d12 + d13)d23 + 2(d 2

12 + d 2
13)

)

∈ R

λ2 = 1
2

(

d12 + d13 −
√

d 2
23 − 2(d12 + d13)d23 + 2(d 2

12 + d 2
13)

)

∈ R
(1178)

Nonnegativity of eigenvalue λ1 is guaranteed by only nonnegativity of the dij which
in turn is guaranteed by matrix inequality (1170). Inequality between the eigenvalues
in (1177) follows from only realness of the dij . Since λ1 always equals or exceeds λ2 ,
conditions for positive (semi)definiteness of submatrix T can be completely determined

5.39Rule of thumb: If Ξr(i , 1) = 1 , then δ(−V T
N ΞT

rDΞrVN )∈R
N−1 is some permutation of the ith row

or column of D excepting the 0 entry from the main diagonal.
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by examining λ2 the smaller of its two eigenvalues. A triangle inequality is made apparent
when we express T eigenvalue nonnegativity in terms of D matrix entries; videlicet,

T º 0 ⇔ det T = λ1λ2 ≥ 0 , d12 , d13 ≥ 0 (c)
⇔

λ2 ≥ 0 (b)
⇔

|
√

d12 −
√

d23 | ≤
√

d13 ≤
√

d12 +
√

d23 (a)

(1179)

Triangle inequality (1179a) (confer (1074) (1191)), in terms of three rooted entries from
D , is equivalent to metric property 4

√

d13 ≤
√

d12 +
√

d23
√

d23 ≤
√

d12 +
√

d13
√

d12 ≤
√

d13 +
√

d23

(1180)

for the corresponding points x1 , x2 , x3 from some length-N list.5.40

5.8.2.1 Comment

Given D whose dimension N equals or exceeds 3 , there are N !/(3!(N− 3)!) distinct
triangle inequalities in total like (1074) that must be satisfied, of which each dij is involved
in N−2 , and each point xi is in (N−1)!/(2!(N−1 − 2)!). We have so far revealed only
one of those triangle inequalities; namely, (1179a) that came from T (1176). Yet we claim
if −V T

NDVN º 0 then all triangle inequalities will be satisfied simultaneously;

|
√

dik −
√

dkj | ≤
√

dij ≤
√

dik +
√

dkj , i<k<j (1181)

(There are no more.) To verify our claim, we must prove the matrix inequality
−V T

NDVN º 0 to be a sufficient test of all the triangle inequalities; more efficient, we
mention, for larger N :

5.8.2.1.1 Shore. The columns of ΞrVN Ξc hold a basis for N (1T) when Ξr and Ξc

are permutation matrices. In other words, any permutation of the rows or columns
of VN leaves its range and nullspace unchanged; id est, R(ΞrVN Ξc)=R(VN )=N (1T)
(1013). Hence, two distinct matrix inequalities can be equivalent tests of the positive
semidefiniteness of D on R(VN ) ; id est, −V T

NDVN º 0 ⇔ −(ΞrVN Ξc)
TD(ΞrVN Ξc)º 0.

By properly choosing permutation matrices,5.41 the leading principal submatrix TΞ∈ S2 of
−(ΞrVN Ξc)

TD(ΞrVN Ξc) may be loaded with the entries of D needed to test any particular
triangle inequality (similarly to (1171)-(1179)). Because all the triangle inequalities can
be individually tested using a test equivalent to the lone matrix inequality −V T

NDVN º0 ,
it logically follows that the lone matrix inequality tests all those triangle inequalities
simultaneously. We conclude that −V T

NDVN º 0 is a sufficient test for the fourth property
of the Euclidean metric, triangle inequality. ♠

5.40Accounting for symmetry property 3, the fourth metric property demands three inequalities be satisfied
per one of type (1179a). The first of those inequalities in (1180) is self evident from (1179a), while the
two remaining follow from the left side of (1179a) and the fact (for scalars) |a| ≤ b ⇔ a ≤ b and −a ≤ b .
5.41To individually test triangle inequality |

√

dik−
√

dkj | ≤
√

dij ≤
√

dik +
√

dkj for particular i , k , j ,
set Ξr(i , 1)= Ξr(k, 2)= Ξr(j , 3)=1 and Ξc = I .
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5.8.2.2 Strict triangle inequality

Without exception, all the inequalities in (1179) and (1180) can be made strict while their
corresponding implications remain true. The then strict inequality (1179a) or (1180) may
be interpreted as a strict triangle inequality under which collinear arrangement of points is
not allowed. [259, §24/6, p.322] Hence by similar reasoning, −V T

NDVN ≻ 0 is a sufficient
test of all the strict triangle inequalities; id est,

δ(D) = 0

DT = D
−V T

NDVN ≻ 0







⇒
√

dij <
√

dik +
√

dkj , i 6=j 6=k (1182)

5.8.3 −V T
NDVN nesting

From (1176) observe that T =−V T
NDVN |N←3 . In fact, for D∈EDMN , the leading

principal submatrices of −V T
NDVN form a nested sequence (by inclusion) whose members

are individually positive semidefinite [189] [237] [379] and have the same form as T ;
videlicet,5.42

−V T
NDVN |N←1 = [ ∅ ] (o)

−V T
NDVN |N←2 = [d12] ∈ S+ (a)

−V T
NDVN |N←3 =

[

d12
1
2 (d12+d13−d23)

1
2 (d12+d13−d23) d13

]

= T ∈ S2

+ (b)

−V T
NDVN |N←4 =







d12
1
2 (d12+d13−d23)

1
2 (d12+d14−d24)

1
2 (d12+d13−d23) d13

1
2 (d13+d14−d34)

1
2 (d12+d14−d24)

1
2 (d13+d14−d34) d14






(c)

...

−V T
NDVN |N← i =





−V T
NDVN |N← i−1 ν(i)

ν(i)T d1i



 ∈ Si−1
+ (d)

...

−V T
NDVN =





−V T
NDVN |N←N−1 ν(N)

ν(N)T d1N



 ∈ SN−1
+ (e)

(1183)

where

ν(i) ,
1

2











d12+d1i−d2i

d13+d1i−d3i

...
d1,i−1+d1i−di−1,i











∈ Ri−2, i > 2 (1184)

Hence, the leading principal submatrices of EDM D must also be EDMs.5.43

5.42 −V DV |N←1 = 0 ∈ S
0
+ (§B.4.1)

5.43In fact, each and every principal submatrix of an EDM D is another EDM. [274, §4.1]
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Bordered symmetric matrices in the form (1183d) are known to have intertwined
[379, §6.4] (or interlaced [237, §4.3] [375, §IV.4.1]) eigenvalues; (confer §5.11.1) that means,
for the particular submatrices (1183a) and (1183b),

λ2 ≤ d12 ≤ λ1 (1185)

where d12 is the eigenvalue of submatrix (1183a) and λ1 , λ2 are the eigenvalues of T
(1183b) (1176). Intertwining in (1185) predicts that should d12 become 0 , then λ2 must
go to 0 .5.44 Eigenvalues are similarly intertwined for submatrices (1183b) and (1183c);

γ3 ≤ λ2 ≤ γ2 ≤ λ1 ≤ γ1 (1186)

where γ1 , γ2 , γ3 are the eigenvalues of submatrix (1183c). Intertwining likewise predicts
that should λ2 become 0 (a possibility revealed in §5.8.3.1), then γ3 must go to 0.
Combining results so far for N = 2 , 3, 4 : (1185) (1186)

γ3 ≤ λ2 ≤ d12 ≤ λ1 ≤ γ1 (1187)

The preceding logic extends by induction through remaining members of sequence (1183).

5.8.3.1 Tightening the triangle inequality

Now we apply Schur complement from §A.4 to tighten the triangle inequality from (1175)
in case: cardinality N = 4. We find that the gains by doing so are modest. From (1183)
we identify:

[

A B
BT C

]

, −V T
NDVN |N←4 (1188)

A , T = −V T
NDVN |N←3 (1189)

both positive semidefinite by assumption, where B= ν(4) (1184), and C = d14 . Using
nonstrict CC†-form (1686), Cº 0 by assumption (§5.8.1) and CC†= I . So by the
positive semidefinite ordering of eigenvalues theorem (§A.3.1.0.1),

−V T
NDVN |N←4 º 0 ⇔ T º d−1

14 ν(4)ν(4)T ⇒
{

λ1 ≥ d−1
14 ‖ν(4)‖2

λ2 ≥ 0
(1190)

where {d−1
14 ‖ν(4)‖2, 0} are the eigenvalues of d−1

14 ν(4)ν(4)T while λ1 , λ2 are the
eigenvalues of T .

5.8.3.1.1 Example. Small completion problem, II.
Applying the inequality for λ1 in (1190) to the small completion problem on page 331
Figure 138, the lower bound on

√
d14 (1.236 in (999)) is tightened to 1.289 . The correct

value of
√

d14 to three significant figures is 1.414 . 2

5.44If d12 were 0 , eigenvalue λ2 becomes 0 (1178) because d13 must then be equal to d23 ; id est,
d12 = 0 ⇔ x1 = x2 . (§5.4)



5.9. BRIDGE: CONVEX POLYHEDRA TO EDMS 375

5.8.4 Affine dimension reduction in two dimensions

(confer §5.14.4) The leading principal 2×2 submatrix T of −V T
NDVN has largest eigenvalue

λ1 (1178) which is a convex function of D .5.45 λ1 can never be 0 unless d12 = d13 = d23 = 0.
Eigenvalue λ1 can never be negative while the dij are nonnegative. The remaining
eigenvalue λ2 (1178) is a concave function of D that becomes 0 only at the upper and
lower bounds of triangle inequality (1179a) and its equivalent forms: (confer (1181))

|
√

d12 −
√

d23 | ≤
√

d13 ≤
√

d12 +
√

d23 (a)
⇔

|
√

d12 −
√

d13 | ≤
√

d23 ≤
√

d12 +
√

d13 (b)
⇔

|
√

d13 −
√

d23 | ≤
√

d12 ≤
√

d13 +
√

d23 (c)

(1191)

In between those bounds, λ2 is strictly positive; otherwise, it would be negative but
prevented by the condition T º 0.

When λ2 becomes 0 , it means triangle △123 has collapsed to a line segment; a
potential reduction in affine dimension r . The same logic is valid for any particular
principal 2×2 submatrix of −V T

NDVN , hence applicable to other triangles.

5.9 Bridge: Convex polyhedra to EDMs

The criteria for the existence of an EDM include, by definition (1006) (1076), the properties
imposed upon its entries dij by the Euclidean metric. From §5.8.1 and §5.8.2, we know
there is a relationship of matrix criteria to those properties. Here is a snapshot of what
we are sure: for i , j , k∈{1 . . . N} (confer §5.2)

√

dij ≥ 0 , i 6= j
√

dij = 0 , i = j
√

dij =
√

dji
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k

⇐
−V T

NDVN º 0
δ(D) = 0
DT = D

(1192)

all implied by D∈EDMN . In words, these four Euclidean metric properties are necessary
conditions for D to be a distance matrix. At the moment, we have no converse. As of
concern in §5.3, we have yet to establish metric requirements beyond the four Euclidean
metric properties that would allow D to be certified an EDM or might facilitate polyhedron
or list reconstruction from an incomplete EDM. We deal with this problem in §5.14. Our
present goal is to establish ab initio the necessary and sufficient matrix criteria that will
subsume all the Euclidean metric properties and any further requirements5.46 for all N >1
(§5.8.3); id est,

−V T
NDVN º 0

D ∈ SN
h

}

⇔ D ∈ EDMN (1025)

5.45The largest eigenvalue of any symmetric matrix is always a convex function of its entries, while the

smallest eigenvalue is always concave. [68, exmp.3.10] In our particular case, say d ,





d12

d13

d23



∈ R
3. Then

the Hessian (1965) ∇2λ1(d)º 0 certifies convexity whereas ∇2λ2(d)¹ 0 certifies concavity. Each Hessian
has rank 1. The respective gradients ∇λ1(d) and ∇λ2(d) are nowhere 0 and can be uniquely defined.
5.46Schoenberg [360, (1)] first extolled matrix product −V T

NDVN (1171) (predicated on symmetry and
selfdistance) in 1935, specifically incorporating VN , albeit algebraically. He showed: nonnegativity
−yTV T

NDVN y ≥ 0 , ∀ y∈R
N−1, is necessary and sufficient for D to be an EDM. Gower [194, §3] remarks

how surprising it is that such a fundamental property of Euclidean geometry was obtained so late.
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Figure 152: Elliptope E3 in isometrically isomorphic R6 (projected on R3) is a convex body
that appears to possess some kind of symmetry in this dimension; it resembles a malformed
pillow in the shape of a bulging tetrahedron. Elliptope relative boundary is not smooth
and comprises all set members (1194) having at least one 0 eigenvalue. [277, §2.1] This
elliptope has an infinity of vertices, but there are only four vertices corresponding to a
rank-1 matrix. Those yyT, evident in the illustration, have binary vector y∈R3 with
entries in {±1}.

or for EDM definition (1085),

Ω º 0
√

δ(d) º 0

}

⇔ D = D(Ω , d) ∈ EDMN (1193)

5.9.1 Geometric arguments

5.9.1.0.1 Definition. Elliptope: [277] [274, §2.3] [131, §31.5]
a unique bounded immutable convex Euclidean body in Sn ; intersection of positive
semidefinite cone Sn

+ with that set of n hyperplanes defined by unity main diagonal;

En , Sn
+ ∩ {Φ∈ Sn | δ(Φ)=1} (1194)

a.k.a the set of all correlation matrices of dimension

dim En = n(n−1)/2 in Rn(n+1)/2 (1195)

An elliptope En is not a polyhedron, in general, but has some polyhedral faces and an
infinity of vertices.5.47 Of those, 2n−1 vertices (some extreme points of the elliptope) are

5.47Laurent defines vertex distinctly from the sense herein (§2.6.1.0.1); she defines vertex as a point
with full-dimensional (nonempty interior) normal cone (§2.13.11.0.1). Her definition excludes point C in
Figure 35, for example.
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0

Figure 153: Elliptope E2 in isometrically isomorphic R3 is a line segment illustrated interior
to positive semidefinite cone S2

+ (Figure 46). Two vertices on boundary are rank-1 binary.

extreme directions yyT of the positive semidefinite cone where entries of vector y∈Rn

belong to {±1} and exercise every combination. Each of the remaining vertices has rank,
greater than 1 , belonging to the set {k>0 | k(k + 1)/2≤ n}. Each and every face of an
elliptope is exposed. △

In fact, any positive semidefinite matrix whose entries belong to {±1} is a rank-1
correlation matrix; and vice versa:5.48

5.9.1.0.2 Theorem. Elliptope vertices rank-1. (confer §2.3.1.0.1) [148, §2.1.1]
For Y ∈ Sn, y∈Rn, and all i , j∈{1 . . . n}

Y º 0 , Yij ∈ {±1} ⇔ Y = yyT, yi ∈ {±1} (1196)

⋄

The elliptope for dimension n = 2 is a line segment in isometrically isomorphic
Rn(n+1)/2 (Figure 153). Obviously, cone(En) 6= Sn

+ . The elliptope for dimension n = 3
is realized in Figure 152.

5.9.1.0.3 Lemma. Hypersphere. (confer bullet p.338) [19, §4]
Matrix Ψ = [Ψij ]∈ SN belongs to the elliptope in SN iff there exist N points p on the

boundary of a hypersphere in Rrank Ψ having radius 1 such that

‖pi − pj‖2 = 2(1 − Ψij) , i , j =1 . . . N (1197)

⋄

There is a similar theorem for Euclidean distance matrices: We derive matrix criteria
for D to be an EDM, validating (1025) using simple geometry; distance to the polyhedron
formed by convex hull of a list of points (79) in Euclidean space Rn.

5.48As there are few equivalent conditions for rank constraints, this device is rather important for relaxing
integer, combinatorial, or Boolean problems.



378 CHAPTER 5. EUCLIDEAN DISTANCE MATRIX

5.9.1.0.4 EDM assertion.
D is a Euclidean distance matrix if and only if D∈ SN

h and distances-square from the
origin

{‖p(y)‖2 = −yTV T
NDVN y | y ∈ S − β} (1198)

correspond to points p in some bounded convex polyhedron

P − α = {p(y) | y ∈ S − β} (1199)

having N or fewer vertices embedded in an r-dimensional subspace A− α of Rn, where
α ∈ A = aff P and where domain of linear surjection p(y) is the unit simplex S⊂RN−1

+

shifted such that its vertex at the origin is translated to −β in RN−1. When β = 0 ,
then α = x1 . ⋄

In terms of VN , the unit simplex (300) in RN−1 has an equivalent representation:

S = {s∈ RN−1 |
√

2VN s º −e1} (1200)

where e1 is as in (1022). Incidental to the EDM assertion, shifting the unit-simplex domain
in RN−1 translates the polyhedron P in Rn. Indeed, there is a map from vertices of the
unit simplex to members of the list generating P ;

p : RN−1

p









































−β
e1 − β
e2 − β

...
eN−1 − β









































→

=

Rn



























x1 − α
x2 − α
x3 − α

...
xN − α



























(1201)

5.9.1.0.5 Proof. EDM assertion.
(⇒) We demonstrate that if D is an EDM, then each distance-square ‖p(y)‖2 described by
(1198) corresponds to a point p in some embedded polyhedron P−α . Assume D is indeed
an EDM; id est, D can be made from some list X of N unknown points in Euclidean space
Rn ; D = D(X) for X∈ Rn×N as in (1006). Since D is translation invariant (§5.5.1), we
may shift the affine hull A of those unknown points to the origin as in (1141). Then take
any point p in their convex hull (89);

P − α = {p = (X − Xb1T)a | aT1 = 1 , a º 0} (1202)

where α = Xb ∈ A ⇔ bT1 = 1. Solutions to aT1 = 1 are:5.49

a ∈
{

e1 +
√

2VN s | s∈ RN−1
}

(1203)

where e1 is as in (1022). Similarly, b = e1 +
√

2VN β .

P − α = {p = X(I − (e1 +
√

2VNβ)1T)(e1 +
√

2VN s) |
√

2VN s º −e1}
= {p = X

√
2VN (s − β) |

√
2VN s º −e1}

(1204)

that describes the domain of p(s) as the unit simplex

S = {s |
√

2VN s º −e1} ⊂ RN−1
+ (1200)

5.49Since R(VN )=N (1T) and N (1T)⊥R(1) , then over all s∈R
N−1, VN s is a hyperplane through

the origin orthogonal to 1. Thus the solutions {a} constitute a hyperplane orthogonal to the vector 1 ,
and offset from the origin in R

N by any particular solution; in this case, a = e1 .
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Making the substitution s − β ← y

P − α = {p = X
√

2VN y | y ∈ S − β} (1205)

Point p belongs to a convex polyhedron P − α embedded in an r-dimensional subspace
of Rn because the convex hull of any list forms a polyhedron, and because the translated
affine hull A− α contains the translated polyhedron P − α (1144) and the origin (when
α ∈A), and because A has dimension r by definition (1146). Now, any distance-square
from the origin to the polyhedron P − α can be formulated

{pTp = ‖p‖2 = 2yTV T
NXTXVN y | y ∈ S − β} (1206)

Applying (1153) to (1206) we get (1198).
(⇐) To validate the EDM assertion in the reverse direction, we prove: If each
distance-square ‖p(y)‖2 (1198) on the shifted unit-simplex S−β⊂RN−1 corresponds to
a point p(y) in some embedded polyhedron P−α , then D is an EDM. The r-dimensional
subspace A− α ⊆ Rn is spanned by

p(S − β) = P − α (1207)

because A− α = aff(P − α) ⊇ P − α (1144). So, outside domain S − β of linear
surjection p(y) , simplex complement \S − β ⊂ RN−1 must contain domain of the
distance-square ‖p(y)‖2 = p(y)Tp(y) to remaining points in subspace A− α ; id est, to
the polyhedron’s relative exterior \P − α . For ‖p(y)‖2 to be nonnegative on the entire
subspace A− α , −V T

NDVN must be positive semidefinite and is assumed symmetric;5.50

−V T
NDVN , ΘT

p Θp (1208)

where5.51 Θp∈Rm×N−1 for some m≥ r . Because p(S−β) is a convex polyhedron,
it is necessarily a set of linear combinations of points from some length-N list because
every convex polyhedron having N or fewer vertices can be generated that way (§2.12.2).
Equivalent to (1198) are

{pTp | p ∈ P − α} = {pTp = yTΘT
p Θp y | y ∈ S − β} (1209)

Because p ∈ P − α may be found by factoring (1209), the list Θp is found by factoring
(1208). A unique EDM can be made from that list using inner-product form definition
D(Θ)|Θ=Θp

(1076). That EDM will be identical to D if δ(D)=0 , by injectivity of D
(1127). ¨

5.9.2 Necessity and sufficiency

From (1169) we learned that matrix inequality −V T
NDVN º 0 is a necessary test for D to be

an EDM. In §5.9.1, the connection between convex polyhedra and EDMs was pronounced
by the EDM assertion; the matrix inequality together with D∈ SN

h became a sufficient
test when the EDM assertion demanded that every bounded convex polyhedron have a
corresponding EDM. For all N >1 (§5.8.3), the matrix criteria for the existence of an
EDM in (1025), (1193), and (1001) are therefore necessary and sufficient and subsume all
the Euclidean metric properties and further requirements.

Now we apply the necessary and sufficient EDM criteria (1025) to an earlier problem:

5.50The antisymmetric part
(

−V T
NDVN − (−V T

NDVN )T
)

/2 is annihilated by ‖p(y)‖2. By the same
reasoning, any positive (semi)definite matrix A is generally assumed symmetric because only the symmetric
part (A +AT)/2 survives the test yTAy ≥ 0. [237, §7.1]
5.51 AT = A º 0 ⇔ A = RTR for some real matrix R . [379, §6.3]
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5.9.2.0.1 Example. Small completion problem, III. (confer §5.8.3.1.1)
Continuing Example 5.3.0.0.2 pertaining to Figure 138 where N = 4 , distance-square d14

is ascertainable from the matrix inequality −V T
NDVN º 0. Because all distances in (998)

are known except
√

d14 , we may simply calculate the smallest eigenvalue of −V T
NDVN

over a range of d14 as in Figure 154. We observe a unique value of d14 satisfying (1025)
where the abscissa axis is tangent to the hypograph of the smallest eigenvalue. Since the
smallest eigenvalue of a symmetric matrix is known to be a concave function (§5.8.4), we
calculate its second partial derivative with respect to d14 evaluated at 2 and find −1/3.
We conclude there are no other satisfying values of d14 . Further, that value of d14 does
not meet an upper or lower bound of a triangle inequality like (1181), so neither does it
cause collapse of any triangle. Because the smallest eigenvalue is 0 , affine dimension r
of any point list corresponding to D cannot exceed N−2. (§5.7.1.1) 2

5.10 EDM-entry composition

Laurent [274, §2.3] applies results from Schoenberg, 1938 [361], to show certain nonlinear
compositions of individual EDM entries yield EDMs; in particular,

D ∈ EDMN ⇔ [1 − e−αdij ] ∈ EDMN ∀α > 0 (a)

⇔ [e−αdij ] ∈ EN ∀α > 0 (b)
(1210)

where D = [dij ] and EN is the elliptope (1194).

5.10.0.0.1 Proof. (Monique Laurent, 2003) [361] (confer [264])

Lemma 2.1. from A Tour d’Horizon . . . on Completion Problems. [274]
For D=[dij , i , j =1 . . . N ]∈ SN

h and EN the elliptope in SN (§5.9.1.0.1), the
following assertions are equivalent:

(i) D ∈ EDMN

(ii) e−αD , [e−αdij ] ∈ EN for all α > 0

(iii) 11T− e−αD , [1 − e−αdij ] ∈ EDMN for all α > 0 ⋄

1) Equivalence of Lemma 2.1 (i) (ii) is stated in Schoenberg’s Theorem 1 [361, p.527].

2) (ii) ⇒ (iii) can be seen from the statement in the beginning of section 3, saying that
a distance space embeds in L2 iff some associated matrix is PSD. We reformulate it:

Let d =(dij)i,j=0,1...N be a distance space on N+1 points (i.e, symmetric
hollow matrix of order N+1) and let p =(pij)i,j=1...N be the symmetric matrix
of order N related by:

(A) 2pij = d0i + d0j − dij for i , j = 1 . . . N
or equivalently

(B) d0i = pii , dij = pii + pjj − 2pij for i , j = 1 . . . N

Then d embeds in L2 iff p is a positive semidefinite matrix iff d is of negative
type (second half page 525/top of page 526 in [361]).

For the implication from (ii) to (iii), set: p = e−αd and define d ′ from p using
(B) above. Then d ′ is a distance space on N+1 points that embeds in L2 .
Thus its subspace of N points also embeds in L2 and is precisely 1− e−αd.

Note that (iii) ⇒ (ii) cannot be read immediately from this argument since (iii)
involves the subdistance of d ′ on N points (and not the full d ′ on N+1 points).
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Figure 154: Smallest eigenvalue of −V T
NDVN makes it a PSD matrix for only one value

of d14 : 2.
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Figure 155: Some entrywise EDM compositions: (a) α = 2. Concave nondecreasing in
dij . (b) Trajectory convergence in α for dij = 2.
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3) Show (iii) ⇒ (i) by using the series expansion of the function 1− e−αd : the constant
term cancels, α factors out; there remains a summation of d plus a multiple of α .
Letting α go to 0 gives the result.

This is not explicitly written in Schoenberg, but he also uses such an argument;
expansion of the exponential function then α→ 0 (first proof on [361, p.526]). ¨

Schoenberg’s results [361, §6 thm.5] (confer [264, p.108-109]) also suggest certain finite
positive roots of EDM entries produce EDMs; specifically,

D ∈ EDMN ⇔ [d
1/α
ij ] ∈ EDMN ∀α > 1 (1211)

The special case α = 2 is of interest because it corresponds to absolute distance; e.g,

D∈EDMN ⇒ ◦
√

D ∈ EDMN (1212)

Assuming that points constituting a corresponding list X are distinct (1173), then it
follows: for D∈ SN

h

lim
α→∞

[d
1/α
ij ] = lim

α→∞
[1 − e−αdij ] = −E , 11T− I (1213)

Negative elementary matrix −E (§B.3) is: relatively interior to the EDM cone (§6.5),
on its axis, and terminal to respective trajectories (1210a) and (1211) as functions of α .
Both trajectories are confined to the EDM cone; in engineering terms, the EDM cone is
an invariant set [357] to either trajectory. Further, if D is not an EDM but for some
particular αp it becomes an EDM, then for all greater values of α it remains an EDM.

5.10.0.0.2 Exercise. Concave nondecreasing EDM-entry composition.

Given EDM D = [dij ] , empirical evidence suggests that the composition [ log2(1 + d
1/α
ij )]

is also an EDM for each fixed α≥ 1 [sic ]. Its concavity in dij is illustrated in Figure 155
together with functions from (1210a) and (1211). Prove whether it holds more generally:
Any concave nondecreasing composition of individual EDM entries dij on R+ produces
another EDM. H

5.10.0.0.3 Exercise. Taxicab distance matrix as EDM.
Determine whether taxicab distance matrices (D1(X) in Example 3.11.0.0.2) are all
numerically equivalent to EDMs. Explain why or why not. H

5.10.1 EDM by elliptope

(confer (1032)) For some κ∈R+ and C∈ SN
+ in elliptope EN (§5.9.1.0.1), Alfakih asserts:

any given EDM D is expressible [10] [131, §31.5]

D = κ(11T− C ) ∈ EDMN (1214)

This expression exhibits nonlinear combination of variables κ and C . We therefore
propose a different expression requiring redefinition of the elliptope (1194) by scalar
parametrization;

En
t , Sn

+ ∩ {Φ∈ Sn | δ(Φ)= t1} (1215)

where, of course, En = En
1 . Then any given EDM D is expressible

D = t11T− E ∈ EDMN (1216)

which is linear in variables t∈R+ and E∈EN
t .
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5.11 EDM indefiniteness

By known result (§A.7.2) regarding a 0-valued entry on the main diagonal of a symmetric
positive semidefinite matrix, there can be no positive or negative semidefinite EDM except
the 0 matrix because EDMN⊆ SN

h (1005) and

SN
h ∩ SN

+ = 0 (1217)

the origin. So when D∈EDMN , there can be no factorization D =ATA or −D =ATA .
[379, §6.3] Hence eigenvalues of an EDM are neither all nonnegative or all nonpositive; an
EDM is indefinite and possibly invertible.

5.11.1 EDM eigenvalues, congruence transformation

For any symmetric −D , we can characterize its eigenvalues by congruence transformation:
[379, §6.3]

−WTDW = −
[

V T
N

1T

]

D [VN 1 ] = −
[

V T
NDVN V T

ND1

1TDVN 1TD1

]

∈ SN (1218)

Because
W , [VN 1 ]∈ RN×N (1219)

is full-rank, then (1691)

inertia(−D) = inertia
(

−WTDW
)

(1220)

the congruence (1218) has the same number of positive, zero, and negative eigenvalues
as −D . Further, if we denote by {γi , i=1 . . . N−1} the eigenvalues of −V T

NDVN and
denote eigenvalues of the congruence −WTDW by {ζi , i=1 . . . N} and if we arrange
each respective set of eigenvalues in nonincreasing order, then by theory of interlacing
eigenvalues for bordered symmetric matrices [237, §4.3] [379, §6.4] [375, §IV.4.1]

ζN ≤ γN−1 ≤ ζN−1 ≤ γN−2 ≤ · · · ≤ γ2 ≤ ζ2 ≤ γ1 ≤ ζ1 (1221)

When D∈EDMN , then γi ≥ 0 ∀ i (1627) because −V T
NDVN º 0 as we know. That

means the congruence must have N−1 nonnegative eigenvalues; ζi ≥ 0 , i=1 . . . N−1 .
The remaining eigenvalue ζN cannot be nonnegative because then −D would be positive
semidefinite, an impossibility; so ζN < 0. By congruence, nontrivial −D must therefore
have exactly one negative eigenvalue;5.52 [131, §2.4.5]

D ∈ EDMN ⇒















λ(−D)i ≥ 0 , i=1 . . . N−1
(

N
∑

i=1

λ(−D)i = 0

)

D ∈ SN
h ∩ RN×N

+

(1222)

where the λ(−D)i are nonincreasingly ordered eigenvalues of −D whose sum must be 0
only because tr D = 0 [379, §5.1]. The eigenvalue summation condition, therefore, can be
considered redundant. Even so, all these conditions are insufficient to determine whether
some given H∈ SN

h is an EDM; as shown by counterexample.5.53

5.52All entries of the corresponding eigenvector must have the same sign, with respect to each other,
[101, p.116] because that eigenvector is the Perron vector corresponding to spectral radius; [237, §8.3.1]
the predominant characteristic of square nonnegative matrices. Unlike positive semidefinite matrices,
nonnegative matrices are guaranteed only to have at least one nonnegative eigenvalue.
5.53When N = 3 , for example, the symmetric hollow matrix

H =





0 1 1
1 0 5
1 5 0



 ∈ S
N
h ∩ R

N×N
+
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5.11.1.0.1 Exercise. Spectral inequality.
Prove whether it holds: for D=[dij ]∈EDMN

λ(−D)1 ≥ dij ≥ λ(−D)N−1 ∀ i 6= j (1223)

H

5.11.1.0.2 Definition. Spectral cone Kλ .
A convex cone containing all eigenspectra corresponding to some given set of matrices is
called a spectral cone. △

5.11.1.0.3 Definition. Eigenspectrum. [264, p.365] [375, p.26] (confer §A.5.0.1)
The eigenvalues of a matrix, including duplicates, are referred to as its eigenspectrum.

△

Any positive semidefinite matrix, for example, possesses a vector (or nonincreasing
list) of nonnegative eigenvalues corresponding to an eigenspectrum contained in a spectral
cone Kλ that is a nonnegative orthant (or monotone nonnegative cone).

5.11.2 Spectral cones Kλ for distance matrices

Denoting the eigenvalues of Cayley-Menger matrix

[

0 1T

1 −D

]

∈ SN+1 by

λ

([

0 1T

1 −D

])

∈ RN+1 (1224)

we have the Cayley-Menger form (§5.7.3.0.1) of necessary and sufficient conditions for
D∈EDMN from the literature: [219, §3]5.54 [83, §3] [131, §6.2] (confer (1025) (1001))

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

i

≥ 0 , i = 1 . . . N

D ∈ SN
h











⇔
{

−V T
NDVN º 0

D ∈ SN
h

(1225)

These conditions say the Cayley-Menger form has one and only one negative eigenvalue.

When D is an EDM, eigenvalues λ

([

0 1T

1 −D

])

belong to that particular orthant in

RN+1 having the N+1th coordinate as sole negative coordinate:5.55

[

RN
+

R−

]

= cone {e1 , e2 , · · · eN , −eN+1} (1226)

5.11.2.1 Cayley-Menger versus Schoenberg

Connection to the Schoenberg criterion (1025) is made when the Cayley-Menger form is
further partitioned:

[

0 1T

1 −D

]

=





[

0 1
1 0

] [

1T

−D1,2:N

]

[1 −D2:N,1 ] −D2:N,2:N



 (1227)

is not an EDM, although λ(−H) = [5 0.3723 −5.3723]T conforms to (1222).
5.54Recall: for D∈ S

N
h , −V T

NDVN º 0 subsumes nonnegativity property 1 (§5.8.1).
5.55Empirically, all except one entry of the corresponding eigenvector have the same sign with respect to
each other.
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Matrix D∈ SN
h is an EDM if and only if the Schur complement of

[

0 1
1 0

]

(§A.4) in this

partition is positive semidefinite; [19, §1] [253, §3] id est, (confer (1171))

D ∈ EDMN

⇔
−D2:N,2:N − [1 −D2:N,1 ]

[

0 1
1 0

] [

1T

−D1,2:N

]

= −2V T
NDVN º 0

and

D ∈ SN
h

(1228)

Positive semidefiniteness of that Schur complement insures nonnegativity (D∈ RN×N
+ ,

§5.8.1), whereas complementary inertia (1693) insures existence of that lone negative
eigenvalue of the Cayley-Menger form.

Now we apply results from Chapter 2 with regard to polyhedral cones and their duals.

5.11.2.2 Ordered eigenspectra

Conditions (1225) specify eigenvalue membership to Kλ the smallest pointed polyhedral

spectral cone for

[

0 1T

1 −EDMN

]

:

Kλ , {ζ∈RN+1 | ζ1 ≥ ζ2 ≥ · · · ≥ ζN ≥ 0 ≥ ζN+1 , 1Tζ = 0}

= KM ∩
[

RN
+

R−

]

∩ ∂H

= λ

([

0 1T

1 −EDMN

])

(1229)

where

∂H , {ζ∈RN+1 | 1Tζ = 0} (1230)

is a hyperplane through the origin, and KM is the monotone cone (§2.13.10.4.3, implying
ordered eigenspectra) which is full-dimensional but is not pointed;

KM = {ζ∈RN+1 | ζ1 ≥ ζ2 ≥ · · · ≥ ζN+1} (445)

K∗
M = {[ e1− e2 e2−e3 · · · eN−eN+1 ] a | a º 0} ⊂ RN+1 (446)

So because of the hyperplane,

dim aff Kλ = dim ∂H = N (1231)

indicating that spectral cone Kλ is not full-dimensional. Defining

A ,









eT
1 − eT

2

eT
2 − eT

3
...

eT
N − eT

N+1









∈ RN×N+1 , B ,













eT
1

eT
2
...

eT
N

−eT
N+1













∈ RN+1×N+1 (1232)

we have the halfspace-description:

Kλ = {ζ∈RN+1 | Aζ º 0 , Bζ º 0 , 1Tζ = 0} (1233)



386 CHAPTER 5. EUCLIDEAN DISTANCE MATRIX

From this and (453) we get a vertex-description for a pointed spectral cone that is not
full-dimensional:

Kλ =

{

VN

([

Â

B̂

]

VN

)†
b | b º 0

}

(1234)

where VN ∈ RN+1×N , and where [sic ]

B̂ = eT
N ∈ R1×N+1 (1235)

and

Â =









eT
1 − eT

2

eT
2 − eT

3
...

eT
N−1− eT

N









∈ RN−1×N+1 (1236)

hold those rows of A and B corresponding to conically independent rows (§2.10) in
[

A
B

]

VN .

Conditions (1225) can be equivalently restated in terms of a spectral cone for Euclidean
distance matrices:

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

∈ KM ∩
[

RN
+

R−

]

∩ ∂H

D ∈ SN
h

(1237)

Vertex-description of the dual spectral cone is, (323)

K∗
λ = K∗

M +

[

RN
+

R−

]∗
+ ∂H∗ ⊆ RN+1

=
{[

AT BT 1 −1
]

b | b º 0
}

=
{[

ÂT B̂T 1 −1
]

a | a º 0
}

(1238)

From (1234) and (454) we get a halfspace-description:

K∗
λ = {y∈RN+1 | (V T

N [ ÂT B̂T ])
†
V T
N y º 0} (1239)

This polyhedral dual spectral cone K∗
λ is closed, convex, full-dimensional because Kλ is

pointed, but is not pointed because Kλ is not full-dimensional.

5.11.2.3 Unordered eigenspectra

Spectral cones are not unique; eigenspectra ordering can be rendered benign within a cone
by presorting a vector of eigenvalues into nonincreasing order.5.56 Then things simplify:
Conditions (1225) now specify eigenvalue membership to the spectral cone

λ

([

0 1T

1 −EDMN

])

=

[

RN
+

R−

]

∩ ∂H

= {ζ∈RN+1 | Bζ º 0 , 1Tζ = 0}
(1240)

5.56Eigenspectra ordering (represented by a cone having monotone description such as (1229)) becomes
benign in (1452), for example, where projection of a given presorted vector on the nonnegative orthant
in a subspace is equivalent to its projection on the monotone nonnegative cone in that same subspace;
equivalence is a consequence of presorting.
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where B is defined in (1232), and ∂H in (1230). From (453) we get a vertex-description
for a pointed spectral cone not full-dimensional:

λ

([

0 1T

1 −EDMN

])

=
{

VN (B̃VN )† b | b º 0
}

=

{[

I
−1T

]

b | b º 0

} (1241)

where VN ∈ RN+1×N and

B̃ ,









eT
1

eT
2
...

eT
N









∈ RN×N+1 (1242)

holds only those rows of B corresponding to conically independent rows in BVN .
For presorted eigenvalues, (1225) can be equivalently restated

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

∈
[

RN
+

R−

]

∩ ∂H

D ∈ SN
h

(1243)

Vertex-description of the dual spectral cone is, (323)

λ

([

0 1T

1 −EDMN

])∗
=

[

RN
+

R−

]

+ ∂H∗ ⊆ RN+1

=
{[

BT 1 −1
]

b | b º 0
}

=
{[

B̃T 1 −1
]

a | a º 0
}

(1244)

From (454) we get a halfspace-description:

λ

([

0 1T

1 −EDMN

])∗
= {y∈RN+1 | (V T

N B̃T)†V T
N y º 0}

= {y∈RN+1 | [ I −1 ] y º 0}
(1245)

This polyhedral dual spectral cone is closed, convex, full-dimensional but not pointed.5.57

5.11.2.4 Dual cone versus dual spectral cone

An open question regards the relationship of convex cones and their duals to the
corresponding spectral cones and their duals. A positive semidefinite cone, for example, is
selfdual. Both the nonnegative orthant and the monotone nonnegative cone are spectral
cones for it. When we consider the nonnegative orthant, then that spectral cone for the
selfdual positive semidefinite cone is also selfdual.

5.12 List reconstruction

The term metric multidimensional scaling5.58 [297] [122] [405] [120] [301] [101] refers
to any reconstruction of a list X∈ Rn×N in Euclidean space from interpoint distance
information, possibly incomplete (§6.7), ordinal (§5.13.2), or specified perhaps only by

5.57Notice that any nonincreasingly ordered eigenspectrum belongs to this dual spectral cone.
5.58Scaling [401] means making a scale, i.e, a numerical representation of qualitative data. If the scale is
multidimensional, it’s multidimensional scaling. −Jan de Leeuw
In one dimension, N coordinates in X define the scale; e.g, §7.2.2.7.1.
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bounding-constraints (§5.4.2.2.12) [403]. Techniques for reconstruction are essentially
methods for optimally embedding an unknown list of points, corresponding to given
Euclidean distance data, in an affine subset of desired or minimum dimension. The
oldest known precursor is called principal component analysis [197] which analyzes the
correlation matrix (§5.9.1.0.1); [59, §22] a.k.a, Karhunen-Loéve transform in digital
signal processing literature.

A goal of multidimensional scaling is to find a low-dimensional representation of list X
so that distances between its elements best preserve a given set of pairwise dissimilarities.
Dissimilarity is some measure or perception of unlikeness. Similarity between vectors (in
Euclidean space) is measured by inner product, [339, §2] whereas dissimilarity is measured
by distance-square.5.59 When dissimilarity data comprises measurable distances, then
reconstruction is termed metric multidimensional scaling.

Isometric reconstruction (§5.5.3) of point list X is best performed by eigenvalue
decomposition of a Gram matrix; for then, numerical errors of factorization are easily
spotted in the eigenvalues: Now we consider how rotation/reflection and translation
invariance factor into a reconstruction.

5.12.1 x1 at the origin. VN

At the stage of reconstruction, we have D∈EDMN and wish to find a generating list
(§2.3.2) for polyhedron P − α by factoring Gram matrix −V T

NDVN (1023) as in (1208).
One way to factor −V T

NDVN is via diagonalization of symmetric matrices; [379, §5.6]
[237] (§A.5.1, §A.3)

−V T
NDVN , QΛQT (1246)

QΛQT º 0 ⇔ Λ º 0 (1247)

where Q∈RN−1×N−1 is an orthogonal matrix containing eigenvectors while Λ∈ SN−1

is a diagonal matrix containing corresponding nonnegative eigenvalues ordered by
nonincreasing value. From the diagonalization, identify the list using (1153);

−V T
NDVN = 2V T

NXTXVN , Q
√

Λ QT
pQp

√
Λ QT (1248)

where
√

Λ QT
pQp

√
Λ , Λ =

√
Λ
√

Λ and where Qp∈ Rn×N−1 is unknown as is its dimension
n . Rotation/reflection is accounted for by Qp yet only its first r columns are necessarily
orthonormal.5.60 Assuming membership to the unit simplex y∈S (1205), then point
p = X

√
2VN y = Qp

√
Λ QTy in Rn belongs to the translated polyhedron

P − x1 (1249)

whose generating list constitutes the columns of (1147)

[

0 X
√

2VN
]

=
[

0 Qp

√
Λ QT

]

∈ Rn×N

= [0 x2−x1 x3−x1 · · · xN −x1 ]
(1250)

The scaled auxiliary matrix VN represents that translation. A simple choice for Qp has
n set to N−1 ; id est, Qp = I . Ideally, each member of the generating list has at most
r nonzero entries; r being, affine dimension

rankV T
NDVN = rankQp

√
Λ QT = rank Λ = r (1251)

5.59This sense reversal is analogous to autocorrelation versus total power of lagged differences in digital
signal processing. [109, p.9]
5.60Recall r signifies affine dimension. Qp is not necessarily an orthogonal matrix. Qp is constrained such
that only its first r columns are necessarily orthonormal because there are only r nonzero eigenvalues in
Λ when −V T

NDVN has rank r (§5.7.1.1). Remaining columns of Qp are arbitrary.
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Each member then has at least N−1 − r zeros in its higher-dimensional coordinates
because r ≤ N−1. (1159) To truncate those zeros, choose n equal to affine dimension
which is the smallest n possible because XVN has rank r≤ n (1155).5.61 In that case,
the simplest choice for Qp is [ I 0 ] having dimension r×N−1.

We may wish to verify the list (1250) found from the diagonalization of −V T
NDVN .

Because of rotation/reflection and translation invariance (§5.5), EDM D can be uniquely
made from that list by calculating: (1006)

D(X) = D(X[0
√

2VN ]) = D(Qp[0
√

Λ QT ]) = D([0
√

ΛQT ]) (1252)

This suggests a way to find EDM D given −V T
NDVN (confer (1131))

D =

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(1127)

5.12.2 0 geometric center. V

Alternatively we may perform reconstruction using auxiliary matrix V (§B.4.1) and Gram
matrix −V D V 1

2 (1027) instead; to find a generating list for polyhedron

P − αc (1253)

whose geometric center αc has been translated to the origin. Redimensioning
diagonalization factors Q, Λ∈RN×N and unknown Qp∈ Rn×N , (1154)

−V D V = 2V XTX V , QΛQT , Q
√

Λ QT
pQp

√
ΛQT (1254)

where the geometrically centered generating list constitutes (confer (1250))

XV = 1√
2

Qp

√
Λ QT ∈ Rn×N

= [x1− 1
N X1 x2− 1

N X1 x3− 1
N X1 · · · xN − 1

N X1 ]
(1255)

where αc = 1
N X1. (§5.5.1.0.1) Recall, Qp accounts for list rotation/reflection. The

simplest choice for Qp is [ I 0 ]∈Rr×N with affine dimension r .

Now EDM D can be uniquely made from the list found: (1006)

D(X) = D(XV ) = D( 1√
2

Qp

√
ΛQT) = D(

√
Λ QT) 1

2 (1256)

This EDM is, of course, identical to (1252). Similarly to (1127), from −V D V we can
find EDM D (confer (1118))

D = δ(−V D V 1
2 )1T + 1δ(−V D V 1

2 )T − 2(−V D V 1
2 ) (1117)

5.61If we write QT =







qT
1
.
.
.

qT
N−1






as rowwise eigenvectors, Λ=















λ1 0
. . .

λr

0 . . .
0 0















in terms of eigenvalues,

and Qp =
[

qp1 · · · qpN−1

]

as column vectors, then Qp

√
Λ QT =

r
∑

i=1

√
λi qpi

qT
i is a sum of r linearly

independent rank-1 matrices (§B.1.1). Hence the summation has rank r .
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(a)

(b)

(c)

(d)

(f) (e)

Figure 156: (confer Figure 8) Nonconvex map of United States of America showing some
state boundaries and the Great Lakes. All plots made by connecting 5020 points. Any
difference in scale in (a) through (d) is artifact of plotting routine.
(a) Shows original map made from decimated (latitude, longitude) data.
(b) Original map data rotated (freehand) to highlight curvature of Earth.
(c) Map isometrically reconstructed from an EDM (from distance only).
(d) Same reconstructed map illustrating curvature.
(e)(f) Two views of one isotonic reconstruction (from comparative distance);

problem (1266) with no sort constraint Π d (and no hidden line removal).
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5.13 Reconstruction examples

5.13.1 Isometric reconstruction

5.13.1.0.1 Example. Cartography.
The most fundamental application of EDMs is to reconstruct relative point position given
only interpoint distance information. Drawing a map of the United States is a good
illustration of isometric reconstruction (§5.4.2.2.10) from complete distance data. We
obtained latitude and longitude information for the coast, border, states, and Great Lakes
from the usalo atlas data file within Matlab Mapping Toolbox; conversion to Cartesian
coordinates (x, y, z) via:

φ , π/2 − latitude

θ , longitude
x = sin(φ) cos(θ)
y = sin(φ) sin(θ)
z = cos(φ)

(1257)

We used 64% of the available map data to calculate EDM D from N = 5020 points.
The original (decimated) data and its isometric reconstruction via (1248) are shown in
Figure 156a-d. [435, Matlab code] The eigenvalues computed for (1246) are

λ(−V T
NDVN ) = [199.8 152.3 2.465 0 0 0 · · · ]T (1258)

The 0 eigenvalues have absolute numerical error on the order of 2E-13 ; meaning, the
EDM data indicates three dimensions (r = 3) are required for reconstruction to nearly
machine precision. 2

5.13.2 Isotonic reconstruction

Sometimes only comparative information about distance is known (Earth is closer to the
Moon than it is to the Sun). Suppose, for example, EDM D for three points is unknown:

D = [dij ] =





0 d12 d13

d12 0 d23

d13 d23 0



 ∈ S3

h (995)

but comparative distance data is available:

d13 ≥ d23 ≥ d12 (1259)

With vectorization d = [d12 d13 d23]
T∈R3, we express the comparative data as the

nonincreasing sorting

Π d =





0 1 0
0 0 1
1 0 0









d12

d13

d23



 =





d13

d23

d12



 ∈ KM+ (1260)

where Π is a given permutation matrix expressing known sorting action on the entries of
unknown EDM D , and KM+ is the monotone nonnegative cone (§2.13.10.4.2)

KM+ = {z | z1 ≥ z2 ≥ · · · ≥ zN(N−1)/2 ≥ 0} ⊆ RN(N−1)/2
+ (438)

where N(N−1)/2 = 3 for the present example. From sorted vectorization (1260) we
create the sort-index matrix

O =





0 12 32

12 0 22

32 22 0



 ∈ S3

h ∩ R3×3

+ (1261)

https://convexoptimization.com/TOOLS/USALO
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Figure 157: Largest ten eigenvalues, of −V T
N OVN for USA map, sorted by decreasing value.

generally defined

Oij , k2 | dij = (ΞΠ d)k , j 6= i (1262)

where Ξ is a permutation matrix (1933) completely reversing order of vector entries.
Replacing EDM data with indices-square of a nonincreasing sorting like this is, of

course, a heuristic we invented and may be regarded as a nonlinear introduction of
much noise into the Euclidean distance matrix. For large data sets, this heuristic makes
an otherwise intense problem computationally tractable; we see an example in relaxed
problem (1267).

Any process of reconstruction that leaves comparative distance information intact
is called ordinal multidimensional scaling or isotonic reconstruction. Beyond rotation,
reflection, and translation error, (§5.5) list reconstruction by isotonic reconstruction is
subject to error in absolute scale (dilation) and distance ratio. Yet Borg & Groenen
argue: [59, §2.2] reconstruction from complete comparative distance information for a large
number of points is as highly constrained as reconstruction from an EDM; the larger the
number, the smaller the optimal solution set; whereas,

isotonic solution set ⊇ isometric solution set (1263)

5.13.2.1 Isotonic cartography

To test Borg & Groenen’s conjecture, suppose we make a complete sort-index matrix
O∈ SN

h ∩ RN×N
+ for the map of USA and then substitute O in place of EDM D in

the reconstruction process of §5.12. Whereas EDM D returned only three significant
eigenvalues (1258), the sort-index matrix O is generally not an EDM (certainly not an
EDM with corresponding affine dimension 3) so returns many more. The eigenvalues,
calculated with absolute numerical error approximately 5E-7 , are plotted in Figure 157:

λ(−V T
N OVN ) = [880.1 463.9 186.1 46.20 17.12 9.625 8.257 1.701 0.7128 0.6460 · · · ]T

(1264)

The extra eigenvalues indicate that affine dimension corresponding to an EDM near
O is likely to exceed 3. To realize the map, we must simultaneously reduce that
dimensionality and find an EDM D closest to O in some sense5.62 while maintaining

5.62 a problem explored more in §7.
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the known comparative distance relationship. For example: given permutation matrix Π
expressing the known sorting action like (1260) on entries

d ,
1√
2

dvec D =

























d12

d13

d23

d14

d24

d34...
dN−1,N

























∈ RN(N−1)/2 (1265)

of unknown D∈ SN
h , we can make sort-index matrix O input to the optimization problem

minimize
D

‖−V T
N (D − O)VN ‖F

subject to rankV T
NDVN ≤ 3

Π d ∈ KM+

D ∈ EDMN

(1266)

that finds the EDM D (corresponding to affine dimension not exceeding 3 in isomorphic
dvec EDMN∩ ΠTKM+) closest to O in the sense of Schoenberg (1025).

Analytical solution to this problem, ignoring the sort constraint Π d∈KM+ , is known
[405]: we get the convex optimization [sic ] (§7.1)

minimize
D

‖−V T
N (D − O)VN ‖F

subject to rankV T
NDVN ≤ 3

D ∈ EDMN

(1267)

Only the three largest nonnegative eigenvalues in (1264) need be retained to make list
(1250); the rest are discarded. The reconstruction from EDM D found in this manner
is plotted in Figure 156e-f. (In the Matlab code on Wıκımization [428], matrix O is

normalized by (N(N−1)/2)
2
.) From these plots it becomes obvious that inclusion of the

sort constraint is necessary for isotonic reconstruction.
That sort constraint demands: any optimal solution D⋆ must possess the known

comparative distance relationship that produces the original ordinal distance data O
(1262). Ignoring the sort constraint, apparently, violates it. Yet even more remarkable is
how much the map, reconstructed using only ordinal data, still resembles the original map
of USA after suffering the many violations produced by solving relaxed problem (1267).
This suggests the simple reconstruction techniques of §5.12 are robust to a significant
amount of noise.

5.13.2.2 Isotonic solution with sort constraint

Because problems involving rank are generally difficult, we will partition (1266) into two
problems we know how to solve and then alternate their solution until convergence:

minimize
D

‖−V T
N (D − O)VN ‖F

subject to rankV T
NDVN ≤ 3

D ∈ EDMN

(a) (1267)

minimize
σ

‖σ − Π d‖
subject to σ ∈ KM+

(b)

(1268)
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where sort-index matrix O (a given constant in (a)) becomes an implicit vector variable
o i solving the ith instance of (1268b)

1√
2

dvec Oi = o i , ΠTσ⋆ ∈ RN(N−1)/2, i∈{1, 2, 3 . . .} (1269)

As mentioned in discussion of relaxed problem (1267), a closed-form solution to problem
(1268a) exists. Only the first iteration of (1268a) sees the original sort-index matrix
O whose entries are nonnegative whole numbers; id est, O0 =O∈ SN

h ∩ RN×N
+ (1262).

Subsequent iterations i take the previous solution of (1268b) as input

Oi = dvec−1(
√

2 o i ) ∈ SN (1270)

real successors, estimating distance-square not order, to the sort-index matrix O .
New convex problem (1268b) finds the unique minimum-distance projection of Π d on

the monotone nonnegative cone KM+ . By defining

Y †T = [e1− e2 e2− e3 e3− e4 · · · em] ∈ Rm×m (439)

where m,N(N−1)/2 , we may rewrite (1268b) as an equivalent quadratic program; a
convex problem in terms of the halfspace-description of KM+ :

minimize
σ

(σ − Π d)T(σ − Π d)

subject to Y †σ º 0
(1271)

This quadratic program can be converted to a semidefinite program via Schur-form
(§3.5.3); we get the equivalent problem

minimize
t∈R , σ

t

subject to

[

tI σ − Π d
(σ − Π d)T 1

]

º 0

Y †σ º 0

(1272)

5.13.2.3 Convergence

In §E.11 we discuss convergence of alternating projection on intersecting convex sets in a
Euclidean vector space; convergence to a point in their intersection. Here the situation is
different for two reasons:

Firstly, sets of positive semidefinite matrices having an upper bound on rank are
generally not convex. Yet in §7.1.4.0.1 we prove that (1268a) is equivalent to a projection
of nonincreasingly ordered eigenvalues on a subset of the nonnegative orthant:

minimize
D

‖−V T
N (D − O)VN ‖F

subject to rankV T
NDVN ≤ 3

D ∈ EDMN

≡
minimize

Υ
‖Υ − Λ‖F

subject to δ(Υ)∈
[

R3

+

0

]

(1273)

where −V T
NDVN ,UΥUT∈ SN−1 and −V T

N OVN ,QΛQT∈ SN−1 are ordered
diagonalizations (§A.5). It so happens: optimal orthogonal U⋆ always equals Q
given. Linear operator T (A) = U⋆TAU⋆, acting on square matrix A , is an isometry
because Frobenius’ norm is orthogonally invariant (51). This isometric isomorphism T
thus maps a nonconvex problem to a convex one that preserves distance.

Secondly, the second half (1268b) of the alternation takes place in a different vector
space; SN

h (versus SN−1). From §5.6 we know these two vector spaces are related by an
isomorphism, SN−1 =VN (SN

h ) (1136), but not by an isometry.
We have, therefore, no guarantee from theory of alternating projection that alternation

(1268) converges to a point, in the set of all EDMs corresponding to affine dimension not
in excess of 3 , belonging to dvec EDMN∩ ΠTKM+ .
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5.13.2.4 Interlude

Map reconstruction from comparative distance data, isotonic reconstruction, would also
prove invaluable to stellar cartography where absolute interstellar distance is difficult to
acquire. But we have not yet implemented the second half (1271) of alternation (1268) for
USA map data because memory-demands exceed capability of our computer.

5.13.2.4.1 Exercise. Convergence of isotonic solution by alternation.
Empirically demonstrate convergence, discussed in §5.13.2.3, on a smaller data set. H

It would be remiss not to mention another method of solution to this isotonic
reconstruction problem: Once again we assume only comparative distance data like (1259)
is available. Given known set of indices I

minimize
D

rankV D V

subject to dij ≤ dkl ≤ dmn ∀(i , j , k , l ,m , n)∈ I
D ∈ EDMN

(1274)

this problem minimizes affine dimension while finding an EDM whose entries satisfy known
comparative relationships. Suitable rank heuristics are discussed in §4.5.1 and §7.2.2 that
will transform this to a convex optimization problem.

Using contemporary computers, even with a rank heuristic in place of the objective
function, this problem formulation is more difficult to compute than the relaxed
counterpart problem (1267). That is because there exist efficient algorithms to compute
a selected few eigenvalues and eigenvectors from a very large matrix. Regardless, it is
important to recognize: the optimal solution set for this problem (1274) is practically
always different from the optimal solution set for its counterpart, problem (1266).

5.14 Fifth property of Euclidean metric

We continue now with the question raised in §5.3 regarding necessity for at least one
requirement more than the four properties of the Euclidean metric (§5.2) to certify
realizability of a bounded convex polyhedron or to reconstruct a generating list for it from
incomplete distance information. There we saw that the four Euclidean metric properties
are necessary for D∈EDMN in the case N = 3 , but become insufficient when cardinality
N exceeds 3 (regardless of affine dimension).

5.14.1 Recapitulate

In the particular case N = 3 , −V T
NDVN º 0 (1177) and D∈ S3

h are necessary and sufficient
conditions for D to be an EDM. By (1179), triangle inequality is then the only Euclidean
condition bounding the necessarily nonnegative dij ; and those bounds are tight. That
means, the first four properties of the Euclidean metric are necessary and sufficient
conditions for D to be an EDM in case N = 3 ; for i , j∈{1, 2 , 3}

√

dij ≥ 0 , i 6= j
√

dij = 0 , i = j
√

dij =
√

dji
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k

⇔ −V T
NDVN º 0

D ∈ S3

h
⇔ D ∈ EDM3 (1275)

Yet those four properties become insufficient when N > 3.
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5.14.2 Derivation of the Fifth

Correspondence between the triangle inequality and the EDM was developed in §5.8.2
where a triangle inequality (1179a) was revealed within the leading principal 2×2
submatrix of −V T

NDVN when positive semidefinite. Our choice of the leading principal
submatrix was arbitrary; actually, a unique triangle inequality like (1074) corresponds to
any one of the (N−1)!/(2!(N−1 − 2)!) principal 2×2 submatrices.5.63 Assuming D∈ S4

h

and −V T
NDVN ∈ S3, then by the positive (semi)definite principal submatrices theorem

(§A.3.1.0.4) it is sufficient to prove: all dij are nonnegative, all triangle inequalities
are satisfied, and det(−V T

NDVN ) is nonnegative. When N = 4 , in other words, that
nonnegative determinant becomes the fifth and last Euclidean metric requirement for
D∈EDMN . We now endeavor to ascribe geometric meaning to it.

5.14.2.1 Nonnegative determinant

By (1080) when D∈EDM4, −V T
NDVN is equal to inner product (1075),

ΘTΘ =





d12

√

d12d13 cos θ213

√

d12d14 cos θ214
√

d12d13 cos θ213 d13

√

d13d14 cos θ314
√

d12d14 cos θ214

√

d13d14 cos θ314 d14



 (1276)

Because Euclidean space is an inner-product space, the more concise inner-product form
of the determinant is admitted;

det(ΘTΘ) = −d12d13d14

(

cos(θ213)
2+cos(θ214)

2+cos(θ314)
2 − 2 cos θ213 cos θ214 cos θ314 − 1

)

(1277)
The determinant is nonnegative if and only if

cos θ214 cos θ314 −
√

sin(θ214)2 sin(θ314)2 ≤ cos θ213 ≤ cos θ214 cos θ314 +
√

sin(θ214)2 sin(θ314)2

⇔
cos θ213 cos θ314 −

√

sin(θ213)2 sin(θ314)2 ≤ cos θ214 ≤ cos θ213 cos θ314 +
√

sin(θ213)2 sin(θ314)2

⇔
cos θ213 cos θ214 −

√

sin(θ213)2 sin(θ214)2 ≤ cos θ314 ≤ cos θ213 cos θ214 +
√

sin(θ213)2 sin(θ214)2

(1278)
which simplifies, for 0 ≤ θi1ℓ , θℓ1j , θi1j ≤ π and all i 6=j 6=ℓ∈{2, 3, 4} , to

cos(θi1ℓ + θℓ1j) ≤ cos θi1j ≤ cos(θi1ℓ − θℓ1j) (1279)

Analogously to triangle inequality (1191), the determinant is 0 upon equality on either
side of (1279) which is tight. Inequality (1279) can be equivalently written linearly as a
triangle inequality between relative angles [469, §1.4];

|θi1ℓ − θℓ1j | ≤ θi1j ≤ θi1ℓ + θℓ1j

θi1ℓ + θℓ1j + θi1j ≤ 2π

0 ≤ θi1ℓ , θℓ1j , θi1j ≤ π

(1280)

Generalizing this:

5.63There are fewer principal 2×2 submatrices in −V T
NDVN than there are triangles made by four or

more points because there are N !/(3!(N− 3)!) triangles made by point triples. The triangles corresponding
to those submatrices all have vertex x1 . (confer §5.8.2.1)
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θ213

−θ214

−θ314

π

Figure 158: The relative-angle inequality tetrahedron (1281) bounding EDM4 is regular;
drawn in entirety. Each angle θ (1072) must belong to this solid to be realizable.

5.14.2.1.1 Fifth property of Euclidean metric - restatement.
Relative-angle inequality. [56] [57, p.17, p.107] [274, §3.1]
(confer §5.3.1.0.1) Augmenting the four fundamental Euclidean metric properties in
Rn, for all i, j, ℓ 6= k∈{1 . . . N } , i<j <ℓ , and for N ≥ 4 distinct points {xk} , the
inequalities

|θikℓ − θℓkj | ≤ θikj ≤ θikℓ + θℓkj (a)

θikℓ + θℓkj + θikj ≤ 2π (b)

0 ≤ θikℓ , θℓkj , θikj ≤ π (c)

(1281)

must be satisfied at each point xk regardless of affine dimension, where θikj = θjki is the
angle between vectors at vertex xk as defined in (1072) and illustrated in Figure 139.

⋄

Because point labelling is arbitrary, this fifth Euclidean metric requirement must apply
to each of the N points as though each were in turn labelled x1 ; hence the new index k
in (1281). Just as the triangle inequality is the ultimate test for realizability of only three
points, the relative-angle inequality is the ultimate test for only four. For four distinct
points, the triangle inequality remains a necessary although penultimate test; (§5.4.3)

Four Euclidean metric properties (§5.2).
Angle θ inequality (1000) or (1281).

⇔ −V T
NDVN º 0

D ∈ S4

h

⇔ D = D(Θ)∈ EDM4 (1282)

The relative-angle inequality, for this case, is illustrated in Figure 158.

5.14.2.2 Beyond the fifth metric property

When cardinality N exceeds 4 , the first four properties of the Euclidean metric and the
relative-angle inequality together become insufficient conditions for realizability. In other
words, the four Euclidean metric properties and relative-angle inequality remain necessary
but become a sufficient test only for positive semidefiniteness of all the principal 3 × 3
submatrices [sic ] in −V T

NDVN . Relative-angle inequality can be considered the ultimate
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test only for realizability at each vertex xk of each and every purported tetrahedron
constituting a hyperdimensional body.

When N = 5 in particular, relative-angle inequality becomes the penultimate
Euclidean metric requirement while nonnegativity of then unwieldy det(ΘTΘ) corresponds
(by the positive (semi)definite principal submatrices theorem in §A.3.1.0.4) to the sixth
and last Euclidean metric requirement. Together these six tests become necessary and
sufficient, and so on.

Yet for all values of N , only assuming nonnegative dij , relative-angle matrix
inequality in (1193) is necessary and sufficient to certify realizability; (§5.4.3.1)

Euclidean metric property 1 (§5.2).
Angle matrix inequality Ω º 0 (1081).

⇔ −V T
NDVN º 0

D ∈ SN
h

⇔ D = D(Ω , d)∈ EDMN (1283)

Like matrix criteria (1001), (1025), and (1193), the relative-angle matrix inequality
and nonnegativity property subsume all the Euclidean metric properties and further
requirements.

5.14.3 Path not followed

As a means to test for realizability of four or more points, an intuitively
appealing way to augment the four Euclidean metric properties is to
recognize generalizations of the triangle inequality: In the case of
cardinality N = 4 the three-dimensional analogue to triangle & distance
is tetrahedron & facet-area, whereas in case N = 5 the four-dimensional
analogue is polychoron & facet-volume, ad infinitum. For N points, N+1
metric properties are required.

5.14.3.1 N = 4

Each of the four facets of a general tetrahedron is a triangle and its relative
interior. Suppose we identify each facet of the tetrahedron by its area-square:
c1 , c2 , c3 , c4 . Then analogous to metric property 4, we may write a tight5.64

area inequality for the facets

√
ci ≤ √

cj +
√

ck +
√

cℓ , i 6=j 6=k 6=ℓ∈{1, 2 , 3, 4} (1284)

which is a generalized “triangle” inequality [264, §1.1] that follows from

√
ci =

√
cj cos ϕij +

√
ck cos ϕik +

√
cℓ cos ϕiℓ (1285)

[281] [449, Law of Cosines] where ϕij is the dihedral angle at the common edge
between triangular facets i and j .

If D is the EDM corresponding to the whole tetrahedron, then area-square
of the ith triangular facet has a convenient formula in terms of Di∈ EDMN−1

the EDM corresponding to that particular facet: From the Cayley-Menger
determinant5.65 for simplices, [449] [155] [194, §4] [100, §3.3] the ith facet

5.64The upper bound is met when all angles in (1285) are simultaneously 0 ; that occurs, for example, if
one point is relatively interior to the convex hull of the three remaining.
5.65 whose foremost characteristic is: the determinant vanishes if and only if affine dimension does not

equal penultimate cardinality; id est, det

[

0 1T

1 −D

]

= 0 ⇔ r < N−1 where D is any EDM (§5.7.3.0.1).

Otherwise, the determinant is negative.

http://mathworld.wolfram.com/LawofCosines.html
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area-square for i∈{1 . . . N} is (§A.4.1)

ci =
−1

2N−2(N−2)!2
det

[

0 1T

1 −Di

]

(1286)

=
(−1)N

2N−2(N−2)!2
det Di

(

1TD−1
i 1

)

(1287)

=
(−1)N

2N−2(N−2)!2
1Tcof(Di)

T1 (1288)

where Di is the ith principal N−1×N−1 submatrix5.66 of D∈EDMN , and
cof(Di) is the N−1×N−1 matrix of cofactors [379, §4] corresponding to Di .
The number of principal 3 × 3 submatrices in D is, of course, equal to the
number of triangular facets in the tetrahedron; four (N !/(3!(N−3)!)) when
N = 4.

5.14.3.1.1 Exercise. Sufficiency conditions for an EDM of four points.
Triangle inequality (property 4) and area inequality (1284) are conditions
necessary for D to be an EDM. Prove their sufficiency in conjunction with
the remaining three Euclidean metric properties. H

5.14.3.2 N = 5

Moving to the next level, we might encounter a Euclidean body called
polychoron: a bounded polyhedron in four dimensions.5.67 Our polychoron
has five (N !/(4!(N− 4)!)) facets, each of them a general tetrahedron whose
volume-square ci is calculated using the same formula; (1286) where
D is the EDM corresponding to the polychoron, and Di is the EDM
corresponding to the ith facet (the principal 4 × 4 submatrix of D∈EDMN

corresponding to the ith tetrahedron). The analogue to triangle & distance
is now polychoron & facet-volume. We could then write another generalized
“triangle” inequality like (1284) but in terms of facet volume; [455, §IV]

√
ci ≤ √

cj +
√

ck +
√

cℓ +
√

cm , i 6=j 6=k 6=ℓ 6=m∈{1 . . . 5} (1289)

5.14.3.2.1 Exercise. Sufficiency for an EDM of five points.
For N = 5 , triangle (distance) inequality (§5.2), area inequality (1284), and
volume inequality (1289) are conditions necessary for D to be an EDM. Prove
their sufficiency. H

5.14.3.3 Volume of simplices

There is no known formula for the volume of a bounded general convex
polyhedron expressed either by halfspace or vertex-description. [467, §2.1]
[325, p.173] [271] [206] [207] Volume is a concept germane to R3 ; in higher
dimensions it is called content. Applying the EDM assertion (§5.9.1.0.4)
and a result from [68, p.407], a general nonempty simplex (§2.12.3) in RN−1

corresponding to an EDM D∈ SN
h has content

√
c = content(S)

√

det(−V T
NDVN ) (1290)

5.66Every principal submatrix of an EDM remains an EDM. [274, §4.1]
5.67The simplest polychoron is called a pentatope [449]; a regular simplex hence convex. (A pentahedron
is a three-dimensional body having five vertices.)

http://mathworld.wolfram.com/Pentatope.html
http://mathworld.wolfram.com/Pentahedron.html
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.

h

R

a

Figure 159: Length of one-dimensional face a equals height h=a=1 of this convex
nonsimplicial pyramid in R3 with square base inscribed in a circle of radius R centered at
the origin. [449, Pyramid ]

where content-square of the unit simplex S⊂RN−1 is proportional to its
Cayley-Menger determinant;

content(S)2 =
−1

2N−1(N−1)!2
det

[

0 1T

1 −D([0 e1 e2 · · · eN−1 ])

]

(1291)

where ei∈RN−1 and the EDM operator used is D(X) (1006).

5.14.3.3.1 Example. Pyramid.
A formula for volume of a pyramid is known:5.68 it is 1

3 the product of its
base area with its height. [259] The pyramid in Figure 159 has volume 1

3 .
To find its volume using EDMs, we must first decompose the pyramid into
simplicial parts. Slicing it in half along the plane containing the line segments
corresponding to radius R and height h we find the vertices of one simplex,

X =





1/2 1/2 −1/2 0
1/2 −1/2 −1/2 0
0 0 0 1



∈ Rn×N (1292)

where N = n + 1 for any nonempty simplex in Rn. The volume of this simplex
is half that of the entire pyramid; id est,

√
c = 1

6 found by evaluating (1290).
2

With that, we conclude digression of path.

5.14.4 Affine dimension reduction in three dimensions

(confer §5.8.4) The determinant of any M ×M matrix is equal to the product of its
M eigenvalues. [379, §5.1] When N = 4 and det(ΘTΘ) is 0 , that means one or more
eigenvalues of ΘTΘ∈R3×3 are 0. The determinant will go to 0 whenever equality is
attained on either side of (1000), (1281a), or (1281b), meaning that a tetrahedron has

5.68Pyramid volume is independent of the paramount vertex position as long as its height remains constant.

http://mathworld.wolfram.com/Pyramid.html
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collapsed to a lower affine dimension; id est, r = rank ΘTΘ = rank Θ is reduced below
N−1 exactly by the number of 0 eigenvalues (§5.7.1.1).

In solving completion problems of any size N where one or more entries of an EDM
are unknown, therefore, dimension r of the affine hull required to contain the unknown
points is potentially reduced by selecting distances to attain equality in (1000) or (1281a)
or (1281b).

5.14.4.1 Exemplum redux

We now apply the fifth Euclidean metric property to an earlier problem:

5.14.4.1.1 Example. Small completion problem, IV. (confer §5.9.2.0.1)
Returning again to Example 5.3.0.0.2 that pertains to Figure 138 where N =4 ,
distance-square d14 is ascertainable from the fifth Euclidean metric property. Because
all distances in (998) are known except

√
d14 , then cos θ123 =0 and θ324 =0 result from

identity (1072). Applying (1000),

cos(θ123 + θ324) ≤ cos θ124 ≤ cos(θ123 − θ324)
0 ≤ cos θ124 ≤ 0

(1293)

It follows again from (1072) that d14 can only be 2. As explained in §5.14.4, affine
dimension r cannot exceed N−2 because equality is attained in (1293). 2
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Chapter 6

Cone of Distance Matrices

For N > 3 , the cone of EDMs is no longer a circular cone and the geometry
becomes complicated. . .

−Hayden, Wells, Liu, & Tarazaga, 1991 [220, §3]

In the subspace of symmetric matrices SN , we know that the convex cone of Euclidean
distance matrices EDMN (the EDM cone) does not intersect the positive semidefinite cone
SN

+ (PSD cone) except at the origin, their only vertex; there can be no positive or negative
semidefinite EDM. (1217) [274]

EDMN ∩ SN
+ = 0 (1294)

Even so, the two convex cones can be related. In §6.8.1 we prove the equality

EDMN = SN
h ∩

(

SN⊥
c − SN

+

)

(1387)

a resemblance to EDM definition (1006) where

SN
h =

{

A ∈ SN | δ(A) = 0
}

(69)

is the symmetric hollow subspace (§2.2.3) and where

SN⊥
c =

{

u1T+ 1uT | u∈RN
}

(2231)

is the orthogonal complement of the geometric center subspace (§E.7.2.0.2)

SN
c =

{

Y ∈ SN | Y 1 = 0
}

(2229)

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 403

https://ccrma.stanford.edu/~dattorro
https://www.convexoptimization.com
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6.0.1 gravity

Equality (1387) is equally important as the known isomorphisms (1125) (1126) (1137)
(1138) relating the EDM cone EDMN to positive semidefinite cone SN−1

+ (§5.6.2.1) or to

an N(N−1)/2-dimensional face of SN
+ (§5.6.1.1).6.1 But those isomorphisms have never

led to this equality relating whole cones EDMN and SN
+ .

Equality (1387) is not obvious from the various EDM definitions such as (1006) or
(1310) because inclusion must be proved algebraically in order to establish equality;

EDMN ⊇ SN
h ∩

(

SN⊥
c − SN

+

)

. We will instead prove (1387) using purely geometric

methods.

6.0.2 highlight

In §6.8.1.7 we show: the Schoenberg criterion for discriminating Euclidean distance
matrices

D ∈ EDMN ⇔
{

−V T
NDVN ∈ SN−1

+

D ∈ SN
h

(1025)

is a discretized membership relation (§2.13.4, dual generalized inequalities) between the
EDM cone and its ordinary dual.

6.1 Defining EDM cone

We invoke a popular matrix criterion to illustrate correspondence between the EDM and
PSD cones belonging to the ambient space of symmetric matrices:

D ∈ EDMN ⇔
{ −V D V ∈ SN

+

D ∈ SN
h

(1029)

where V ∈ SN is the geometric centering matrix (§B.4). The set of all EDMs of dimension
N×N forms a closed convex cone EDMN because any pair of EDMs satisfies the definition
of a convex cone (180); videlicet, for each and every ζ1 , ζ2 ≥ 0 (§A.3.1.0.2)

ζ1 V D1V + ζ2 V D2V º 0

ζ1 D1 + ζ2 D2 ∈ SN
h

⇐ V D1V º 0 , V D2V º 0

D1 ∈ SN
h , D2 ∈ SN

h

(1295)

and convex cones are invariant to inverse linear transformation [354, p.22].

6.1.0.0.1 Definition. Cone of Euclidean distance matrices.
In the subspace of symmetric matrices, the set of all Euclidean distance matrices forms a
unique immutable pointed closed convex cone called the EDM cone: for N > 0

EDMN ,
{

D ∈ SN
h | −V D V ∈ SN

+

}

=
⋂

z∈N (1T)

{

D ∈ SN | 〈zzT,−D〉≥ 0 , δ(D)=0
} (1296)

The EDM cone in isomorphic RN(N+1)/2 [sic ] is the intersection of an infinite number
(when N >2) of halfspaces about the origin and a finite number of hyperplanes through
the origin in vectorized variable D= [dij ] . Hence EDMN is not full-dimensional with

6.1Because both positive semidefinite cones are frequently in play, dimension is explicit.
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(a) (d)

(c)(b)

d12d13

d23

√
d12

√
d13

√
d23

d12d13

d23

dvec rel ∂EDM3

Figure 160: Relative boundary (tiled) of EDM cone EDM3drawn truncated in isometrically
isomorphic subspace R3. (a) EDM cone drawn in usual distance-square coordinates dij .
View is from interior toward origin. Unlike positive semidefinite cone, EDM cone is
not selfdual; neither is it proper in ambient symmetric subspace (dual EDM cone for
this example belongs to isomorphic R6). (b) Drawn in its natural coordinates

√

dij

(absolute distance), cone remains convex (confer §5.10); intersection of three halfspaces
(1180) whose partial boundaries each contain origin. Cone geometry becomes nonconvex
(nonpolyhedral) in higher dimension. (§6.3) (c) Two coordinate systems artificially
superimposed. Coordinate transformation from dij to

√

dij appears a topological

contraction. (d) Sitting on its vertex 0 , pointed EDM3 is a circular cone having axis of
revolution dvec(−E)= dvec(11T− I ) (1213) (76). (Rounded vertex is plot artifact.)
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respect to SN because it is confined to the symmetric hollow subspace SN
h . The EDM

cone relative interior comprises

rel intr EDMN =
⋂

z∈N (1T)

{

D ∈ SN | 〈zzT,−D〉> 0 , δ(D)=0
}

=
{

D ∈ EDMN | rank(V D V ) = N−1
}

(1297)

while its relative boundary comprises

rel ∂EDMN =
{

D ∈ EDMN | 〈zzT,−D〉 = 0 for some z∈N (1T)
}

=
{

D ∈ EDMN | rank(V D V ) < N−1
} (1298)

△

This cone is more easily visualized in the isomorphic vector subspace RN(N−1)/2

corresponding to SN
h :

In the case N = 1 point, the EDM cone is the origin in R0.
In the case N = 2 , the EDM cone is the nonnegative real line in R ; a halfline in a

subspace of the realization in Figure 164.
EDM cone in case N = 3 is a circular cone in R3 illustrated in Figure 160(a)(d);

rather, the set of all matrices

D =





0 d12 d13

d12 0 d23

d13 d23 0



 ∈ EDM3 (1299)

makes a circular cone in this dimension. In this case, the first four Euclidean metric
properties are necessary and sufficient tests to certify realizability of triangles; (1275).
Thus triangle inequality property 4 describes three halfspaces (1180) whose intersection
makes a polyhedral cone in R3 of realizable

√

dij (absolute distance); an isomorphic
subspace representation of the set of all EDMs D in the natural coordinates

◦
√

D ,





0
√

d12

√
d13√

d12 0
√

d23√
d13

√
d23 0



 (1300)

illustrated in Figure 160b.

6.2 Polyhedral bounds

The convex cone of EDMs is nonpolyhedral in dij for N > 2 ; e.g, Figure 160a. Still we
found necessary and sufficient bounding polyhedral relations consistent with EDM cones
for cardinality N = 1, 2 , 3, 4 :

N = 3. Transforming distance-square coordinates dij by taking their positive square root
provides the polyhedral cone in Figure 160b; polyhedral because an intersection
of three halfspaces in natural coordinates

√

dij is provided by triangle inequalities
(1180). This polyhedral cone implicitly encompasses necessary and sufficient metric
properties: nonnegativity, selfdistance, symmetry, and triangle inequality.

N = 4. Relative-angle inequality (1281) together with four Euclidean metric properties are
necessary and sufficient tests for realizability of tetrahedra. (1282) Albeit relative
angles θikj (1072) are nonlinear functions of the dij , relative-angle inequality
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provides a regular tetrahedron in R3 [sic ] (Figure 158) bounding angles θikj at
vertex xk consistently with EDM4 .6.2

Yet were we to employ the procedure outlined in §5.14.3 for making generalized triangle
inequalities, then we would find all the necessary and sufficient dij -transformations for
generating bounding polyhedra consistent with EDMs of any higher dimension (N > 3).

6.3
√

EDM cone is not convex

For some applications, like a molecular conformation problem (Figure 5, Figure 149) or
multidimensional scaling [119] [406], absolute distance

√

dij is the preferred variable.
Taking square root of the entries in all EDMs D of dimension N , we get another cone
but not a convex cone when N > 3 (Figure 160b): [101, §4.5.2]

√

EDMN , { ◦
√

D | D∈EDMN} (1301)

where ◦
√

D is defined like (1300). It is a cone because any cone is completely constituted

by rays emanating from the origin: (§2.7) Any given ray {ζ Γ∈RN(N−1)/2 | ζ≥0} remains

a ray { ◦
√

ζ Γ∈RN(N−1)/2 | ζ≥0} under entrywise square root. It is already established
that

D∈EDMN ⇒ ◦
√

D ∈ EDMN (1212)

But because of how
√

EDMN is defined, it is obvious that (confer §5.10)

D∈EDMN ⇔ ◦
√

D∈
√

EDMN (1302)

Given ◦
√

D1 , ◦
√

D2 ∈
√

EDMN , we would expect their conic combination ◦
√

D1 + ◦
√

D2 to

also be a member were
√

EDMN convex. That is easily proven false by counterexample via
(1302), for then ( ◦

√
D1 + ◦

√
D2 )◦ ( ◦

√
D1 + ◦

√
D2 ) would need to be a member of EDMN .

Notwithstanding,
√

EDMN ⊆ EDMN (1303)

by (1212) (Figure 160), and we learn how to transform a nonconvex proximity problem in
the natural coordinates

√

dij to a convex optimization in §7.2.1.

6.4 EDM definition in 11T

Any EDM D corresponding to affine dimension r has representation

D(VX ) , δ(VXV T
X )1T + 1δ(VXV T

X )T − 2VXV T
X ∈ EDMN (1304)

where R(VX ∈RN×r)⊆ N (1T) = 1⊥

V T
X VX = δ2(V T

X VX ) and VX is full-rank with orthogonal columns. (1305)

Equation (1304) is simply the standard EDM definition (1006) with a centered list X
as in (1093); Gram matrix XTX has been replaced with the subcompact singular value
decomposition (§A.6.1.1)6.3

VXV T
X ≡ V TXTXV ∈ SN

c ∩ SN
+ (1306)

6.2Still, property-4 triangle inequalities (1180) corresponding to each principal 3×3 submatrix of
−V T

NDVN demand that the corresponding
√

dij belong to a polyhedral cone like that in Figure 160b.
6.3Subcompact SVD: VXV T

X , Q
√

Σ
√

ΣQT≡ V TXTXV . So V T
X is not necessarily XV (§5.5.1.0.1),

although affine dimension r = rank(V T
X ) = rank(XV ). (1150)
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This means: inner product V T
X VX is an r×r diagonal matrix Σ of nonzero singular

values.
Vector δ(VXV T

X ) may me decomposed into complementary parts by projecting it on
orthogonal subspaces 1⊥ and R(1) : namely,

P1⊥

(

δ(VXV T
X )

)

= V δ(VXV T
X ) (1307)

P1

(

δ(VXV T
X )

)

=
1

N
11Tδ(VXV T

X ) (1308)

Of course

δ(VXV T
X ) = V δ(VXV T

X ) +
1

N
11Tδ(VXV T

X ) (1309)

by (1028). Substituting this into EDM definition (1304), we get the Hayden, Wells, Liu,
& Tarazaga EDM formula [220, §2]

D(VX , y) , y1T + 1yT +
λ

N
11T − 2VXV T

X ∈ EDMN (1310)

where

λ , 2‖VX ‖2
F = 1Tδ(VXV T

X )2 and y , δ(VXV T
X ) − λ

2N
1 = V δ(VXV T

X ) (1311)

and y=0 if and only if 1 is an eigenvector of EDM D . Scalar λ becomes an eigenvalue
when corresponding eigenvector 1 exists.6.4

Then the particular dyad sum from (1310)

y1T+ 1yT+
λ

N
11T ∈ SN⊥

c (1312)

must belong to the orthogonal complement of the geometric center subspace (p.605),
whereas VXV T

X ∈ SN
c ∩ SN

+ (1306) belongs to the positive semidefinite cone in the
geometric center subspace.

Proof. We validate eigenvector 1 and eigenvalue λ .
(⇒) Suppose 1 is an eigenvector of EDM D . Then because

V T
X 1 = 0 (1313)

it follows

D1 = δ(VXV T
X )1T1 + 1δ(VXV T

X )T1 = N δ(VXV T
X ) + ‖VX ‖2

F1

⇒ δ(VXV T
X ) ∝ 1

(1314)

For some κ∈R+

δ(VXV T
X )T1 = N κ = tr(V T

X VX ) = ‖VX ‖2
F ⇒ δ(VXV T

X ) =
1

N
‖VX ‖2

F1 (1315)

so y=0.

(⇐) Now suppose δ(VXV T
X )=

λ

2N
1 ; id est, y=0. Then

D =
λ

N
11T− 2VXV T

X ∈ EDMN (1316)

1 is an eigenvector with corresponding eigenvalue λ . ¨

6.4 e.g, when X = I in EDM definition (1006).
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VX

N (1T)

1

δ(VXV T
X )

Figure 161: Example of VX selection to make an EDM corresponding to cardinality N = 3
and affine dimension r = 1 ; VX is a vector in nullspace N (1T)⊂ R3. Nullspace of 1T is
hyperplane in R3 (drawn truncated) having normal 1. Vector δ(VXV T

X ) may or may not
be in plane spanned by {1 , VX } , but belongs to nonnegative orthant which is strictly
supported by N (1T).
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6.4.1 Range of EDM D

From §B.1.1 pertaining to linear independence of dyad sums: If the transpose halves of
all the dyads in the sum (1304)6.5 make a linearly independent set, then the nontranspose
halves constitute a basis for the range of EDM D . Saying this mathematically: For
D∈EDMN

R(D)= R([ δ(VXV T
X ) 1 VX ]) ⇐ rank([ δ(VXV T

X ) 1 VX ])= 2 + r

R(D)= R([1 VX ]) ⇐ otherwise
(1317)

6.4.1.0.1 Proof. We need that condition under which the rank equality is satisfied:
We know R(VX )⊥1 , but what is the relative geometric orientation of δ(VXV T

X ) ?
δ(VXV T

X )º 0 because VXV T
X º 0 , and δ(VXV T

X )∝1 remains possible (1314); this means
δ(VXV T

X ) /∈ N (1T) simply because it has no negative entries. (Figure 161) If the projection
of δ(VXV T

X ) on N (1T) does not belong to R(VX ) , then that is a necessary and sufficient
condition for linear independence (l.i.) of δ(VXV T

X ) with respect to R([1 VX ]) ; id est,

V δ(VXV T
X ) 6= VX a for any a∈Rr

(I − 1
N 11T)δ(VXV T

X ) 6= VX a

δ(VXV T
X ) − 1

N ‖VX ‖2
F1 6= VX a

δ(VXV T
X ) − λ

2N 1 = y 6= VX a ⇔ {1 , δ(VXV T
X ) , VX } is l.i.

(1318)

When this condition is violated (when (1311) y=VX ap for some particular a∈Rr), on
the other hand, then from (1310) we have

R
(

D = y1T+ 1yT+ λ
N 11T− 2VXV T

X
)

= R
(

(VX ap + λ
N 1)1T+ (1aT

p − 2VX )V T
X

)

= R([VX ap + λ
N 1 1aT

p − 2VX ])

= R([1 VX ])
(1319)

An example of such a violation is (1316) where, in particular, ap = 0. ¨

Then a statement parallel to (1317) is, for D∈EDMN (Theorem 5.7.3.0.1)

rank(D) = r + 2 ⇔ y /∈R(VX )
(

⇔ 1TD†1 = 0
)

rank(D) = r + 1 ⇔ y∈R(VX )
(

⇔ 1TD†1 6= 0
) (1320)

6.4.2 Boundary constituents of EDM cone

Expression (1304) has utility in forming the set of all EDMs corresponding to affine
dimension r :

{

D∈EDMN | rank(V D V )= r
}

=
{

D(VX ) | VX ∈RN×r, rankVX = r , V T
X VX = δ2(V T

X VX ) , R(VX )⊆ N (1T)
} (1321)

whereas {D∈EDMN | rank(V D V )≤ r} is the closure of this same set;

{

D∈EDMN | rank(V D V )≤ r
}

=
{

D∈EDMN | rank(V D V )= r
}

(1322)

6.5Identifying columns VX , [ v1 · · · vr ] , then VXV T
X =

∑

i
viv

T
i is also a sum of dyads.
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-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

VX ∈R3×1
տ

(a)

(b)

dvecD(VX ) ⊂ dvec rel ∂EDM3
←−

Figure 162: (a) Vector VX from Figure 161 spirals in N (1T)⊂R3 decaying toward origin.
(Spiral is two-dimensional in vector space R3.) (b) Corresponding trajectory D(VX ) on
EDM cone relative boundary creates a vortex also decaying toward origin. There are two
complete orbits on EDM cone boundary about axis of revolution for every single revolution
of VX about origin. (Vortex is three-dimensional in isometrically isomorphic R3.)
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For example,

rel ∂EDMN =
{

D∈EDMN | rank(V D V )< N−1
}

=
N−2
⋃

r=0

{

D∈EDMN | rank(V D V )= r
} (1323)

None of these are necessarily convex sets, although

EDMN =
N−1
⋃

r=0

{

D∈EDMN | rank(V D V )= r
}

=
{

D∈EDMN | rank(V D V )= N−1
}

rel intr EDMN =
{

D∈EDMN | rank(V D V )= N−1
}

(1324)

are pointed convex cones.
When cardinality N = 3 and affine dimension r = 2 , for example, the relative interior

rel intr EDM3 is realized via (1321). (§6.5)
When N = 3 and r = 1 , the relative boundary of the EDM cone dvec rel ∂EDM3 is

realized in isomorphic R3 as in Figure 160d. This figure could be constructed via (1322)
by spiraling vector VX tightly about the origin in N (1T) ; as can be imagined with aid of
Figure 161. Vectors close to the origin in N (1T) are correspondingly close to the origin
in EDMN . As vector VX orbits the origin in N (1T) , the corresponding EDM orbits the
axis of revolution while remaining on the boundary of the circular cone dvec rel ∂EDM3.
(Figure 162)

6.4.3 Faces of EDM cone

Like the positive semidefinite cone, EDM cone faces are EDM cones.

6.4.3.0.1 Exercise. Isomorphic faces.
Prove that in high cardinality N , any set of EDMs made via (1321) or (1322) with
particular affine dimension r is isomorphic with any set admitting the same affine
dimension but made in lower cardinality. H

6.4.3.1 smallest face that contains an EDM

Now suppose we are given a particular EDM D(VXp
)∈EDMN corresponding to affine

dimension r and parametrized by VXp
in (1304). The EDM cone’s smallest face that

contains D(VXp
) is

F
(

EDMN ∋D(VXp
)
)

=
{

D(VX ) | VX ∈RN×r, rankVX = r , V T
X VX = δ2(V T

X VX ) , R(VX )⊆R(VXp
)
}

≃ EDMr+1

(1325)

which is isomorphic6.6 with convex cone EDMr+1, hence of dimension

dimF
(

EDMN ∋D(VXp
)
)

= r(r + 1)/2 (1326)

6.6The fact that the smallest face is isomorphic with another EDM cone (perhaps smaller than EDM
N )

is implicit in [220, §2].
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in isomorphic RN(N−1)/2. Not all dimensions are represented; e.g, the EDM cone has no
two-dimensional faces.

When cardinality N = 4 and affine dimension r = 2 so that R(VXp
) is any

two-dimensional subspace of three-dimensional N (1T) in R4, for example, then the
corresponding face of EDM4 is isometrically isomorphic with: (1322)

EDM3 = {D∈EDM3 | rank(V D V )≤ 2} ≃ F(EDM4∋D(VXp
)) (1327)

Each two-dimensional subspace of N (1T) corresponds to another three-dimensional face.
Because each and every principal submatrix of an EDM in EDMN (§5.14.3) is another

EDM [274, §4.1], for example, then each principal submatrix belongs to a particular face
of EDMN .

6.4.3.2 extreme directions of EDM cone

In particular, extreme directions (§2.8.1) of EDMN correspond to affine dimension r = 1
and are simply represented: for any particular cardinality N ≥ 2 (§2.8.2) and each and
every nonzero vector z in N (1T)

Γ , (z ◦ z)1T + 1(z ◦ z)T − 2zzT ∈ EDMN

= δ(zzT)1T + 1δ(zzT)T − 2zzT
(1328)

is an extreme direction corresponding to a one-dimensional face of the EDM cone EDMN

that is a ray in isomorphic subspace RN(N−1)/2.

Proving this would exercise the fundamental definition (193) of extreme
direction. Here is a sketch: Any EDM may be represented

D(VX ) = δ(VXV T
X )1T + 1δ(VXV T

X )T − 2VXV T
X ∈ EDMN (1304)

where matrix VX (1305) has orthogonal columns. For the same reason (1644)
that zzT is an extreme direction of the positive semidefinite cone (§2.9.2.7)
for any particular nonzero vector z , there is no conic combination of distinct
EDMs (each conically independent of Γ (§2.10)) equal to Γ . ¥

6.4.3.2.1 Example. Biorthogonal expansion of an EDM. (confer §2.13.8.1.1)
When matrix D belongs to the EDM cone, nonnegative coordinates for biorthogonal
expansion are the eigenvalues λ∈RN of −V D V 1

2 : For any D∈ SN
h it holds

D = δ
(

−V D V 1
2

)

1T + 1δ
(

−V D V 1
2

)T − 2
(

−V D V 1
2

)

(1117)

By diagonalization −V D V 1
2 , QΛQT∈ SN

c (§A.5.1) we may write

D = δ

(

N
∑

i=1

λi qiq
T
i

)

1T + 1δ

(

N
∑

i=1

λi qiq
T
i

)T

− 2
N
∑

i=1

λi qiq
T
i

=
N
∑

i=1

λi

(

δ(qiq
T
i )1T + 1δ(qiq

T
i )T − 2qiq

T
i

)

(1329)

where qi is the ith eigenvector of −V D V 1
2 arranged columnar in orthogonal matrix

Q = [ q1 q2 · · · qN ] ∈ RN×N (410)
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and where {δ(qiq
T
i )1T+ 1δ(qiq

T
i )T− 2qiq

T
i , i=1 . . . N} are extreme directions of some

pointed polyhedral cone K⊂ SN
h and extreme directions of EDMN . Invertibility of (1329)

−V D V 1
2 = −V

N
∑

i=1

λi

(

δ(qiq
T
i )1T+ 1δ(qiq

T
i )T− 2qiq

T
i

)

V 1
2

=
N
∑

i=1

λi qiq
T
i

(1330)

implies linear independence of those extreme directions. Then biorthogonal expansion is
expressed

dvec D = Y Y † dvec D = Y λ
(

−V D V 1
2

)

(1331)
where

Y ,
[

dvec
(

δ(qiq
T
i )1T+ 1δ(qiq

T
i )T− 2qiq

T
i

)

, i = 1 . . . N
]

∈ RN(N−1)/2×N (1332)

When D belongs to the EDM cone in the subspace of symmetric hollow matrices,
unique coordinates Y † dvec D for this biorthogonal expansion must be the nonnegative
eigenvalues λ of −V D V 1

2 . This means D simultaneously belongs to the EDM cone and
to the pointed polyhedral cone dvecK= cone(Y ). 2

6.4.3.3 open question

Result (1326) is analogous to that for the positive semidefinite cone (230), although the
question remains open whether all faces of EDMN (whose dimension is less than dimension
of the cone) are exposed like they are for the positive semidefinite cone.6.7 (§2.9.2.4) [397]

6.5 Correspondence to PSD cone SN−1
+

Hayden, Wells, Liu, & Tarazaga [220, §2] assert one-to-one correspondence of EDMs with
positive semidefinite matrices in the symmetric subspace. Because rank(V D V )≤N−1
(§5.7.1.1), that PSD cone corresponding to the EDM cone can only be SN−1

+ . [9, §18.2.1]
To clearly demonstrate this correspondence, we invoke inner-product form EDM definition

D(Φ) =

[

0
δ(Φ)

]

1T + 1
[

0 δ(Φ)T
]

− 2

[

0 0T

0 Φ

]

∈ EDMN

⇔
Φ º 0

(1135)

Then the EDM cone may be expressed

EDMN =
{

D(Φ) | Φ ∈ SN−1
+

}

(1333)

Hayden & Wells’ assertion can therefore be equivalently stated in terms of an
inner-product form EDM operator

D(SN−1
+ ) = EDMN (1137)

VN (EDMN ) = SN−1
+ (1138)

identity (1138) holding because R(VN )=N (1T) (1013), linear functions D(Φ) and
VN (D)=−V T

NDVN (§5.6.2.1) being mutually inverse.
In terms of affine dimension r , Hayden & Wells claim particular correspondence

between PSD and EDM cones:
6.7Elementary example of a face not exposed is given by the closed convex set in Figure 35 and in

Figure 45.
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r = N−1: Symmetric hollow matrices −D positive definite on N (1T) correspond to points
relatively interior to the EDM cone.

r < N−1: Symmetric hollow matrices −D positive semidefinite on N (1T) , where −V T
NDVN

has at least one 0 eigenvalue, correspond to points on the relative boundary of the
EDM cone.

r = 1: Symmetric hollow nonnegative matrices rank-1 on N (1T) correspond to extreme
directions (1328) of the EDM cone; id est, for some nonzero vector u (§A.3.1.0.7)

rankV T
NDVN =1

D ∈ SN
h ∩ RN×N

+

}

⇔ D ∈ EDMN

D is an extreme direction
⇔

{

−V T
NDVN ≡ uuT

D ∈ SN
h

(1334)

6.5.0.0.1 Proof. Case r = 1 is easily proved: From the nonnegativity development
in §5.8.1, extreme direction (1328), and Schoenberg criterion (1025), we need show only
sufficiency; id est, prove

rankV T
NDVN =1

D ∈ SN
h ∩ RN×N

+

}

⇒ D ∈ EDMN

D is an extreme direction

Any symmetric matrix D satisfying the rank condition must have the form, for z,q∈RN

and nonzero z∈N (1T) ,

D = ±(1qT+ q1T− 2zzT) (1335)

because (§5.6.2.1, confer §E.7.2.0.2)

N (VN (D)) = {1qT+ q1T | q∈RN} ⊆ SN (1336)

Hollowness demands q = δ(zzT) while nonnegativity demands choice of positive sign in
(1335). Matrix D thus takes the form of an extreme direction (1328) of the EDM cone.

¨

The foregoing proof is not extensible in rank: An EDM with corresponding affine
dimension r has the general form, for {zi∈N (1T) , i=1 . . . r} an independent set,

D = 1δ

(

r
∑

i=1

ziz
T
i

)T

+ δ

(

r
∑

i=1

ziz
T
i

)

1T− 2
r
∑

i=1

ziz
T
i ∈ EDMN (1337)

The EDM so defined relies principally on the sum
∑

ziz
T
i having positive summand

coefficients (⇔ −V T
NDVN º 0)6.8. Then it is easy to find a sum incorporating negative

coefficients while meeting rank, nonnegativity, and symmetric hollowness conditions but
not positive semidefiniteness on subspace R(VN ) ; e.g, from page 383,

−V





0 1 1
1 0 5
1 5 0



V
1

2
= z1z

T
1 − z2z

T
2 (1338)

6.8 (⇐) For ai∈R
N−1, let zi = V †T

N ai .
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6.5.0.0.2 Example. Extreme rays versus rays on the boundary.

The EDM D =





0 1 4
1 0 1
4 1 0



 is an extreme direction of EDM3 where u =

[

1
2

]

in (1334).

Because −V T
NDVN has eigenvalues {0, 5} , the ray whose direction is D also lies on the

relative boundary of EDM3.

In exception, EDM D = κ

[

0 1
1 0

]

, for any particular κ > 0 , is an extreme direction

of EDM2 but −V T
NDVN has only one eigenvalue: {κ}. Because EDM2 is a ray whose

relative boundary (§2.6.1.4.1) is the origin, this conventional boundary does not include
D which belongs to the relative interior in this dimension. (§2.7.0.0.1) 2

6.5.1 Gram-form correspondence to SN−1
+

With respect to D(G)= δ(G)1T+ 1δ(G)T− 2G (1018) the linear Gram-form EDM
operator, results in §5.6.1 provide [3, §2.6]

EDMN = D
(

V(EDMN )
)

≡ D
(

VN SN−1
+ V T

N
)

(1339)

VN SN−1
+ V T

N ≡ V
(

D
(

VN SN−1
+ V T

N
))

= V(EDMN ) , −V EDMN V 1
2 = SN

c ∩ SN
+ (1340)

a one-to-one correspondence between EDMN and SN−1
+ .

6.5.2 EDM cone by elliptope

Having defined the elliptope parametrized by scalar t>0

EN
t = SN

+ ∩ {Φ∈ SN | δ(Φ)= t1} (1215)

then following Alfakih [10] we have

EDMN = cone{11T− EN
1 } = {t(11T− EN

1 ) | t ≥ 0} (1341)

Identification EN = EN
1 equates the standard elliptope (§5.9.1.0.1, Figure 152) to our

parametrized elliptope.

6.5.2.0.1 Expository. Normal cone, tangent cone, elliptope.
Define TE(11T) to be the tangent cone to the elliptope E at point 11T ; id est,

TE(11T) , {t(E − 11T) | t≥ 0} (1342)

The normal cone K⊥
E (11T) to the elliptope at 11T is a closed convex cone defined

(§2.13.11.0.1, Figure 73)

K⊥
E (11T) , {B | 〈B , Φ − 11T〉 ≤ 0 , Φ∈E} (1343)

The polar cone of any set K is the closed convex cone (confer (304))

K◦ , {B | 〈B , A〉≤ 0 , for all A∈K} (1344)

The normal cone is well known to be the polar of the tangent cone,

K⊥
E (11T) = TE(11T)

◦
(1345)
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dvec rel ∂ EDM3

dvec(11T− E3)

EDMN = cone{11T− EN} = {t(11T− EN ) | t ≥ 0} (1341)

Figure 163: Three views of translated negated elliptope 11T− E3
1 (confer Figure 152)

shrouded by truncated EDM cone. Fractal on EDM cone relative boundary is numerical
artifact belonging to intersection with elliptope relative boundary. The fractal is trying
to convey existence of a neighborhood about the origin where the translated elliptope
boundary and EDM cone boundary intersect.
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and vice versa; [234, §A.5.2.4]

K⊥
E (11T)

◦
= TE(11T) (1346)

From Deza & Laurent [131, p.535] we have the EDM cone

EDM = −TE(11T) (1347)

The polar EDM cone is also expressible in terms of the elliptope. From (1345) we have

EDM◦ = −K⊥
E (11T) (1348)

⋆

In §5.10.1 we proposed the expression for EDM D

D = t11T− E ∈ EDMN (1216)

where t∈R+ and E belongs to the parametrized elliptope EN
t . We further propose, for

any particular t>0

EDMN = cone{t11T− EN
t } (1349)

Proof (pending). ¥

6.5.2.0.2 Exercise. EDM cone from elliptope.
Relationship of the translated negated elliptope with the EDM cone is illustrated in
Figure 163. Prove whether it holds that

EDMN = lim
t→∞

t11T− EN
t (1350)

H

6.6 Vectorization & projection interpretation

In §E.7.2.0.2 we learn: −V D V can be interpreted as orthogonal projection [7, §2] of
vectorized −D∈ SN

h on the subspace of geometrically centered symmetric matrices

SN
c = {G∈ SN | G1 = 0}

= {G∈ SN | N (G) ⊇ 1} = {G∈ SN | R(G) ⊆ N (1T)}
= {V Y V | Y ∈ SN} ⊂ SN

≡ {VNAV T
N | A∈ SN−1}

(1108)

because elementary auxiliary matrix V is an orthogonal projector (§B.4.1). Yet there is
another useful projection interpretation:

Revising the fundamental matrix criterion for membership to the EDM cone (1001),6.9

〈zzT,−D〉 ≥ 0 ∀ zzT | 11TzzT = 0

D ∈ SN
h

}

⇔ D ∈ EDMN (1351)

this is equivalent, of course, to the Schoenberg criterion

−V T
NDVN º 0

D ∈ SN
h

}

⇔ D ∈ EDMN (1025)

6.9 N (11T)=N (1T) and R(zzT)=R(z)
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because N (11T)=R(VN ). When D∈EDMN , correspondence (1351) means −zTDz is
proportional to a nonnegative coefficient of orthogonal projection (§E.6.4.2, Figure 165)

of −D in isometrically isomorphic RN(N+1)/2 on the range of each and every vectorized
(§2.2.2.1) symmetric dyad (§B.1) in the nullspace of 11T ; id est, on each and every
member of

T ,
{

svec(zzT) | z∈N (11T)=R(VN )
}

⊂ svec ∂ SN
+

=
{

svec(VN υυTV T
N ) | υ∈RN−1

} (1352)

whose dimension is

dim T = N(N − 1)/2 (1353)

The set of all symmetric dyads {zzT | z∈RN} constitute the extreme directions of the
positive semidefinite cone (§2.8.1, §2.9) SN

+ , hence lie on its boundary. Yet only those
dyads in R(VN ) are included in the test (1351), thus only a subset T of all vectorized
extreme directions of SN

+ is observed.

In the particularly simple case D∈EDM2 = {D∈ S2

h | d12 ≥ 0} , for example, only one
extreme direction of the PSD cone is involved:

zzT =

[

1 −1
−1 1

]

(1354)

Any nonnegative scaling of vectorized zzT belongs to the set T illustrated in Figure 164
and Figure 165.

6.6.1 Face of PSD cone SN
+ containing V

In any case, set T (1352) constitutes the vectorized extreme directions of an
N(N−1)/2-dimensional face of the PSD cone SN

+ containing auxiliary matrix V ; a face

isomorphic with SN−1
+ = Srank V

+ (§2.9.2.3).

To show this, we must first find the smallest face that contains auxiliary matrix
V and then determine its extreme directions. From (229),

F
(

SN
+ ∋V

)

= {W ∈ SN
+ | N (W ) ⊇ N (V )} = {W ∈ SN

+ | N (W ) ⊇ 1}
= {V Y V º 0 | Y ∈ SN} ≡ {VNBV T

N | B∈ SN−1
+ }

≃ Srank V
+ = −V T

N EDMN VN

(1355)

where the equivalence ≡ is from §5.6.1 while isomorphic equality ≃ with
transformed EDM cone is from (1138). Projector V belongs to F(SN

+ ∋V )

because VNV †
NV †T

N V T
N = V (§B.4.3). Each and every rank-1 matrix belonging

to this face is therefore of the form:

VN υυTV T
N | υ∈RN−1 (1356)

Because F(SN
+ ∋V ) is isomorphic with a positive semidefinite cone SN−1

+ , then
T constitutes the vectorized extreme directions of F , the origin constitutes
the extreme points of F , and auxiliary matrix V is some convex combination
of those extreme points and directions by the extremes theorem (§2.8.1.1.1).

¨
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d11

√
2d12

d22
svec EDM2

0

−T

svec ∂ S2

+

[

d11 d12

d12 d22

]

T ,

{

svec(zzT) | z∈N (11T)= κ

[

1
−1

]

, κ∈R

}

⊂ svec ∂ S2

+

Figure 164: Truncated boundary of positive semidefinite cone S2

+ in isometrically

isomorphic R3 (via svec (59)) is, in this dimension, constituted solely by its extreme
directions. Truncated cone of Euclidean distance matrices EDM2 drawn in isometrically
isomorphic subspace R . Relative boundary of EDM cone is constituted solely by matrix 0.
Halfline T = {κ2[ 1 −

√
2 1 ]T | κ∈R} on PSD cone boundary depicts that lone extreme

ray (1354) on which orthogonal projection of −D must be positive semidefinite if D is to
belong to EDM2. aff cone T = svec S2

c . (1359) Dual EDM cone is halfspace in R3 whose
bounding hyperplane has inward-normal svec EDM2.
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d11

√
2d12

d22
svec S2

h

0

−T

svec ∂ S2

+

[

d11 d12

d12 d22

]

D

−D

Psvec zzT(svec(−D)) =
〈zzT, −D〉
〈zzT, zzT〉 zzT is projection of vectorized −D on range of vectorized zzT.

D ∈ EDMN ⇔
{

〈zzT,−D〉 ≥ 0 ∀ zzT | 11TzzT = 0

D ∈ SN
h

(1351)

Figure 165: Given-matrix D is assumed to belong to symmetric hollow subspace S2

h ; a
line in this dimension. Negative D is found along S2

h . Set T (1352) has only one ray
member in this dimension; not orthogonal to S2

h . Orthogonal projection of −D on T
(indicated by half dot) has nonnegative projection coefficient. Matrix D must therefore
be an EDM.
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In fact the smallest face, that contains auxiliary matrix V , of the PSD cone SN
+ is the

intersection with the geometric center subspace (2229) (2230);

F
(

SN
+ ∋V

)

= cone
{

VN υυTV T
N | υ∈RN−1

}

= SN
c ∩ SN

+

≡ {Xº 0 | 〈X , 11T〉 = 0} (1779)

(1357)

In isometrically isomorphic RN(N+1)/2

svecF
(

SN
+ ∋V

)

= cone T (1358)

related to SN
c by

aff cone T = svec SN
c (1359)

6.6.2 EDM criteria in 11T

(confer §6.4, (1032)) Laurent specifies an elliptope trajectory condition for EDM cone
membership: [274, §2.3]

D ∈ EDMN ⇔ [1 − e−αdij ] ∈ EDMN ∀α > 0 (1210a)

From the parametrized elliptope EN
t in §6.5.2 and §5.10.1 we propose

D∈EDMN ⇔ ∃ t∈R+

E∈EN
t

}

Ä D = t11T− E (1360)

Chabrillac & Crouzeix [83, §4] prove a different criterion they attribute to Finsler, 1937
[171]. We apply it to EDMs: for D∈ SN

h (1158)

−V T
NDVN ≻ 0 ⇔ ∃κ>0 Ä −D + κ11T≻ 0

⇔
D∈EDMN with corresponding affine dimension r=N−1

(1361)

This Finsler criterion has geometric interpretation in terms of the vectorization &
projection already discussed in connection with (1351). With reference to Figure 164, the
offset 11T is simply a direction orthogonal to T in isomorphic R3. Intuitively, translation
of −D in direction 11T is like orthogonal projection on T insofar as similar information
can be obtained.

When the Finsler criterion (1361) is applied despite lower affine dimension, the
constant κ can go to infinity making the test −D + κ11Tº 0 impractical for numerical
computation. Chabrillac & Crouzeix invent a criterion for the semidefinite case, but is no
more practical: for D∈ SN

h

D∈EDMN

⇔
∃κp > 0 Ä ∀κ≥κp , −D − κ11T [sic ] has exactly one negative eigenvalue

(1362)
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∂H

dvec rel ∂EDM3

0

(b) (c)

(a)

Figure 166: (a) In isometrically isomorphic subspace R3, intersection of EDM3 with
hyperplane ∂H representing one fixed symmetric entry d23 =κ (both drawn truncated,
rounded vertex is artifact of plot). EDMs in this dimension corresponding to affine
dimension 1 comprise relative boundary of EDM cone (§6.5). Since intersection illustrated
includes a nontrivial subset of cone’s relative boundary, then it is apparent there
exist infinitely many EDM completions corresponding to affine dimension 1. In this
dimension it is impossible to represent a unique nonzero completion corresponding to affine
dimension 1 , for example, using a single hyperplane because any hyperplane supporting
relative boundary at a particular point Γ contains an entire ray {ζ Γ | ζ≥0} belonging to
rel ∂EDM3 by Lemma 2.8.0.0.1. (b) d13 =κ . (c) d12 =κ .
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6.7 A geometry of completion

It is not known how to proceed if one wishes to restrict the dimension of the
Euclidean space in which the configuration of points may be constructed.

−Michael W. Trosset, 2000 [404, §1]

Given an incomplete noiseless EDM, intriguing is the question of whether a list in
X∈ Rn×N (79) may be reconstructed and under what circumstances reconstruction is
unique. [3] [5] [6] [7] [9] [19] [75] [241] [253] [273] [274] [275]

If one or more entries of a particular EDM are fixed, then geometric interpretation of
the feasible set of completions is the intersection of the EDM cone EDMN in isomorphic
subspace RN(N−1)/2 with as many hyperplanes as there are fixed symmetric entries.6.10

Assuming a nonempty intersection, then the number of completions is generally infinite,
and those corresponding to particular affine dimension r<N− 1 belong to some generally
nonconvex subset of that intersection (confer §2.9.2.9.2) that can be as small as a point.

6.7.0.0.1 Example. Maximum variance unfolding. [448]
A process for minimizing affine dimension (§2.1.5) of certain kinds of Euclidean manifold,
by topological transformation, can be posed as a completion problem (confer §E.11.2.1.3).
Weinberger & Saul, who originated the technique, specify an applicable manifold in three
dimensions by analogy to an ordinary sheet of paper (confer §2.1.6); imagine, we find it
deformed from flatness in some way introducing neither holes, tears, or selfintersections.
[448, §2.2] The physical process is intuitively described as unfurling, unfolding, diffusing,
decompacting, or unraveling. In particular instances, the process is a sort of flattening by
stretching until taut (but not by crushing); e.g, unfurling a three-dimensional Euclidean
body resembling a billowy national flag reduces that manifold’s affine dimension to r=2.

Data input, to the proposed process, originates from distances between relatively
dense neighboring samples of a given manifold. Figure 167 realizes a densely sampled
neighborhood; called, neighborhood graph. Essentially, the algorithmic process preserves
local isometry between nearest neighbors allowing distant neighbors to excurse expansively
by “maximizing variance” (Figure 7). A common number, of nearest neighbors to each
sample, is a data-dependent algorithmic parameter whose minimum value connects the
graph. A dimensionless EDM subgraph, between each sample and its nearest neighbors,
is completed from available data then included as input. One such EDM subgraph
completion is drawn superimposed upon the neighborhood graph in Figure 167.6.11 The
consequent dimensionless EDM graph, comprising all subgraphs, is generally incomplete
because neighbor number is relatively small; incomplete though it is a superset of the
neighborhood graph. Remaining distances (those not graphed at all) are squared then
made variables within the algorithm. It is this variability that admits unfurling.

To demonstrate, consider untying the trefoil knot drawn in Figure 168a. A
corresponding EDM D = [dij , i , j =1 . . . N ] employing only two nearest neighbors is
banded having the incomplete form:

6.10Depicted in Figure 166a is an intersection of the EDM cone EDM
3 with a single hyperplane

representing the set of all EDMs having one fixed symmetric entry. This representation is practical
because it is easily combined with or replaced by other convex constraints; e.g, slab inequalities in (804)
that admit bounding of noise processes.
6.11Local reconstruction of point position, from the EDM submatrix corresponding to a complete
dimensionless EDM subgraph, is unique to within an isometry (§5.6, §5.12).
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(a)

(b)

two nearest neighbors

three nearest neighbors

Figure 167: One dimensionless EDM subgraph completion (solid) superimposed on (but
not obscuring) neighborhood graph (dashed). Local view of a few dense samples # from
relative interior of some arbitrary Euclidean manifold whose affine dimension appears
two-dimensional in this neighborhood. All line segments measure absolute distance.
Dashed line segments help visually locate nearest neighbors; suggesting, best number of
nearest neighbors can be greater than value of embedding dimension after topological
transformation (confer [248, §2]). Solid line segments represent completion of EDM
subgraph from available distance data for an arbitrarily chosen sample and its nearest
neighbors. Each distance from EDM subgraph becomes distance-square in corresponding
EDM submatrix.
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(a)

(b)

Figure 168: (a) Trefoil knot in R3 from Weinberger & Saul [448]. (b) Topological
transformation algorithm employing four nearest neighbors and N = 539 samples reduces
affine dimension of knot to r=2. Choosing instead two nearest neighbors would make
this embedding more circular.
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ď12 0 ď23 ď24
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(1363)

where ďij denotes a given fixed distance-square. The unfurling algorithm can be expressed
as an optimization problem; constrained total distance-square maximization:

maximize
D

〈−V , D〉
subject to 〈D , eie

T
j + ej e

T
i 〉 1

2 = ďij ∀(i , j)∈ I
rank(V D V ) = 2

D ∈ EDMN

(1364)

where ei∈RN is the ith member of the standard basis, where set I indexes the given
distance-square data like that in (1363), where V ∈RN×N is the geometric centering
matrix (§B.4.1), and where

〈−V , D〉 = tr(−V D V ) = 2 trG =
1

N

∑

i,j

dij (1030)

where G is the Gram matrix producing D assuming G1 = 0.

If the (rank) constraint on affine dimension is ignored, then problem (1364) becomes
convex, a corresponding solution D⋆ can be found, and a nearest rank-2 solution is then had
by ordered eigenvalue decomposition of −V D⋆V followed by spectral projection (§7.1.3)

on

[

R2

+

0

]

⊂ RN . This two-step process is necessarily suboptimal. Yet because the

decomposition for the trefoil knot reveals only two dominant eigenvalues, the spectral
projection is nearly benign. Such a reconstruction of point position (§5.12) utilizing four
nearest neighbors is drawn in Figure 168b; a low-dimensional embedding of the trefoil
knot.

This problem (1364) can, of course, be written equivalently in terms of Gram matrix
G , facilitated by (1036); videlicet, for Φij as in (1004)

maximize
G∈SN

c

〈I , G〉
subject to 〈G , Φij〉 = ďij ∀(i , j)∈ I

rankG = 2

G º 0

(1365)

a trace maximization. The advantage to converting EDM to Gram is: Gram matrix G is a
bridge between point list X and EDM D ; constraints on any or all of these three variables
may now be introduced. (Example 5.4.2.2.8) Confinement to geometric center subspace
SN

c (implicit constraint G1 = 0) keeps G independent of SN⊥
c its translation-invariant

subspace (§5.5.1.1, Figure 170) so as not to become numerically unbounded.
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Figure 169: Trefoil ribbon (Kilian Weinberger). Same topological transformation algorithm
as in Figure 168b with five nearest neighbors and N = 1617 samples.
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A problem dual to maximum variance unfolding problem (1365) (less the Gram rank
constraint) has been called the fastest mixing Markov process. That dual has simple
interpretations in graph and circuit theory and in mechanical and thermal systems,
explored in [388], and has direct application to quick calculation of PageRank by search
engines [269, §4]. Optimal Gram rank turns out to be tightly bounded above by minimum
multiplicity of the second smallest eigenvalue of a dual optimal variable. 2

6.8 Dual EDM cone

6.8.1 Ambient SN

We consider finding the ordinary dual EDM cone in ambient space SN where EDMN is
pointed, closed, convex, but not full-dimensional. The set of all EDMs in SN is a closed
convex cone because it is the intersection of halfspaces about the origin in vectorized
variable D (§2.4.1.1.1, §2.7.2):

EDMN =
⋂

z∈N (1T)
i=1...N

{

D ∈ SN | 〈eie
T
i , D〉 ≥ 0 , 〈eie

T
i , D〉 ≤ 0 , 〈zzT,−D〉 ≥ 0

}

(1366)

By definition (304), dual cone K∗ comprises each and every vector inward-normal to a
hyperplane supporting convex cone K . The dual EDM cone in the ambient space of
symmetric matrices is therefore expressible as the aggregate of every conic combination of
inward-normals from (1366):

EDMN∗
= cone{eie

T
i , −eje

T
j | i , j =1 . . . N } − cone{zzT | 11TzzT=0}

= {
N
∑

i=1

ζi eie
T
i −

N
∑

j=1

ξj eje
T
j | ζi , ξj ≥ 0} − cone{zzT | 11TzzT=0}

= {δ(u) | u∈RN} − cone
{

VN υυTV T
N | υ∈RN−1, (‖v‖= 1)

}

⊂ SN

= {δ2(Y ) − VNΨV T
N | Y ∈ SN , Ψ∈ SN−1

+ }

(1367)

The EDM cone is not selfdual in ambient SN because its affine hull belongs to a proper
subspace

aff EDMN = SN
h (1368)

The ordinary dual EDM cone cannot, therefore, be pointed. (§2.13.1.2)

When N = 1 , the EDM cone is the point at the origin in R . Auxiliary matrix VN is
empty [ ∅ ] , and dual cone EDM∗ is the real line.

When N = 2 , the EDM cone is a nonnegative real line in isometrically isomorphic

R3 ; there S2

h is a real line containing the EDM cone. Dual cone EDM2
∗

is the particular
halfspace in R3 whose boundary has inward-normal EDM2. Diagonal matrices {δ(u)}
in (1367) are represented by a hyperplane through the origin {d | [ 0 1 0 ]d = 0} while
the term cone{VN υυTV T

N } is represented by the halfline T in Figure 164 belonging to
the positive semidefinite cone boundary. The dual EDM cone is formed by translating
the hyperplane along the negative semidefinite halfline −T ; the union of each and every
translation. (confer §2.10.2.0.1)

When cardinality N exceeds 2 , the dual EDM cone can no longer be polyhedral simply
because the EDM cone cannot. (§2.13.1.2)
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6.8.1.1 EDM cone and its dual in ambient SN

Consider the two convex cones

K1 , SN
h

K2 ,
⋂

y∈N (1T)

{

A ∈ SN | 〈yyT, −A〉 ≥ 0
}

=
{

A ∈ SN | −zTV A V z ≥ 0 ∀ zzT(º 0)
}

=
{

A ∈ SN | −V A V º 0
}

(1369)

so
K1 ∩ K2 = EDMN (1370)

Dual cone K∗
1 = SN⊥

h ⊆ SN (75) is the subspace of diagonal matrices. From (1367) via
(323),

K∗
2 = − cone

{

VN υυTV T
N | υ∈RN−1

}

⊂ SN (1371)

Gaffke & Mathar [176, §5.3] observe that projection on K1 and K2 have simple closed
forms: Projection on subspace K1 is easily performed by symmetrization and zeroing the
main diagonal or vice versa, while projection of H∈ SN on K2 is6.12

PK2
H = H − PSN

+
(V H V ) (1372)

Proof. First, we observe membership of H−PSN
+
(V H V ) to K2 because

PSN
+
(V H V ) − H =

(

PSN
+
(V H V ) − V H V

)

+ (V H V − H) (1373)

The term PSN
+
(V H V ) − V H V necessarily belongs to the (dual) positive semidefinite cone

by Theorem E.9.2.0.1. V 2 = V , hence

−V
(

H−PSN
+
(V H V )

)

V º 0 (1374)

by Corollary A.3.1.0.5.
Next, we require

〈PK2
H−H , PK2

H 〉 = 0 (1375)

Expanding,

〈−PSN
+
(V H V ) , H−PSN

+
(V H V )〉 = 0 (1376)

〈PSN
+
(V H V ) , (PSN

+
(V H V ) − V H V ) + (V H V − H)〉 = 0 (1377)

〈PSN
+
(V H V ) , (V H V − H)〉 = 0 (1378)

Product V H V belongs to the geometric center subspace; (§E.7.2.0.2)

V H V ∈ SN
c = {Y ∈ SN | N (Y )⊇1} (1379)

Diagonalize V H V ,QΛQT (§A.5) whose nullspace is spanned by the eigenvectors
corresponding to 0 eigenvalues by Theorem A.7.3.0.1. Projection of V H V on the PSD
cone (§7.1) simply zeroes negative eigenvalues in diagonal matrix Λ . Then

N (PSN
+
(V H V )) ⊇ N (V H V ) (⊇ N (V ) ) (1380)

6.12 P
SN
+

(V H V ) = 0 for H∈ EDM
N .
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from which it follows:
PSN

+
(V H V ) ∈ SN

c (1381)

so PSN
+
(V H V ) ⊥ (V H V −H) because V H V −H∈ SN⊥

c .

Finally, we must have PK2
H−H =−PSN

+
(V H V )∈K∗

2 . Dual cone K∗
2 =−F

(

SN
+ ∋V

)

is the negative of the positive semidefinite cone’s smallest face that contains auxiliary

matrix V . (§6.6.1) Thus PSN
+
(V H V )∈F

(

SN
+ ∋V

)

⇔ N (PSN
+
(V H V ))⊇N (V ) (§2.9.2.3)

which was already established in (1380). ¨

From results in §E.7.2.0.2 we know: matrix product V H V =PSN
c

H is the orthogonal

projection of H∈ SN on the geometric center subspace SN
c . Thus the projection product

PK2
H = H − PSN

+
PSN

c
H (1382)

6.8.1.1.1 Lemma. Projection on PSD cone ∩ geometric center subspace.

PSN
+∩ SN

c
= PSN

+
PSN

c
(1383)
⋄

Proof. For each and every H∈ SN , projection of PSN
c

H on the positive semidefinite
cone remains in the geometric center subspace

SN
c = {G∈ SN | G1 = 0}

= {G∈ SN | N (G) ⊇ 1} = {G∈ SN | R(G) ⊆ N (1T)}
= {V Y V | Y ∈ SN} ⊂ SN

(1108)

That is because: eigenvectors of PSN
c

H , corresponding to 0 eigenvalues, span its nullspace
N (PSN

c
H ). (§A.7.3.0.1) To project PSN

c
H on the positive semidefinite cone, its negative

eigenvalues are zeroed. (§7.1.2) The nullspace is thereby expanded while eigenvectors
originally spanning N (PSN

c
H ) remain intact. Because the geometric center subspace is

invariant to projection on the PSD cone, then the rule for order of projection on a convex
set in a subspace governs (§E.9.5) and statement (1383) follows. ¨

From the lemma it follows

{PSN
+
PSN

c
H | H∈ SN} = {PSN

+∩ SN
c

H | H∈ SN} (1384)

Then from (2258)

−
(

SN
c ∩ SN

+

)∗
= {H − PSN

+
PSN

c
H | H∈ SN} (1385)

From (323) we get closure of a vector sum

K2 = −
(

SN
c ∩ SN

+

)∗
= SN⊥

c − SN
+ (1386)

therefore the equality [116]

EDMN = K1 ∩ K2 = SN
h ∩

(

SN⊥
c − SN

+

)

(1387)

whose veracity is intuitively evident, in hindsight, [101, p.109] from the most fundamental
EDM definition (1006).6.13 A realization of this construction in low dimension is illustrated
in Figure 170 and Figure 171.

6.13Formula (1387) is not a matrix criterion for membership to the EDM cone, it is not an EDM definition,
and it is not an equivalence between EDM operators or an isomorphism. Rather, it is a recipe for
constructing the EDM cone whole from large Euclidean bodies: the positive semidefinite cone, orthogonal
complement of the geometric center subspace, and symmetric hollow subspace.
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svec ∂S2

+

svec S2⊥
c

0

svec S2

c

svec S2

h

EDM2 = S2

h ∩
(

S2⊥
c − S2

+

)

Figure 170: A plane in isometrically isomorphic R3, orthogonal complement S2⊥
c (2231)

(§B.2) of geometric center subspace (tiled fragment drawn) apparently supports PSD cone
(rounded vertex is plot artifact). Line svec S2

c = aff cone T (1359), intersecting svec ∂S2

+

and drawn in Figure 164, runs along PSD cone boundary. (confer Figure 151)
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− svec ∂S2

+

svec S2⊥
c

0

svec S2

c

svec S2

h

EDM2 = S2

h ∩
(

S2⊥
c − S2

+

)

Figure 171: EDM cone construction in isometrically isomorphic R3 by adding polar PSD

cone to svec S2⊥
c . Difference svec

(

S2⊥
c − S2

+

)

is halfspace partially bounded by svec S2⊥
c .

EDM cone is nonnegative halfline along svec S2

h in this dimension.
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The dual EDM cone follows directly from (1387) by standard properties of cones
(§2.13.1.2):

EDMN∗
= K∗

1 + K∗
2 = SN⊥

h − SN
c ∩ SN

+ (1388)

which bears strong resemblance to (1367).

6.8.1.2 nonnegative orthant contains EDMN

That EDMN is a proper subset of the nonnegative orthant is not obvious from (1387).
We wish to verify

EDMN = SN
h ∩

(

SN⊥
c − SN

+

)

⊂ RN×N
+ (1389)

While there are many ways to prove this, it is sufficient to show that all
entries of the extreme directions of EDMN must be nonnegative; id est, for
any particular nonzero vector z = [zi , i=1 . . . N ]∈ N (1T) (§6.4.3.2),

δ(zzT)1T+ 1δ(zzT)T− 2zzT ≥ 0 (1390)

where the inequality denotes entrywise comparison. The inequality holds
because the ij th entry of an extreme direction is squared: (zi− zj)

2.

We observe that the dyad 2zzT∈ SN
+ belongs to the positive semidefinite

cone, the doublet
δ(zzT)1T+ 1δ(zzT)T ∈ SN⊥

c (1391)

to the orthogonal complement (2231) of the geometric center subspace, while
their difference is a member of the symmetric hollow subspace SN

h . ¨

Here is an algebraic method to prove nonnegativity: Suppose we are
given A∈ SN⊥

c and B = [Bij ]∈ SN
+ and A−B∈ SN

h . Then we have, for some
vector u , A = u1T+ 1uT = [Aij ] = [ui + uj ] and δ(B)= δ(A)= 2u . Positive
semidefiniteness of B requires nonnegativity A−B≥ 0 because

(ei−ej)
TB(ei−ej) = (Bii−Bij)−(Bji−Bjj) = 2(ui+uj)−2Bij ≥ 0 (1392)

¨

6.8.1.3 Dual Euclidean distance matrix criterion

Conditions necessary for membership of a matrix D∗∈ SN to the dual EDM cone EDMN∗

may be derived from (1367): D∗∈ EDMN∗ ⇒ D∗= δ(y)− VNAV T
N for some vector y and

positive semidefinite matrix A ∈ SN−1
+ . This in turn implies δ(D∗ 1) = δ(y). Then, for

D∗∈ SN

D∗∈ EDMN∗ ⇔ δ(D∗ 1) − D∗ º 0 (1393)

where, for any symmetric matrix D∗

δ(D∗ 1) − D∗ ∈ SN
c (1394)

To show sufficiency of the matrix criterion in (1393), recall Gram-form EDM
operator

D(G) = δ(G)1T+ 1δ(G)T− 2G (1018)

where Gram matrix G is positive semidefinite by definition, and recall the
selfadjointness property of the main-diagonal linear operator δ (§A.1):

〈D , D∗〉 =
〈

δ(G)1T+ 1δ(G)T− 2G , D∗〉 = 〈G , δ(D∗ 1) − D∗〉 2 (1036)
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Assuming 〈G , δ(D∗ 1) − D∗〉≥ 0 (1662), then we have known membership
relation (§2.13.2.0.1)

D∗∈ EDMN∗ ⇔ 〈D , D∗〉 ≥ 0 ∀D∈EDMN (1395)

¨

Elegance of this matrix criterion (1393) for membership to the dual EDM cone derives
from lack of any other assumptions except that D∗ be symmetric:6.14 Linear Gram-form
EDM operator D(Y ) (1018) has adjoint, for Y ∈ SN

DT(Y ) , (δ(Y 1) − Y ) 2 (1396)

Then from (1395) and (1019) we have: [101, p.111]

EDMN∗
= {D∗∈ SN | 〈D , D∗〉 ≥ 0 ∀D∈EDMN}
= {D∗∈ SN | 〈D(G) , D∗〉 ≥ 0 ∀G ∈ SN

+}
= {D∗∈ SN |

〈

G , DT(D∗)
〉

≥ 0 ∀G ∈ SN
+}

= {D∗∈ SN | δ(D∗ 1) − D∗ º 0}

(1397)

the dual EDM cone expressed in terms of the adjoint operator. A dual EDM cone
determined this way is illustrated in Figure 173.

6.8.1.3.1 Exercise. Dual EDM spectral cone.

Find a spectral cone as in §5.11.2 corresponding to EDMN∗
. H

6.8.1.4 Nonorthogonal components of dual EDM

Now we tie construct (1388) for the dual EDM cone together with the matrix criterion
(1393) for dual EDM cone membership. For any D∗∈ SN it is obvious:

δ(D∗ 1) ∈ SN⊥
h (1398)

any diagonal matrix belongs to the subspace of diagonal matrices (70). We know when

D∗∈ EDMN∗

δ(D∗ 1) − D∗ ∈ SN
c ∩ SN

+ (1399)

this adjoint expression (1396) belongs to that face (1357) of the positive semidefinite cone
SN

+ in the geometric center subspace. Any nonzero dual EDM

D∗ = δ(D∗ 1) − (δ(D∗ 1) − D∗) ∈ SN⊥
h ⊖ SN

c ∩ SN
+ = EDMN∗

(1400)

can therefore be expressed as the difference of two linearly independent (when vectorized)
nonorthogonal components (Figure 151, Figure 172).

6.8.1.5 Affine dimension complementarity

From §6.8.1.3 we have, for some A∈ SN−1
+ (confer (1399))

δ(D∗ 1) − D∗ = VNAV T
N ∈ SN

c ∩ SN
+ (1401)

if and only if D∗ belongs to the dual EDM cone. Call rank(VNAV T
N ) dual affine

dimension. Empirically, we find a complementary relationship in affine dimension

6.14Recall: Schoenberg criterion (1025), for membership to the EDM cone, requires membership to the
symmetric hollow subspace.
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D◦ = δ(D◦ 1) + (D◦− δ(D◦ 1)) ∈ SN⊥
h ⊕ SN

c ∩ SN
+ = EDMN◦

EDMN◦

EDMN◦

D◦− δ(D◦ 1)δ(D◦ 1)

D◦

0

SN
c ∩ SN

+

SN⊥
h

Figure 172: Hand-drawn abstraction of polar EDM cone EDMN◦
(drawn truncated).

Any member D◦ of polar EDM cone can be decomposed into two linearly independent
nonorthogonal components: δ(D◦ 1) and D◦− δ(D◦ 1).

https://www.convexoptimization.com/dattorro/previous_cover_1.html
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between the projection of some arbitrary symmetric matrix H on the polar EDM cone,

EDMN◦
= −EDMN∗

, and its projection on the EDM cone; id est, the optimal solution
of 6.15

minimize
D◦∈ SN

‖D◦ − H‖F

subject to D◦ − δ(D◦ 1) º 0
(1402)

has dual affine dimension complementary to affine dimension corresponding to the optimal
solution of

minimize
D∈SN

h

‖D − H‖F

subject to −V T
NDVN º 0

(1403)

Precisely,

rank(D◦⋆− δ(D◦⋆ 1)) + rank(V T
ND⋆VN ) = N−1 (1404)

and rank(D◦⋆− δ(D◦⋆ 1))≤N−1 because vector 1 is always in the nullspace of rank’s
argument. This is similar to the known result for projection on the selfdual positive
semidefinite cone and its polar:

rankP−SN
+

H + rankPSN
+

H = N (1405)

When low affine dimension is a desirable result of projection on the EDM cone,
projection on the polar EDM cone should be performed instead. Convex polar
problem (1402) can be solved for D◦⋆ by transforming to an equivalent Schur-form
semidefinite program (§3.5.3). Interior-point methods, for numerically solving semidefinite
programs, tend to produce high-rank solutions. (§4.1.2) Then D⋆ = H − D◦⋆∈ EDMN by
Corollary E.9.2.2.1, and D⋆ will tend to have low affine dimension. This approach breaks
when attempting projection on a cone subset discriminated by affine dimension or rank,
because then we have no complementarity relation like (1404) or (1405) (§7.1.4.1).

6.8.1.6 EDM cone is not selfdual

In §5.6.1.1, via Gram-form EDM operator

D(G) = δ(G)1T+ 1δ(G)T− 2G ∈ EDMN ⇐ G º 0 (1018)

we established clear connection between the EDM cone and that face (1357) of positive
semidefinite cone SN

+ in the geometric center subspace:

EDMN = D(SN
c ∩ SN

+ ) (1125)

V(EDMN ) = SN
c ∩ SN

+ (1126)

where

V(D) = −V D V 1
2 (1114)

In §5.6.1 we established

SN
c ∩ SN

+ = VN SN−1
+ V T

N (1112)

6.15This polar projection can be solved quickly (without semidefinite programming) via Lemma 6.8.1.1.1;
rewriting,

minimize
D◦∈ SN

‖(D◦− δ(D◦ 1)) − (H − δ(D◦ 1))‖F

subject to D◦− δ(D◦ 1) º 0

which is the projection of affinely transformed optimal solution H − δ(D◦⋆ 1) on S
N
c ∩ S

N
+ ;

D◦⋆− δ(D◦⋆ 1) = P
SN
+

P
SN

c
(H − δ(D◦⋆ 1))

Foreknowledge of an optimal solution D◦⋆ as argument to projection suggests recursion.
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Then from (1393), (1401), and (1367) we can deduce

δ(EDMN∗
1) − EDMN∗

= VN SN−1
+ V T

N = SN
c ∩ SN

+ (1406)

which, by (1125) and (1126), means the EDM cone can be related to the dual EDM cone
by an equality:

EDMN = D
(

δ(EDMN∗
1) − EDMN∗)

(1407)

V(EDMN ) = δ(EDMN∗
1) − EDMN∗

(1408)

This means projection −V(EDMN ) of the EDM cone on the geometric center subspace

SN
c (§E.7.2.0.2) is a linear transformation of the dual EDM cone: EDMN∗− δ(EDMN∗

1).
Secondarily, it means the EDM cone is not selfdual in SN .

6.8.1.7 Schoenberg criterion is discretized membership relation

We show the Schoenberg criterion

−V T
NDVN ∈ SN−1

+

D ∈ SN
h

}

⇔ D ∈ EDMN (1025)

to be a discretized membership relation (§2.13.4) between a closed convex cone K and its
dual K∗ like

〈y , x〉 ≥ 0 for all y ∈ G(K∗) ⇔ x ∈ K (373)

where G(K∗) is any set of generators whose conic hull constructs closed convex dual
cone K∗:

The Schoenberg criterion is the same as

〈zzT,−D〉 ≥ 0 ∀ zzT | 11TzzT = 0

D ∈ SN
h

}

⇔ D ∈ EDMN (1351)

which, by (1352), is the same as

〈zzT,−D〉 ≥ 0 ∀ zzT∈
{

VN υυTV T
N | υ∈RN−1

}

D ∈ SN
h







⇔ D ∈ EDMN (1409)

where the zzT constitute a set of generators G for the positive semidefinite cone’s smallest

face F
(

SN
+ ∋V

)

(§6.6.1) that contains auxiliary matrix V . From the aggregate in (1367)

we get the ordinary membership relation, assuming only D∈ SN [234, p.58]

〈D∗, D〉 ≥ 0 ∀D∗∈ EDMN∗ ⇔ D ∈ EDMN

〈D∗, D〉 ≥ 0 ∀D∗∈ {δ(u) | u∈RN} − cone
{

VN υυTV T
N | υ∈RN−1

}

⇔ D ∈ EDMN

(1410)

Discretization (373) yields:

〈D∗, D〉 ≥ 0 ∀D∗∈ {eie
T
i , −eje

T
j , −VN υυTV T

N | i , j =1 . . . N , υ∈RN−1} ⇔ D ∈ EDMN

(1411)
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Because
〈

{δ(u) | u∈RN} , D
〉

≥ 0 ⇔ D∈ SN
h , we can restrict observation to the

symmetric hollow subspace without loss of generality. Then for D∈ SN
h

〈D∗, D〉 ≥ 0 ∀D∗∈
{

−VN υυTV T
N | υ∈RN−1

}

⇔ D ∈ EDMN (1412)

this discretized membership relation becomes (1409); identical to the Schoenberg criterion.
Hitherto a correspondence between the EDM cone and a face of a PSD cone, the

Schoenberg criterion is now accurately interpreted as a discretized membership relation
between the EDM cone and its ordinary dual.

6.8.2 Ambient SN
h

When instead we consider the ambient space of symmetric hollow matrices (1368), then
still we find the EDM cone is not selfdual for N > 2. The simplest way to prove this is as
follows:

Given a set of generators G= {Γ} (1328) for the pointed closed convex EDM
cone, the discretized membership theorem in §2.13.4.2.1 asserts that members
of the dual EDM cone in the ambient space of symmetric hollow matrices can
be discerned via discretized membership relation:

EDMN∗∩ SN
h , {D∗∈ SN

h | 〈Γ , D∗〉 ≥ 0 ∀Γ∈ G(EDMN)}
= {D∗∈ SN

h | 〈δ(zzT)1T+ 1δ(zzT)T− 2zzT , D∗〉 ≥ 0 ∀ z∈N (1T)}
= {D∗∈ SN

h | 〈1δ(zzT)T− zzT , D∗〉 ≥ 0 ∀ z∈N (1T)} (1413)

By comparison

EDMN = {D ∈ SN
h | 〈−zzT , D〉 ≥ 0 ∀ z∈N (1T)} (1414)

the term δ(zzT)TD∗1 foils any hope of selfdualness in ambient SN
h . ¨

To find the dual EDM cone in ambient SN
h per §2.13.10.4 we prune the aggregate in

(1367) describing the ordinary dual EDM cone, removing any member having nonzero
main diagonal:

EDMN∗∩ SN
h = cone

{

δ2(VN υυTV T
N ) − VN υυTV T

N | υ∈RN−1
}

= {δ2(VNΨV T
N ) − VNΨV T

N | Ψ∈ SN−1
+ }

(1415)

When N = 1 , the EDM cone and its dual in ambient Sh each comprise the origin in
isomorphic R0 ; thus, selfdual in this dimension. (confer (108))

When N = 2 , the EDM cone is the nonnegative real line in isomorphic R .

(Figure 164) EDM2
∗

in S2

h is identical, thus selfdual in this dimension. This result is in

agreement with (1413), verified directly: for all κ∈R , z = κ

[

1
−1

]

and δ(zzT)= κ2

[

1
1

]

⇒ d∗
12≥ 0.

The first case adverse to selfdualness N = 3 may be deduced from Figure 160; the
EDM cone is a circular cone in isomorphic R3 corresponding to no rotation of Lorentz
cone (183) (the selfdual circular cone). Figure 173 illustrates the EDM cone and its dual
in ambient S3

h ; no longer selfdual.

6.8.2.0.1 Exercise. Positive semidefinite cone from EDM cone.
What, if any, is the inversion of semidefinite and distance cone equality (1387)? That is
to say, can S+ be expressed only in terms of EDM , Sh , and Sc ? H



440 CHAPTER 6. CONE OF DISTANCE MATRICES

dvec rel ∂EDM3

dvec rel ∂(EDM3
∗∩ S3

h)

0

D∗∈ EDMN∗ ⇔ δ(D∗ 1) − D∗ º 0 (1393)

Figure 173: Ordinary dual EDM cone projected on S3

h shrouds EDM3 ; drawn tiled in

isometrically isomorphic R3. (It so happens: intersection EDMN∗∩ SN
h (§2.13.10.3) is

identical to projection of dual EDM cone on SN
h .)
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6.8.2.0.2 Exercise. Rank complementarity for EDM cone.
Prove (1404). H

6.9 Theorem of the alternative

In §2.13.2.1.1 we showed how alternative systems of generalized inequality can be derived
from closed convex cones and their duals. This section is, therefore, a fitting postscript to
the discussion of the dual EDM cone.

6.9.0.0.1 Theorem. EDM alternative. [195, §1]
Given D ∈ SN

h

D ∈ EDMN

or in the alternative

∃ z such that

{

1Tz = 1

Dz = 0

(1416)

In words, either N (D) intersects hyperplane {z | 1Tz=1} or D is an EDM; the alternatives
are incompatible. ⋄

When D is an EDM [300, §2]

N (D) ⊂ N (1T) = {z | 1Tz = 0} (1417)

Because [195, §2] (§E.0.1)
DD†1 = 1

1TD†D = 1T (1418)

then
R(1) ⊂ R(D) (1419)

6.10 Postscript

We provided an equality (1387) relating the convex cone of Euclidean distance matrices
to the convex cone of positive semidefinite matrices. Projection on a positive semidefinite
cone, constrained by an upper bound on rank, is easy and well known; [153] simply, a
matter of truncating a list of eigenvalues. Projection on a positive semidefinite cone with
such a rank constraint is, in fact, a convex optimization problem. (§7.1.4)

In the past, it was difficult to project on the EDM cone under a constraint on rank
or affine dimension. A surrogate method was to invoke the Schoenberg criterion (1025)
and then project on a positive semidefinite cone under a rank constraint bounding affine
dimension from above. But a solution acquired that way is necessarily suboptimal.

In §7.3.3 we present a method for projecting directly on the EDM cone under a
constraint on rank or affine dimension.
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Chapter 7

Proximity Problems

In the “extremely large-scale case” (N of order of tens and hundreds of
thousands), [iteration cost O(N3)] rules out all advanced convex optimization
techniques, including all known polynomial time algorithms.

−Arkadi Nemirovski, 2004
⌊

¸
⌋

A problem common to various sciences is to find the Euclidean distance matrix (EDM)
D∈EDMN closest in some sense to a given complete matrix of measurements H under a
constraint on affine dimension 0≤ r≤N−1 (§2.3.1, §5.7.1.1); rather, r is bounded above
by desired affine dimension ρ .

7.0.1 Measurement matrix H

Ideally, we want a given matrix of measurements H∈RN×N to conform with the first
three Euclidean metric properties (§5.2); to belong to the intersection of the orthant
of nonnegative matrices RN×N

+ with the symmetric hollow subspace SN
h (§2.2.3.0.1).

Geometrically, we want H to belong to the polyhedral cone (§2.12.1.0.1)

K , SN
h ∩ RN×N

+ (1420)

Yet in practice, H can possess significant measurement uncertainty (noise).

Sometimes realization of an optimization problem demands that its input, the given
matrix H , possess some particular characteristics; perhaps symmetry and hollowness or
nonnegativity. When that H given does not have the desired properties, then we must
impose them upon H prior to optimization:

� When measurement matrix H is neither symmetric or hollow, taking its symmetric
hollow part is equivalent to orthogonal projection on the symmetric hollow
subspace SN

h .

� When measurements of distance in H are negative, zeroing negative entries effects
unique minimum-distance projection on the orthant of nonnegative matrices RN×N

+

in isomorphic RN 2

(§E.9.2.2.3).

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 443

https://www2.isye.gatech.edu/~nemirovs/BeyondTheIPM.ppt
https://ccrma.stanford.edu/~dattorro
https://www.convexoptimization.com


444 CHAPTER 7. PROXIMITY PROBLEMS

7.0.1.1 Order of imposition

Since convex cone K (1420) is the intersection of an orthant with a subspace, we want
to project on that subset of the orthant belonging to the subspace; on the nonnegative
orthant in the symmetric hollow subspace that is, in fact, the intersection. For that reason
alone, unique minimum-distance projection of H on K (that member of K closest to H

in isomorphic RN 2

in the Euclidean sense) can be attained by first taking its symmetric
hollow part, and only then clipping negative entries of the result to 0 ; id est, there is only
one correct order of projection, in general, on an orthant intersecting a subspace:

� project on the subspace, then project the result on the orthant in that subspace.
(confer §E.9.5)

In contrast, order of projection on an intersection of subspaces is arbitrary.
That order of projection rule applies more generally, of course, to intersection of any

convex set C with any subspace. Consider the proximity problem7.1 over convex feasible
set SN

h ∩ C given nonsymmetric nonhollow H∈RN×N :

minimize
B∈SN

h

‖B − H‖2
F

subject to B ∈ C
(1421)

a convex optimization problem. Because the symmetric hollow subspace SN
h is orthogonal

to the antisymmetric antihollow subspace RN×N⊥
h (§2.2.3), then for B∈ SN

h

tr

(

BT

(

1

2
(H−HT) + δ2(H)

))

= 0 (1422)

so the objective function is equivalent to

‖B − H‖2
F ≡

∥

∥

∥

∥

B −
(

1

2
(H +HT) − δ2(H)

)∥

∥

∥

∥

2

F

+

∥

∥

∥

∥

1

2
(H−HT) + δ2(H)

∥

∥

∥

∥

2

F

(1423)

This means the antisymmetric antihollow part of given matrix H would be ignored by
minimization with respect to symmetric hollow variable B under Frobenius’ norm; id est,
minimization proceeds as though given the symmetric hollow part of H .

This action of Frobenius’ norm (1423) is effectively a Euclidean projection
(minimum-distance projection) of H on the symmetric hollow subspace SN

h prior to
minimization. Thus minimization proceeds inherently following the correct order for
projection on SN

h ∩ C . Therefore we may either assume H∈ SN
h , or take its symmetric

hollow part prior to optimization.

7.0.1.2 Flagrant input error under nonnegativity demand

More pertinent to the optimization problems presented herein where

C , EDMN ⊆ K = SN
h ∩ RN×N

+ (1424)

then should some particular realization of a proximity problem demand input H be
nonnegative, and were we only to zero negative entries of a nonsymmetric nonhollow
input H prior to optimization, then the ensuing projection on EDMN would be guaranteed
incorrect (out of order).

7.1There are two equivalent interpretations of projection (§E.9): one finds a set normal, the other,
minimum distance between a point and a set. Here we realize the latter view.
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h
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Figure 174: Pseudo-Venn diagram: EDM cone EDMN belongs to intersection of symmetric
hollow subspace with nonnegative orthant; EDMN ⊆ K (1005). EDMN cannot exist outside
of SN

h , but RN×N
+ does.

H SN
h

K = SN
h ∩ RN×N

+

0

EDMN

Figure 175: Pseudo-Venn diagram from Figure 174 showing elbow placed in path of
projection of H on EDMN ⊂ SN

h by an optimization problem demanding nonnegative
input matrix H . The first two line segments, leading away from H , result from correct
order of projection required to provide nonnegative H prior to optimization. Were H
nonnegative, its projection on SN

h would instead belong to K ; making the elbow disappear.
(confer Figure 199)
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Now comes a surprising fact: Even were we to correctly follow the order of projection
rule so as to provide H∈K prior to optimization, then the ensuing projection on EDMN

will be incorrect whenever input H has negative entries and some proximity problem
demands nonnegative input H .

This is best understood referring to Figure 174: Suppose nonnegative input H is
demanded, and then the problem realization correctly projects its input first on SN

h

and then directly on C= EDMN . That demand for nonnegativity effectively requires
imposition of K on input H prior to optimization so as to obtain correct order of projection
(on SN

h first). Yet such an imposition prior to projection on EDMN generally introduces
an elbow into the path of projection (illustrated in Figure 175) caused by the technique
itself; that being, a particular proximity problem realization requiring nonnegative input.

Any procedure, for imposition of nonnegativity on input H , can only be incorrect in
this circumstance. There is no resolution unless input H is guaranteed nonnegative with
no tinkering. Otherwise, we have no choice but to employ a different problem realization;
one not demanding nonnegative input.

7.0.2 Least lower bound

Most of the problems we encounter in this chapter have the general form:

minimize
B

‖B − A‖F

subject to B ∈ C
(1425)

where A ∈ Rm×n is given data. This particular objective denotes Euclidean projection
(§E) of vectorized matrix A on the set C which may or may not be convex. When C
is convex, then projection is unique minimum-distance because Frobenius’ norm square
is a strictly convex function of variable B and because the optimal solution is the same
regardless of the square (525). When C is a subspace, then the direction of projection is
orthogonal to C .

Denoting by A,UAΣAQT
A and B,UBΣBQT

B their full singular value decompositions
(whose singular values are always nonincreasingly ordered (§A.6)), there exists a tight
lower bound on the objective over the manifold of orthogonal matrices;

‖ΣB − ΣA‖F ≤ inf
UA ,UB ,QA ,QB

‖B − A‖F (1426)

This least lower bound holds more generally for any orthogonally invariant norm on Rm×n

(§2.2.1) including the Frobenius and spectral norm [375, §II.3]. [237, §7.4.51]

7.0.3 Problem approach.

stress/sstress problems traditionally posed in terms of point position {xi∈ Rn, i=1 . . . N }

minimize
{xi}

∑

i , j ∈ I
(‖xi − xj‖ − hij)

2
(1427)

minimize
{xi}

∑

i , j ∈ I
(‖xi − xj‖2 − hij)

2
(1428)

(where I is an abstract set of indices and hij is given data) are everywhere converted
herein to the distance-square variable D or to Gram matrix G ; the Gram matrix acting
as bridge between position and distance. (That conversion is performed regardless of
whether known data is complete.) Then the techniques of Chapter 5 or Chapter 6 are
applied to find relative or absolute position. This approach is taken because we prefer
introduction of rank constraints into convex problems rather than searching a googol of
local minima in nonconvex problems like (1428) or (1427) [121] (§3.10.0.0.3, §7.2.2.7.1).
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7.0.4 Three prevalent proximity problems

There are three statements of the closest-EDM problem prevalent in the literature, the
multiplicity due primarily to choice of projection on the EDM versus positive semidefinite
(PSD) cone and vacillation between the distance-square variable dij versus absolute
distance

√

dij . In their most fundamental form, the three prevalent proximity problems

are (1429.1), (1429.2), and (1429.3): [391] for D , [dij ] and ◦
√

D , [
√

dij ]

(1)

minimize
D

‖−V (D − H)V ‖2
F

subject to rankV D V ≤ ρ

D ∈ EDMN

minimize
◦√

D
‖ ◦
√

D − H‖2
F

subject to rankV D V ≤ ρ
◦
√

D ∈
√

EDMN

(2)

(3)

minimize
D

‖D − H‖2
F

subject to rankV D V ≤ ρ

D ∈ EDMN

minimize
◦√

D
‖−V ( ◦

√
D − H)V ‖2

F

subject to rankV D V ≤ ρ
◦
√

D ∈
√

EDMN

(4)

(1429)

where we have made explicit an imposed upper bound ρ on affine dimension

r = rankV T
NDVN = rankV D V (1160)

that is benign when ρ =N−1 or H were realizable with r≤ ρ . Problems (1429.2) and
(1429.3) are Euclidean projections of vectorized matrix H on an EDM cone, whereas
problems (1429.1) and (1429.4) are Euclidean projections of vectorized matrix −VHV on
a PSD cone.7.2 (§6.3) Problem (1429.4) is not posed in the literature because it has limited
theoretical foundation.7.3

Analytical solution to (1429.1) is known in closed form for any bound ρ and any
auxiliary matrix V although, as the problem is stated, it is a convex optimization only
in the case ρ =N−1. We show, in §7.1.4, how (1429.1) becomes a convex optimization
problem for any ρ when transformed to the spectral domain. When expressed as a function
of point list in a matrix X as in (1427), problem (1429.2) becomes a variant of what is
known in statistics literature as a stress problem. [59, p.34] [119] [406] Problem (1429.3) is
a rank-constrained sstress problem, whereas (1429.1) is equivalent to a rank-constrained
strain problem. [120, §5]7.4 Problems (1429.2) and (1429.3) are convex optimization
problems in D for the case ρ =N−1 wherein (1429.3) becomes equivalent to (1428).
Even with the rank constraint removed from (1429.2), we will see that the convex problem
remaining inherently minimizes affine dimension.

Generally speaking, each problem in (1429) produces a different result because there is
no isometry relating them. Of the various auxiliary V -matrices (§B.4), the geometric
centering matrix V (1028) appears in the literature most often although VN (1012)
is the auxiliary matrix naturally consequent to Schoenberg’s seminal exposition [360].
Substitution of any auxiliary matrix or its pseudoinverse into these problems produces
another valid problem.

Substitution of VN for V in (1429.1), in particular, produces a different result because

minimize
D

‖−V T
N (D − H)VN ‖2

F

subject to D ∈ EDMN
(1430)

7.2Because −VHV is orthogonal projection of −H on the geometric center subspace S
N
c (§E.7.2.0.2),

problems (1429.1) and (1429.4) may be interpreted as oblique (nonminimum distance) projections of −H
on a positive semidefinite cone.
7.3 D∈EDM

N ⇒ ◦
√

D∈EDM
N , −V ◦

√
DV ∈ S

N
+ (§5.10)

7.4Equivalence to de Leeuw’s strain problem statement is established for ρ = N−1 via (1833) (41) (46).
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finds D to attain Euclidean distance of vectorized −V T
NH VN to the positive semidefinite

cone in isometrically isomorphic subspace RN(N−1)/2, whereas

minimize
D

‖−V (D − H)V ‖2
F

subject to D ∈ EDMN
(1431)

attains Euclidean distance of vectorized −VHV to the positive semidefinite cone in
ambient isometrically isomorphic RN(N+1)/2 ; quite different projections7.5 regardless of
whether affine dimension is constrained. But substitution of auxiliary matrix V T

W (§B.4.3)

or V †
N yields the same result as (1429.1) because V = VWV T

W = VNV †
N ; id est,

‖−V (D − H)V ‖2
F = ‖−VWV T

W(D − H)VWV T
W‖2

F = ‖−V T
W(D − H)VW‖2

F

= ‖−VNV †
N (D − H)VNV †

N ‖2
F = ‖−V †

N (D − H)VN ‖2
F

(1432)

We see no compelling reason to prefer one particular auxiliary V -matrix over another.
Each has its own coherent interpretations; e.g, §5.4.2, §6.6, §B.4.1.1. Neither can we say
that any particular problem formulation produces generally better results than another.7.6

7.1 First prevalent problem:
Projection on PSD cone

This first problem

minimize
D

‖−V T
N (D − H)VN ‖2

F

subject to rankV T
NDVN ≤ ρ

D ∈ EDMN











Problem 1 (1433)

poses Euclidean projection of −V T
NH VN (in subspace SN−1) on a generally nonconvex

subset (when ρ <N−1) of a positive semidefinite cone boundary ∂SN−1
+ whose elemental

matrices have rank no greater than desired affine dimension ρ (§5.7.1.1). Problem 1 finds
the closest EDM D in the sense of Schoenberg. (1025) [360] As it is stated, this optimization
problem is convex only when desired affine dimension is largest ρ =N−1 although its
analytical solution is known [297, thm.14.4.2] for all nonnegative ρ≤N−1 .7.7

We assume only that the given measurement matrix H is symmetric;7.8

H ∈ SN (1434)

Arranging the eigenvalues λi of −V T
NH VN in nonincreasing order for all i (λi ≥ λi+1

with corresponding ith eigenvector vi), then an optimal solution to Problem 1 is [405, §2]

−V T
ND⋆VN =

ρ
∑

i=1

max{0 , λi} viv
T
i (1435)

7.5Isomorphism T (Y )= V †T
N Y V †

N onto S
N
c = {V X V | X∈ S

N} relates the map in (1430) to that in
(1431), but is not an isometry. This behavior may be observed via Matlab program isedm() (provided
on Wıκımization [444]) that solves (1429.1) for any desired upper bound on affine dimension ρ and
allows selection of auxiliary matrix V or VN .
7.6All four problem formulations (1429) produce identical results when affine dimension r , implicit to

a realizable measurement matrix H , does not exceed desired affine dimension ρ ; because, the optimal
objective value will vanish (‖ ⋆ ‖ = 0).
7.7 being first pronounced in the context of multidimensional scaling by Mardia [296] in 1978 who

attributes the generic result (§7.1.2) to Eckart & Young, 1936 [153].
7.8Projection, in Problem 1, is on a rank ρ subset of positive semidefinite cone S

N−1
+ (§2.9.2.1) in the

subspace of symmetric matrices S
N−1. It is wrong here to zero the main diagonal of given H because first

projecting H , on the symmetric hollow subspace, places an elbow in the path of projection in Problem 1.
(Figure 175)
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where

−V T
NH VN ,

N−1
∑

i=1

λi viv
T
i ∈ SN−1 (1436)

is an eigenvalue decomposition and

D⋆ ∈ EDMN (1437)

is an optimal Euclidean distance matrix.

In §7.1.4 we show how to transform Problem 1 to a convex optimization problem for
any ρ .

7.1.1 Closest-EDM Problem 1, convex case

7.1.1.0.1 Proof. Solution (1435), convex case.
When desired affine dimension is unconstrained, ρ =N−1 , the rank function disappears
from (1433) leaving a convex optimization problem; a simple unique minimum-distance
projection on positive semidefinite cone SN−1

+ : videlicet

minimize
D∈ SN

h

‖−V T
N (D − H)VN ‖2

F

subject to −V T
NDVN º 0

(1438)

by (1025). Because

SN−1 = −V T
N SN

h VN (1129)

then the necessary and sufficient conditions for projection in isometrically isomorphic
RN(N−1)/2 on selfdual (387) positive semidefinite cone SN−1

+ are:7.9 (§E.9.2.0.1) (1776)
(confer (2265))

−V T
ND⋆VN º 0

−V T
ND⋆VN

(

−V T
ND⋆VN + V T

NH VN
)

= 0

−V T
ND⋆VN + V T

NH VN º 0

(1439)

Symmetric −V T
NH VN is diagonalizable hence decomposable in terms of its eigenvectors

v and eigenvalues λ as in (1436). Therefore (confer (1435))

−V T
ND⋆VN =

N−1
∑

i=1

max{0 , λi}viv
T
i (1440)

satisfies (1439), optimally solving (1438). To see that, recall: these eigenvectors constitute
an orthogonal set and

−V T
ND⋆VN + V T

NH VN = −
N−1
∑

i=1

min{0 , λi}viv
T
i (1441)

¨

7.9The Karush-Kuhn-Tucker (KKT) optimality conditions, [323, p.328] [68, §5.5.3] for problem (1438),
are identical to these conditions for projection on a convex cone.

https://www.convexoptimization.com/wikimization/index.php/Harold_W._Kuhn
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7.1.2 generic problem, projection on PSD cone

Prior to determination of D⋆, analytical solution (1435) to Problem 1 is equivalent to
solution of a generic rank-constrained projection problem: Given desired affine dimension
ρ and

A , −V T
NH VN =

N−1
∑

i=1

λi viv
T
i ∈ SN−1 (1436)

Euclidean projection on a rank ρ subset of a positive semidefinite cone (on a generally
nonconvex subset of the PSD cone boundary ∂SN−1

+ when ρ <N−1)

minimize
B∈SN−1

‖B − A‖2
F

subject to rankB ≤ ρ

B º 0











Generic 1 (1442)

has well known optimal solution (Eckart & Young) [153]

B⋆ , −V T
ND⋆VN =

ρ
∑

i=1

max{0 , λi} viv
T
i ∈ SN−1 (1435)

Once optimal B⋆ is found, the technique of §5.12 can be used to determine a
uniquely corresponding optimal Euclidean distance matrix D⋆ ; a unique correspondence
by injectivity arguments in §5.6.2.

7.1.2.1 Projection on rank ρ subset of PSD cone

Because (1129) provides invertible mapping to the generic problem, then Problem 1

minimize
D∈ SN

h

‖−V T
N (D − H)VN ‖2

F

subject to rankV T
NDVN ≤ ρ

−V T
NDVN º 0

(1443)

is truly a Euclidean projection of vectorized −V T
NH VN on that generally nonconvex subset

of symmetric matrices (belonging to positive semidefinite cone SN−1
+ ) having rank no

greater than desired affine dimension ρ ;7.10 called rank ρ subset : (269)

SN−1
+ \SN−1

+ (ρ + 1) = {X∈ SN−1
+ | rankX ≤ ρ} (224)

7.1.3 Choice of spectral cone

Spectral projection substitutes projection on a polyhedral cone, containing a complete
set of eigenspectra (§5.11.1.0.3), in place of projection on a convex set of diagonalizable
matrices; e.g, (1456). In this section we develop a method of spectral projection for
constraining rank of positive semidefinite matrices in a proximity problem like (1442). We
will see why an orthant turns out to be the best choice of spectral cone, and why presorting
is critical.

Define a nonlinear permutation-operator

π(x) : Rn→Rn (1444)

that sorts its vector argument x into nonincreasing order; a.k.a, presorting function.

7.10Recall: affine dimension is a lower bound on embedding (§2.3.1), equal to dimension of the smallest
affine set in which points from a list X corresponding to an EDM D can be embedded.
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7.1.3.0.1 Definition. Spectral projection.
Let R be an orthogonal matrix and Λ a nonincreasingly ordered diagonal matrix of
eigenvalues. Spectral projection means unique minimum-distance projection of a rotated
(R , §B.5.5) nonincreasingly ordered (π) vector (δ) of eigenvalues

π
(

δ(RTΛR)
)

(1445)

on a polyhedral cone containing all eigenspectra corresponding to a rank ρ subset of a
PSD cone (§2.9.2.1) or the EDM cone (in Cayley-Menger form, §5.11.2.3). △

In the simplest and most common case, projection on a positive semidefinite cone,
orthogonal matrix R equals I (§7.1.4.0.1) and diagonal matrix Λ is ordered during
diagonalization (§A.5.1). Then spectral projection simply means projection of δ(Λ) on a
subset of the nonnegative orthant, as we shall now ascertain:

It is curious how nonconvex Problem 1 has such a simple analytical solution (1435).
Although solution to generic problem (1442) is well known since 1936 [153], its equivalence
was observed in 1997 [405, §2] to projection of an ordered vector of eigenvalues (in diagonal
matrix Λ) on a subset of the monotone nonnegative cone (§2.13.10.4.2)

KM+ = {υ | υ1 ≥ υ2 ≥ · · · ≥ υN−1 ≥ 0} ⊆ RN−1
+ (438)

Of interest, momentarily, is only the smallest convex subset of the monotone nonnegative
cone KM+ containing every nonincreasingly ordered eigenspectrum corresponding to a
rank ρ subset of positive semidefinite cone SN−1

+ ; id est,

Kρ
M+ , {υ∈Rρ | υ1 ≥ υ2 ≥ · · · ≥ υρ ≥ 0} ⊆ Rρ

+ (1446)

a pointed polyhedral cone, a ρ -dimensional convex subset of the monotone nonnegative
cone KM+⊆RN−1

+ having property, for λ denoting eigenspectra,

[

Kρ
M+

0

]

= π(λ(rank ρ subset)) ⊆ KN−1
M+ , KM+ (1447)

For each and every elemental eigenspectrum

γ ∈ λ(rank ρ subset)⊆RN−1
+ (1448)

of the rank ρ subset (ordered or unordered in λ), there is a nonlinear surjection π(γ)
onto Kρ

M+ .

7.1.3.0.2 Exercise. Smallest spectral cone.
Prove that there is no convex subset of KM+ smaller than Kρ

M+ containing every ordered
eigenspectrum corresponding to the rank ρ subset of a positive semidefinite cone (§2.9.2.1).

H

7.1.3.0.3 Proposition. (Hardy-Littlewood-Pólya) Inequalities. [212, §X] [61, §1.2]
Any vectors σ and γ in RN−1 satisfy a tight inequality

π(σ)Tπ(γ) ≥ σTγ ≥ π(σ)TΞ π(γ) (1449)

where Ξ is the order-reversing permutation matrix defined in (1933), and permutator π(γ)
is a nonlinear function that sorts vector γ into nonincreasing order thereby providing the
greatest upper bound and least lower bound with respect to every possible sorting. ⋄
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7.1.3.0.4 Corollary. Monotone nonnegative sort.
Any given vectors σ , γ∈RN−1 satisfy a tight Euclidean distance inequality

‖π(σ) − π(γ)‖ ≤ ‖σ − γ‖ (1450)

where nonlinear function π(γ) sorts vector γ into nonincreasing order thereby providing
the least lower bound with respect to every possible sorting. ⋄

Given γ∈RN−1

inf
σ∈R

N−1
+

‖σ− γ‖ = inf
σ∈R

N−1
+

‖π(σ)− π(γ)‖ = inf
σ∈R

N−1
+

‖σ−π(γ)‖ = inf
σ∈KM+

‖σ−π(γ)‖ (1451)

Yet for γ representing an arbitrary vector of eigenvalues, because

inf
σ∈

[

R
ρ
+

0

]

‖σ − γ‖2 ≥ inf
σ∈

[

R
ρ
+

0

]

‖σ − π(γ)‖2 = inf
σ∈

[ Kρ
M+

0

]

‖σ − π(γ)‖2 (1452)

then projection of γ on the eigenspectra of a rank ρ subset can be tightened simply by
presorting γ into nonincreasing order.

Proof. Simply because π(γ)1:ρ º π(γ1:ρ)

inf
σ∈

[

R
ρ
+

0

]

‖σ − γ‖2 = γT
ρ+1:N−1γρ+1:N−1 + inf

σ∈R
N−1
+

‖σ1:ρ − γ1:ρ‖2

= γTγ + inf
σ∈R

N−1
+

σT
1:ρσ1:ρ − 2σT

1:ργ1:ρ

≥ γTγ + inf
σ∈R

N−1
+

σT
1:ρσ1:ρ − 2σT

1:ρπ(γ)1:ρ

inf
σ∈

[

R
ρ
+

0

]

‖σ − γ‖2 ≥ inf
σ∈

[

R
ρ
+

0

]

‖σ − π(γ)‖2

(1453)

¨

7.1.3.1 Orthant is best spectral cone for Problem 1

This means unique minimum-distance projection of γ on the nearest spectral member of
the rank ρ subset is tantamount to presorting γ into nonincreasing order. Only then
does unique spectral projection on a subset Kρ

M+ of the monotone nonnegative cone
become equivalent to unique spectral projection on a subset Rρ

+ of the nonnegative orthant
(which is simpler); in other words, unique minimum-distance projection of sorted γ on
the nonnegative orthant in a ρ -dimensional subspace of RN is indistinguishable from its
projection on the subset Kρ

M+ of the monotone nonnegative cone in that same subspace.

7.1.4 Closest-EDM Problem 1, “nonconvex” case

Proof of solution (1435), for projection on a rank ρ subset of positive semidefinite cone
SN−1

+ , can be algebraic in nature. [405, §2] Here we derive that known result but instead
using a more geometric argument via spectral projection on a polyhedral cone (subsuming
the proof in §7.1.1). In so doing, we demonstrate how nonconvex Problem 1 is transformed
to a convex optimization:
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7.1.4.0.1 Proof. Solution (1435), nonconvex case.
As explained in §7.1.2, we may instead work with the more facile generic problem (1442).
With diagonalization of unknown

B , UΥUT∈ SN−1 (1454)

given desired affine dimension 0≤ ρ≤N−1 and diagonalizable

A , QΛQT∈ SN−1 (1455)

having eigenvalues in Λ arranged in nonincreasing order, by (51) the generic problem is
equivalent to

minimize
B∈SN−1

‖B − A‖2
F

subject to rankB ≤ ρ

B º 0

≡

minimize
R , Υ

‖Υ − RTΛR‖2
F

subject to rank Υ ≤ ρ
Υ º 0
R−1 = RT

(1456)

where

R , QTU ∈ RN−1×N−1 (1457)

is a bijection in U on the set of orthogonal matrices. We propose solving (1456) by instead
solving the problem sequence:

minimize
Υ

‖Υ − RTΛR‖2
F

subject to rank Υ ≤ ρ
Υ º 0

(a)

minimize
R

‖Υ⋆ − RTΛR‖2
F

subject to R−1 = RT
(b)

(1458)

Problem (1458a) is equivalent to:

(1) orthogonal projection of RTΛR on an N− 1-dimensional subspace of isometrically

isomorphic RN(N−1)/2 containing δ(Υ)∈RN−1
+

(2) nonincreasingly ordering the result,

(3) unique minimum-distance projection of the ordered result on

[

Rρ
+

0

]

(§E.9.5).

Projection on that N − 1-dimensional subspace amounts to zeroing RTΛR at all entries
off the main diagonal; thus, the equivalent sequence leading with a spectral projection:

minimize
Υ

‖ δ(Υ) − π
(

δ(RTΛR)
)

‖2

subject to δ(Υ) ∈
[

Rρ
+

0

]

(a)

minimize
R

‖Υ⋆ − RTΛR‖2
F

subject to R−1 = RT
(b)

(1459)

Because any permutation matrix is an orthogonal matrix, δ(RTΛR)∈RN−1 can always be
arranged in nonincreasing order without loss of generality; hence, permutation operator π .
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Unique minimum-distance projection of vector π
(

δ(RTΛR)
)

on the ρ -dimensional subset
[

Rρ
+

0

]

of nonnegative orthant RN−1
+ requires: (§E.9.2.0.1)

δ(Υ⋆)ρ+1:N−1 = 0

δ(Υ⋆) º 0

δ(Υ⋆)T
(

δ(Υ⋆) − π(δ(RTΛR))
)

= 0

δ(Υ⋆) − π(δ(RTΛR)) º 0

(1460)

which are necessary and sufficient conditions. Any value Υ⋆ satisfying conditions (1460)
is optimal for (1459a). So

δ(Υ⋆)i =

{

max
{

0 , π
(

δ(RTΛR)
)

i

}

, i=1 . . . ρ

0 , i=ρ+1 . . . N−1
(1461)

specifies an optimal solution. The lower bound on the objective with respect to R in
(1459b) is tight: by (1426)

‖ |Υ⋆| − |Λ| ‖F ≤ ‖Υ⋆ − RTΛR‖F (1462)

where | | denotes absolute entry-value. For selection of Υ⋆ as in (1461), this lower bound
is attained when (confer §C.4.2.2)

R⋆ = I (1463)

which is the known solution. ¨

7.1.4.1 significance

Importance of this well-known [153] optimal solution (1435) for projection on a rank ρ
subset of a positive semidefinite cone should not be dismissed:

� Problem 1 (1433) and its generic form (1442), as stated, are generally nonconvex.
Their known analytical solution encompasses projection on a rank ρ subset (224) of a
positive semidefinite cone (generally, a nonconvex subset of its boundary) from either
the exterior or interior of that cone.7.11 By problem transformation to the spectral
domain, projection on a rank ρ subset becomes a convex optimization problem.

� This solution is closed form.

� This solution is equivalent to projection on a polyhedral cone in the spectral domain
(spectral projection §7.1.3.0.1, projection on a spectral cone §5.11.1.0.2); a necessary
and sufficient condition (§A.3.1) for membership of a symmetric matrix to a rank ρ
subset of a positive semidefinite cone (§2.9.2.1).

� A minimum-distance projection, on a rank ρ subset of a positive semidefinite cone,
is a positive semidefinite matrix orthogonal (in the Euclidean sense) to direction of
projection7.12 because U⋆ = Q in (1457).

� For the convex case problem (1438), this solution is always unique. Otherwise,
distinct eigenvalues (multiplicity 1) in Λ guarantee uniqueness of this solution by
the reasoning in §A.5.0.1.7.13

7.11Projection on the boundary from the interior, of a convex Euclidean body, is generally a nonconvex
problem. (§E.9.1.1.2)
7.12But Theorem E.9.2.0.1, for unique projection on a closed convex cone, does not apply here because
direction of projection is not necessarily a member of the dual PSD cone. This occurs, for example,
whenever positive eigenvalues are truncated.
7.13Uncertainty of uniqueness prevents the erroneous conclusion that a rank ρ subset (224) were a convex
body by the Bunt-Motzkin theorem (§E.9.0.0.1).
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7.1.4.2 list projection interpretation

Because −V D V 1
2 = XTX when point list X is geometrically centered, X1=0 , Problem 1

can be equivalently restated: by (1027)

(1)

minimize
D

‖−V (D − H)V ‖2
F

subject to rankV D V ≤ ρ

D ∈ EDMN

≡ minimize
X∈R

ρ×N
‖XTX −Y TY ‖2

F (G) (1464)

where Y ∈ Rn×N comprises geometrically centered point list estimates (Y = Y V ) whose
dimensionality is to be reduced (by best fit) to

ρ ≤ η , min{n , N} (1465)

We call (1464.G) the Gram-form Problem 1; it may be interpreted as minimum-distance
projection of Y TY ∈ SN on a rank ρ subset (§2.9.2.1) of the PSD cone in isometrically

isomorphic RN(N+1)/2. Geometrically centered Y remains centered, postprojection,
because the subspace SN

c of symmetric geometrically centered matrices V Y TY V (1108)
is invariant to projection on a positive semidefinite cone by Lemma 6.8.1.1.1.

Orthogonal projection of estimates Y , on span of ρ principal eigenvectors of Y Y T∈ Sn,
provides unique (not rotation invariant) optimal X⋆ in the sense

minimize
X∈R

n×N
‖XTX − Y TY ‖2

F = minimize
X∈R

n×N
‖XXT− Y Y T‖2

F =
η
∑

i=ρ+1

λ(Y TY )2i

subject to rank(XTX) ≤ ρ subject to rank(XXT) ≤ ρ
(1466)

where rank(XTX)= rank(XXT) (1641). Defining nonincreasingly ordered diagonalization
Y Y T , QnΛnQT

n∈ Sn, then orthogonal projection of Y is (§E.3.2)7.14

X⋆ = Qn(: , 1:ρ)Qn(: , 1:ρ)TY ∈ Rn×N (1467)
So

‖X⋆X⋆T− Y Y T‖2
F = ‖Qn(: , 1:ρ)Qn(: , 1:ρ)TY Y T− Y Y T‖2

F

=

∥

∥

∥

∥

[

Λn(1 :ρ , 1:ρ) 0T

0 0

]

− Λn

∥

∥

∥

∥

2

F

=
η
∑

i=ρ+1

λ(Y TY )2i
(1468)

projection of list Y on a subspace solves projection of Gram matrix Y TY [sic ] on a positive
semidefinite cone (1466); quite a remarkable interpretation.7.15 [297, §14.4] [339, §2]

Yet there is a more plain interpretation:

X⋆X⋆T = Qn(: , 1:ρ)Qn(: , 1:ρ)TY Y T = Qn(: , 1:ρ)Qn(: , 1:ρ)TY Y TQn(: , 1:ρ)Qn(: , 1:ρ)T∈ Sn
+ (1469)

is the orthogonal projection of Y Y T on the closest ρ(ρ + 1)/2-dimensional subspace

Qn(: , 1:ρ)SρQn(: , 1:ρ)T = Qn(: , 1:ρ)Qn(: , 1:ρ)TSnQn(: , 1:ρ)Qn(: , 1:ρ)T (1470)

of a rotated Cartesian coordinate system QnSnQT
n in isomorphic Rn(n+1)/2. That it is the

closest subspace, comes from §2.13.8.1.1. That (1470) is the smallest subspace containing
the smallest face (that contains X⋆X⋆T) of PSD cone Sn

+ , is a result from §2.9.2.4.

7.14Reconstruction of X⋆, with dimension ρ instead of n , is disclosed in §5.12.2.
7.15This might imply existence of an isomorphism (§2.2.1.0.1) relating vector space R

nN (containing

vectorized list X) to vector space R
N(N+1)/2 (containing vectorized cone S

N
+ ); but there is none. Such

an isomorphism might be an isometry (2.2.1.1.1) were ‖X⋆X⋆T− Y Y T‖2
F equal to

minimize
X∈R

n×N
‖X − Y ‖2

F = ‖Qn(: , 1:ρ)Qn(: , 1:ρ)TY − Y ‖2
F =

η
∑

i=ρ+1
λ(Y TY )i

subject to X1 = 0
rank X ≤ ρ

but the square of eigenvalues is absent with respect to (1468); numerically verifiable by means of problem
transformation in §4.10 and a few convex iterations (§4.5.1).
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7.1.5 Problem 1 in spectral norm, convex case

When instead we pose the matrix 2-norm (spectral norm) in Problem 1 (1433) for the
convex case ρ = N−1 , then the new problem

minimize
D

‖−V T
N (D − H)VN ‖2

subject to D ∈ EDMN
(1471)

is convex although its solution is not necessarily unique;7.16 giving rise to nonorthogonal
projection (§E.1) on positive semidefinite cone SN−1

+ . Indeed, its solution set includes the
Frobenius solution (1435) for the convex case whenever −V T

NH VN is a normal matrix.
[219, §1] [210] [68, §8.1.1] Proximity problem (1471) is equivalent to

minimize
µ , D

µ

subject to −µI ¹ −V T
N (D − H)VN ¹ µI

D ∈ EDMN

(1472)

by (1905) where

µ⋆ = max
i

{∣

∣λ
(

−V T
N (D⋆ − H)VN

)

i

∣

∣ , i = 1 . . . N−1
}

∈ R+ (1473)

is the minimized largest absolute eigenvalue (due to matrix symmetry).
For lack of unique solution here, we prefer the Frobenius rather than spectral norm.

7.2 Second prevalent problem:
Projection on EDM cone in

√

dij

Let
◦
√

D , [
√

dij ] ∈ K = SN
h ∩ RN×N

+ (1474)

be an unknown matrix of absolute distance; id est,

D = [dij ] ,
◦
√

D ◦ ◦
√

D ∈ EDMN (1475)

where ◦ denotes Hadamard product. The second prevalent proximity problem is a
Euclidean projection (in the natural coordinates

√

dij ) of matrix H on a nonconvex
subset of the boundary of the nonconvex cone of Euclidean absolute-distance matrices

rel ∂
√

EDMN : (§6.3, confer Figure 160b)

minimize
◦√

D
‖ ◦
√

D − H‖2
F

subject to rankV T
NDVN ≤ ρ

◦
√

D ∈
√

EDMN











Problem 2 (1476)

where
√

EDMN = { ◦
√

D | D∈EDMN} (1301)

This statement of the second proximity problem is considered difficult to solve because of
the constraint on desired affine dimension ρ (§5.7.2) and because the objective function

‖ ◦
√

D − H‖2
F =

∑

i,j

(
√

dij − hij)
2 (1477)

7.16For each and every |t|≤ 2 , for example,

[

2 0
0 t

]

has the same spectral-norm value.
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is expressed in the natural coordinates; projection on a doubly nonconvex set.
Our solution to this second problem prevalent in the literature requires measurement

matrix H to be nonnegative;
H = [hij ] ∈ RN×N

+ (1478)

If the H matrix given has negative entries, then the technique of solution presented here
becomes invalid. As explained in §7.0.1, projection of H on K= SN

h ∩ RN×N
+ (1420) prior

to application of this proposed solution is incorrect.

7.2.1 Convex case

When ρ = N − 1 , the rank constraint vanishes and a convex problem that is equivalent
to (1427) emerges:7.17

minimize
◦√

D
‖ ◦
√

D − H‖2
F

subject to ◦
√

D ∈
√

EDMN
⇔

minimize
D

∑

i,j

dij − 2hij

√

dij + h2
ij

subject to D ∈ EDMN
(1479)

For any fixed i and j , the argument of summation is a convex function of dij because
(for nonnegative constant hij) the negative square root is convex in nonnegative dij and
because dij + h2

ij is affine (convex). Because the sum of any number of convex functions
in D remains convex [68, §3.2.1] and because the feasible set is convex in D , we have a
convex optimization problem:

minimize
D

1T(D − 2H◦ ◦
√

D )1 + ‖H‖2
F

subject to D ∈ EDMN
(1480)

The objective function being a sum of strictly convex functions is, moreover, strictly
convex in D on the nonnegative orthant. Existence of a unique solution D⋆ for this second
prevalent problem depends upon nonnegativity of H and a convex feasible set (§3.1.1).7.18

7.2.1.1 Equivalent semidefinite program, Problem 2, convex case

Convex problem (1479) is numerically solvable for its global minimum using an
interior-point method [467] [332] [320] [458] [12] [173]. We translate (1479) to an equivalent
semidefinite program (SDP) for a pedagogical reason made clear in §7.2.2.2 and because
there exist readily available computer programs for numerical solution [199] [460] [461]
[411] [38] [459] [400] [384].

Substituting a new matrix variable Y , [yij ]∈ RN×N
+

hij

√

dij ← yij (1481)

Boyd proposes: problem (1479) is equivalent to the semidefinite program

minimize
D , Y

∑

i,j

dij − 2yij + h2
ij

subject to

[

dij yij

yij h2
ij

]

º 0 , i,j =1 . . . N

D ∈ EDMN

(1482)

7.17 still thought to be a nonconvex problem as late as 1997 [406] even though discovered convex by de
Leeuw in 1993. [119] [59, §13.6] Yet using methods from §3, it can be easily ascertained: ‖ ◦

√
D − H‖F is

not convex in D .
7.18The transformed problem in variable D no longer describes Euclidean projection on an EDM cone.

Otherwise we might erroneously conclude
√

EDM
N were a convex body by the Bunt-Motzkin theorem

(§E.9.0.0.1).
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To see that, recall: dij ≥ 0 is implicit to D∈EDMN (§5.8.1, (1025)). So when

H∈ RN×N
+ is nonnegative, as assumed,

[

dij yij

yij h2
ij

]

º 0 ⇔ hij

√

dij ≥
√

y2
ij (1483)

by Theorem A.3.1.0.4. Minimization of the objective function implies
maximization of yij that is bounded above. Hence nonnegativity of yij is
implicit to (1482) and, as desired, yij →hij

√

dij as optimization proceeds.
¨

If the given matrix H is now assumed symmetric and nonnegative,

H = [hij ] ∈ SN ∩ RN×N
+ (1484)

then Y = H◦ ◦
√

D must belong to K= SN
h ∩ RN×N

+ (1420). Because Y ∈ SN
h (§B.4.2 no.20),

then

‖ ◦
√

D − H‖2
F =

∑

i,j

dij − 2yij + h2
ij = −N tr(V (D − 2 Y )V ) + ‖H‖2

F (1485)

So convex problem (1482) is equivalent to the semidefinite program

minimize
D , Y

− tr(V (D − 2 Y )V )

subject to

[

dij yij

yij h2
ij

]

º 0 , N ≥ j > i = 1 . . . N−1

Y ∈ SN
h

D ∈ EDMN

(1486)

where the constants h2
ij and N have been dropped arbitrarily from the objective.

7.2.1.2 Gram-form semidefinite program, Problem 2, convex case

There is great advantage to expressing problem statement (1486) in Gram-form because
Gram matrix G is a bidirectional bridge between point list X and distance matrix D ; e.g,
§5.4.2.2.8, §6.7.0.0.1. This way, problem convexity can be maintained while simultaneously
constraining point list X , Gram matrix G , and distance matrix D at our discretion.

Convex problem (1486) may be equivalently written via linear bijective (§5.6.1) EDM
operator D(G) (1018);

minimize
G∈SN

c , Y ∈ SN
h

− tr(V (D(G) − 2 Y )V )

subject to

[ 〈Φij , G〉 yij

yij h2
ij

]

º 0 , N ≥ j > i = 1 . . . N−1

G º 0

(1487)

where distance-square D = [dij ] ∈ SN
h (1002) is related to G = [gij ] ∈ SN

c ∩ SN
+ Gram

matrix entries by
dij = gii + gjj − 2gij

= 〈Φij , G〉 (1017)

where
Φij = (ei − ej)(ei − ej)

T∈ SN
+ (1004)
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cenv rankX

rankX g

−→S+

Figure 176: Abstraction of convex envelope of rank function. Rank is a quasiconcave
monotonic function on a positive semidefinite cone S+ , but its convex envelope is the
largest convex function whose epigraph contains it. Vertical bar labelled g measures a
trace−rank gap; id est, rank found always exceeds estimate; large decline in trace required
here for only a small decrease in rank.

Confinement of G to the geometric center subspace provides numerical stability and no
loss of generality (confer (1365)); implicit constraint G1 = 0 is otherwise unnecessary.

To include constraints on the list X∈ Rn×N , we would first rewrite (1487)

minimize
G∈SN

c , Y ∈ SN
h

, X∈ R
n×N

− tr(V (D(G) − 2 Y )V )

subject to

[ 〈Φij , G〉 yij

yij h2
ij

]

º 0 , N ≥ j > i = 1 . . . N−1

[

I X
XT G

]

º 0

X∈ C

(1488)

and then introduce the constraints, realized here in abstract membership to some convex
set C . This problem realization includes a convex relaxation of the nonconvex constraint
G = XTX . If desired, more constraints on G could be introduced. These techniques are
discussed in §5.4.2.2.8.

7.2.2 Minimization of affine dimension in Problem 2

When desired affine dimension ρ is diminished, the rank function becomes reinserted into
problem (1482) that is then rendered difficult to solve because feasible set {D , Y } loses
convexity in SN

h × RN×N . Indeed, the rank function is quasiconcave (§3.15) on a positive
semidefinite cone; (§2.9.2.9.2) id est, its sublevel sets are not convex.

7.2.2.1 Rank minimization heuristic

A remedy developed in [303] [160] [161] [159] introduces convex envelope of the
quasiconcave rank function: (Figure 176)
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7.2.2.1.1 Definition. Convex envelope. [233]
Convex envelope cenv f of a function f : C→R is defined to be the largest convex function
g such that g ≤ f on convex domain C⊆Rn .7.19 △

� [160] [159] Convex envelope of rank function: for σi a singular value, (1746)

cenv(rankA) on {A∈Rm×n | ‖A‖2≤κ} =
1

κ
1Tσ(A) =

1

κ
tr
√

ATA (1489)

cenv(rankA) on {A normal | ‖A‖2≤κ} =
1

κ
‖λ(A)‖1 =

1

κ
tr
√

ATA (1490)

cenv(rankA) on {A∈Sn
+ | ‖A‖2≤κ} =

1

κ
1Tλ(A) =

1

κ
tr(A) (1491)

A properly scaled trace thus represents the best convex lower bound on rank for positive
semidefinite matrices. The idea, then, is to substitute convex envelope for rank of some
variable A∈ SM

+ (§A.6.2.2)

rankA ← cenv(rankA) ∝ trA =
∑

i

σ(A)i =
∑

i

λ(A)i (1492)

which is equivalent to the sum of all eigenvalues or singular values.

� [159] Convex envelope of the cardinality function is proportional to the 1-norm:

cenv(card x) on {x∈Rn | ‖x‖∞≤κ} =
1

κ
‖x‖1 (1493)

cenv(card x) on {x∈Rn
+ | ‖x‖∞≤κ} =

1

κ
1Tx (1494)

7.2.2.2 Applying trace rank-heuristic to Problem 2

Substituting rank envelope for rank function in Problem 2, for D∈EDMN (confer (1160))

cenv rank(−V T
NDVN ) = cenv rank(−V D V ) ∝ − tr(V D V ) (1495)

and for desired affine dimension ρ ≤ N − 1 and nonnegative H [sic ] we get a convex
optimization problem

minimize
D

‖ ◦
√

D − H‖2
F

subject to − tr(V D V ) ≤ κ ρ

D ∈ EDMN

(1496)

where κ∈R+ is a constant determined by cut-and-try. The equivalent semidefinite
program makes κ variable: for nonnegative and symmetric H

minimize
D , Y , κ

κ ρ + 2 tr(V Y V )

subject to

[

dij yij

yij h2
ij

]

º 0 , N ≥ j > i = 1 . . . N−1

− tr(V D V ) ≤ κ ρ

Y ∈ SN
h

D ∈ EDMN

(1497)

7.19Provided f 6≡+∞ and there exists an affine function h≤f on R
n, then the convex envelope is equal

to the convex conjugate (the Legendre-Fenchel transform) of the convex conjugate of f ; id est, the
conjugate-conjugate function f∗∗. [234, §E.1]
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which is the same as (1486), the problem with no explicit constraint on affine dimension.
As the present problem is stated, the desired affine dimension ρ yields to the variable
scale factor κ ; ρ is effectively ignored.

Yet this result is an illuminant for problem (1486) and it equivalents (all the way back to
(1479)): When the given measurement matrix H is nonnegative and symmetric, finding the
closest EDM D (as in problem (1479), (1482), or (1486)) implicitly entails minimization of
affine dimension (confer §5.8.4, §5.14.4). Those non-rank-constrained problems are each
inherently equivalent to cenv(rank)-minimization problem (1497), in other words, and
their optimal solutions are unique because of the strictly convex objective function in
(1479).

7.2.2.3 Rank-heuristic insight

Minimization of affine dimension by use of this trace rank-heuristic (1495) tends to
find a list configuration of least energy; rather, it tends to optimize compaction of the
reconstruction by minimizing total distance. (1030) It is best used where some physical
equilibrium implies such an energy minimization; e.g, [404, §5].

For this Problem 2, the trace rank-heuristic arose naturally in the objective in terms
of V . We observe: V (in contrast to V T

N ) spreads energy over all available distances
(§B.4.2 no.20, contrast no.22) although the rank function itself is insensitive to choice of
auxiliary matrix.

Trace rank-heuristic (1491) is useless when a main diagonal is constrained to be
constant. Such would be the case were optimization over an elliptope (§5.4.2.2.1), or
when the diagonal represents a Boolean vector; e.g, §4.2.3.1.1, §4.7.0.0.9.

7.2.2.4 Rank minimization heuristic beyond convex envelope

Fazel, Hindi, & Boyd [161] [463] [162] propose a rank heuristic more potent than trace
(1492) for problems of rank minimization;

rankY ← log det(Y +εI) (1498)

the concave surrogate function log det in place of quasiconcave rankY (§2.9.2.9.2) when
Y ∈ Sn

+ is variable and where ε is a small positive constant. They propose minimization
of the surrogate by substituting a sequence comprising infima of a linearized surrogate
about the current estimate Yi ; id est, from the first-order Taylor series expansion about
Yi on some open interval of ‖Y ‖2 (§D.1.7)

log det(Y + εI) ≈ log det(Yi + εI) + tr
(

(Yi + εI)−1(Y − Yi)
)

(1499)

we make the surrogate sequence of infima over bounded convex feasible set C

arg inf
Y ∈C

rankY ← lim
i→∞

Yi+1 (1500)

where, for i = 0 . . .

Yi+1 = arg inf
Y ∈C

tr
(

(Yi + εI)−1Y
)

(1501)

a matrix analogue to the reweighting scheme disclosed in [243, §4.11.3]. Choosing Y0 = I ,
the first step becomes equivalent to finding the infimum of trY ; the trace rank-heuristic
(1492). The intuition underlying (1501) is the new term in the argument of trace;
specifically, (Yi + εI)−1 weights Y so that relatively small eigenvalues of Y found by
the infimum are made even smaller.
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To see that, substitute the nonincreasingly ordered diagonalizations

Yi + εI , Q(Λ + εI )QT (a)

Y , UΥUT (b)
(1502)

into (1501). Then from (1902) we have,

inf
Υ∈U⋆TCU⋆

δ
(

(Λ + εI )−1
)T

δ(Υ) = inf
Υ∈UTCU

inf
RT=R−1

tr
(

(Λ + εI )−1RTΥR
)

≤ inf
Y ∈C

tr
(

(Yi + εI)−1Y
)

(1503)

where R , QTU in U on the set of orthogonal matrices is a bijection. The
role of ε is, therefore, to limit maximum weight; the smallest entry on the
main diagonal of Υ gets the largest weight. ¨

7.2.2.5 Applying log det rank-heuristic to Problem 2

When the log det rank-heuristic is inserted into Problem 2, problem (1497) becomes the
problem sequence in i

minimize
D , Y , κ

κ ρ + 2 tr(V Y V )

subject to

[

djl yjl

yjl h2
jl

]

º 0 , l > j = 1 . . . N−1

− tr((−V DiV + εI )−1V D V ) ≤ κ ρ

Y ∈ SN
h

D ∈ EDMN

(1504)

where Di+1 ,D⋆∈ EDMN and D0 ,11T− I .

7.2.2.6 Tightening this log det rank-heuristic

Like the trace method, this log det technique for constraining rank offers no provision for
meeting a predetermined upper bound ρ . Yet since eigenvalues are simply determined,
λ(Yi + εI)= δ(Λ + εI ) , we may certainly force selected weights to ε−1 by manipulating
diagonalization (1502a). Empirically we find this sometimes leads to better results,
although affine dimension of a solution cannot be guaranteed.

7.2.2.7 Cumulative summary of rank heuristics

We have studied a perturbation method of rank reduction in §4.3 as well as the trace
heuristic (convex envelope method §7.2.2.1.1) and log det heuristic in §7.2.2.4. There is
another good contemporary method called LMIRank [328] based on alternating projection
(§E.11).7.20

7.2.2.7.1 Example. Unidimensional scaling.
We apply the convex iteration method from §4.5.1 to numerically solve an instance of
Problem 2; a method empirically superior to the foregoing convex envelope and log det
heuristics for rank regularization and enforcing affine dimension.

Unidimensional scaling, [121] a historically practical application of multidimensional
scaling (§5.12), entails solution of an optimization problem having local minima whose

7.20 that does not solve the ball packing problem presented in §5.4.2.2.6.
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multiplicity varies as the factorial of point-list cardinality; geometrically, it means
reconstructing a list constrained to lie in one affine dimension. Given nonnegative
symmetric matrix H = [hij ]∈ SN∩ RN×N

+ (1484) whose entries hij are all known, the
nonconvex problem in terms of point list is

minimize
{xi∈R}

N
∑

i , j=1

(|xi − xj | − hij)
2

(1427)

called a raw stress problem [59, p.34] which has an implicit constraint on dimensional
embedding of points {xi∈ R , i=1 . . . N}. This problem has proven NP-hard; e.g, [82].

As always, we first transform variables to distance-square D∈ SN
h ; so begin with

convex problem (1486) on page 458

minimize
D , Y

− tr(V (D − 2 Y )V )

subject to

[

dij yij

yij h2
ij

]

º 0 , N ≥ j > i = 1 . . . N−1

Y ∈ SN
h

D ∈ EDMN

rankV T
NDVN = 1

(1505)

that becomes equivalent to (1427) by making explicit the constraint on affine dimension
via rank. The iteration is formed by moving the dimensional constraint to the objective:

minimize
D , Y

−〈V (D − 2 Y )V , I 〉 − w〈V T
NDVN , W 〉

subject to

[

dij yij

yij h2
ij

]

º 0 , N ≥ j > i = 1 . . . N−1

Y ∈ SN
h

D ∈ EDMN

(1506)

where w (≈ 10) is a positive scalar just large enough to make 〈V T
NDVN , W 〉 vanish to

within some numerical precision, and where direction matrix W is an optimal solution to
semidefinite program (1901a)

minimize
W

−〈V T
ND⋆VN , W 〉

subject to 0 ¹ W ¹ I

tr W = N − 1

(1507)

one of which is known in closed form. Semidefinite programs (1506) and (1507) are iterated
until convergence in the sense defined on page 244. This iteration is not a projection
method. (§4.5.1.1) Convex problem (1506) is neither a relaxation of unidimensional scaling
problem (1505); instead, problem (1506) is a convex equivalent to (1505) at convergence
of the iteration.

Jan de Leeuw provided us with some test data

H =

















0.000000 5.235301 5.499274 6.404294 6.486829 6.263265
5.235301 0.000000 3.208028 5.840931 3.559010 5.353489
5.499274 3.208028 0.000000 5.679550 4.020339 5.239842
6.404294 5.840931 5.679550 0.000000 4.862884 4.543120
6.486829 3.559010 4.020339 4.862884 0.000000 4.618718
6.263265 5.353489 5.239842 4.543120 4.618718 0.000000

















(1508)
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and a globally optimal solution

X⋆ = [−4.981494 −2.121026 −1.038738 4.555130 0.764096 2.822032 ]

= [ x⋆
1 x⋆

2 x⋆
3 x⋆

4 x⋆
5 x⋆

6 ]
(1509)

found by searching 6! local minima of (1427) [121]. By iterating convex problems (1506)
and (1507) about twenty times (initial W = 0) we find global infimum 98.12812 to stress
problem (1427), and by (1250) we find a corresponding one-dimensional point list that is
a rigid transformation in R of X⋆.

Here we found the infimum to accuracy of the given data, but that ceases to hold
as problem size increases. Because of machine numerical precision and an interior-point
method of solution, we speculate, accuracy degrades quickly as problem size increases
beyond this. 2

7.3 Third prevalent problem:

Projection on EDM cone in dij

In summary, we find that the solution to problem [(1429.3) p.447] is difficult
and depends on the dimension of the space as the geometry of the cone of
EDMs becomes more complex.

−Hayden, Wells, Liu, & Tarazaga, 1991 [220, §3]

Reformulating Problem 2 (p.456), in terms of EDM D , changes it considerably:

minimize
D

‖D − H‖2
F

subject to rankV T
NDVN ≤ ρ

D ∈ EDMN











Problem 3 (1510)

This third prevalent proximity problem is a Euclidean projection of given matrix H
on a generally nonconvex subset (ρ < N−1) of ∂EDMN the boundary of the convex
cone of Euclidean distance matrices relative to subspace SN

h (Figure 160d). Because
coordinates of projection are distance-square and H now presumably holds distance-square
measurements, numerical solution to Problem 3 is generally different than that of
Problem 2.

For the moment, we need make no assumptions regarding measurement matrix H .

7.3.1 Convex case

minimize
D

‖D − H‖2
F

subject to D ∈ EDMN
(1511)

When the rank constraint disappears (for ρ = N−1), this third problem becomes obviously
convex because the feasible set is then the entire EDM cone and because the objective
function

‖D − H‖2
F =

∑

i,j

(dij − hij)
2 (1512)
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is a strictly convex quadratic in D ;7.21

minimize
D

∑

i,j

d2
ij − 2hij dij + h2

ij

subject to D ∈ EDMN
(1513)

Optimal solution D⋆ is therefore unique, as expected, for this simple projection on the
EDM cone equivalent to (1428).

7.3.1.1 Equivalent semidefinite program, Problem 3, convex case

In the past, this convex problem was solved numerically by means of alternating projection.
(Example 7.3.1.1.1) [184] [176] [220, §1] We translate (1513) to an equivalent semidefinite
program because we have a good solver:

Assume the given measurement matrix H to be nonnegative and symmetric;7.22

H = [hij ] ∈ SN ∩ RN×N
+ (1484)

We then propose: Problem (1513) is equivalent to the semidefinite program, for

∂ , [d2
ij ] = D ◦D (1514)

a matrix of distance-square squared,

minimize
∂ , D

− tr(V (∂ − 2 H ◦D)V )

subject to

[

∂ij dij

dij 1

]

º 0 , N ≥ j > i = 1 . . . N−1

D ∈ EDMN

∂ ∈ SN
h

(1515)

where
[

∂ij dij

dij 1

]

º 0 ⇔ ∂ij ≥ d2
ij (1516)

Symmetry of input H facilitates trace in the objective (§B.4.2 no.20), while its
nonnegativity causes ∂ij → d2

ij as optimization proceeds.

7.3.1.1.1 Example. Alternating projection on nearest EDM.
By solving (1515) we confirm the result from an example given by Glunt, Hayden, Hong,
& Wells [184, §6] who found analytical solution to convex optimization problem (1511) for
particular cardinality N = 3 by using the alternating projection method of von Neumann
(§E.11):

H =





0 1 1
1 0 9
1 9 0



 , D⋆ =







0 19
9

19
9

19
9 0 76

9
19
9

76
9 0






(1517)

7.21For nonzero Y ∈ S
N
h and some open interval of t∈R (§3.14.0.0.2, §D.2.3)

d2

dt2
‖(D + t Y ) − H‖2

F = 2 tr Y TY > 0 ¨

7.22If that H given has negative entries, then the technique of solution presented here becomes invalid.
Projection of H on K (1420) prior to application of this proposed technique, as explained in §7.0.1, is
incorrect.
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The problem (1511), of projecting H on the EDM cone, is transformed to an equivalent
iterative sequence of projections on the two convex cones (1369) from §6.8.1.1. Utilizing
projector (1372) in an ordinary alternating projection, input H goes to D⋆ with an
accuracy of four decimal places in about 17 iterations. Affine dimension corresponding to
this optimal solution is r = 1.

Obviation of semidefinite programming’s computational expense is the principal
advantage of this alternating projection technique. 2

7.3.1.2 Schur-form semidefinite program, Problem 3 convex case

Semidefinite program (1515) can be reformulated by moving the objective function in

minimize
D

‖D − H‖2
F

subject to D ∈ EDMN
(1511)

to the constraints. This makes an equivalent epigraph form of the problem: for any
measurement matrix H

minimize
t∈R , D

t

subject to ‖D − H‖2
F ≤ t

D ∈ EDMN

(1518)

We can transform this problem to an equivalent Schur-form semidefinite program; (§3.5.3)

minimize
t∈R , D

t

subject to

[

tI vec(D − H)
vec(D − H)T 1

]

º 0

D ∈ EDMN

(1519)

characterized by great sparsity and structure. The advantage of this SDP is lack of
conditions on input H ; e.g, negative entries would invalidate any solution provided by
(1515). (§7.0.1.2)

7.3.1.3 Gram-form semidefinite program, Problem 3 convex case

Further, this problem statement may be equivalently written in terms of a Gram matrix
via linear bijective (§5.6.1) EDM operator D(G) (1018);

minimize
G∈SN

c , t∈R

t

subject to

[

tI vec(D(G) − H)

vec(D(G) − H)
T

1

]

º 0

G º 0

(1520)

To include constraints on the list X∈ Rn×N , we would rewrite this:

minimize
G∈SN

c , t∈R , X∈ R
n×N

t

subject to

[

tI vec(D(G) − H)

vec(D(G) − H)
T

1

]

º 0

[

I X
XT G

]

º 0

X∈ C

(1521)

where C is some abstract convex set. This technique is discussed in §5.4.2.2.8.
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7.3.1.4 Dual interpretation, projection on EDM cone

From §E.9.1.2 we learn that projection on a convex cone has dual form. In the circumstance
that K is a convex cone and point x exists exterior to the cone or on its boundary, distance
to the nearest point Px in K is found as the optimal value of the objective

‖x − Px‖ = maximize
a

aTx

subject to ‖a‖ ≤ 1

a ∈ K◦
(2248)

where K◦ is the polar cone.

Applying this result to (1511), we get a convex optimization for any given symmetric
matrix H exterior to or on the EDM cone boundary:

minimize
D

‖D − H‖2
F

subject to D ∈ EDMN
≡

maximize
A◦

〈A◦, H 〉
subject to ‖A◦‖F ≤ 1

A◦∈ EDMN◦
(1522)

Then, from (2250), projection of H on cone EDMN is

D⋆ = H − A◦⋆〈A◦⋆, H 〉 (1523)

Critchley proposed, instead, projection on the polar EDM cone in his 1980 thesis
[101, p.113]: In that circumstance, by projection on the algebraic complement (§E.9.2.2.1),

D⋆ = A⋆〈A⋆, H 〉 (1524)

which is equal to (1523) when A⋆ solves

maximize
A

〈A , H 〉
subject to ‖A‖F = 1

A ∈ EDMN

(1525)

This projection of symmetric H on polar cone EDMN◦
can be made a convex problem,

of course, by relaxing the equality constraint (‖A‖F ≤ 1).

7.3.2 Minimization of affine dimension in Problem 3

When desired affine dimension ρ is diminished, Problem 3 (1510) is difficult to solve

[220, §3] because the feasible set in RN(N−1)/2 loses convexity. By substituting rank
envelope (1495) into Problem 3, then for any given H we get a convex problem

minimize
D

‖D − H‖2
F

subject to − tr(V D V ) ≤ κ ρ

D ∈ EDMN

(1526)

where κ∈R+ is a constant determined by cut-and-try. Given κ , problem (1526) is
a convex optimization having unique solution in any desired affine dimension ρ ; an
approximation to Euclidean projection on that nonconvex subset of the EDM cone
containing EDMs with corresponding affine dimension no greater than ρ .
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The SDP equivalent to (1526) does not move κ into the variables as on page 460: for
nonnegative symmetric input H and distance-square squared variable ∂ as in (1514),

minimize
∂ , D

− tr(V (∂ − 2 H ◦D)V )

subject to

[

∂ij dij

dij 1

]

º 0 , N ≥ j > i = 1 . . . N−1

− tr(V D V ) ≤ κ ρ

D ∈ EDMN

∂ ∈ SN
h

(1527)

That means we will not see equivalence of this cenv(rank)-minimization problem to the
non-rank-constrained problems (1513) and (1515) like we saw for its counterpart (1497)
in Problem 2.

Another approach to affine dimension minimization is to project instead on the polar
EDM cone; discussed in §6.8.1.5.

7.3.3 Constrained affine dimension, Problem 3

When one desires affine dimension diminished further below what can be achieved via
cenv(rank)-minimization as in (1527), spectral projection can be considered a natural
means in light of its successful application to projection on a rank ρ subset of a positive
semidefinite cone in §7.1.4.

Yet it is wrong here to zero eigenvalues of −V D V or −V GV or a variant to reduce
affine dimension, because that particular method comes from projection on a positive
semidefinite cone (1456); zeroing those eigenvalues here in Problem 3 would place an
elbow in the projection path (Figure 175) thereby producing a result that is necessarily
suboptimal. Problem 3 is instead a projection on the EDM cone whose associated spectral
cone is considerably different. (§5.11.2.3) Proper choice of spectral cone is demanded by
diagonalization of that variable argument to the objective:

7.3.3.1 Cayley-Menger form

We use Cayley-Menger composition of the Euclidean distance matrix to solve a problem
that is the same as Problem 3 (1510): (§5.7.3.0.1)

minimize
D

∥

∥

∥

∥

[

0 1T

1 −D

]

−
[

0 1T

1 −H

]∥

∥

∥

∥

2

F

subject to rank

[

0 1T

1 −D

]

≤ ρ + 2

D ∈ EDMN

(1528)

a projection of H on a generally nonconvex subset (when ρ < N−1) of the Euclidean
distance matrix cone boundary rel ∂EDMN ; id est, projection from the EDM cone interior
or exterior on a subset of its relative boundary (§6.5, (1298)).

Rank of an optimal solution is intrinsically bounded above and below;

2 ≤ rank

[

0 1T

1 −D⋆

]

≤ ρ + 2 ≤ N + 1 (1529)

Our proposed strategy for low-rank solution is projection on that subset of a spectral cone

λ

([

0 1T

1 −EDMN

])

(§5.11.2.3) corresponding to affine dimension not in excess of that ρ



7.3. THIRD PREVALENT PROBLEM: 469

desired; id est, spectral projection on





Rρ+1
+

0
R−



 ∩ ∂H ⊂ RN+1 (1530)

where

∂H = {λ∈ RN+1 | 1Tλ = 0} (1230)

is a hyperplane through the origin. This pointed polyhedral cone (1530), to which
membership subsumes the rank constraint, is not full-dimensional.

Given desired affine dimension 0≤ ρ≤N−1 and diagonalization (§A.5) of unknown
EDM D

[

0 1T

1 −D

]

, UΥUT∈ SN+1
h (1531)

and given symmetric H in diagonalization

[

0 1T

1 −H

]

, QΛQT∈ SN+1 (1532)

having eigenvalues arranged in nonincreasing order, then by (1243) problem (1528) is
equivalent to

minimize
Υ , R

∥

∥δ(Υ) − π
(

δ(RTΛR)
)∥

∥

2

subject to δ(Υ) ∈





Rρ+1
+

0
R−



 ∩ ∂H

δ(QRΥRTQT) = 0

R−1 = RT

(1533)

where π is the permutation operator from §7.1.3 arranging its vector argument in
nonincreasing order,7.23 where

R , QTU ∈RN+1×N+1 (1534)

in U on the set of orthogonal matrices is a bijection, and where ∂H insures one negative
eigenvalue. Hollowness constraint δ(QRΥRTQT) = 0 makes problem (1533) difficult by
making the two variables dependent.

Our plan is to instead divide problem (1533) into two and then alternate their solution:

minimize
Υ

∥

∥δ(Υ) − π
(

δ(RTΛR)
)∥

∥

2

subject to δ(Υ) ∈





Rρ+1
+

0
R−



 ∩ ∂H
(a)

minimize
R

‖R Υ⋆RT− Λ‖2
F

subject to δ(QR Υ⋆RTQT) = 0

R−1 = RT

(b)

(1535)

7.23Recall, any permutation matrix is an orthogonal matrix.
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Proof. We justify disappearance of the hollowness constraint in convex optimization
problem (1535a): From arguments in §7.1.3 with regard to permutation operator π , cone

membership constraint δ(Υ)∈





Rρ+1
+

0
R−



∩ ∂H from (1535a) is equivalent to

δ(Υ) ∈





Rρ+1
+

0
R−



 ∩ ∂H ∩ KM (1536)

where KM is the monotone cone (§2.13.10.4.3). Membership of δ(Υ) to the polyhedral
cone of majorization (Theorem A.1.2.0.1)

K∗
λδ = ∂H ∩ K∗

M+ (1603)

where K∗
M+ is the dual monotone nonnegative cone (§2.13.10.4.2), is a condition (in

absence of a hollowness constraint) that would insure existence of a symmetric hollow

matrix

[

0 1T

1 −D

]

. Curiously, intersection of this feasible superset





Rρ+1
+

0
R−



∩ ∂H ∩ KM

from (1536) with the cone of majorization K∗
λδ is a benign operation; id est,

∂H ∩ K∗
M+ ∩ KM = ∂H ∩ KM (1537)

verifiable by observing conic dependencies (§2.10.3) among the aggregate of
halfspace-description normals. The cone membership constraint in (1535a) therefore
inherently insures existence of a symmetric hollow matrix. ¨

Optimization (1535b) would be a Procrustes problem (§C.4) were it not for the
hollowness constraint. It is, instead, a minimization over the intersection of the nonconvex
manifold of orthogonal matrices with another nonconvex set in variable R specified by the
hollowness constraint. We solve problem (1535b) by a method introduced in §4.7.0.0.2:
Define R = [ r1 · · · rN+1 ]∈RN+1×N+1 and make the assignment

G =











r1

...
rN+1

1











[ rT
1 · · · rT

N+1 1 ]

∈ S(N+1)2+1

=











R11 · · · R1,N+1 r1
...

. . .
...

RT
1,N+1 RN+1,N+1 rN+1

rT
1 · · · rT

N+1 1











,









r1r
T
1 · · · r1r

T
N+1 r1

...
. . .

...
rN+1r

T
1 rN+1r

T
N+1 rN+1

rT
1 · · · rT

N+1 1









(1538)

where Rij , rir
T
j ∈ RN+1×N+1 and Υ⋆

ii∈ R . Since R Υ⋆RT =
N+1
∑

i=1

Υ⋆
ii Rii , then problem
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(1535b) is equivalently expressed:

minimize
Rii∈S , Rij , ri

∥

∥

∥

∥

N+1
∑

i=1

Υ⋆
ii Rii − Λ

∥

∥

∥

∥

2

F
subject to tr Rii = 1 , i=1 . . . N+1

tr Rij = 0 , i<j = 2 . . . N+1

G =











R11 · · · R1,N+1 r1
...

. . .
...

RT
1,N+1 RN+1,N+1 rN+1

rT
1 · · · rT

N+1 1











(º 0)

δ

(

Q
N+1
∑

i=1

Υ⋆
ii Rii QT

)

= 0

rankG = 1

(1539)

The rank constraint is regularized by method of convex iteration developed in §4.5.
Problem (1539) is partitioned into two convex problems:

minimize
Rij , ri

∥

∥

∥

∥

N+1
∑

i=1

Υ⋆
ii Rii − Λ

∥

∥

∥

∥

2

F

+ 〈G , W 〉
subject to trRii = 1 , i=1 . . . N+1

trRij = 0 , i<j = 2 . . . N+1

G =











R11 · · · R1,N+1 r1
...

. . .
...

RT
1,N+1 RN+1,N+1 rN+1

rT
1 · · · rT

N+1 1











º 0

δ

(

Q
N+1
∑

i=1

Υ⋆
ii Rii QT

)

= 0

(1540)

and
minimize

W∈ S(N+1)2+1

〈G⋆, W 〉
subject to 0 ¹ W ¹ I

tr W = (N + 1)2
(1541)

then alternated with convex problem (1535a) until a rank-1 G matrix is found and the
objective of (1535a) is minimized.7.24 An optimal solution to (1541) is known in closed
form (p.545).

7.4 Conclusion

The importance and application of solving rank- or cardinality-constrained problems are
enormous, a conclusion generally accepted gratis by the mathematics and engineering
communities. Rank-constrained semidefinite programs arise in many vital feedback
and control problems [205], optics [84] (Figure 133), and communications [169] [294]
(Figure 182). For example, one might be interested in the minimal order dynamic output
feedback which stabilizes a given linear time invariant plant (this problem is considered
to be among the most important open problems in control). −[304] Rank and cardinality
constraints also arise naturally in combinatorial optimization (§4.7.0.0.11, Figure 122),
and find application to facial recognition (Figure 6), cartography (Figure 156), latent

7.24The hollowness constraint in (1540) may cause numerical instability; in that case, it may be moved
to the objective within an added weighted norm. Conditions for termination of the iteration would then
comprise a vanishing norm of hollowness.
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semantic indexing [269], sparse or low-rank matrix completion for preference models and
collaborative filtering, multidimensional scaling or principal component analysis (§5.12),
medical imaging (Figure 117), digital filter design with time domain constraints [432],
molecular conformation (Figure 149), sensor-network localization and wireless location
(Figure 97), etcetera.

There has been little progress in spectral projection since the discovery by
Eckart & Young in 1936 [153] leading to a formula for projection on a rank ρ subset of a
positive semidefinite cone (§2.9.2.1). [174] The only closed-form spectral method presently
available for solving proximity problems, having a constraint on rank, is based on their
discovery (Problem 1, §7.1, §5.13).

� One popular recourse is intentional misapplication of Eckart & Young’s result by
introducing spectral projection on a positive semidefinite cone into Problem 3 via
D(G) (1018), for example. [82] Since Problem 3 instead demands spectral projection
on the EDM cone, any solution acquired that way is necessarily suboptimal.

� A second recourse is problem redesign: A presupposition to all proximity problems
in this chapter is that matrix H is given. We considered H having various properties
such as nonnegativity, symmetry, hollowness, or lack thereof. It was assumed that
if H did not already belong to the EDM cone, then we wanted an EDM closest
to H in some sense; id est, input-matrix H was assumed corrupted somehow. For
practical problems, it withstands reason that such a proximity problem could instead
be reformulated so that some or all entries of H were unknown but bounded above
and below by known limits; the norm objective is thereby eliminated as in the
development beginning on page 255. That particular redesign (the art, p.8), in terms
of the Gram-matrix bridge between point list X and EDM D , at once encompasses
proximity and completion problems.

� A third recourse is to apply the method of convex iteration as we did in §7.2.2.7.1.
This technique is applicable to any semidefinite problem requiring a rank constraint;
it places a regularization term in the objective that enforces the rank constraint.
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Figure 177: Third-order filter (η=3 , confer Figure 180a). It is hard to introduce zeros
of transmission, as we have succeeded in doing here [172] (Figure 178), because some
op amps become unstable below unity gain by design. Ri and Rj minimize input offset
voltage amplification. R3 C1 =R2 C2 for minimum sensitivity. R2= R5 for unity gain at v2.
R7(1/R6−R2/(R5 R8)) = 1 for unity gain at v1. Bypass capacitors (6.8nF ceramic) reduce
supply noise. polystyrene capacitors in signal path are essential for reducing distortion.

8.5 Arbitrary magnitude analog filter design

Analog filter design means determination of Laplace transfer function coefficients to meet
specified tolerances in magnitude and phase over given frequencies. The problem posed
here is to find a stable minimum phase filter H(ω) , of given order η , closest to specified
samples of frequency-domain magnitude

{gi | ωi∈ Ω} (1542)

We consider a recursive filter whose real causal impulse response has Laplace transform

H(s) =
1 + b1s + b2s

2 + . . . + bηsη

1 + a1s + a2s2 + . . . + aηsη
(1543)

whose poles and zeros lie in the left halfplane (re s = σ < 0) and whose gain is unity at DC
(at s = 0). This transfer function is a ratio of polynomials in complex variable s defined

s , σ + ω (1544)

8.5.1 realization

To reduce passive component sensitivity, physical implementation is facilitated by factoring
Laplace transform (1543) into parallel or cascade second-order sections which are needed
to realize complex poles and zeros. Magnitude square of a second-order transfer function
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Figure 178: Matching the audio filter circuit comprising Figure 177, in Laplace variable
s (1544), Mason flowgraph is constructed solely by voltage division. Transfer function
reduced algebraically by Mathematica code

⌊

¸
⌋

. Op amp finite open loop gain A≈3E6

makes transfer function inexact but a close approximation because high order terms A4
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(η=2) evaluated along the ω axis (the Fourier domain)8.1 is

1 + v1ω
2 + v2ω

4

1 + u1ω2 + u2ω4
=

1 + (b2
1 − 2b2)ω

2 + b2
2ω

4

1 + (a2
1 − 2a2)ω2 + a2

2ω
4

(1545)

Coefficients b , a translate directly to passive component values. [172] Stability requires
coefficients to obey 0<a1 and 0<a2≤ a2

1/4 , while minimum phase demands 0<b1

and 0<b2≤ b2
1/4. These two requirements imply nonnegative magnitude square filter

coefficients v , u .
A cascade implementation of second-order sections can realize a high order unity gain

filter. Magnitude square of ηth order transfer function H , evaluated along the ω axis, is

|H(ω)|2 = H(ω)H(−ω) ,
V (ω)

U(ω)
=

1 + v1ω
2 + v2ω

4 + . . . + vηω2η

1 + u1ω2 + u2ω4 + . . . + uηω2η
(1546)

8.1Real filter coefficient vectors b , a , v , u are independent of radian frequency ω=2πf .

https://www.convexoptimization.com/TOOLS/mason.nb
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A cascade of two second-order sections, η=4 for example, has form

1 + v̈1ω
2 + v̈2ω

4

1 + ü1ω2 + ü2ω4

1 + v̈3ω
2 + v̈4ω

4

1 + ü3ω2 + ü4ω4
=

1 + v1ω
2 + v2ω

4 + v3ω
6 + v4ω

8

1 + u1ω2 + u2ω4 + u3ω6 + u4ω8
(1547)

where (confer §8.5.4)

v1 = v̈1 + v̈3 , u1 = ü1 + ü3

v2 = v̈2 + v̈4 + v̈1v̈3 , u2 = ü2 + ü4 + ü1ü3

v3 = v̈2v̈3 + v̈1v̈4 , u3 = ü2ü3 + ü1ü4

v4 = v̈2v̈4 , u4 = ü2ü4

(1548)

Odd η is implemented by cascading one first-order section.

8.5.2 filter design as optimization

To guise filter design as an optimization problem, magnitude square filter coefficients

v ,











v1

v2

...
vη











∈ Rη , u ,











u1

u2

...
uη











∈ Rη (1549)

become the variables. Given a set of frequencies Ω at which finite g(ω) is sampled, our
notation reflects this role reversal:

Vi

Ui
=

Vi(v)

Ui(u)
,

1 + v1ω
2
i + v2ω

4
i + . . . + vηω2η

i

1 + u1ω2
i + u2ω4

i + . . . + uηω2η
i

, ωi ∈ Ω (1550)

A better filter design may be obtained if stability and minimum phase requirements
are ignored by the optimization.8.2 Then coefficients v , u need not be nonnegatively
constrained. A least peak deviation filter design problem may be expressed

minimize
v , u , β

β

subject to
1

β
≤ Ui

Vi
g2

i ≤ β , ωi ∈ Ω

Vi ≥ 0 , Ui ≥ 0 , ωi ∈ Ω

(1551)

which is a nonconvex optimization problem because of a ratio in variables v & u .
Eliminating the ratio:

minimize
v , u , β

β

subject to Ui g2
i ≤ β Vi , ωi ∈ Ω

Vi g−2
i ≤ β Ui , ωi ∈ Ω

Vi ≥ 0 , Ui ≥ 0 , ωi ∈ Ω

(1552)

This equivalent problem is likewise nonconvex because of new products in variables β & v
and β & u . The feasible set in variables v , u , β is also nonconvex.

But problem (1552) can be solved by applying the fact that each product
β Vi(v) , β Ui(u) increases monotonically. We may then rely on convexity of the feasible

8.2Poles and zeros of H(ω) possess conjugate symmetry because of its real coefficients. Poles and
zeros of H(ω)H(−ω) possess both conjugate and real symmetry. Stability and minimum phase may be
imposed postoptimization by picking only those poles and zeros, respectively from H(ω)H(−ω) , that
reside in the left half s-plane.
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set described by linear constraints for fixed β . One strategy is to choose a sufficiently
large positive β so that (1552) is initially feasible; say β=βo . Then halve β until (1552)
becomes infeasible; say β=β∞ . At infeasibility, backtrack to a feasible β . Toward a
perfect fit, in the sense that all gi are collocated, optimal β approaches 1. This proposed
iteration represents a binary search (a.k.a bisection) for minimum β , say β=β⋆, that
is assumed to lie in the interval [β∞ , βo]:

β = βo

β∞ = 0
for k=1, 2, 3 . . . until convergence {

if (1552) feasible {
βo = βk−1

else

β∞ = βk−1

}
β = βk = (βo + β∞)/2

}

(1553)

Convergence to a global optimum is certain, within any desired tolerance in absence
of numerical error, characterized by an ever narrowing gap between β∞ and βo . At
convergence of (1553), the nonnegative β⋆ that minimizes (1551) is found.

8.5.2.0.1 Proof. Problem (1552) may be equivalently written

minimize
v , u , β , t , r

β

subject to Ui g2
i ≤ r , ωi ∈ Ω

r ≤ β Vi , ωi ∈ Ω

Vi g−2
i ≤ t , ωi ∈ Ω

t ≤ β Ui , ωi ∈ Ω

Vi ≥ 0 , Ui ≥ 0 , ωi ∈ Ω

(1554)

where β , t , r∈ R+ are implicitly nonnegative. The feasible set is not convex because
r is variable in r≤β Vi ; this implicit union in R3 (confer §2.1.9.0.1) of superlevel sets
is nonconvex. The same holds for t≤β Ui . By Schur complement (§A.4), quasiconcave
strictly monotonic functions β Vi and β Ui (§3.15.3.0.1) may be decomposed

β Vi ≥ r , β > 0 ⇔
[

Vi
√

r√
r β

]

º 0

β Ui ≥ t , β > 0 ⇔
[

β
√

t√
t Ui

]

º 0
(1555)

By Theorem A.3.1.0.4, problem (1554) is thereby equivalent to

minimize
v , u , β , t , r

[ 0 1 0 ]




V (v)
√

r 0√
r β

√
t

0
√

t U(u)









0
1
0





subject to Ui g2
i ≤ r , ωi ∈ Ω

Vi g−2
i ≤ t , ωi ∈ Ω





Vi
√

r 0√
r β

√
t

0
√

t Ui



º 0 , ωi ∈ Ω

(1556)

This means minimizing β is like simultaneously minimizing functions β V (v) and β U(u)
over a Cartesian subspace that is the intersection of their domains; namely, over a
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[

−g−2
i

β

]

[

β
−g2

i

]

Vi

Ui Ki
R2

Figure 179: Linearity of bisection method for solution of a quasiconvex problem.

line containing the β axis in an increasing direction. Minimization on any line retains
quasiconcavity [132], while minimization on any line in an increasing direction maintains
strict monotonicity. But local minima cannot be precluded because minimizing a strictly
monotonic function over a more general convex feasible set does not imply increasing
direction (§3.6.1.0.1, Figure 90) and because, to begin with, the feasible set in variables
v , u , β , t , r is nonconvex due to

√
r and

√
t .

One recourse, to preclude local minima, is to perform bisection (1553) on β to find its
globally optimal value β⋆ in problem (1552):

find v , u
subject to Ui g2

i ≤ β Vi , ωi ∈ Ω

Vi g−2
i ≤ β Ui , ωi ∈ Ω

Vi ≥ 0 , Ui > 0 , ωi ∈ Ω

(1557)

Now we explain how bisection succeeds. At each iteration, the feasible set in variables v , u
is convex because all the inequalities are linear when β is fixed. A necessary and sufficient
condition for bisection to find β⋆ requires feasibility for all β≥β⋆ and infeasibility for all
0≤β<β⋆. β is bounded below by 0 but not bounded above (nor need it be). Feasibility
is guaranteed by existence of a pointed convex cone K described by the linear inequalities
as an intersection of halfspaces about the origin in R2 ; namely

K =































⋂

i

Ki =

{[

Vi

Ui

]

∈ R2

}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[β −g2
i ]

[

Vi

Ui

]

≥ 0

[−g−2
i β ]

[

Vi

Ui

]

≥ 0

Vi ≥ 0
Ui > 0































⊆ R2

+ (1558)

Cone K , the feasible set in dependent variables Vi and Ui , ceases to exist for any β<β⋆.
This fact becomes evident by considering reach of the hyperplane normals which are
linear in β : [−g−2

i β ]
T

is confined to the second quadrant, [β −g2
i ]

T
is confined to

the fourth. As β→∞ , the extreme directions of pointed convex cone Ki approach the
Cartesian axes in the first quadrant. As β→0 , the extreme directions of Ki collapse
inward so as to narrow the cone then empty (∅) the feasible set. (Figure 179) When
β=β⋆≥ 1 , cone intersection K (§2.7.2.1) becomes an open ray emanating from the
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origin in the first quadrant.8.3 Hyperplane-normal linearity in β and lack of an objective
function here obviate the local-minima obstacle. ¨

A benefit, of this design methodology, is an unexpectedly low order η required to meet
a given filter specification (1542) to within reasonable tolerance β⋆ ; e.g, (Figure 177,
Figure 178, Figure 180)

1
2π Ω = {20 30 45 60 90 125 187 250 375 500 625 750 1000 1250 1500 2000 3000 4000 6000 8000 12000 16000}

20 log10{gi} = { 0 0 0 0 0 3 6 6 9 12 12 12 6 6 6 12 21 21 21 21 21 21}
(1559)

represents a particular individual’s loss compensation, in dB, targeted by the earO assistive
hearing device. Compensation levels are derived from an equal loudness hearing test

⌊

¸
⌋

then referenced to a golden ear.

8.5.3 precision

High powers of radian frequency, in magnitude square transfer function |H(ω)|2 (1546),
demand excessive precision from floating-point numerics. Even some second-order filter
design optimization problems can cause the best linear program solvers to fail because
double precision (64 bits, 52-bit mantissa) is inadequate. (Saunders provides a quadruple
precision solver: 128-bit wordlength, 112-bit mantissa.) High powers of frequency can be
ameliorated simply by scaling specification (1542):

Ω̃ ,
1

c
Ω (1560)

Scaled frequency-domain magnitude specification becomes

{g̃i | ω̃i∈ Ω̃ } = {gi | ωi∈ Ω} (1561)

where
ω̃ ,

ω

c
(1562)

and c >1 is a constant. A filter is designed as before except magnitude square transfer
function (1546) is replaced with

|H(ω̃)|2 ,
Ṽ (ω̃)

Ũ(ω̃)
=

1 + ṽ1ω̃
2 + ṽ2ω̃

4 + . . . + ṽηω̃2η

1 + ũ1ω̃2 + ũ2ω̃4 + . . . + ũηω̃2η
(1563)

Problem (1552) is solved for magnitude square filter coefficients ṽ , ũ :

Ṽi(ṽ)

Ũi(ũ)
,

1 + ṽ1ω̃
2
i + ṽ2ω̃

4
i + . . . + ṽηω̃2η

i

1 + ũ1ω̃2
i + ũ2ω̃4

i + . . . + ũηω̃2η
i

, ω̃i ∈ Ω̃ (1564)

Optimal coefficients v , u are scaled replicas:

v⋆ ,





















ṽ⋆
1

c2

ṽ⋆
2

c4

...
ṽ⋆

η

c2η





















, u⋆ ,





















ũ⋆
1

c2

ũ⋆
2

c4

...
ũ⋆

η

c2η





















(1565)

8.3 although no single Ki is necessarily a ray.

https://picasaweb.google.com/112455971931267452147/EarO?noredirect=1
https://ccrma.stanford.edu/~dattorro/Tin/equalLoudness.swf
https://web.stanford.edu/~saunders
https://web.stanford.edu/group/SOL/reports/quadLP3.pdf
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Figure 180: Arbitrary magnitude analog filter design specification represented by blue
dots. Red circles represent fit: (a) third-order (η=3 , confer Figure 177, Figure 178) and
(b) sixth-order (η=6). (Audiometrics for Glenna Mount.)
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The originally desired optimal fit is achieved as scaled frequency expands:

|H(ω)⋆|2 =
1 + v⋆

1(ω̃c)2 + v⋆
2(ω̃c)4 + . . . + v⋆

η(ω̃c)2η

1 + u⋆
1(ω̃c)2 + u⋆

2(ω̃c)4 + . . . + u⋆
η(ω̃c)2η

(1566)

8.5.4 nonnegative spectral factorization

Having found optimal real coefficient vectors v⋆, u⋆ for a sixteenth order magnitude square
transfer function, evaluated along the ω axis (§8.5),

|H(ω)|2 = H(ω)H(−ω) =
1 + v⋆

1ω2 + v⋆
2ω4 + . . . + v⋆

8ω16

1 + u⋆
1ω

2 + u⋆
2ω

4 + . . . + u⋆
8ω

16
(1546)

we wish to find real coefficients b , a for corresponding Fourier transform

H(ω) =
1 + b1ω + b2(ω)2 + . . . + b8(ω)8

1 + a1ω + a2(ω)2 + . . . + a8(ω)8
(1543)

These coefficients b , a , v⋆, u⋆ are related through simultaneous nonlinear algebraic
equations:

v⋆
1 = b2

1 − 2b2 , u⋆
1 = a2

1 − 2a2

v⋆
2 = b2

2 − 2b1b3 + 2b4 , u⋆
2 = a2

2 − 2a1a3 + 2a4

v⋆
3 = b2

3 − 2b2b4 + 2b1b5 − 2b6 , u⋆
3 = a2

3 − 2a2a4 + 2a1a5 − 2a6

v⋆
4 = b2

4 − 2b3b5 + 2b2b6 − 2b1b7 + 2b8 , u⋆
4 = a2

4 − 2a3a5 + 2a2a6 − 2a1a7 + 2a8

v⋆
5 = b2

5 − 2b4b6 + 2b3b7 − 2b2b8 , u⋆
5 = a2

5 − 2a4a6 + 2a3a7 − 2a2a8

v⋆
6 = b2

6 − 2b5b7 + 2b4b8 , u⋆
6 = a2

6 − 2a5a7 + 2a4a8

v⋆
7 = b2

7 − 2b6b8 , u⋆
7 = a2

7 − 2a6a8

v⋆
8 = b2

8 , u⋆
8 = a2

8 (1567)

Define a rank-1 matrix

G(b),

[

1
b

]

[ 1 bT ]
=





























1 b1 b2 b3 b4 b5 b6 b7 b8

b1 b2
1 b1b2 b1b3 b1b4 b1b5 b1b6 b1b7 b1b8

b2 b1b2 b2
2 b2b3 b2b4 b2b5 b2b6 b2b7 b2b8

b3 b1b3 b2b3 b2
3 b3b4 b3b5 b3b6 b3b7 b3b8

b4 b1b4 b2b4 b3b4 b2
4 b4b5 b4b6 b4b7 b4b8

b5 b1b5 b2b5 b3b5 b4b5 b2
5 b5b6 b5b7 b5b8

b6 b1b6 b2b6 b3b6 b4b6 b5b6 b2
6 b6b7 b6b8

b7 b1b7 b2b7 b3b7 b4b7 b5b7 b6b7 b2
7 b7b8

b8 b1b8 b2b8 b3b8 b4b8 b5b8 b6b8 b7b8 b2
8





























∈ S9 (1568)

(Matrix G(a) is similarly defined.) Observe that v⋆ in (1567) is formed by summing
antidiagonals of G(b) whose entries alternate sign. A particular sum is specified by a
predetermined symmetric matrix constant Ai (confer (60)) from a set {Ai∈ S9, i=1 . . . 8}.
With

A =







svec(A1)
T

...
svec(A8)

T






∈ R8×9(9+1)/2 (687)

as defined in §4.1.1, all sums (1567) may be stated as two linear equalities A svec G(b)= v⋆

and A svec G(a)=u⋆. Then the problem of finding coefficients b may be stated as a
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8th order Laplace

4th order 4th order

2nd 2nd 2nd 2nd

level

1

2

3

Figure 181: Nonnegative spectral factorization, high order bisection strategy. η =8th

order Laplace transform corresponds to 2η =16thorder magnitude square transfer function.
Because numerator v and denominator u are factored separately, number of factorizations
=2(log2(η)−1). In the text, double dots v̈ , ü connote first bifurcation (level 2). Triple
dots

...
v ,

...
u connote second bifurcations (level 3). Factors per level =2level−1.

feasibility problem8.4

find
G∈S9

b ∈ R8

subject to A svec G = v⋆
[

1
b

]

= G(: , 1)

b º 0
(G º 0)
rankG = 1

(1569)

The rank-1 constraint is handled by convex iteration, as explained in §4.5.1. Positive
semidefiniteness is parenthetical here because, for rank-1 matrices, symmetry is necessary
and sufficient (§A.3.1.0.7).

The purpose of spectral factorization, in electronics, is to facilitate high order filter
implementation in the form of passive and active circuitry. Cascades of second-order
(Laplace) sections are preferred because component sensitivity becomes manageable and
because needed complex poles and zeros cannot be obtained from a first-order section.

Nonnegative spectral factorization on a magnitude square transfer function, evaluated
along the ω axis, was performed to recover its corresponding Fourier transform.8.5 Next,
we nonnegatively decompose a high order magnitude square transfer function into a
product of successively lower order magnitude square transfer functions. Once fourth order
magnitude square functions are found, then corresponding second-order Laplace transfer
function coefficients are ascertained from (1545) and then passive component values can
be determined from those coefficients.

Our strategy, for an eighth order Laplace transfer function, is illustrated in Figure 181.
We begin at the tree’s level 2 factorization. Nonnegative decomposition of a 16th order

8.4 separately from the similar optimization problem to find vector a . Stability requires aº0 with
more constraints on a . Minimum phase requires bº0 and more constraints on b that are missing from
problem statement (1569). Both stability and minimum phase may be enforced, subsequent to spectral
factorization, by negating positive real parts of poles and zeros respectively in order to move them into
the left half (Laplace) s-plane with no impact to |H(ω)|.
8.5When there are no poles on the ω axis, a Laplace transform can be recovered from a Fourier transform

by substitution ω←s .
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magnitude square transfer function into two 8th order functions

1 + v⋆
1ω2 + v⋆

2ω4 + . . . + v⋆
8ω16

1 + u⋆
1ω

2 + u⋆
2ω

4 + . . . + u⋆
8ω

16
=

1 + v̈1ω
2 + v̈2ω

4 + v̈3ω
6 + v̈4ω

8

1 + ü1ω2 + ü2ω4 + ü3ω6 + ü4ω8

1 + v̈5ω
2 + v̈6ω

4 + v̈7ω
6 + v̈8ω

8

1 + ü5ω2 + ü6ω4 + ü7ω6 + ü8ω8

(1570)

implies simultaneous algebraic identifications with known real coefficient vectors v⋆, u⋆ :

v⋆
1 = v̈1 + v̈5 , u⋆

1 = ü1 + ü5

v⋆
2 = v̈2 + v̈6 + v̈1v̈5 , u⋆

2 = ü2 + ü6 + ü1ü5

v⋆
3 = v̈3 + v̈7 + v̈1v̈6 + v̈2v̈5 , u⋆

3 = ü3 + ü7 + ü1ü6 + ü2ü5

v⋆
4 = v̈4 + v̈8 + v̈1v̈7 + v̈2v̈6 + v̈3v̈5 , u⋆

4 = ü4 + ü8 + ü1ü7 + ü2ü6 + ü3ü5

v⋆
5 = v̈4v̈5 + v̈3v̈6 + v̈2v̈7 + v̈1v̈8 , u⋆

5 = ü4ü5 + ü3ü6 + ü2ü7 + ü1ü8

v⋆
6 = v̈4v̈6 + v̈3v̈7 + v̈2v̈8 , u⋆

6 = ü4ü6 + ü3ü7 + ü2ü8

v⋆
7 = v̈4v̈7 + v̈3v̈8 , u⋆

7 = ü4ü7 + ü3ü8

v⋆
8 = v̈4v̈8 , u⋆

8 = ü4ü8

(1571)

Now define a rank-1 matrix for the numerator

G(v̈),

[

1
v̈

]

[ 1 v̈T ]
=





























1 v̈1 v̈2 v̈3 v̈4 v̈5 v̈6 v̈7 v̈8

v̈1 v̈2
1 v̈1v̈2 v̈1v̈3 v̈1v̈4 v̈1v̈5 v̈1v̈6 v̈1v̈7 v̈1v̈8

v̈2 v̈1v̈2 v̈2
2 v̈2v̈3 v̈2v̈4 v̈2v̈5 v̈2v̈6 v̈2v̈7 v̈2v̈8

v̈3 v̈1v̈3 v̈2v̈3 v̈2
3 v̈3v̈4 v̈3v̈5 v̈3v̈6 v̈3v̈7 v̈3v̈8

v̈4 v̈1v̈4 v̈2v̈4 v̈3v̈4 v̈2
4 v̈4v̈5 v̈4v̈6 v̈4v̈7 v̈4v̈8

v̈5 v̈1v̈5 v̈2v̈5 v̈3v̈5 v̈4v̈5 v̈2
5 v̈5v̈6 v̈5v̈7 v̈5v̈8

v̈6 v̈1v̈6 v̈2v̈6 v̈3v̈6 v̈4v̈6 v̈5v̈6 v̈2
6 v̈6v̈7 v̈6v̈8

v̈7 v̈1v̈7 v̈2v̈7 v̈3v̈7 v̈4v̈7 v̈5v̈7 v̈6v̈7 v̈2
7 v̈7v̈8

v̈8 v̈1v̈8 v̈2v̈8 v̈3v̈8 v̈4v̈8 v̈5v̈8 v̈6v̈8 v̈7v̈8 v̈2
8





























∈ S9 (1572)

(Matrix G(ü) is defined similarly for the denominator.) Terms in (1571) are picked
out of G(v̈) by a predetermined symmetric matrix constant Äi (confer (60)) from a set
{Äi∈ S9, i=1 . . . 8}. Populating rows of

A =







svec(Ä1)
T

...

svec(Ä8)
T






∈ R8×9(9+1)/2 (687)

with vectorized Äi (as in §4.1.1), sums (1571) are succinctly represented by two linear
equalities A svec G(v̈)= v⋆ and A svec G(ü)=u⋆. Then this spectral factorization in v̈
may be posed as a feasibility problem

find
G∈S9

v̈ ∈ R8

subject to A svec G = v⋆
[

1
v̈

]

= G(: , 1)

v̈ º 0
(G º 0)
rankG = 1

(1573)

Having found two 8th order square spectral factors in nonnegative v̈⋆ from (1573), two
pairs of 4th order level 3 factors remain to be found:

1 + v̈⋆
1ω2 + v̈⋆

2ω4 + v̈⋆
3ω6 + v̈⋆

4ω8

1 + ü⋆
1ω

2 + ü⋆
2ω

4 + ü⋆
3ω

6 + ü⋆
4ω

8
=

1 +
...
v1ω

2 +
...
v2ω

4

1 +
...
u1ω2 +

...
u2ω4

1 +
...
v3ω

2 +
...
v4ω

4

1 +
...
u3ω2 +

...
u4ω4

(1574)

1 + v̈⋆
5ω2 + v̈⋆

6ω4 + v̈⋆
7ω6 + v̈⋆

8ω8

1 + ü⋆
5ω

2 + ü⋆
6ω

4 + ü⋆
7ω

6 + ü⋆
8ω

8
=

1 +
...
v5ω

2 +
...
v6ω

4

1 +
...
u5ω2 +

...
u6ω4

1 +
...
v7ω

2 +
...
v8ω

4

1 +
...
u7ω2 +

...
u8ω4

(1575)
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v̈⋆
1 =

...
v1 +

...
v3 , ü⋆

1 =
...
u1 +

...
u3

v̈⋆
2 =

...
v2 +

...
v4 +

...
v1

...
v3 , ü⋆

2 =
...
u2 +

...
u4 +

...
u1

...
u3

v̈⋆
3 =

...
v1

...
v4 +

...
v2

...
v3 , ü⋆

3 =
...
u1

...
u4 +

...
u2

...
u3

v̈⋆
4 =

...
v2

...
v4 , ü⋆

4 =
...
u2

...
u4

(1576)

v̈⋆
5 =

...
v5 +

...
v7 , ü⋆

5 =
...
u5 +

...
u7

v̈⋆
6 =

...
v6 +

...
v8 +

...
v5

...
v7 , ü⋆

6 =
...
u6 +

...
u8 +

...
u5

...
u7

v̈⋆
7 =

...
v5

...
v8 +

...
v6

...
v7 , ü⋆

7 =
...
u5

...
u8 +

...
u6

...
u7

v̈⋆
8 =

...
v6

...
v8 , ü⋆

8 =
...
u6

...
u8

(1577)

G(
...
v),

[

1
...
v

]

[ 1
...
vT ]

=





























1
...
v1

...
v2

...
v3

...
v4

...
v5

...
v6

...
v7

...
v8

...
v1

...
v2
1

...
v1

...
v2

...
v1

...
v3

...
v1

...
v4

...
v1

...
v5

...
v1

...
v6

...
v1

...
v7

...
v1

...
v8

...
v2

...
v1

...
v2

...
v2
2

...
v2

...
v3

...
v2

...
v4

...
v2

...
v5

...
v2

...
v6

...
v2

...
v7

...
v2

...
v8

...
v3

...
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∈ S9 (1578)

Setting

A =







svec(
...
A1)

T

...

svec(
...
A8)

T






∈ R8×9(9+1)/2 (687)

then all level 3 (Figure 181) nonnegative spectral factorization coefficients
...
v are found

at once by solving

find
G∈S9

...
v ∈ R8

subject to A svec G = v̈⋆
[

1
...
v

]

= G(: , 1)

...
v º 0
(G º 0)
rankG = 1

(1579)

The feasibility problem to find
...
u is similar. All second-order Laplace transfer function

coefficients can be found via (1545).

8.5.4.0.1 Exercise. Digital filters of arbitrary magnitude frequency response.
(confer §8.5) Like analog transfer function (1543), a digital filter has transfer function

H(z) =
b0 + b1z

−1 + b2z
−2 + . . . + bηz−η

a0 + a1z−1 + a2z−2 + . . . + aηz−η
(1580)

where z , esT where s is the Laplace variable (1544) and T is equal to sample period in
seconds. H(z) is the z (discrete Laplace) transform of a real causal discrete-time impulse
response. [327] Magnitude square of a digital second-order transfer function, η=2 for
example, evaluated along the unit circle (z= eωT , the discrete-time Fourier domain) is

v0 + v1 cos(ωT ) + v2 cos(2ωT )

u0 + u1 cos(ωT ) + u2 cos(2ωT )
=

b2
0 + b2

1 + b2
2 + 2b1(b0 + b2) cos(ωT ) + 2b0b2 cos(2ωT )

a2
0 + a2

1 + a2
2 + 2a1(a0 + a2) cos(ωT ) + 2a0a2 cos(2ωT )

(1581)
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Evaluated at DC (z=1) we get

v0 + v1 + v2

u0 + u1 + u2
=

(b0 + b1 + b2)
2

(a0 + a1 + a2)2
(1582)

More generally this means that if we require a unity gain filter at DC, then we acquire a
new constraint

u0 + u1 + u2 + . . . + uη = v0 + v1 + v2 + . . . + vη = 1 (1583)

Magnitude square of ηth order digital transfer function H , evaluated along the unit circle

|H(eω)|2 = H(eω)H(e−ω) ,
V (ω)

U(ω)
=

v0 + v1 cos(ωT ) + v2 cos(2ωT ) + . . . + vη cos(ηωT )

u0 + u1 cos(ωT ) + u2 cos(2ωT ) + . . . + uη cos(ηωT )
(1584)

no longer has high powers of radian frequency ω as did its analog counterpart (1546). A
question naturally arises as to whether this digital magnitude square transfer function is
more amenable to numerical computation. To answer this, choose a sample rate (Fs =1/T )
that is at least twice the highest analog frequency present in design specification (1559);
16000T ≤ 1

2 must hold. Redefine

Vi

Ui
=

Vi(v)

Ui(u)
,

v0 + v1 cos(ωiT ) + v2 cos(2ωiT ) + . . . + vη cos(ηωiT )

u0 + u1 cos(ωiT ) + u2 cos(2ωiT ) + . . . + uη cos(ηωiT )
, ωi ∈ Ω (1585)

which replaces (1550). Solve problem (1552), as before, but with new constraint (1583):

minimize
v , u , β

β

subject to Ui g2
i ≤ β Vi , ωi ∈ Ω

Vi g−2
i ≤ β Ui , ωi ∈ Ω

Vi ≥ 0 , Ui ≥ 0 , ωi ∈ Ω

U0 = V0 = 1

(1586)

where the 0 subscript denotes phantom frequency ω0 , 0 not present in specification
(1559). Assumption of unity gain at DC means corresponding implicit gain g0 is collocated
and has value 1 ; id est, 20 log10 g0 =0dB. Optimal filter coefficients are very large for this
particular design specification (1559). Does numerical solution depend on sample rate;
e.g, does 1/T =64000 work better than 1/T =32000? Do solver numerics behave better
here than for the corresponding analog filter design? Is higher filter order η consequently
achievable? If in the affirmative, then one might accomplish a difficult analog design by
first designing in the digital domain using a warped frequency specification obtained via
bilinear transformation [327, §7.1.2]. H

8.6 Signal dropout

Signal dropout is an old problem; well studied from both an industrial and academic
[144, §6.2] perspective. Essentially dropout means momentary loss or gap in a signal, while
passing through some channel, caused by some man-made or natural phenomenon. The
signal lost is assumed completely destroyed somehow. What remains within the time-gap
is system or idle channel noise. The signal could be voice over Internet protocol (VoIP),
for example, audio data from a compact disc (CD) or video data from a digital video disc
(DVD), a television transmission over cable or the airwaves, or a typically ravaged cell
phone communication, etcetera.
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Here we consider signal dropout in a discrete-time signal corrupted by additive
white noise assumed uncorrelated to the signal. The linear channel is assumed to
introduce no filtering. We create a discretized windowed signal by positively combining k
randomly chosen vectors from a discrete cosine transform (DCT) basis denoted Ψ∈Rn×n.
Frequency increases, in the Fourier sense, from DC toward Nyquist as column index of basis
Ψ increases. Otherwise, details of the basis are unimportant except for its orthogonality
ΨT = Ψ−1. Transmitted signal is denoted

s = Ψz ∈ Rn (1587)

whose upper bound on DCT basis coefficient cardinality card z≤ k is assumed known;8.6

hence a critical assumption: transmitted signal s is sparsely supported (k < n) on the
DCT basis. It is further assumed that nonzero signal coefficients, in vector z , place each
chosen basis vector above the noise.

We also assume that the gap’s beginning and ending in time are precisely localized to
within a sample; id est, index ℓ locates the last sample prior to the gap’s onset, while
index n−ℓ+1 locates the first sample subsequent to the gap: for rectangularly windowed
received signal g possessing a time-gap loss and additive noise η∈Rn

g =





s1:ℓ + η1:ℓ

ηℓ+1:n−ℓ

sn−ℓ+1:n + ηn−ℓ+1:n



∈ Rn (1588)

The window is thereby centered on the gap and short enough so that the DCT spectrum
of signal s can be assumed static over the window’s duration n . Signal to noise ratio
within this window is defined

snr , 20 log

∥

∥

∥

∥

[

s1:ℓ

sn−ℓ+1:n

]∥

∥

∥

∥

‖η‖ (1589)

In absence of noise, knowing the signal DCT basis and having a good estimate of basis
coefficient cardinality makes perfectly reconstructing gap-loss easy: it amounts to solving
a linear system of equations and requires little or no optimization; with caveat, number
of equations exceeds cardinality of signal representation (roughly ℓ≥ k) with respect to
DCT basis.

But addition of a significant amount of noise η increases level of difficulty dramatically;
a 1-norm based method of reducing cardinality, for example, almost always returns
DCT basis coefficients numbering in excess of minimal cardinality. We speculate that is
because signal cardinality 2ℓ becomes the predominant cardinality. DCT basis coefficient
cardinality is an explicit constraint to the optimization problem we shall pose: In presence
of noise, constraints equating reconstructed signal f to received signal g are not possible.
We can instead formulate the dropout recovery problem as a best approximation:

minimize
x∈R

n

∥

∥

∥

∥

[

f1:ℓ − g1:ℓ

fn−ℓ+1:n − gn−ℓ+1:n

]∥

∥

∥

∥

subject to f = Ψx
x º 0
card x ≤ k

(1590)

We propose solving this nonconvex problem (1590) by moving the cardinality constraint
to the objective as a regularization term as explained in §4.6 (p.263); id est, by iteration

8.6This simplifies exposition, although it may be an unrealistic assumption in many applications.
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Figure 182: (a) Signal dropout in signal s corrupted by noise η (snr =10dB, g = s + η).
Flatline indicates duration of signal dropout. (b) Reconstructed signal f (red) overlaid
with corrupted signal g .
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Figure 183: (a) Error signal power (reconstruction f less original noiseless signal s) is
36dB below s . (b) Original signal s overlaid with reconstruction f (red) from corrupted
signal g having dropout plus noise.
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of two convex problems until convergence:

minimize
x∈R

n
〈x , y〉 +

∥

∥

∥

∥

[

f1:ℓ − g1:ℓ

fn−ℓ+1:n − gn−ℓ+1:n

]∥

∥

∥

∥

subject to f = Ψx
x º 0

(1591)

and
minimize

y∈R
n

〈x⋆, y〉
subject to 0 ¹ y ¹ 1

yT1 = n − k

(538)

Signal cardinality 2ℓ is implicit to the problem statement. When number of samples in
the dropout region exceeds half the window size, then that deficient cardinality of signal
remaining becomes a source of degradation to reconstruction in presence of noise. Thus, by
observation, we divine a reconstruction rule for this signal dropout problem to attain good
noise suppression: ℓ must exceed a maximum of cardinality bounds; 2ℓ ≥ max{2k , n/2}.

Figure 182 and Figure 183 show one realization of this dropout problem. Original
signal s is created by adding four (k = 4) randomly selected DCT basis vectors, from
Ψ (n = 500 in this example), whose amplitudes are randomly selected from a uniform
distribution above the noise floor; in the interval [10−10/20, 1]. Then a 240-sample dropout
is realized (ℓ = 130) and Gaussian noise η added to make corrupted signal g (from which a
best approximation f will be made) having 10dB snr (1589). The time gap contains much
noise, as apparent from Figure 182a. But in only a few iterations (1591) (538), original
signal s is recovered with relative error power 36dB down; illustrated in Figure 183.
Correct cardinality is also recovered (cardx = card z) along with the basis vector indices
used to make original signal s . Approximation error is due to DCT basis coefficient
estimate error. When this experiment is repeated 1000 times on noisy signals averaging
10dB snr, the correct cardinality and indices are recovered 99% of the time with average
relative error power 30dB down. Without noise, we get perfect reconstruction in one
iteration. [440, Matlab code]
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Appendix A

Linear Algebra

A.1 Main-diagonal δ operator, λ , tr , vec , ◦ , ⊗
We introduce notation δ denoting the main-diagonal linear selfadjoint operator. When
linear function δ operates on a square matrix A∈RN×N , δ(A) returns a vector composed
of all the entries from the main diagonal in the natural order;

δ(A) ∈ RN (1592)

Operating on a vector y∈RN , δ naturally returns a diagonal matrix;

δ(y) ∈ SN (1593)

Operating recursively on a vector Λ∈RN or diagonal matrix Λ∈SN , δ(δ(Λ)) returns Λ
itself;

δ2(Λ) ≡ δ(δ(Λ)) , Λ (1594)

Defined this way [264, §3.10, §9.5-1],A.1 main-diagonal linear operator δ is selfadjoint ;
videlicet, (§2.2)

δ(A)Ty = 〈δ(A) , y〉 = 〈A , δ(y)〉 = tr
(

ATδ(y)
)

(1595)

A.1.1 Identities

This δ notation is efficient and unambiguous as illustrated in the following examples
where: A ◦ B denotes Hadamard’s (commutative) product of matrices of like size [237]
[189, §1.1.4] (§D.1.2.2), A ⊗ B denotes Kronecker product [198] (§D.1.2.1), y is a vector,
X a matrix, ei the ith member of the standard basis for Rn, SN

h the symmetric hollow
subspace, σ(A) a vector of (nonincreasingly) ordered singular values of matrix A , and
λ(A) denotes a vector of nonincreasingly ordered eigenvalues:

1. δ(A) = δ(AT)

2. tr(A) = tr(AT) = δ(A)T1 = 〈I , A〉

3. δ(cA) = c δ(A) c∈R

4. tr(cA) = c tr(A) = c1Tλ(A) c∈R

A.1Linear operator T : R
m×n→R

M×N is selfadjoint when, ∀ X1 , X2∈R
m×n

〈T (X1) , X2〉 = 〈X1 , T (X2)〉

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 491

https://ccrma.stanford.edu/~dattorro
https://www.convexoptimization.com
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5. vec(cA) = c vec(A) c∈R

6. A ◦ B = B ◦ A , A ◦ cB = cA ◦ B c∈R

7. A ⊗ B 6= B ⊗ A , A ⊗ cB = cA ⊗ B c∈R

8. There exist permutation matrices Ξ1 and Ξ2 Ä [198, p.28]

A ⊗ B = Ξ1(B ⊗ A) Ξ2 (1596)

9. δ(A + B) = δ(A) + δ(B)

10. tr(A + B) = tr(A) + tr(B)

11. vec(A + B) = vec(A) + vec(B)

12. (A + B) ◦ C = A ◦ C + B ◦ C
A ◦ (B + C ) = A ◦ B + A ◦ C

13. (A + B) ⊗ C = A ⊗ C + B ⊗ C
A ⊗ (B + C ) = A ⊗ B + A ⊗ C

14. sgn(c) λ(|c|A) = c λ(A) c∈R

15. sgn(c) σ(|c|A) = c σ(A) c∈R

16. tr(c
√

ATA ) = c tr
√

ATA = c1Tσ(A) c∈R

17. π(δ(A)) = λ(I ◦A) where π is presorting function

18. δ(AB) = (A ◦ BT)1 = (BT◦ A)1 , δ(AB)T = 1T(AT◦ B) = 1T(B ◦ AT)

19. δ(uvT) =







u1v1

...
uN vN






= u ◦ v , u,v∈RN

20.
〈

δ(uvT) , w
〉

=
〈

u , δ(wvT)
〉

= 〈u ◦ v , w〉 = 〈u , w ◦ v〉 , u,v,w∈RN

21. tr(ATB) = tr(ABT) = tr(BAT) = tr(BTA) = vec(A)Tvec B

= 1T(A ◦ B)1 = 1Tδ(ABT) = δ(ATB)T1 = δ(BAT)T1 = δ(BTA)T1

22. D = [dij ] ∈ SN
h , H = [hij ] ∈ SN

h , V = I − 1
N 11T∈ SN (confer §B.4.2 no.20)

N tr(−V (D ◦ H)V ) = tr(DTH) = 1T(D ◦ H)1 = tr(11T(D ◦ H)) =
∑

i,j

dij hij

23. tr(ΛA) = δ(Λ)Tδ(A) , δ2(Λ) , Λ ∈ SN

24. yTB δ(A) = tr
(

B δ(A)yT
)

= tr
(

δ(BTy)A
)

= tr
(

A δ(BTy)
)

= δ(A)TBTy = tr
(

y δ(A)TBT
)

= tr
(

ATδ(BTy)
)

= tr
(

δ(BTy)AT
)

25. δ2(ATA) =
∑

i

eie
T
i A

TAeie
T
i

26. δ
(

δ(A)1T
)

= δ
(

1 δ(A)T
)

= δ(A)

27. δ(A1)1 = δ(A11T) = A1 , δ(y)1 = δ(y1T) = y

28. δ(I1) = δ(1) = I

29. δ(eie
T
j 1) = δ(ei) = eie

T
i
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30. For ζ =[ζi]∈Rk and x=[xi]∈Rk,
∑

i

ζi /xi = ζTδ(x)−11

31.
vec(A ◦ B) = vec(A) ◦ vec(B) = δ(vec A) vec(B)

= vec(B) ◦ vec(A) = δ(vec B) vec(A)
(44) (1993)

32. tr(ATXA) =
n
∑

i=1

A(: , i)TXA(: , i) , A∈Rm×n

33. vec(AXB) = (BT⊗ A) vec X
(

not H
)

34. vec(BXA) = (AT⊗ B) vec X

35. AX + XB = C ⇔ (I ⊗ A + BT⊗ I ) vec X = vec C (Lyapunov) [344, §5.1.10]

36.
tr(AXBXT) = vec(X)Tvec(AXB) = vec(X)T(BT⊗ A) vec X [198]

= δ
(

vec(X) vec(X)T(BT⊗ A)
)T

1

37.
tr(AXTBX) = vec(X)Tvec(BXA) = vec(X)T(AT⊗ B) vec X

= δ
(

vec(X) vec(X)T(AT⊗ B)
)T

1

38. aTXBXTc = vec(X)T(B ⊗ acT) vec X = vec(X)T(BT⊗ caT) vec X [344, §10.2.2]

39. aTXTBXc = vec(X)T(acT⊗ B) vec X = vec(X)T(caT⊗ BT) vec X

40. For any permutation matrix Ξ and dimensionally compatible vector y or matrix A

δ(Ξ y) = Ξ δ(y) ΞT (1597)

δ(ΞAΞT) = Ξ δ(A) (1598)

So given any permutation matrix Ξ and any dimensionally compatible matrix B ,
for example,

δ2(B) = Ξ δ2(ΞTB Ξ)ΞT (1599)

41. A ⊗ 1 = 1 ⊗ A = A

42. A ⊗ (B ⊗ C ) = (A ⊗ B) ⊗ C

43. (A ⊗ B)(D ⊗ E) = AD ⊗ BE
(A ⊗ B ⊗ C)(D ⊗ E ⊗ F ) = AD ⊗ BE ⊗ CF

44. For a a vector, (a ⊗ B) = (a ⊗ I )B

45. For bT a row vector, (A ⊗ bT) = A(I ⊗ bT)

46. (A ⊗ B)T = AT⊗ BT, (A ◦ B)T = AT◦ BT

47. (AB)−1 = B−1A−1, (AB)T = BTAT, (AB)−T = A−TB−T (confer p.633)

48. (A ⊗ B)−1 = A−1⊗ B−1

49. (A ⊗ B)† = A† ⊗ B† (2084)

50. δ(A ⊗ B) = δ(A) ⊗ δ(B)

51. tr(A ⊗ B) = trA tr B = tr(B ⊗ A) [272, cor.13.13]

52. For A∈Rm×m, B∈Rn×n, det(A ⊗ B) = detn(A) detm(B) = det(B ⊗ A)

53. For eigenvalues λ(A)∈Cn and eigenvectors v(A)∈Cn×n Ä A = vδ(λ)v−1∈Rn×n

λ(A ⊗ B) = λ(A) ⊗ λ(B) , v(A ⊗ B) = v(A) ⊗ v(B) (1600)

54. rank(A ⊗ B) = rank(A) rank(B) = rank(B ⊗ A) [272, cor.13.11]

https://www.convexoptimization.com/TOOLS/Bevely.pdf
https://www.convexoptimization.com/TOOLS/Bevely.pdf
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A.1.2 Majorization

A.1.2.0.1 Theorem. (Schur) Majorization. [469, §7.4] [237, §4.3] [238, §5.5]
Let λ∈RN denote a given vector of eigenvalues and let δ∈RN denote a given vector of
main diagonal entries, both arranged in nonincreasing order. Then

∃A∈ SN Ä λ(A)=λ and δ(A)= δ ⇐ λ − δ ∈ K∗
λδ (1601)

and conversely
A∈ SN ⇒ λ(A) − δ(A) ∈ K∗

λδ (1602)

The difference belongs to the pointed polyhedral cone of majorization (not a
full-dimensional cone, confer (322))

K∗
λδ , K∗

M+ ∩ {ζ 1 | ζ∈R}∗ (1603)

where K∗
M+ is the dual monotone nonnegative cone (444), and where the dual of the line

is a hyperplane; ∂H= {ζ 1 | ζ∈R}∗ = 1⊥. ⋄

Majorization cone K∗
λδ is naturally consequent to the definition of majorization; id est,

vector y∈RN majorizes vector x if and only if

k
∑

i=1

xi ≤
k

∑

i=1

yi ∀ 1 ≤ k ≤ N (1604)

and
1Tx = 1Ty (1605)

Under these circumstances, rather, vector x is majorized by vector y .
In the particular circumstance δ(A)=0 we get:

A.1.2.0.2 Corollary. Symmetric hollow majorization.
Let λ∈RN denote a given vector of eigenvalues arranged in nonincreasing order. Then

∃A∈ SN
h Ä λ(A)=λ ⇐ λ ∈ K∗

λδ (1606)

and conversely
A∈ SN

h ⇒ λ(A) ∈ K∗
λδ (1607)

where K∗
λδ is defined in (1603). ⋄

A.2 Semidefiniteness: domain of test

The most fundamental necessary, sufficient, and definitive test for positive semidefiniteness
of matrix A ∈Rn×n is: [238, §1]

xTA x ≥ 0 for each and every x∈ Rn such that ‖x‖= 1 (1608)

Traditionally, authors demand evaluation over broader domain; namely, over all x∈Rn

which is sufficient but unnecessary. Indeed, that standard textbook requirement is far
over-reaching because if xTA x is nonnegative for particular x = xp , then it is nonnegative
for any αxp where α∈R . Thus, only normalized x in Rn need be evaluated.

Many authors add the further requirement that the domain be complex; the broadest
domain. By so doing, only Hermitian matrices (AH = A where superscript H denotes
conjugate transpose)A.2 are admitted to the set of positive semidefinite matrices (1611);
an unnecessary prohibitive condition.

A.2Hermitian symmetry is the complex analogue; the real part of a Hermitian matrix is symmetric while
its imaginary part is antisymmetric. A Hermitian matrix has real eigenvalues and real main diagonal.
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A.2.1 Symmetry versus semidefiniteness

We call (1608) the most fundamental test of positive semidefiniteness. Yet some authors
instead say, for real A and complex domain {x∈Cn} , the complex test xHAx≥ 0 is most
fundamental. That complex broadening of the domain of test causes nonsymmetric real
matrices to be excluded from the set of positive semidefinite matrices. Yet admitting
nonsymmetric real matrices or not is a matter of preferenceA.3 unless that complex test
is adopted, as we shall now explain.

Any real square matrix A has a representation in terms of its symmetric and
antisymmetric parts; id est,

A =
(A +AT)

2
+

(A −AT)

2
(56)

Because the antisymmetric part vanishes under real test, for all real A

xT (A −AT)

2
x = 0 (1609)

only the symmetric part 1
2 (A +AT) has a role determining positive semidefiniteness.

Hence the oft-made presumption that only symmetric matrices may be positive
semidefinite is, of course, erroneous under (1608). Because eigenvalue-signs of a symmetric
matrix translate unequivocally to its semidefiniteness, the eigenvalues that determine
semidefiniteness are always those of the symmetrized matrix. (§A.3) For that reason, and
because symmetric (or Hermitian) matrices must have real eigenvalues, the convention
adopted in the literature is that semidefinite matrices are synonymous with symmetric
semidefinite matrices. Certainly misleading under (1608), that presumption is typically
bolstered with compelling examples from the physical sciences where symmetric matrices
occur within the mathematical exposition of natural phenomena.A.4

Perhaps a better explanation of this pervasive presumption of symmetry comes from
Horn & Johnson [237, §7.1] whose perspectiveA.5 is the complex matrix, thus necessitating
the complex domain of test throughout their treatise. They explain, if A∈Cn×n

. . . and if xHAx is real for all x∈Cn, then A is Hermitian. Thus, the
assumption that A is Hermitian is not necessary in the definition of positive
definiteness. It is customary, however.

Their comment is best explained by noting, the real part of xHAx comes from the
Hermitian part 1

2 (A +AH) of A ;

re(xHAx) = xH A +AH

2
x (1610)

rather,
xHAx ∈ R ⇔ AH = A (1611)

because the imaginary part of xHAx comes from the antiHermitian part 1
2 (A −AH) ;

im(xHAx) = xH A −AH

2
x (1612)

that vanishes for nonzero x if and only if A = AH. So the Hermitian symmetry assumption
is unnecessary (according to Horn & Johnson) not because nonHermitian matrices could

A.3Golub & Van Loan [189, §4.2.2], for example, admit nonsymmetric real matrices.
A.4 e.g, [167, §52] [359, §2.1]. Symmetric matrices are certainly pervasive in our chosen subject as well.
A.5A totally complex perspective is not necessarily more advantageous. The positive semidefinite cone,
for example, is not selfdual (§2.13.6) in the ambient space of Hermitian matrices. [230, §II]
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be regarded positive semidefinite, rather because nonHermitian (includes nonsymmetric
real) matrices are not comparable on the real line under xHAx . Yet that complex edifice
is dismantled in the test of real matrices (1608) because the domain of test is no longer
necessarily complex; meaning, xTAx will certainly always be real, regardless of symmetry,
and so real A will always be comparable.

In summary, if we limit the domain of test to all x in Rn as in (1608), then nonsymmetric
real matrices are admitted to the realm of semidefinite matrices because they become
comparable on the real line. One important exception occurs for rank-1 matrices Ψ=uvT

where u and v are real vectors: Ψ is positive semidefinite if and only if Ψ=uuT.
(§A.3.1.0.7)

We might choose to expand the domain of test to all x in Cn so that only symmetric
matrices would be comparable. An alternative to expanding domain of test is to assume
all matrices of interest to be symmetric; that is commonly done, hence the synonymous
relationship with semidefinite matrices.

A.2.1.0.1 Example. Nonsymmetric positive definite product.
Horn & Johnson assert and Zhang [469, §6.2, §3.2] agrees:

If A,B∈Cn×n are positive definite, then we know that the product AB is
positive definite if and only if AB is Hermitian. −[237, §7.6 prob.10]

Implicitly in their statement, A and B are assumed individually Hermitian and the domain
of test is assumed complex. We prove the assertion to be false for real matrices under
(1608) that adopts a real domain of test.

Proof is by counterexample:

AT = A =









3 0 −1 0
0 5 1 0

−1 1 4 1
0 0 1 4









, λ(A) =









5.9
4.5
3.4
2.0









(1613)

BT = B =









4 4 −1 −1
4 5 0 0

−1 0 5 1
−1 0 1 4









, λ(B) =









8.8
5.5
3.3
0.24









(1614)

(AB)T 6= AB =









13 12 −8 −4
19 25 5 1
−5 1 22 9
−5 0 9 17









, λ(AB) =









36.
29.
10.
0.72









(1615)

1

2
(AB+(AB)T)=









13 15.5 −6.5 −4.5
15.5 25 3 0.5
−6.5 3 22 9
−4.5 0.5 9 17









, λ

(

1

2
(AB + (AB)T)

)

=









36.
30.
10.

0.014









(1616)

Whenever A∈ Sn
+ and B∈ Sn

+ , then λ(AB)=λ(
√

AB
√
A) will always be

a nonnegative vector by (1640) and Corollary A.3.1.0.5. Yet positive
definiteness of product AB is certified instead by the nonnegative eigenvalues
λ
(

1
2(AB + (AB)T)

)

in (1616) (§A.3.1.0.1) despite the fact that AB is not
symmetric.A.6 ¨

Horn & Johnson and Zhang resolve this anomaly by choosing to exclude nonsymmetric
matrices and products; they do so by expanding the domain of test to Cn. 2

A.6It is a little more difficult to find a counterexample in R
2×2 or R

3×3 ; which may have served to
advance any confusion.
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A.3 Proper statements of positive semidefiniteness

Unlike Horn & Johnson and Zhang, we never adopt a complex domain of test with
real matrices. So motivated is our consideration of proper statements of positive
semidefiniteness under real domain of test. This restriction, ironically, complicates the
facts when compared to corresponding statements for the complex case (found elsewhere
[237] [469]).

We state several fundamental facts regarding positive semidefiniteness of real matrix
A and the product AB and sum A +B of real matrices under fundamental real test
(1608); a few require proof as they depart from the standard texts, while those remaining
are well established or obvious.

A.3.0.0.1 Theorem. Positive (semi)definite matrix.
A∈ SM is positive semidefinite if and only if for each and every vector x∈RM of unit
norm, ‖x‖= 1 ,A.7 we have xTA x≥ 0 (1608);

A º 0 ⇔ tr(xxTA) = xTA x ≥ 0 ∀xxT (1617)

Matrix A ∈ SM is positive definite if and only if for each and every ‖x‖= 1 we have
xTA x > 0 ;

A ≻ 0 ⇔ tr(xxTA) = xTA x > 0 ∀xxT, xxT 6= 0 (1618)

⋄

Proof. Statements (1617) and (1618) are each a particular instance of dual generalized
inequalities (§2.13.2) with respect to the positive semidefinite cone; videlicet, [412]

A º 0 ⇔ 〈xxT, A〉 ≥ 0 ∀xxT(º 0)

A ≻ 0 ⇔ 〈xxT, A〉 > 0 ∀xxT(º 0) , xxT 6= 0
(1619)

This says: positive semidefinite matrix A must belong to the normal side of every
hyperplane whose normal is an extreme direction of the positive semidefinite cone.
Relations (1617) and (1618) remain true when xxT is replaced with “for each and every”
positive semidefinite matrix X∈ SM

+ (§2.13.6) of unit norm, ‖X‖= 1 , as in

A º 0 ⇔ tr(XA) ≥ 0 ∀X∈ SM
+

A ≻ 0 ⇔ tr(XA) > 0 ∀X∈ SM
+ , X 6= 0

(1620)

But that condition is more than what is necessary. By the discretized membership theorem
in §2.13.4.2.1, the extreme directions xxT of the positive semidefinite cone constitute a
minimal set of generators necessary and sufficient for discretization of dual generalized
inequalities (1620) certifying membership to that cone. ¨

A.3.1 Semidefiniteness, eigenvalues, nonsymmetric

When A∈Rn×n, let λ
(

1
2 (A +AT)

)

∈ Rn denote eigenvalues of the symmetrized matrixA.8

arranged in nonincreasing order.

A.7The traditional condition requiring all x∈R
M for defining positive (semi)definiteness is actually

more than what is necessary. The set of norm-1 vectors is necessary and sufficient to establish positive
semidefiniteness; actually, any particular norm and any nonzero norm-constant will work.
A.8The symmetrization of A is 1

2
(A +AT). λ

(

1
2
(A +AT)

)

= 1
2
λ(A +AT).
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� By positive semidefiniteness of A∈Rn×n we mean,A.9

[314, §1.3.1] (confer §A.3.1.0.1)

xTA x ≥ 0 ∀x∈Rn ⇔ A +ATº 0 ⇔ λ(A +AT) º 0 (1621)

� (§2.9.0.1)
A º 0 ⇒ AT = A (1622)

A º B ⇔ A−B º 0 ; A º 0 or B º 0 (1623)

xTA x≥ 0 ∀x ; AT = A (1624)

� Matrix symmetry is not intrinsic to positive semidefiniteness;

AT = A , λ(A) º 0 ⇒ xTA x ≥ 0 ∀x (1625)

λ(A) º 0 ⇐ AT = A , xTA x ≥ 0 ∀x (1626)

� If AT = A then
λ(A) º 0 ⇔ A º 0
λ(A) ≻ 0 ⇔ A ≻ 0

(1627)

meaning, matrix A belongs to the positive semidefinite cone (interior) in the subspace
of symmetric matrices if and only if its eigenvalues belong to the nonnegative orthant
(interior).

〈A , A〉 = 〈λ(A) , λ(A)〉 (47)

� For µ∈R , A∈Rn×n, and vector λ(A)∈ Cn holding the ordered eigenvalues of A

λ(µI + A) = µ1 + λ(A) (1628)

Proof. A=MJM−1 and µI + A = M(µI + J )M−1 where J is the Jordan form
for A ; [379, §5.6, App.B] id est, δ(J ) = λ(A) , so λ(µI + A) = δ(µI + J ) because
µI + J is also a Jordan form. ¨

By similar reasoning,
λ(I + µA) = 1 + λ(µA) (1629)

For vector σ(A) holding the singular values of any matrix A

σ(I + µATA) = π(|1 + µσ(ATA)|) (1630)

σ(µI + ATA) = π(|µ1 + σ(ATA)|) (1631)

where π is the nonlinear permutation-operator sorting its vector argument into
nonincreasing order.

� For A∈ SM and each and every ‖w‖= 1 [237, §7.7 prob.9]

wTAw ≤ µ ⇔ A ¹ µI ⇔ λ(A) ¹ µ1 (1632)

� [237, §2.5.4] (confer (46))

A is normal matrix ⇔ ‖A‖2
F = λ(A)Tλ(A) (1633)

A.9Strang agrees [379, p.334] it is not λ(A) that requires observation. Yet he is mistaken by proposing
the Hermitian part alone xH(A + AH)x be tested, because the antiHermitian part does not vanish under
complex test unless A is Hermitian. (1612)
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� For A∈Rm×n

ATA º 0 , AATº 0 (1634)

because, for dimensionally compatible vector x ,
xTATAx = ‖Ax‖2

2 , xTAATx = ‖ATx‖2
2 .

� For A∈Rn×n and c∈R

tr(cA) = c tr(A) = c1Tλ(A) (§A.1.1 no.4)

For m a nonnegative integer, (2074)

det(Am) =

n
∏

i=1

λ(A)m
i (1635)

tr(Am) =

n
∑

i=1

λ(A)m
i (1636)

� For A diagonalizable (§A.5), A = SΛS−1, (confer [379, p.255])

rankA = rank δ(λ(A)) = rankΛ (1637)

meaning, rank is equal to the number of nonzero eigenvalues in vector

λ(A) , δ(Λ) (1638)

by the 0 eigenvalues theorem (§A.7.3.0.1).

� (Ky Fan) For A,B∈ Sn [61, §1.2] (confer (1946))

tr(AB) ≤ λ(A)Tλ(B) (1932)

with equality (Theobald) when A and B are simultaneously diagonalizable [237]
with the same ordering of eigenvalues.

� For A∈Rm×n and B∈Rn×m

tr(AB) = tr(BA) (1639)

and η eigenvalues of the product and commuted product are identical, including
their multiplicity; [237, §1.3.20] id est,

λ(AB)1:η = λ(BA)1:η , η,min{m, n} (1640)

Any eigenvalues remaining are zero. By the 0 eigenvalues theorem (§A.7.3.0.1),

rank(AB) = rank(BA) , AB and BA diagonalizable (1641)

� For any dimensionally compatible matrices A,B [237, §0.4]

min{rankA , rankB} ≥ rank(AB) (1642)

� For A,B∈ Sn
+ (confer (266))

rankA + rankB ≥ rank(A + B) ≥ min{rank A , rankB} ≥ rank(AB) (1643)
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� For linearly independent matrices A,B∈ Sn
+

(§2.1.2, R(A)∩R(B)=0 , R(AT)∩R(BT)=0 , §B.1.1),

rankA + rankB = rank(A + B) > min{rank A , rankB} ≥ rank(AB) (1644)

� Because R(ATA)=R(AT) and R(AAT)=R(A) (p.523), for any A∈Rm×n

rank(AAT) = rank(ATA) = rankA = rankAT (1645)

� For A∈Rm×n having no nullspace, and for any B∈Rn×k

rank(AB) = rank(B) (1646)

Proof. For any dimensionally compatible matrix C , N (CAB)⊇ N (AB)⊇ N (B)
is obvious. By assumption ∃A† Ä A†A = I . Let C = A†, then N (AB)=N (B)
and the stated result follows by conservation of dimension (1769). ¨

� For A∈ Sn and any nonsingular matrix Y

inertia(A) = inertia(YAY T) (1647)

a.k.a Sylvester’s law of inertia (1691) [131, §2.4.3] or congruence transformation.

� For A,B∈Rn×n square, [237, §0.3.5]

det(AB) = det(BA) (1648)

det(AB) = detA det B (1649)

Yet for A∈Rm×n and B∈Rn×m [86, p.72]

det(I + AB) = det(I + BA) (1650)

� For A,B∈ Sn, product AB is symmetric iff AB is commutative;

(AB)T = AB ⇔ AB = BA (1651)

Proof. (⇒) Suppose AB=(AB)T.
(AB)T=BTAT=BA . AB=(AB)T⇒ AB=BA .
(⇐) Suppose AB=BA .
BA=BTAT=(AB)T. AB=BA ⇒ AB=(AB)T. ¨

Matrix symmetry alone is insufficient for product symmetry. Commutativity alone
is insufficient for product symmetry. [379, p.26]

� Diagonalizable matrices A,B∈Rn×n commute if and only if they are simultaneously
diagonalizable. [237, §1.3.12] A product of diagonal matrices is always commutative.

� For A,B∈Rn×n and AB = BA

xTA x ≥ 0 , xTB x ≥ 0 ∀x ⇒ λ(A+AT)i λ(B+BT)i ≥ 0 ∀ i < xTAB x ≥ 0 ∀x (1652)

the negative result arising because of the schism between the product of eigenvalues
λ(A + AT)i λ(B + BT)i and the eigenvalues of the symmetrized matrix product
λ(AB + (AB)T)i . For example, X2 is generally not positive semidefinite unless
matrix X is symmetric; then (1634) applies. Simply substituting symmetric matrices
changes the outcome:
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� For A,B∈ Sn and AB = BA

A º 0 , B º 0 ⇒ λ(AB)i =λ(A)i λ(B)i≥ 0 ∀ i ⇔ AB º 0 (1653)

Positive semidefiniteness of commutative A and B is sufficient but not necessary for
positive semidefiniteness of product AB .

Proof. Because all symmetric matrices are diagonalizable, (§A.5.1) [379, §5.6]
we have A=SΛST and B=T∆TT, where Λ and ∆ are real diagonal matrices
while S and T are orthogonal matrices. Because (AB)T=AB , then T must equal
S , [237, §1.3] and the eigenvalues of A are ordered in the same way as those of B ;
id est, λ(A)i =δ(Λ)i and λ(B)i =δ(∆)i correspond to the same eigenvector.
(⇒) Assume λ(A)i λ(B)i≥ 0 for i=1 . . . n . AB=SΛ∆ST is symmetric and has
nonnegative eigenvalues contained in diagonal matrix Λ∆ by assumption; hence
positive semidefinite by (1621). Now assume A,Bº 0. That, of course, implies
λ(A)i λ(B)i≥ 0 for all i because all the individual eigenvalues are nonnegative.
(⇐) Suppose AB=SΛ∆STº 0. Then Λ∆º 0 by (1621), and so all products
λ(A)i λ(B)i must be nonnegative; meaning, sgn(λ(A))= sgn(λ(B)). We may,
therefore, conclude nothing about the semidefiniteness of A and B . ¨

� For A,B∈ Sn and A º 0 , B º 0 (Example A.2.1.0.1)

AB = BA ⇒ λ(AB)i =λ(A)i λ(B)i ≥ 0 ∀ i ⇒ AB º 0 (1654)

AB = BA ⇒ λ(AB)i ≥ 0 , λ(A)i λ(B)i ≥ 0 ∀ i ⇔ AB º 0 (1655)

� For A,B∈ Sn [237, §7.7 prob.3] [238, §4.2.13, §5.2.1]

A º 0 , B º 0 ⇒ A ⊗ B º 0 (1656)

A º 0 , B º 0 ⇒ A ◦ B º 0 (1657)

A ≻ 0 , B ≻ 0 ⇒ A ⊗ B ≻ 0 (1658)

A ≻ 0 , B ≻ 0 ⇒ A ◦ B ≻ 0 (1659)

where Kronecker and Hadamard products are symmetric.

� For A,B∈ Sn, (1627) A º 0 ⇔ λ(A)º 0 yet

A º 0 ⇒ δ(A)º 0 (1660)

A º 0 ⇒ tr A ≥ 0 (1661)

A º 0 , B º 0 ⇒ trA trB ≥ tr(AB)≥ 0 (1662)

[469, §6.2] Because Aº 0 , Bº 0 ⇒ λ(AB)=λ(
√

AB
√

A)º 0 by (1640) and
Corollary A.3.1.0.5, then we have tr(AB)≥ 0.

A º 0 ⇔ tr(AB)≥ 0 ∀B º 0 (388)

� For A,B ,C∈ Sn (Löwner)

A ¹ B , B ¹ C ⇒ A ¹ C (transitivity)
A ¹ B ⇔ A + C ¹ B + C (additivity)
A ¹ B , A º B ⇒ A = B (antisymmetry)
A ¹ A (reflexivity)

(1663)

A ¹ B , B ≺ C ⇒ A ≺ C (strict transitivity)
A ≺ B ⇔ A + C ≺ B + C (strict additivity)

(1664)
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� For A,B∈Rn×n

xTA x ≥ xTB x ∀x ⇒ tr A ≥ tr B (1665)

Proof. xTA x≥xTB x ∀x ⇔ λ((A−B) + (A−B)T)/2º 0 ⇒
tr(A+AT− (B+BT))/2 = tr(A−B)≥ 0. There is no converse. ¨

� For A,B∈ Sn [469, §6.2] (Theorem A.3.1.0.4)

A º B ⇒ tr A ≥ trB (1666)

A º B ⇒ δ(A)º δ(B) (1667)

There is no converse, and restriction to the positive semidefinite cone does not
improve the situation. All-strict versions hold.

A º B º 0 ⇒ rankA ≥ rankB (1668)

A º B º 0 ⇒ det A ≥ det B ≥ 0 (1669)

A ≻ B º 0 ⇒ det A > det B ≥ 0 (1670)

� For A,B∈ intr Sn
+ [38, §4.2] [237, §7.7.4]

A º B ⇔ A−1¹ B−1, A ≻ 0 ⇔ A−1≻ 0 (1671)

� For A,B∈ Sn [469, §6.2]

A º B º 0 ⇒
√

A º
√

B
A º 0 ⇐ A1/2 º 0

(1672)

� For A,B∈ Sn and AB = BA [469, §6.2 prob.3]

A º B º 0 ⇒ Ak º Bk , k=1, 2, 3 . . . (1673)

A.3.1.0.1 Theorem. Positive semidefinite ordering of eigenvalues.
For A,B∈RM×M , place the eigenvalues of each symmetrized matrix into the respective
vectors λ

(

1
2 (A +AT)

)

, λ
(

1
2 (B +BT)

)

∈RM . Then [379, §6]

xTA x ≥ 0 ∀x ⇔ λ
(

A +AT
)

º 0 (1674)

xTA x > 0 ∀x 6= 0 ⇔ λ
(

A +AT
)

≻ 0 (1675)

because xT(A −AT)x=0. (1609)
Now arrange entries of λ

(

1
2 (A +AT)

)

and λ
(

1
2 (B +BT)

)

in nonincreasing order so

λ
(

1
2 (A +AT)

)

1
holds the largest eigenvalue of symmetrized A while λ

(

1
2 (B +BT)

)

1
holds

the largest eigenvalue of symmetrized B , and so on. Then [237, §7.7 prob.1 prob.9] for
κ∈R

xTA x ≥ xTB x ∀x ⇒ λ
(

A +AT
)

º λ
(

B +BT
)

xTA x ≥ xTI x κ ∀x ⇔ λ
(

1
2 (A +AT)

)

º κ1
(1676)

Now let A,B∈ SM have diagonalizations A=QΛQT and B=UΥUT with λ(A)= δ(Λ)
and λ(B)= δ(Υ) arranged in nonincreasing order. Then

A º B ⇔ λ(A−B) º 0
A º B ⇒ λ(A) º λ(B)
A º B : λ(A) º λ(B)

STAS º B ⇔ λ(A) º λ(B)

(1677)

where S = QUT. [469, §7.5]A.10 ⋄
A.10(⇒)STAS º B ⇒ λ(STAS) º λ(B). But STAS is a matrix similar to A ; meaning λ(STAS)= λ(A).
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A.3.1.0.2 Theorem. (Weyl) Eigenvalues of sum. [237, §4.3.1]
For A,B∈RM×M , place the eigenvalues of each symmetrized matrix into the respective
vectors λ

(

1
2 (A +AT)

)

, λ
(

1
2 (B +BT)

)

∈RM in nonincreasing order so λ
(

1
2 (A +AT)

)

1

holds the largest eigenvalue of symmetrized A while λ
(

1
2 (B +BT)

)

1
holds the largest

eigenvalue of symmetrized B , and so on. Then, for any k∈{1 . . . M }

λ
(

A +AT
)

k
+ λ

(

B +BT
)

M
≤ λ

(

(A +AT) + (B +BT)
)

k
≤ λ

(

A +AT
)

k
+ λ

(

B +BT
)

1 (1678)

⋄

Weyl’s theorem establishes: concavity of the smallest eigenvalue λM of a symmetric matrix
and convexity of the largest λ1 , via (507), and positive semidefiniteness of a sum of positive
semidefinite matrices; for A,B∈ SM

+

λ(A)k + λ(B)M ≤ λ(A + B)k ≤ λ(A)k + λ(B)1 (1679)

Because SM
+ is a convex cone (§2.9.0.0.1), then by (180)

A,B º 0 ⇒ ζ A + ξ B º 0 for all ζ , ξ ≥ 0 (1680)

A.3.1.0.3 Corollary. Eigenvalues of sum and difference. [237, §4.3]
For A∈ SM and B∈ SM

+ , place the eigenvalues of each matrix into respective vectors

λ(A) , λ(B)∈RM in nonincreasing order so λ(A)1 holds the largest eigenvalue of A while
λ(B)1 holds the largest eigenvalue of B , and so on. Then, for any k∈{1 . . . M }

λ(A − B)k ≤ λ(A)k ≤ λ(A +B)k (1681)

⋄

When B is rank-1 positive semidefinite, eigenvalues interlace; id est, for B = qqT

λ(A)k−1 ≤ λ(A − qqT)k ≤ λ(A)k ≤ λ(A + qqT)k ≤ λ(A)k+1 (1682)

A.3.1.0.4 Theorem. Positive (semi)definite principal submatrices.A.11

� A∈SM is positive semidefinite if and only if all M principal submatrices of dimension
M−1 are positive semidefinite and detA is nonnegative.

� A∈SM is positive definite if and only if any one principal submatrix of dimension
M−1 is positive definite and detA is positive. ⋄

If any one principal submatrix of dimension M−1 is not positive definite, conversely, then
A can neither be. Regardless of symmetry, if A∈RM×M is positive (semi)definite, then the
determinant of each and every principal submatrix is (nonnegative) positive. [314, §1.3.1]

A.11A recursive condition for positive (semi)definiteness, this theorem is a synthesis of facts from [237, §7.2]
[379, §6.3] (confer [314, §1.3.1]).
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A.3.1.0.5 Corollary. Positive (semi)definite symmetric products. [237, p.399]

(a) If A∈ SM is positive definite and any particular dimensionally compatible matrix Z
has no nullspace, then ZTAZ is positive definite.

(b) If matrix A∈ SM is positive (semi)definite then, for any matrix Z of compatible
dimension, ZTAZ is positive semidefinite.

(c) A∈ SM is positive (semi)definite if and only if there exists a nonsingular Z such that
ZTAZ is positive (semi)definite.

(d) If A∈ SM is positive semidefinite and singular, then it remains possible that ZTAZ
becomes positive definite for some thin Z∈RM×N (N <M).A.12 ⋄

We can deduce from these, given nonsingular matrix Z and any particular dimensionally

compatible Y : matrix A∈ SM is positive semidefinite if and only if

[

ZT

Y T

]

A [Z Y ] is

positive semidefinite. In other words, from the Corollary it follows: for dimensionally
compatible Z

A º 0 ⇔ ZTAZ º 0 and ZT has a left inverse (1683)

Products such as Z†Z and ZZ† are symmetric and positive semidefinite although, given
Aº 0 , Z†AZ and ZAZ† are neither necessarily symmetric or positive semidefinite.

A.3.1.0.6 Theorem. Symmetric projector semidefinite. [22, §III] [23, §6] [258, p.55]
For symmetric idempotent matrices P and R

P ,R º 0

P º R ⇔ R(P ) ⊇ R(R) ⇔ N (P ) ⊆ N (R)
(1684)

Projector P is never positive definite [381, §6.5 prob.20] unless it is the Identity matrix.

⋄

A.3.1.0.7 Theorem. Symmetric positive semidefinite. [237, p.400]
Given real matrix Ψ with rank Ψ = 1

Ψ º 0 ⇔ Ψ = uuT (1685)

is a symmetric dyad where u is some real vector; id est, symmetry is necessary and
sufficient for positive semidefiniteness of a rank-1 matrix. ⋄

Proof. Any rank-1 matrix must have the form Ψ = uvT. (§B.1) Suppose Ψ is
symmetric; id est, v = u . For all y∈RM , yTu uTy ≥ 0. Conversely, suppose uvT is
positive semidefinite. We know that can hold if and only if uvT+ vuTº 0 ⇔ for all
normalized y∈RM , 2 yTu vTy ≥ 0 ; but that is possible only if v = u . ¨

The same does not hold true for matrices of higher rank, as Example A.2.1.0.1 shows.

A.12This means coefficients, of orthogonal projection of vectorized A on a subset of extreme directions
from S

M
+ determined by Z , can be positive (by the interpretation in §E.6.4.3).



A.4. SCHUR COMPLEMENT 505

A.4 Schur complement

Consider Schur-form partitioned matrix G : Given AT = A and CT = C , then [66]

G =

[

A B
BT C

]

º 0 (a)

⇔ A º 0 , BT(I−AA†) = 0 , C−BTA†B º 0 (b)
⇔ C º 0 , B(I−CC†) = 0 , A−B C†BTº 0 (c)

(1686)

where A† denotes the Moore-Penrose (pseudo)inverse (§E). In the first instance,
I − AA† is a symmetric projection matrix orthogonally projecting on N (AT). (2124)
It is apparently required that

R(B) ⊥ N (AT) (1687)

which precludes A = 0 when B is any nonzero matrix. Note that A ≻ 0 ⇒ A† = A−1 ;
thereby, the projection matrix vanishes. Likewise, in the second instance, I − CC†

projects orthogonally on N (CT). It is required that

R(BT) ⊥ N (CT) (1688)

which precludes C =0 for B nonzero. Again, C ≻ 0 ⇒ C† = C−1. So we get, for A or
C nonsingular,

G =

[

A B
BT C

]

º 0

⇔ A ≻ 0 , C−BTA−1B º 0
⇔ C ≻ 0 , A−B C−1BTº 0

(1689)

When A is full-rank then, for all B of compatible dimension, R(B) is in R(A).
Likewise, when C is full-rank, R(BT) is in R(C ). Thus, for A and C nonsingular,

G =

[

A B
BT C

]

≻ 0

⇔ A ≻ 0 , C−BTA−1B ≻ 0
⇔ C ≻ 0 , A−B C−1BT≻ 0

(1690)

where C − BTA−1B is called the Schur complement of A in G , while the Schur
complement of C in G is A − B C−1BT. [182, §4.8]

Origin of the term Schur complement is from complementary inertia: [131, §2.4.4]
Define

inertia
(

G∈ SM
)

, {p , z , n} (1691)

where p , z , n respectively represent number of positive, zero, and negative eigenvalues of
G ; id est,

M = p + z + n (1692)

Then, when A is invertible,

inertia(G) = inertia(A) + inertia(C − BTA−1B) (1693)

and when C is invertible,

inertia(G) = inertia(C ) + inertia(A − B C−1BT) (1694)
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A.4.0.0.1 Example. Equipartition inertia. [61, §1.2 exer.17]
When A=C = 0 , denoting nonincreasingly ordered singular values of matrix B∈Rm×m

by σ(B)∈Rm
+ , then we have eigenvalues

λ(G) = λ

([

0 B
BT 0

])

=

[

σ(B)
−Ξσ(B)

]

(1695)

and
inertia(G) = inertia(BTB) + inertia(−BTB) (1696)

where Ξ is the order-reversing permutation matrix defined in (1933). 2

A.4.0.0.2 Example. Nonnegative polynomial. [38, p.163]
Quadratic multivariate polynomial xTA x + 2bTx + c is a convex function of vector x if
and only if Aº 0 , but sublevel set {x | xTA x + 2bTx + c ≤ 0} is convex if Aº 0 yet not
vice versa. Schur-form positive semidefiniteness is sufficient for polynomial convexity but
necessary and sufficient for nonnegativity:

[

A b
bT c

]

º 0 ⇔ [xT 1 ]
[

A b
bT c

] [

x
1

]

≥ 0 ⇔ xTA x + 2bTx + c ≥ 0 ∀x (1697)

Everything here is extensible to univariate polynomials; e.g, x , [ tn tn−1 tn−2 · · · t ]T.
2

A.4.0.0.3 Example. Schur-form fractional function trace minimization.
From (1661),

[

A B
BT C

]

º 0 ⇒ tr(A + C ) ≥ 0

m
[

A 0
0T C−BTA−1B

]

º 0 ⇒ tr(C−BTA−1B) ≥ 0

m
[

A−B C−1BT 0
0T C

]

º 0 ⇒ tr(A−B C−1BT) ≥ 0

(1698)

Since tr(C−BTA−1B)≥ 0 ⇔ tr C ≥ tr(BTA−1B) ≥ 0 for example, then minimization of
tr C is necessary and sufficient for minimization of tr(C−BTA−1B) when both are under

constraint

[

A B
BT C

]

º 0. 2

A.4.0.1 Schur-form nullspace basis

From (1686),

G =

[

A B
BT C

]

º 0

m
[

A 0
0T C−BTA†B

]

º 0 and BT(I−AA†) = 0

m
[

A−B C†BT 0
0T C

]

º 0 and B(I−CC†) = 0

(1699)
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These facts plus Moore-Penrose condition (§E.0.1) provide a partial basis:

basisN
([

A B
BT C

])

⊇
[

I−AA† 0
0T I−CC†

]

(1700)

A.4.0.1.1 Example. Sparse Schur-form.
Setting matrix A to the Identity simplifies the Schur-form. One consequence relates
definiteness of three quantities:

[

I B
BT C

]

º 0 ⇔ C − BTB º 0 ⇔
[

I 0
0T C−BTB

]

º 0 (1701)

2

A.4.0.1.2 Exercise. Eigenvalues λ of sparse Schur-form.
Prove: given C−BTB = 0 , for B∈Rm×n and C∈ Sn

λ

([

I B
BT C

])

i

=







1 + λ(C )i , 1 ≤ i ≤ n

1 , n < i ≤ m

0 , otherwise

(1702)

H

A.4.0.1.3 Theorem. Rank of partitioned matrices. [469, §2.2 prob.7]
When symmetric matrix A is invertible and C is symmetric,

rank

[

A B
BT C

]

= rank

[

A 0
0T C−BTA−1B

]

= rankA + rank(C−BTA−1B)

(1703)

equals rank of main diagonal block A plus rank of its Schur complement.
Similarly, when symmetric matrix C is invertible and A is symmetric,

rank

[

A B
BT C

]

= rank

[

A − B C−1BT 0
0T C

]

= rank(A − B C−1BT) + rankC

(1704)

⋄

Proof. The first assertion (1703) holds if and only if [237, §0.4.6c]

∃ nonsingular X,Y Ä X

[

A B
BT C

]

Y =

[

A 0
0T C−BTA−1B

]

(1705)

Let [237, §7.7.6]

Y = XT =

[

I −A−1B
0T I

]

(1706)

¨

From Corollary A.3.1.0.3, eigenvalues are related by

0 ¹ λ(C−BTA−1B) ¹ λ(C) (1707)

0 ¹ λ(A − B C−1BT) ¹ λ(A) (1708)
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which means

rank(C−BTA−1B) ≤ rankC (1709)

rank(A − B C−1BT) ≤ rankA (1710)

Therefore

rank

[

A B
BT C

]

≤ rankA + rankC (1711)

A.4.0.1.4 Lemma. Rank of Schur-form block. [161] [159]
Matrix B∈Rm×n has rankB≤ ρ if and only if there exist matrices A∈ Sm and C ∈ Sn

such that

rank

[

A 0
0T C

]

≤ 2ρ and G =

[

A B
BT C

]

º 0 (1712)

⋄

Schur-form positive semidefiniteness alone implies rankA≥ rankB and
rankC≥ rankB . But, even in absence of semidefiniteness, we must always have
rankG≥ rankA , rankB, rankC by fundamental linear algebra.

A.4.1 Determinant

G =

[

A B
BT C

]

(1713)

We consider again a matrix G partitioned like (1686), but not necessarily positive
(semi)definite, where A and C are symmetric.

� When A is invertible,

detG = detA det(C − BTA−1B) (1714)

When C is invertible,

det G = detC det(A − B C−1BT) (1715)

� When B is full-rank and thin, C = 0 , and A º 0 , then [68, §10.1.1]

det G 6= 0 ⇔ A + BBT≻ 0 (1716)

When B is a (column) vector, then for all C∈R and all A of dimension compatible
with G

det G = det(A)C − BTAT
cofB (1717)

while for C 6= 0

det G = C det(A − 1

C
BBT) (1718)

where Acof is the matrix of cofactors [379, §4] corresponding to A .

� When B is full-rank and wide, A = 0 , and C º 0 , then

det G 6= 0 ⇔ C + BTB ≻ 0 (1719)

When B is a row vector, then for A 6= 0 and all C of dimension compatible with G

det G = A det(C − 1

A
BTB) (1720)

while for all A∈R
detG = det(C )A − BCT

cofB
T (1721)

where Ccof is the matrix of cofactors corresponding to C .
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A.5 Eigenvalue decomposition

All square matrices A have associated eigenvalues λ and eigenvectors S ;A.13 if not square,
Asi = λisi becomes impossible dimensionally. Eigenvectors must be nonzero.

When a square matrix X∈ Rm×m is diagonalizable, [379, §5.6] then

X = SΛS−1 = [ s1 · · · sm ] Λ





wT
1
...

wT
m



 =
m

∑

i=1

λi siw
T
i (1722)

where {si∈ N (X − λiI )⊆Cm} are l.i. (right-)eigenvectors constituting the columns of
S∈Cm×m defined by

XS = SΛ rather Xsi , λisi , i = 1 . . . m (1723)

{wi∈ N (XT− λiI )⊆Cm} are linearly independent left-eigenvectors of X (eigenvectors
of XT) constituting the rows of S−1 defined by [237]

S−1X = ΛS−1 rather wT
i X , λiw

T
i , i = 1 . . . m (1724)

and where {λi∈C} are eigenvalues (1638)

δ(λ(X)) = Λ ∈ Cm×m (1725)

corresponding to both left and right eigenvectors; id est, λ(X) = λ(XT).

A.5.0.0.1 Example. diagonalizability versus invertibility. [379, §5.2]
There is no connection between diagonalizability and invertibility of X . Diagonalizability
is guaranteed by a full set of linearly independent eigenvectors, whereas invertibility is
guaranteed by all nonzero eigenvalues.

distinct eigenvalues ⇒ l.i. eigenvectors ⇔ diagonalizable
not diagonalizable ⇒ repeated eigenvalue

(1726)

X =

[

1 0 −1
−1 1 0

3 −1 −2

]

is not diagonalizable, having three 0-eigenvalues computed with

16 decimal digit (double) precision to about 1E-6 accuracy. (Yates & D’Errico) From
Advanpix Multiprecision Toolbox we learn that computation with 34 decimal digit
(quadruple) precision provides eigenvalues accurate to 1E-12. 46 decimal digit precision
provides accuracy to 1E-16. 2

A.5.0.0.2 Theorem. Real eigenvector.
Eigenvectors of a real matrix corresponding to real eigenvalues must be real. ⋄

Proof. Ax = λx . Given λ=λ∗, xHAx = λxHx = λ‖x‖2 = xTA x∗ ⇒ x = x∗, where
xH=x∗T. The converse is equally simple. ¨

A.5.0.1 uniqueness

From the fundamental theorem of algebra, [398] which guarantees existence of zeros for a
given polynomial, it follows: Given a particular square matrix, its eigenvalues and their
multiplicity are unique; meaning, there is no other set of eigenvalues for that matrix.
(Conversely, many different matrices may share the same unique set of eigenvalues; e.g,
for any X , λ(X) = λ(XT).)

Uniqueness of eigenvectors, in contrast, disallows multiplicity of the same direction:

A.13Prefix eigen is from German; in this context meaning, something akin to “characteristic”. [375, p.14]

https://www.dsprelated.com/showmessage/47888/1.php
https://www.advanpix.com
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A.5.0.1.1 Definition. Unique eigenvectors.
When eigenvectors are unique, we mean: unique to within a real nonzero scaling, and
their directions are distinct. △

If S is a matrix of eigenvectors of X as in (1722), for example, then −S is an equivalent
matrix of eigenvectors decomposing X with the same eigenvalues. More generally, given
̺∈Rm and diagonal matrix δ(̺)

SΛS−1 = (Sδ(̺))Λ(Sδ(̺))
−1

(1727)

because diagonal matrices are commutative and δ(̺)δ(̺)−1 = I .
For any square matrix, the eigenvector corresponding to a distinct eigenvalue is unique;

[375, p.220]
distinct eigenvalues ⇒ eigenvectors unique (1728)

Eigenvectors corresponding to a repeated eigenvalue are not unique for a diagonalizable
matrix;

repeated eigenvalue ⇒ eigenvectors not unique (1729)

Proof follows from the observation: any linear combination of distinct
eigenvectors of diagonalizable X , corresponding to a particular eigenvalue,
produces another eigenvector. For eigenvalue λ whose multiplicityA.14

dimN (X−λI ) exceeds 1 , in other words, any choice of independent
vectors from N (X−λI ) (of the same multiplicity) constitutes eigenvectors
corresponding to λ . ¨

Caveat diagonalizability insures linear independence which implies existence of distinct
eigenvectors. We may conclude, for diagonalizable matrices,

distinct eigenvalues ⇔ eigenvectors unique (1730)

A.5.0.2 invertible matrix

By the 0 eigenvalues theorem (§A.7.3.0.1),

� rank of a diagonalizable matrix is equal to its number of nonzero eigenvalues

rankX = rank Λ (1637)

When diagonalizable matrix X∈ Rm×m is nonsingular (no zero eigenvalues), then it has
an inverse obtained simply by inverting eigenvalues in (1722):

X−1 = SΛ−1S−1 (1731)

A.5.0.3 eigenmatrix

The (right-)eigenvectors {si} (1722) are naturally orthogonal wT
i sj =0 to left-eigenvectors

{wi} except, for i=1 . . . m , wT
i si =1 ; called a biorthogonality condition [417, §2.2.4]

[237] because neither set of left or right eigenvectors is necessarily an orthogonal set.
Consequently, each dyad from a diagonalization is an independent (§B.1.1) nonorthogonal
projector because

siw
T
i siw

T
i = siw

T
i (1732)

A.14A matrix is diagonalizable iff algebraic multiplicity (number of occurrences of same eigenvalue) equals
geometric multiplicity dimN (X−λI ) = m − rank(X−λI ) [375, p.15] (number of Jordan blocks w.r.t λ
or number of corresponding l.i. eigenvectors).
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(whereas the dyads of singular value decomposition are not inherently projectors
(confer (1743))).

Dyads of eigenvalue decomposition can be termed eigenmatrices because

X siw
T
i = λi siw

T
i (1733)

Sum of the eigenmatrices is the Identity;

m
∑

i=1

siw
T
i = I (1734)

A.5.1 Symmetric matrix diagonalization

A.5.1.0.1 Definition. Normal matrix.
The set of normal matrices is, precisely, that set of all real matrices having a complete
orthonormal set of eigenvectors; [469, §8.1] [381, prob.10.2.31] id est, any matrix X for
which [189, §7.1.3] [375, p.3]

XXT = XTX (1735)

e.g, symmetric, orthogonal, and circulant matrices [201]. All normal matrices are
diagonalizable. △

A symmetric matrix is a special normal matrix whose eigenvalues Λ must be realA.15

and whose eigenvectors S can be chosen to make a real orthonormal set; [381, §6.4]
[379, p.315] id est, for X∈ Sm

X = SΛST = [ s1 · · · sm ] Λ





sT
1
...

sT
m



 =
m

∑

i=1

λi sis
T
i (1736)

where δ2(Λ) = Λ∈ Sm (§A.1) and S−1 = ST∈ Rm×m (orthogonal matrix, §B.5.2) because
of symmetry: SΛS−1 = S−TΛST. By 0 eigenvalues theorem A.7.3.0.1,

R{si |λi 6=0} = R(A) = R(AT)
R{si |λi =0} = N (AT) = N (A)

(1737)

Because rank A=dimR(A) (143),

� rank of a symmetric matrix is equal to its number of nonzero eigenvalues.

A.5.1.1 eigenvalue λ ordering

Because arrangement of eigenvectors and their corresponding eigenvalues is arbitrary,
eigenvalues are often arranged in nonincreasing order; as is the convention for singular
value decomposition (§A.6). There are certainly circumstances demanding otherwise; e.g,
a direction vector of convex iteration (§4.5.1.1) can require simultaneous diagonalizability.

An eigenvector corresponding to an eigenvalue of greatest magnitude is called principal
eigenvector ; that eigenvalue being known as principal eigenvalue.

A.15Proof. Suppose λi is an eigenvalue corresponding to eigenvector si of real A=AT. Then
sH
i Asi = sT

i As∗i (by transposition) ⇒ s∗Ti λisi = sT
i λ∗

is∗i because (Asi)
∗= (λisi)

∗ by assumption. So we
have λi‖si‖2 = λ∗

i‖si‖2. There is no converse. ¨
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A.5.1.2 diagonal matrix diagonalization

Then to diagonalize a symmetric matrix that is already a diagonal matrix, orthogonal
matrix S becomes a permutation matrix Ξ . Given vector a , for example, diagonal
matrix δ(a) has eigenvalue decomposition

δ(a) = Ξδ(ΞTa)ΞT (1738)

A.5.1.3 invertible symmetric matrix

When symmetric matrix X∈ Sm is nonsingular (invertible), then its inverse (obtained by
inverting eigenvalues in (1736)) is also symmetric:

X−1 = SΛ−1ST∈ Sm (1739)

A.5.1.4 positive semidefinite matrix square root

When X∈ Sm
+ , its unique positive semidefinite matrix square root is defined (1736)

√
X , S

√
ΛST ∈ Sm

+ (1740)

where the square root of nonnegative diagonal matrix
√

Λ is taken entrywise and positive.
Then X =

√
X
√

X .

A.5.1.4.1 Example. Closed-form diagonalization of X∈ S2. (confer §4.11.2.0.2)

Eigenvalue decomposition of symmetric X =

[

a b
b d

]

can be determined analytically:

X = SΛST =




−2b√
4b2+(a−d−γ)2

−2b√
4b2+(a−d+γ)2

a−d−γ√
8b2+2(a−d)(a−d−γ)

a−d+γ√
8b2+2(a−d)(a−d+γ)





[

a+d+γ
2 0

0 a+d−γ
2

]





−2b√
4b2+(a−d−γ)2

a−d−γ√
8b2+2(a−d)(a−d−γ)

−2b√
4b2+(a−d+γ)2

a−d+γ√
8b2+2(a−d)(a−d+γ)





(1741)

where
γ ,

√

4b2+ (a − d)2 (1742)
2

A.6 Singular value decomposition, SVD

A.6.1 Compact SVD

[189, §2.5.4] For any real matrix A∈Rm×n of any dimension,

A = UΣQT = [u1 · · · uη ] Σ







qT
1
...

qT
η






=

η
∑

i=1

σi uiq
T
i

U ∈Rm×η, Σ∈Rη×η
+ , Q∈Rn×η

UTU = I , QTQ = I

(1743)

http://www.math.harvard.edu/archive/21b_fall_04/exhibits/2dmatrices
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where U and Q are always thin-or-square real, each having orthonormal columns. There
are η singular values {σi∈R}.

η , min{m, n} (1744)

Square matrix Σ is diagonal (§A.1.1)

δ2(Σ) = Σ∈Rη×η
+ (1745)

holding the singular values of A which are always arranged in nonincreasing order, by
convention, and are related to eigenvalues λ byA.16

σ(A)i = σ(AT)i =







√

λ(ATA)i =
√

λ(AAT)i = λ
(√

ATA
)

i
= λ

(√
AAT

)

i
> 0 , 1 ≤ i ≤ ρ

0 , ρ < i ≤ η

(1746)
of which the last η−ρ are 0 .A.17

ρ , rankA = rankΣ (1747)

A point sometimes lost: Any real matrix may be decomposed in terms of its real singular
values σ(A)∈Rη and real matrices U and Q as in (1743), where [189, §2.5.3]

R{ui |σi 6=0} = R(A)
R{ui |σi =0} ⊆ N (AT)
R{qi |σi 6=0} = R(AT)
R{qi |σi =0} ⊆ N (A)

(1748)

A.6.1.1 subcompact SVD

Some authors allow only nonzero singular values. In that case the compact decomposition
can be made smaller; it can be redimensioned in terms of rank ρ because, for any A∈Rm×n

ρ = rankA = rank Σ = max {i∈{1 . . . η} | σi 6= 0} ≤ η (1749)

� For any flavor SVD, rank is equivalent to the number of nonzero singular values on
the main diagonal of Σ .

Now

A = UΣQT = [u1 · · · uρ ] Σ







qT
1
...

qT
ρ






=

ρ
∑

i=1

σi uiq
T
i

U ∈Rm×ρ, Σ∈Rρ×ρ
+ , Q∈Rn×ρ

UTU = I , QTQ = I

(1750)

where the main diagonal of diagonal matrix Σ has no 0 entries, and

R{ui} = R(A)
R{qi} = R(AT)

(1751)

A.6.1.2 uniqueness, compact and subcompact SVD

By diagonal orthogonal matrix δ(ψ) commutativity, given ψ∈{−1 , 1}η or {−1 , 1}ρ

UΣQT = (Uδ(ψ))Σ(Qδ(ψ))
T

(1752)

SVD is unique to within sign of orthonormal matrix columns because δ(ψ)δ(ψ)T = I .

A.16 σ(ATA)= λ(ATA) and σ(AAT)= λ(AAT). (§A.6.2.2) Were A normal, σ(A) = |λ(A)|. [469, §8.1]
A.17For η = n , σ(A) =

√

λ(ATA) = λ
(

√

ATA
)

. For η = m , σ(A) =
√

λ(AAT) = λ
(

√

AAT
)

.
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A.6.2 Full SVD

Another common and useful expression of the SVD makes U and Q square; making the
decomposition larger than compact SVD. Completing the nullspace bases in U and Q
from (1748) provides what is called the full singular value decomposition of A∈Rm×n

[379, App.A]. Orthonormal real matrices U and Q become orthogonal matrices (§B.5):

R{ui |σi 6=0} = R(A)
R{ui |σi =0} = N (AT)
R{qi |σi 6=0} = R(AT)
R{qi |σi =0} = N (A)

(1753)

For any matrix A having rank ρ (= rankΣ)

A = UΣQT = [u1 · · · um ] Σ





qT
1
...

qT
n



 =
η
∑

i=1

σi uiq
T
i

=
[

m×ρ basisR(A) m×m−ρ basisN (AT)
]











σ1

σ2

. . .















(

n×ρ basisR(AT)
)T

(n×n−ρ basisN (A))
T





U ∈Rm×m, Σ∈Rm×n
+ , Q∈ Rn×n

UT = U−1 , QT = Q−1 (1754)

where upper limit of summation η is defined in (1744). Matrix Σ is no longer necessarily
square, now padded with respect to (1745) by m−η zero rows or n−η zero columns;
the nonincreasingly ordered (possibly 0) singular values appear along its main diagonal
as for compact SVD (1746).

An important geometrical interpretation of SVD is given in Figure 184 for m = n = 2 :
The image of the unit sphere under any m× n matrix multiplication is an ellipse.
Considering the three factors of the SVD separately, note that QT is a pure rotation of the
circle. Figure 184 shows how the axes q1 and q2 are first rotated by QT to coincide with
the coordinate axes. Second, the circle is stretched by Σ in the directions of the coordinate
axes to form an ellipse. The third step rotates the ellipse by U into its final position. Note
how q1 and q2 are rotated to end up as u1 and u2 , the principal axes of the final ellipse.
A direct calculation shows that Aqj = σj uj . Thus qj is first rotated to coincide with the
j th coordinate axis, stretched by a factor σj , and then rotated to point in the direction of
uj . All of this is beautifully illustrated for 2×2 matrices by the Matlab code eigshow.m

(see [382]).
A direct consequence of the geometric interpretation is that the largest singular value

σ1 measures the “magnitude” of A (its 2-norm):

‖A‖2 = sup
‖x‖2=1

‖Ax‖2 = σ1 (1755)

This means that ‖A‖2 is the length of the longest principal semiaxis of the ellipse.
Expressions for U , Q , and Σ follow readily from (1754),

AATU = UΣΣT and ATAQ = QΣTΣ (1756)

demonstrating that the columns of U are the eigenvectors of AAT and the columns of Q
are the eigenvectors of ATA . −Muller, Magaia, & Herbst [313]
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u1

u2

q1

q1

q1

q2

q2

q2

U

QT

Σ

A = UΣQT = [u1 · · · um ] Σ





qT
1
...

qT
n



 =
η
∑

i=1

σi uiq
T
i

Figure 184: Full SVD geometrical interpretation [313]: Image of circle {x∈R2 | ‖x‖2 =1} ,
under matrix multiplication Ax , is generally an ellipse. For the example illustrated,
U , [u1 u2 ]∈R2×2, Q, [ q1 q2 ]∈R2×2.

A.6.2.1 SVD of positive semidefinite matrices

From (1746) and (1740) for Aº 0

σ(A)i =







√

λ(A2)i = λ
(√

A2
)

i
= λ(A)i > 0 , 1 ≤ i ≤ ρ

0 , ρ < i ≤ η
(1757)

A positive semidefinite matrix, having diagonalization A = SΛST (1736) and full singular
value decomposition A = UΣQT (1754), simply relates the two

A = SΛST = UΣQT (1758)

by direct correspondence; id est, S = U = Q , Λ= Σ .

A.6.2.2 SVD of symmetric matrices

From (1746) and (1740) for A = AT, more generally,

σ(A)i =







√

λ(A2)i = λ
(√

A2
)

i
= |λ(A)i| > 0 , 1 ≤ i ≤ ρ

0 , ρ < i ≤ η
(1759)
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For any A∈Rm×n, ATA is (symmetric) positive semidefinite:

σ(ATA)i =

{

λ(ATA)i > 0 , 1 ≤ i ≤ ρ

0 , ρ < i ≤ n
(1760)

A.6.2.2.1 Definition. Step function. (confer §4.3.2.0.1)
Define the signum-like quasilinear function ψ : Rn→ Rn that takes value 1 corresponding
to a 0-valued entry in its argument:

ψ(a) ,

[

lim
xi→ai

xi

|xi|
=

{

1 , ai ≥ 0
−1 , ai < 0

, i=1 . . . n

]

∈ Rn (1761)

Unlike sgn() , ψ is not an odd function; ψ(−a) 6= −ψ(a) because of 0 handling. △

Eigenvalue signs of a symmetric matrix having diagonalization A = SΛST (1736) can
be absorbed either into real U or real Q from the full SVD; [402, p.34] (confer §C.4.2.1)

A = SΛST = Sδ(ψ(δ(Λ))) |Λ|ST , U ΣQT ∈ Sn (1762)

or

A = SΛST = S|Λ| δ(ψ(δ(Λ)))ST , UΣ QT∈ Sn (1763)

where matrix of singular values Σ = |Λ| denotes entrywise absolute value of diagonal
eigenvalue matrix Λ .

A.6.3 Pseudoinverse by SVD

Matrix pseudoinverse (§E) is nearly synonymous with singular value decomposition
because of the elegant expression, given A = UΣQT∈ Rm×n

A† = QΣ†TUT∈ Rn×m (1764)

that applies to all three flavors of SVD, where Σ† simply inverts nonzero entries of
matrix Σ .

Given symmetric matrix A∈ Sn and its diagonalization A = SΛST (§A.5.1), its
pseudoinverse simply inverts all nonzero eigenvalues:

A† = SΛ†ST∈ Sn (1765)

A.7 Zeros

A.7.1 norm zero

For any given norm, by definition,

‖x‖
ℓ
= 0 ⇔ x = 0 (1766)

Consequently, a generally nonconvex constraint in x like ‖Ax − b‖ = κ becomes convex
when κ = 0.
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A.7.2 0 entry

If a positive semidefinite matrix A=[Aij ]∈Rn×n has a 0 entry Aii on its main diagonal,
then Aij + Aji = 0 ∀ j . [314, §1.3.1]

Any symmetric positive semidefinite matrix A∈ Sn, having a 0 entry on its main
diagonal, must be 0 along the entire row and column to which that 0 entry belongs.
[189, §4.2.8] [237, §7.1 prob.2] From which it follows:

δ(A) = 0 ⇔ A = 0 (1767)

tr(A) = 0 ⇔ A = 0 (1768)

A.7.2.0.1 Exercise. Positive semidefinite matrix diagonal zero.
Which Schur complement condition demands multiple 0 entries in submatrix B when there
is a single 0 entry on the main diagonal of submatrix A in partitioned positive semidefinite
matrix G in (1686)? Having made that determination, can one show consequent necessity
for a zero row and column in G simply by repartitioning?

In the same regard, which condition principally governs case C =0 ? Prove that
B(I−CC†)=0 is a necessary condition. H

A.7.3 0 eigenvalues theorem

This theorem is simple, powerful, and widely applicable:

A.7.3.0.1 Theorem. Number of 0 eigenvalues.

� For any matrix A∈Rm×n

rank(A) + dimN (A) = n (1769)

by conservation of dimension. [237, §0.4.4]

� For any square matrix A∈Rm×m, number of 0 eigenvalues is at least equal to
dimN (A) ;

dimN (A) ≤ number of 0 eigenvalues ≤ m (1770)

All eigenvectors, corresponding to those 0 eigenvalues, belong to N (A) .A.18

[379, §5.1]

� For diagonalizable matrix A (§A.5), number of 0 eigenvalues is precisely dimN (A)
while the corresponding eigenvectors span N (A). Real and imaginary parts of the
eigenvectors remaining span R(A).

A.18We take as given the well-known fact that the number of 0 eigenvalues cannot be less than dimension
of the nullspace. We offer an example of the converse:

A =









1 0 1 0
0 0 1 0
0 0 0 0
1 0 0 0









dimN (A)= 2 , λ(A)= [ 0 0 0 1 ]T ; three eigenvectors in the nullspace but only two are independent. The
right side of (1770) is tight for nonzero matrices; e.g, (§B.1) dyad uvT∈ R

m×m has m 0-eigenvalues
when u∈ v⊥.
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(Transpose.)

� Likewise, for any matrix A∈Rm×n

rank(AT) + dimN (AT) = m (1771)

� For any square A∈Rm×m, number of 0 eigenvalues is at least equal to
dimN (AT)=dimN (A). All left-eigenvectors (eigenvectors of AT), corresponding
to those 0 eigenvalues, belong to N (AT).

� For diagonalizable A , number of 0 eigenvalues is precisely dimN (AT) while the
corresponding left-eigenvectors span N (AT). Real and imaginary parts of the
left-eigenvectors remaining span R(AT). ⋄

Proof. First we show, for a diagonalizable matrix, that the number of 0 eigenvalues
is precisely the dimension of its nullspace while eigenvectors corresponding to those 0
eigenvalues span the nullspace:

Any diagonalizable matrix A∈Rm×m must possess a complete set of linearly
independent eigenvectors. If A is full-rank (invertible), then all m=rank(A) eigenvalues
are nonzero. [379, §5.1]

Suppose rank(A)< m . Then dimN (A) = m−rank(A). Thus there is a set of
m−rank(A) linearly independent vectors spanning N (A). Each of those can be an
eigenvector associated with a 0 eigenvalue because A is diagonalizable ⇔ ∃ m linearly
independent eigenvectors. [379, §5.2] Eigenvectors of a real matrix corresponding to 0
eigenvalues must be real.A.19 Thus A has at least m−rank(A) eigenvalues equal to 0.

Now suppose A has more than m−rank(A) eigenvalues equal to 0. Then there are
more than m−rank(A) linearly independent eigenvectors associated with 0 eigenvalues,
and each of those eigenvectors must be in N (A). Thus there are more than m−rank(A)
linearly independent vectors in N (A) ; a contradiction.

Diagonalizable A therefore has rank(A) nonzero eigenvalues and exactly m−rank(A)
eigenvalues equal to 0 whose corresponding eigenvectors span N (A).

By similar argument, the left-eigenvectors corresponding to 0 eigenvalues span N (AT).
Next we show when A is diagonalizable, the real and imaginary parts of its eigenvectors

(corresponding to nonzero eigenvalues) span R(A) :
The (right-)eigenvectors of a diagonalizable matrix A∈Rm×m are linearly independent

if and only if the left-eigenvectors are. So, matrix A has a representation in terms of its
right- and left-eigenvectors; from the diagonalization (1722), assuming 0 eigenvalues are
ordered last,

A =

m
∑

i=1

λi siw
T
i =

k ≤m
∑

i=1
λi 6=0

λi siw
T
i (1772)

From the linearly independent dyads theorem (§B.1.1.0.2), the dyads {siw
T
i } must be

independent because each set of eigenvectors are; hence rank A = k , the number of nonzero
eigenvalues. Complex eigenvectors and eigenvalues are common for real matrices, and must
come in complex conjugate pairs for the summation to remain real. Assume that conjugate
pairs of eigenvalues appear in sequence. Given any particular conjugate pair from (1772),
we get the partial summation

λi siw
T
i + λ∗

i s∗i w
∗T
i = 2 re(λi siw

T
i )

= 2
(

re si re(λi w
T
i ) − im si im(λi w

T
i )

) (1773)

A.19Proof. Let ∗ denote complex conjugation. Suppose A=A∗ and Asi = 0. Then si = s∗i ⇒
Asi =As∗i ⇒ As∗i = 0. Conversely, As∗i = 0 ⇒ Asi =As∗i ⇒ si = s∗i . ¨



A.7. ZEROS 519

whereA.20 λ∗
i , λi+1 , s∗i , si+1 , and w∗

i , wi+1 . Then (1772) is equivalently written

A = 2
∑

i
λ∈C

λi 6=0

re s2i re(λ2i w
T
2i) − im s2i im(λ2i w

T
2i) +

∑

j
λ∈R

λj 6=0

λj sjw
T
j (1774)

The summation (1774) shows: A is a linear combination of real and imaginary
parts of its (right-)eigenvectors corresponding to nonzero eigenvalues. The k
vectors {re si∈Rm, im si∈Rm | λi 6=0 , i∈{1 . . . m}} must therefore span the range of
diagonalizable matrix A .

The argument is similar regarding span of the left-eigenvectors. ¨

A.7.4 0 trace and matrix product

For X, A∈RM×N
+ (41)

tr(XTA) = 0 ⇔ X ◦ A = A ◦ X = 0 (1775)

For X, A∈SM
+ [38, §2.6.1 exer.2.8] [411, §3.1]

tr(XA) = 0 ⇔ XA = AX = 0 (1776)

Proof. (⇐) Suppose XA = AX = 0. Then tr(XA)=0 is obvious.
(⇒) Suppose tr(XA)=0. tr(XA)= tr(

√
A X

√
A) whose argument is positive semidefinite

by Corollary A.3.1.0.5. Trace of any square matrix is equivalent to the sum of its
eigenvalues. Eigenvalues of a positive semidefinite matrix can total 0 if and only if each
and every nonnegative eigenvalue is 0. The only positive semidefinite matrix, having all 0
eigenvalues, resides at the origin; (confer (1800)) id est,

√
AX

√
A =

(√
X
√

A
)T√

X
√

A = 0 (1777)

implying
√

X
√

A = 0 which in turn implies
√

X(
√

X
√

A)
√

A = XA = 0. Arguing
similarly yields AX = 0. ¨

Diagonalizable matrices A and X are simultaneously diagonalizable if and only if they
are commutative under multiplication; [237, §1.3.12] id est, iff they share a complete set
of eigenvectors.

A.7.4.0.1 Example. An equivalence in nonisomorphic spaces.
Identity (1776) leads to an unusual equivalence relating convex geometry to traditional
linear algebra: The convex sets, given Aº 0

{X | 〈X , A〉 = 0} ∩ {Xº 0} ≡ {X | N (X) ⊇ R(A)} ∩ {Xº 0} (1778)

(one expressed in terms of a hyperplane, the other in terms of nullspace and range) are
equivalent only when symmetric matrix A is positive semidefinite.

We might apply this equivalence to the geometric center subspace, for example,

SM
c = {Y ∈ SM | Y 1 = 0}

= {Y ∈ SM | N (Y ) ⊇ 1} = {Y ∈ SM | R(Y ) ⊆ N (1T)}
(2229)

from which we derive (confer (1112))

SM
c ∩ SM

+ ≡ {Xº 0 | 〈X , 11T〉 = 0} (1779)

2

A.20Complex conjugate of w is denoted w∗. Conjugate transpose is denoted wH = w∗T.
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A.7.5 Zero definite

The domain over which an arbitrary real matrix A∈RM×M is zero definite can exceed its
left and right nullspaces; e.g, [469, §3.2 prob.5]

{x | xTAx = 0} = RM ⇔ AT = −A (1780)

whereas
{x | xHAx = 0} = CM ⇔ A = 0 (1781)

For any positive semidefinite matrix A∈RM×M (for A +ATº 0)

{x | xTAx = 0} = N (A +AT) (1782)

because ∃R Ä A + AT=RTR , ‖Rx‖=0 ⇔ Rx=0 , and N (A +AT)=N (R). Then
given any particular vector xp , xT

pAxp = 0 ⇔ xp∈ N (A +AT).

For any positive definite matrix A∈RM×M (for A +AT≻ 0)

{x | xTAx = 0} = 0 (1783)

A.7.5.0.1 Example. Zero definiteness.
The positive semidefinite matrix

A =

[

1 2
0 1

]

(1784)

has no nullspace. Yet

{x | xTAx = 0} = {x | 1Tx = 0} ⊂ R2 (1785)

which is the nullspace of the symmetrized matrix. Symmetric matrices are not spared
from the excess; videlicet,

B =

[

1 2
2 1

]

(1786)

has eigenvalues {−1, 3} , no nullspace, but is zero definite onA.21

X , {x∈R2 | x2 = (−2 ±
√

3 )x1} (1787)

2

A.7.5.0.2 Proposition. (Sturm/Zhang) Dyad-decompositions. [385, §5.2]
Let positive semidefinite matrix X∈ SM

+ have rank ρ . Then, given symmetric matrix

A∈ SM , 〈A , X 〉= 0 if and only if there exists a dyad-decomposition

X =

ρ
∑

j=1

xjx
T
j (1788)

satisfying
〈A , xjx

T
j 〉 = 0 for each and every j ∈ {1 . . . ρ} (1789)

⋄

The dyad-decomposition of X proposed is generally not that obtained from a standard
diagonalization by eigenvalue decomposition, unless ρ =1 or the given matrix A is
simultaneously diagonalizable (§A.7.4) with X . That means, elemental dyads in
decomposition (1788) constitute a generally nonorthogonal set. Sturm & Zhang give a
simple procedure for constructing the dyad-decomposition [443] where matrix A may be
regarded as a parameter.

A.21These two lines represent the limit in the union of two generally distinct hyperbolae; id est, for matrix
B and set X as defined

lim
ε→0+

{x∈R
2 | xTBx = ε} = X
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A.7.5.0.3 Example. Dyad.
The dyad uvT∈RM×M (§B.1) is zero definite on all x for which either xTu=0 or xTv=0 ;

{x | xTuvTx = 0} = {x | xTu=0} ∪ {x | vTx=0} (1790)

id est, on u⊥ ∪ v⊥. Symmetrizing the dyad does not change the outcome:

{x | xT(uvT+ vuT)x/2 = 0} = {x | xTu=0} ∪ {x | vTx=0} (1791)

2
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Appendix B

Simple Matrices

Mathematicians also attempted to develop algebra of vectors but there was
no natural definition of the product of two vectors that held in arbitrary
dimensions. The first vector algebra that involved a noncommutative vector
product (that is, v×w need not equal w×v) was proposed by Hermann
Grassmann in his book Ausdehnungslehre (1844 ). Grassmann’s text also
introduced the product of a column matrix and a row matrix, which resulted in
what is now called a simple or a rank-one matrix. In the late 19th century the
American mathematical physicist Willard Gibbs published his famous treatise
on vector analysis. In that treatise Gibbs represented general matrices, which
he called dyadics, as sums of simple matrices, which Gibbs called dyads. Later
the physicist P. A. M. Dirac introduced the term “bra-ket” for what we now
call the scalar product of a “bra” (row) vector times a “ket” (column) vector
and the term “ket-bra” for the product of a ket times a bra, resulting in what
we now call a simple matrix, as above. Our convention of identifying column
matrices and vectors was introduced by physicists in the 20th century.

−Suddhendu Biswas [54, p.2]

B.1 Rank-1 matrix (dyad)

Any matrix formed from the unsigned outer product of two vectors,

Ψ = uvT ∈ RM×N (1792)

where u∈RM and v∈RN , is rank-1 and called dyad. Conversely, any rank-1 matrix must
have the form Ψ . [237, prob.1.4.1] Product −uvT is a negative dyad. For matrix products
ABT, in general, we have

R(ABT) ⊆ R(A) , N (ABT) ⊇ N (BT) (1793)

with equality when B =A [379, §3.3, §3.6]B.1 or respectively when B is invertible and
N (A)=0. Yet for all nonzero dyads we have

R(uvT) = R(u) , N (uvT) = N (vT) ≡ v⊥ (1794)

B.1Proof. R(AAT) ⊆ R(A) is obvious.

R(AAT) = {AATy | y ∈ R
m}

⊇ {AATy | ATy ∈ R(AT)} = R(A) by (146) ¨

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 523

https://ccrma.stanford.edu/~dattorro
https://www.convexoptimization.com
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R(v)

N (Ψ)=N (vT)

r r

N (uT)

R(Ψ) = R(u)

RN = R(v) ⊞ N (uvT) N (uT) ⊞ R(uvT) = RM

0 0

Figure 185: The four fundamental subspaces [381, §3.6] for any dyad Ψ = uvT∈RM×N :
R(v)⊥ N (Ψ) & N (uT)⊥ R(Ψ). Ψ(x), uvTx is a linear mapping from RN to RM . Map
from R(v) to R(u) is bijective. [379, §3.1]

where dim v⊥=N−1.

It is obvious that a dyad can be 0 only when u or v is 0 ;

Ψ = uvT = 0 ⇔ u = 0 or v = 0 (1795)

The matrix 2-norm for Ψ is equivalent to Frobenius’ norm;

‖Ψ‖2 = σ1 = ‖uvT‖F = ‖uvT‖2 = ‖u‖ ‖v‖ (1796)

When u and v are normalized, the pseudoinverse is the transposed dyad. Otherwise,

Ψ† = (uvT)† =
vuT

‖u‖2 ‖v‖2
(1797)

When dyad uvT∈RN×N is square, uvT has at least N−1 0-eigenvalues and
corresponding eigenvectors spanning v⊥. The remaining eigenvector u spans the range of
uvT with corresponding eigenvalue

λ = vTu = tr(uvT) ∈ R (1798)

Determinant is a product of the eigenvalues; so, it is always true that

det Ψ = det(uvT) = 0 (1799)

When λ = 1 , the square dyad is a nonorthogonal projector projecting on its range
(Ψ2 =Ψ , §E.6); a projector dyad. It is quite possible that u∈ v⊥ making the remaining
eigenvalue instead 0 ;B.2 λ = 0 together with the first N−1 0-eigenvalues; id est, it is
possible uvT were nonzero while all its eigenvalues are 0. The matrix

[

1
−1

]

[ 1 1 ]
=

[

1 1
−1 −1

]

(1800)

for example, has two 0-eigenvalues. In other words, eigenvector u may simultaneously be
a member of the nullspace and range of the dyad. The explanation is, simply, because u
and v share the same dimension, dim u = M = dim v = N :

B.2A dyad is not always diagonalizable (§A.5) because its eigenvectors are not necessarily independent.
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Proof. Figure 185 sees the four fundamental subspaces for the dyad. Linear operator
Ψ : RN→RM provides a map between vector spaces that remain distinct when M =N ;

u ∈ R(uvT)

u ∈ N (uvT) ⇔ vTu = 0

R(uvT) ∩ N (uvT) = ∅
(1801)

¨

B.1.0.1 rank-1 modification

For A∈RM×N , x∈RN , y∈RM , and yTAx 6=0 [242, §2.1]B.3

rank

(

A − AxyTA

yTAx

)

= rank(A) − 1 (1803)

Given nonsingular matrix A∈RN×N Ä 1 + vTA−1u 6= 0 , [182, §4.11.2] [257, App.6]
[469, §2.3 prob.16] (Sherman-Morrison-Woodbury)

(A ± uvT)−1 = A−1 ∓ A−1 uvTA−1

1 ± vTA−1u
(1804)

B.1.0.2 dyad symmetry

In the specific circumstance that v = u , then uuT∈ RN×N is symmetric, rank-1 , and
positive semidefinite having exactly N−1 0-eigenvalues. In fact, (Theorem A.3.1.0.7)

uvTº 0 ⇔ v = u (1805)

and the remaining eigenvalue is almost always positive;

λ = uTu = tr(uuT) > 0 unless u=0 (1806)

When λ = 1 , the dyad becomes an orthogonal projector.
Matrix

[

Ψ u
uT 1

]

(1807)

for example, is rank-1 positive semidefinite if and only if Ψ = uuT.

B.1.1 Dyad independence

Now we consider a sum of dyads like (1792) as encountered in diagonalization and singular
value decomposition:

R
(

k
∑

i=1

siw
T
i

)

=
k

∑

i=1

R
(

siw
T
i

)

=
k

∑

i=1

R(si) ⇐ wi ∀ i are l.i. (1808)

B.3This rank-1 modification formula has a Schur progenitor, in the symmetric case:

minimize
c

c

subject to

[

A Ax
yTA c

]

º 0
(1802)

has analytical solution by (1686b): c≥ yTAA†Ax = yTAx . Difference A− AxyTA

yTAx
comes from (1686c).

Rank modification is provable via Theorem A.4.0.1.3.
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range of summation is the vector sum of ranges.B.4 (Theorem B.1.1.1.1) Under the
assumption the dyads are linearly independent (l.i.), then vector sums are unique (p.635):
for {wi} l.i. and {si} l.i.

R
(

k
∑

i=1

siw
T
i

)

= R
(

s1wT
1

)

⊕ . . . ⊕R
(

skwT
k

)

= R(s1) ⊕ . . . ⊕R(sk) (1809)

B.1.1.0.1 Definition. Linearly independent dyads. [247, p.29 thm.11] [387, p.2]
The set of k dyads

{

siw
T
i | i=1 . . . k

}

(1810)

where si∈CM and wi∈CN , is said to be linearly independent iff

rank

(

SWT ,
k

∑

i=1

siw
T
i

)

= k (1811)

where S , [s1 · · · sk] ∈ CM×k and W , [w1 · · · wk] ∈ CN×k. △

Dyad independence does not preclude existence of a nullspace N (SWT) , as defined,
nor does it imply SWT were full-rank. In absence of assumption of independence,
generally, rankSWT≤ k . Conversely, any rank-k matrix can be written in the form
SWT by singular value decomposition. (§A.6)

B.1.1.0.2 Theorem. Linearly independent (l.i.) dyads.
Vectors {si∈CM , i=1 . . . k} are l.i. and vectors {wi∈CN , i=1 . . . k} are l.i. if and only
if dyads {siw

T
i ∈ CM×N , i=1 . . . k} are l.i. ⋄

Proof. Linear independence of k dyads is identical to definition (1811).
(⇒) Suppose {si} and {wi} are each linearly independent sets. Invoking Sylvester’s rank
inequality, [237, §0.4] [469, §2.4]

rankS + rankW − k ≤ rank(SWT) ≤ min{rankS , rankW} (≤ k) (1812)

Then k≤ rank(SWT)≤ k which implies the dyads are independent.
(⇐) Conversely, suppose rank(SWT)= k . Then

k≤min{rankS , rankW} ≤ k (1813)

implying the vector sets are each independent. ¨

B.1.1.1 Biorthogonality condition, Range and Nullspace of Sum

Dyads characterized by biorthogonality condition WTS = I are independent; id est, for
S∈CM×k and W ∈ CN×k, if WTS = I then rank(SWT)= k by the linearly independent
dyads theorem because (confer §E.1.1)

WTS = I ⇒ rankS =rankW = k≤M =N (1814)

To see that, we need only show: N (S)=0 ⇔ ∃ B Ä BS =I .B.5

(⇐) Assume BS =I . Then N (BS)=0={x |BSx = 0} ⊇ N (S). (1793)

B.4Move of range R to inside summation admitted by linear independence of {wi}.
B.5Left inverse is not unique, in general.
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R([u v ])

N (Π)= v⊥ ∩ u⊥

r r

v⊥ ∩ u⊥

R(Π)=R([u v])

RN = R([u v ]) ⊞ N
([

vT

uT

])

N
([

vT

uT

])

⊞ R([u v ]) = RN

0 0

Figure 186: The four fundamental subspaces [381, §3.6] for doublet Π = uvT+ vuT∈ SN .
Π(x)=(uvT+ vuT)x is a linear bijective mapping from R([u v ]) to R([u v ]).

(⇒) If N (S)=0 then S must be full-rank thin-or-square.

∴ ∃ A,B ,C Ä

[

B
C

]

[S A ] = I (id est, [S A ] is invertible) ⇒ BS =I .

Left inverse B is given as WT here. Because of reciprocity with S ,
it immediately follows: N (W )=0 ⇔ ∃ S Ä STW = I . ¨

Dyads produced by diagonalization, for example, are independent because of their inherent
biorthogonality. (§A.5.0.3) The converse is generally false; id est, linearly independent
dyads are not necessarily biorthogonal.

B.1.1.1.1 Theorem. Nullspace and range of dyad sum.
Given a sum of dyads represented by SWT where S∈CM×k and W ∈ CN×k

N (SWT) = N (WT) ⇐ ∃ B Ä BS = I

R(SWT) = R(S) ⇐ ∃ Z Ä WTZ = I
(1815)

⋄

Proof. (⇒) N (SWT)⊇N (WT) and R(SWT)⊆R(S) are obvious.
(⇐) Assume existence of a left inverse B∈Rk×N and a right inverse Z∈RN×k .B.6

N (SWT) = {x | SWTx = 0} ⊆ {x | BSWTx = 0} = N (WT) (1816)

R(SWT) = {SWTx | x∈RN} ⊇ {SWTZy | Zy∈RN} = R(S) (1817)

¨

B.2 Doublet

Consider a sum of two linearly independent square dyads, one a transposition of the other:

Π = uvT+ vuT =
[u v ]

[

vT

uT

]

= SWT ∈ SN (1818)

where u , v∈RN . Like the dyad, a doublet can be 0 only when u or v is 0 ;

Π = uvT+ vuT = 0 ⇔ u = 0 or v = 0 (1819)

By assumption of independence, a nonzero doublet has two nonzero eigenvalues

λ1 , uTv + ‖uvT‖ , λ2 , uTv − ‖uvT‖ (1820)

B.6By counterexample, the theorem’s converse cannot be true; e.g, S = W = [1 0 ] .
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N (uT)

N (E)=R(u)

r r

R(v)

R(E) = N (vT)

RN = N (uT) ⊞ N (E) R(v) ⊞ R(E) = RN

0 0

Figure 187: vTu=1/ζ . The four fundamental subspaces [381, §3.6] for elementary matrix

E as a linear mapping E(x)=

(

I − uvT

vTu

)

x .

where λ1 > 0 >λ2 , with corresponding eigenvectors

x1 ,
u

‖u‖ +
v

‖v‖ , x2 ,
u

‖u‖ − v

‖v‖ (1821)

spanning the doublet range. Eigenvalue λ1 cannot be 0 unless u and v have opposing
directions, but that is antithetical since then the dyads would no longer be independent.
Eigenvalue λ2 is 0 if and only if u and v share the same direction, again antithetical.
Generally we have λ1 > 0 and λ2 < 0 , so Π is indefinite.

By the nullspace and range of dyad sum theorem, doublet Π has N−2 zero-eigenvalues

remaining and corresponding eigenvectors spanning N
([

vT

uT

])

. We therefore have

R(Π) = R([u v ]) , N (Π) = v⊥ ∩ u⊥ (1822)

of respective dimension 2 and N−2. (Figure 186)

B.3 Elementary matrix

A matrix of the form
E = I − ζ uvT ∈ RN×N (1823)

where ζ∈R is finite and u,v∈RN , is called elementary matrix or rank-1 modification
of the Identity . [239] Any elementary matrix in RN×N has N−1 eigenvalues equal to 1
corresponding to real eigenvectors that span v⊥. The remaining eigenvalue

λ = 1− ζ vTu (1824)

corresponds to eigenvector u .B.7 From [257, App.7.A.26] the determinant:

det E = 1 − tr
(

ζ uvT
)

= λ (1825)

If λ 6= 0 then E is invertible; [182] (confer §B.1.0.1)

E−1 = I +
ζ

λ
uvT (1826)

Eigenvectors corresponding to 0 eigenvalues belong to N (E) , and the number
of 0 eigenvalues must be at least dimN (E) which, here, can be at most one.

B.7Elementary matrix E is not always diagonalizable because eigenvector u need not be independent of
the others; id est, u∈ v⊥ is possible.
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(§A.7.3.0.1) The nullspace exists, therefore, when λ=0 ; id est, when vTu=1/ζ ; rather,
whenever u belongs to hyperplane {z∈RN | vTz=1/ζ}. Then (when λ=0) elementary
matrix E is a nonorthogonal projector projecting on its range (E2 =E , §E.1) and
N (E)=R(u) ; eigenvector u spans the nullspace when it exists. By conservation of
dimension, dimR(E)=N−dimN (E). It is apparent from (1823) that v⊥⊆R(E) ,
but dim v⊥=N−1. Hence R(E)≡ v⊥ when the nullspace exists, and the remaining
eigenvectors span it.

In summary, when a nontrivial nullspace of E exists,

R(E) = N (vT) , N (E) = R(u) , vTu = 1/ζ (1827)

illustrated in Figure 187, which is opposite to the assignment of subspaces for a dyad
(Figure 185). Otherwise, R(E)= RN .

When E = ET, the spectral norm is

‖E‖2 = max{1 , |λ|} (1828)

B.3.1 Householder matrix

An elementary matrix is called a Householder matrix when it has the defining form, for
nonzero vector u [189, §5.1.2] [182, §4.10.1] [379, §7.3] [237, §2.2]

H = I − 2
uuT

uTu
∈ SN (1829)

which is a symmetric orthogonal (reflection) matrix (H−1=HT=H (§B.5.3)). Vector u
is normal to an N− 1-dimensional subspace u⊥ through which this particular H effects
pointwise reflection; e.g, Hu⊥=u⊥ while Hu =−u .

Matrix H has N−1 orthonormal eigenvectors spanning that reflecting subspace u⊥

with corresponding eigenvalues equal to 1. Its remaining eigenvector u has corresponding
eigenvalue −1 ; so

det H = −1 (1830)

Due to symmetry of H , matrix 2-norm (spectral norm) is equal to its largest eigenvalue
magnitude. A Householder matrix is thus characterized as is any reflection matrix,

HT = H , H−1 = HT , ‖H‖2
2 = 1 , ‖H‖2

F = N (1855)

For example, permutation matrix

Ξ =





1 0 0
0 0 1
0 1 0



 (1831)

is a Householder matrix having u=[ 0 1 −1 ]T/
√

2 . Not all permutation matrices are
Householder matrices, although all permutation matrices are orthogonal matrices (§B.5.2,
ΞTΞ = I) [379, §3.4] because they are made by permuting rows and columns of the
Identity matrix. Neither are all symmetric permutation matrices Householder matrices;

e.g, reflection matrix Ξ =

[

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]

(1933) is not a Householder matrix.
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B.4 Auxiliary V -matrices

B.4.1 Auxiliary projector matrix V

It is convenient to define a matrix V that arises naturally as a consequence of translating
geometric center αc (§5.5.1.0.1) of some list X to the origin. In place of X − αc1

T we
may write XV as in (1092) where

V = I − 1

N
11T ∈ SN (1028)

is an elementary matrix called the geometric centering matrix.
Any elementary matrix in RN×N has N−1 eigenvalues equal to 1. For the particular

elementary matrix V , the N th eigenvalue equals 0. The number of 0 eigenvalues must
equal dimN (V ) = 1 , by the 0 eigenvalues theorem (§A.7.3.0.1), because V =V T is
diagonalizable. Because

V 1 = 0 (1832)

the nullspace N (V )=R(1) is spanned by the eigenvector 1. The remaining eigenvectors
span R(V ) ≡ 1⊥ = N (1T) that has dimension N−1.

Because
V 2 = V (1833)

and V T = V , elementary matrix V is also a projection matrix (§E.3) projecting
orthogonally on its range N (1T) which is a hyperplane containing the origin in RN

V = I − 1(1T1)−11T (1834)

The {0, 1} eigenvalues also indicate that diagonalizable V is a projection matrix.
[469, §4.1 thm.4.1] Symmetry of V denotes orthogonal projection; from (2133),

V 2 = V , V T = V , V † = V , ‖V ‖2 = 1 , V º 0 (1835)

Matrix V is also circulant [201].

B.4.1.1 there are more auxiliary matrices

Mathar shows [300, §2] that any elementary matrix (§B.3) of the form

VS = I − b1T ∈ RN×N (1836)

such that bT1 = 1 (confer [194, §2]), is an auxiliary V -matrix having

R(V T
S ) = N (bT) , R(VS) = N (1T)

N (VS) = R(b) , N (V T
S ) = R(1)

(1837)

Given X∈ Rn×N , the choice b⋆= 1
N 1 (VS =V ) is a minimizer; [196, §3.2.1]

1
N 1 = arg minimize

b∈RN
‖X(I − b1T)‖F (1838)

B.4.1.1.1 Example. Relationship of Auxiliary to Householder matrix.
Let H∈ SN be a Householder matrix (1829) defined by

u =









1
...
1

1 +
√

N









∈ RN (1839)
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Then we have [184, §2]

V = H

[

I 0
0T 0

]

H (1840)

Let D∈ SN
h and define

−HDH , −
[

A b
bT c

]

(1841)

where b is a vector. Then because H is nonsingular (§A.3.1.0.5) [219, §3]

−V D V = −H

[

A 0
0T 0

]

H º 0 ⇔ −A º 0 (1842)

and affine dimension is r = rankA when D is a Euclidean distance matrix. 2

B.4.2 Schoenberg auxiliary matrix VN

1. VN =
1√
2

[

−1T

I

]

∈ RN×N−1 (1012)

2. V T
N 1 = 0

3. I − e11
T =

[

0
√

2VN
]

4.
[

0
√

2VN
]

VN = VN

5.
[

0
√

2VN
]

V = V

6. V
[

0
√

2VN
]

=
[

0
√

2VN
]

7.
[

0
√

2VN
] [

0
√

2VN
]

=
[

0
√

2VN
]

8.
[

0
√

2VN
]†

=

[

0 0T

0 I

]

V

9.
[

0
√

2VN
]†

V =
[

0
√

2VN
]†

10.
[

0
√

2VN
] [

0
√

2VN
]†

= V

11.
[

0
√

2VN
]† [

0
√

2VN
]

=

[

0 0T

0 I

]

12.
[

0
√

2VN
]

[

0 0T

0 I

]

=
[

0
√

2VN
]

13.

[

0 0T

0 I

]

[

0
√

2VN
]

=

[

0 0T

0 I

]

14. [VN 1√
2
1 ]−1 =

[

V †
N

√
2

N 1T

]

15. V †
N =

√
2

[

− 1
N 1 I− 1

N 11T
]

∈ RN−1×N ,
(

I− 1
N 11T ∈ SN−1

)

16. V †
N1 = 0

17. V †
NVN = I , V T

N VN = 1
2 (I + 11T) ∈ SN−1
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18. V T = V = VNV †
N = I − 1

N 11T ∈ SN

19. −V †
N (11T− I )VN = I ,

(

11T− I ∈ EDMN
)

20. D = [dij ] ∈ SN
h (1030)

tr(−V D V ) = tr(−V D) = tr(−V †
NDVN ) = 1

N 1TD 1 = 1
N tr(11TD) = 1

N

∑

i,j

dij

Any elementary matrix E∈ SN of the particular form

E = k1 I − k2 11T (1843)

where k1 , k2∈R ,B.8 will make tr(−ED) proportional to
∑

dij .

21. D = [dij ] ∈ SN

tr(−V D V ) = 1
N

∑

i,j
i6=j

dij − N−1
N

∑

i

dii = 1
N 1TD 1 − tr D

22. D = [dij ] ∈ SN
h

tr(−V T
NDVN ) =

∑

j

d1j

23. For Y ∈ SN

V (Y − δ(Y 1))V = Y − δ(Y 1)

B.4.3 Orthonormal auxiliary matrix VW

Thin matrix

VW ,



























−1√
N

−1√
N

· · · −1√
N

1 + −1
N+

√
N

−1
N+

√
N

· · · −1
N+

√
N

−1
N+

√
N

. . .
. . . −1

N+
√

N

...
. . .

. . .
...

−1
N+

√
N

−1
N+

√
N

· · · 1 + −1
N+

√
N



























∈ RN×N−1 (1844)

has R(VW)=N (1T) and orthonormal columns. [7] We defined three auxiliary V -matrices:
V , VN (1012), and VW sharing some attributes listed in Table B.4.4. For example, V
can be expressed

V = VWV T
W = VNV †

N (1845)

but V T
WVW = I means V is an orthogonal projector (2130) and

V †
W = V T

W , ‖VW‖2 = 1 , V T
W1 = 0 (1846)

B.8If k1 is 1−ρ while k2 equals −ρ∈R , then all eigenvalues of E for −1/(N−1) < ρ < 1 are guaranteed
positive and therefore E is guaranteed positive definite. [348]
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B.4.4 Auxiliary V -matrix Table

dim V rankV R(V ) N (V T) V TV V V T V V †

V N×N N−1 N (1T) R(1) V V V

VN N×(N−1) N−1 N (1T) R(1) 1
2 (I + 11T) 1

2

[

N−1 −1T

−1 I

]

V

VW N×(N−1) N−1 N (1T) R(1) I V V

B.5 Orthomatrices

B.5.1 Orthonormal matrix

Property QTQ = I completely defines orthonormal matrix Q∈Rn×k (k≤n); a full-rank
thin-or-square matrix characterized by nonexpansivity (2134)

‖QTx‖2 ≤ ‖x‖2 ∀x∈Rn, ‖Qy‖2 = ‖y‖2 ∀ y∈Rk (1847)

and preservation of vector inner-product

〈Qy , Qz〉 = 〈y , z〉 (1848)

B.5.2 Orthogonal matrix & vector rotation

An orthogonal matrix is a square orthonormal matrix. Property Q−1 = QT completely
defines orthogonal matrix Q∈Rn×n employed to effect vector rotation; [379, §2.6, §3.4]
[381, §6.5] [237, §2.1] for any x∈Rn

‖Qx‖2 = ‖x‖2 (1849)

In other words, the 2-norm is orthogonally invariant. Any antisymmetric matrix constructs
an orthogonal matrix; id est, for A = −AT

Q = (I + A)−1(I − A) (1850)

A unitary matrix is a complex generalization of orthogonal matrix; conjugate transpose
defines it: U−1 = UH. An orthogonal matrix is simply a real unitary matrix.B.9

Orthogonal matrix Q is a normal matrix further characterized by norm:

Q−1 = QT , ‖Q‖2
2 = 1 , ‖Q‖2

F = n (1851)

Applying this characterization to QT, we see that it too is an orthogonal matrix because
transpose inverse equals inverse transpose. Hence the rows and columns of Q each
respectively form an orthonormal set. Normalcy guarantees diagonalization (§A.5.1.0.1).
So, for Q , SΛSH,

SΛ−1SH = S∗ΛST
(

= SΛ∗SH
)

, ‖δ(Λ)‖∞ = 1 , 1T|δ(Λ)| = n (1852)

characterizes an orthogonal matrix in terms of eigenvalues and eigenvectors.
All permutation matrices Ξ , for example, are nonnegative orthogonal matrices;

and vice versa. Product or Kronecker product of any permutation matrices remains
a permutator. Any product of permutation matrix with orthogonal matrix remains
orthogonal. In fact, any product AQ of orthogonal matrices A and Q remains orthogonal

B.9Orthogonal and unitary matrices are called unitary linear operators.
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by definition. Given any other dimensionally compatible orthogonal matrix U , the
mapping g(A)= UTAQ is a bijection on the domain of orthogonal matrices (a nonconvex
manifold of dimension 1

2n(n−1) [58]). [278, §2.1] [279]
The largest magnitude entry of an orthogonal matrix is 1 ; for each and every j∈ 1 . . . n

‖Q(j , :)‖∞ ≤ 1
‖Q(: , j)‖∞ ≤ 1

(1853)

Each and every eigenvalue of a (real) orthogonal matrix has magnitude 1 (Λ−1 = Λ∗)

λ(Q) ∈ Cn , |λ(Q)| = 1 (1854)

but only the Identity matrix can be simultaneously orthogonal and positive definite.
Orthogonal matrices have complex eigenvalues in conjugate pairs: so detQ=±1.

B.5.3 Reflection

A matrix for pointwise reflection is defined by imposing symmetry upon the orthogonal
matrix; id est, a reflection matrix is completely defined by Q−1 = QT = Q∈ Sn. The
reflection matrix is a symmetric orthogonal matrix, and vice versa, characterized:

QT = Q , Q−1 = QT , ‖Q‖2
2 = 1 , ‖Q‖2

F = n (1855)

A Householder matrix (§B.3.1) is one example of symmetric orthogonal (reflection) matrix.
Reflection matrices have eigenvalues equal to ±1 so det Q=±1. It is natural to expect

a relationship between reflection and projection matrices because all projection matrices
have eigenvalues belonging to {0, 1}. In fact, any reflection matrix Q is related to some
orthogonal projector P by [239, §1 prob.44]

Q = I − 2P (1856)

Yet P is, generally, neither orthogonal or invertible. (§E.3.2) Reflection matrix Q must
have at least one negative eigenvalue by (1629).

λ(Q) ∈ Rn , |λ(Q)| = 1 (1857)

Whereas P connotes projection on R(P ) , Q connotes reflection with respect to R(P )⊥.
Matrix I−2(I−P ) = 2P−I represents antireflection; id est, reflection about R(P ).
Every orthogonal matrix can be expressed as the product of a rotation and a reflection.

The collection of all orthogonal matrices of particular dimension forms a nonconvex set;
topologically, it is instead referred to as a manifold.

B.5.3.0.1 Example. Pythagorean sum by antireflection sequence in R2.
Figure 188 illustrates a process for determining magnitude of vector p0 = [x y ]T∈R2

+ .
The given point p0 is assumed to be a member of quadrant I with y≤x .B.10 The idea
is to rotate p0 into alignment with the x axis; its length then becomes equivalent to the
rotated x coordinate. Rotation is accomplished by iteration (i index):

First, p0 is projected on the x axis; [x 0 ]T. Vector u0 = [x y/2 ]T is a bisector of
difference p0− [x 0 ]T, translated to projection [x 0 ]T, and is the perpendicular bisector
of chord p0p1 . Point p1 is the antireflection of p0 ;

p1 =

(

2
u0u

T
0

uT
0 u0

− I

)

p0 (1858)

B.10 p0 belongs to the monotone nonnegative cone KM+⊂ R
2
+ .
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0

R2

p0 =

[

x
y

]

u0 =

[

x
y/2

] p1

u1

p2
[

x
0

]

Figure 188: [149] First two of three iterations required, in absence of square root function,

to calculate
√

x2+y2 to 20 significant digits (presuming infinite precision). Point p0 is
given. u0 is a bisector of difference [ 0 y ]T, translated to [x 0 ]T, and is the perpendicular
bisector of chord p0p1 ; similarly, for u1 . [259, §16/4] Assuming that Moler & Morrison
condition [307] |y|≤ |x| holds, iterate p3 (not shown) is always on quarter circle close to x
axis. (p0 violates Moler & Morrison condition, for illustration. Cartesian axes not drawn.)

In the second iteration, Figure 188 illustrates operation on p1 and construction of p2 .
Because p2 is the antireflection of p1 , each must be equidistant from the perpendicular
bisector through u1 of chord p1p2 .

A third iteration completes the process. Say pi = [xi yi ]T with [x0 y0 ], [x y ] the
given point. It is known that the particular selection of bisector ui = [xi yi/2 ]T diminishes
total required number of iterations to three for 20 significant digits ([307] presuming exact
arithmetic).

The entire sequence of operations is illustrated programmatically by this Matlab
subroutine to calculate magnitude of any vector in R2 by antireflection:

function z = pythag2(x,y) %z(1)=sqrt(x^2+y^2), z(2)=y coordinate of p3

if ~[x;y]

z = [x;y];

else

z = sort(abs([x;y]),’descend’);

for i=1:3

u = [z(1); z(2)/2];

z = 2*u*(u’*z)/(u’*u) - z;

end

end

end

Pythagorean sum sans square root was first published in 1983 by Moler & Morrison [307]
who did not describe antireflection. 2

https://blogs.mathworks.com/cleve/2012/07/30/Pythagorean-addition
https://blogs.mathworks.com/cleve/2012/07/30/Pythagorean-addition
https://blogs.mathworks.com/cleve/2012/07/30/Pythagorean-addition
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B.5.3.0.2 Exercise. Pythagorean sum: ‖x∈Rn‖ sans square root sans sort.
Matlab subroutine pythag2() calculates magnitude of any vector in R2. By constraining
perpendicular bisector angle Áui≤ π

4 , show that sorting condition |y|≤ |x| is obviated:

function z = pythag2d(x,y) %z(1)=sqrt(x^2+y^2), z(2)=y coordinate of p4

if ~[x;y]

z = [x;y];

elseif ~x

z = [abs(y); 0];

else

z = abs([x;y]);

for i=1:4

u = [z(1); min(z(1), z(2)/2)];

z = 2*u*(u’*z)/(u’*u) - z;

end

end

end

Elimination of sort() incurred an extra iteration in R2.
Antireflection admits simple modifications that enable calculation of Euclidean norm

for any vector in Rn. Show that Euclidean norm may be calculated with only a small
number of iterations in absence of square root and sorting functions:

function z = pythag3d(x) %z(1)=||x||, z(2:end)=coordinates of p13

if ~x

z = x;

elseif ~x(1)

z = [pythag3d(x(2:end)); 0];

else

z = abs(x);

for i=1:13

u = [z(1); min(z(1), z(2:end)/2)];

z = 2*u*(u’*z)/(u’*u) - z;

end

end

end

Projection is on the first nonzero coordinate axis, as in §B.5.3.0.1, then antireflection is
about a vector ui normal to a hyperplane. Demonstrate that number of required iterations
does not grow linearly with n ; contrary to [307, §3], growth is much slower. H

B.5.4 Rotation of range and rowspace

Given orthogonal matrix Q , column vectors of a matrix X are simultaneously rotated
about the origin via product QX . In three dimensions (X∈ R3×N ), precise meaning
of rotation is best illustrated in Figure 189 where a gimbal aids visualization of what is
achievable; mathematically, (§5.5.2.0.1)

Q =





cos θ 0 −sin θ
0 1 0

sin θ 0 cos θ









1 0 0
0 cos ψ −sinψ
0 sinψ cos ψ









cos φ −sin φ 0
sin φ cos φ 0

0 0 1



 (1859)

B.5.4.0.1 Example. One axis of revolution.

Partition n+1-dimensional Euclidean space Rn+1 ,

[

Rn

R

]

and define an n -dimensional
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Figure 189: Gimbal : a mechanism imparting three degrees of dimensional freedom to
a Euclidean body suspended at its center. Each ring is free to rotate about one axis.
(Drawing by courtesy of The MathWorks Inc.)

subspace
R , {λ∈Rn+1 | 1Tλ = 0} (1860)

(a hyperplane through the origin). We want an orthogonal matrix that rotates a list in the
columns of matrix X∈ Rn+1×N through the dihedral angle between Rn and R (§2.4.3)

Á(Rn, R) = arccos

( 〈en+1 , 1〉
‖en+1‖ ‖1‖

)

= arccos

(

1√
n+1

)

radians (1861)

The vertex-description of the nonnegative orthant in Rn+1 is

{[ e1 e2 · · · en+1 ] a | a º 0} = {a º 0} = Rn+1
+ ⊂ Rn+1 (1862)

Consider rotation of these vertices via orthogonal matrix

Q , [1 1√
n+1

ΞVW ]Ξ ∈ Rn+1×n+1 (1863)

where permutation matrix Ξ∈Sn+1 is defined in (1933) and where VW ∈Rn+1×n is the
orthonormal auxiliary matrix defined in §B.4.3. This particular orthogonal matrix is
selected because it rotates any point in subspace Rn about one axis of revolution onto R ;
e.g, rotation Qen+1 aligns the last standard basis vector with subspace normal R⊥= 1.
The rotated standard basis vectors remaining are orthonormal spanning R . 2

Another interpretation of product QX is rotation/reflection of R(X). Rotation of
X as in QXQT is a simultaneous rotation/reflection of range and rowspace.B.11

Proof. Any matrix can be expressed as a singular value decomposition X = UΣWT

(1743) where δ2(Σ) = Σ , R(U)⊇R(X) , and R(W )⊇R(XT). ¨

B.5.5 Matrix rotation

Orthogonal matrices are also employed to rotate/reflect other matrices like vectors:
[189, §12.4.1] Given orthogonal matrix Q , the product QTA will rotate A∈Rn×n in

B.11Product QTA Q can be regarded as coordinate transformation; e.g, given linear map y =Ax : R
n→R

n

and orthogonal Q , the transformation Qy =AQx is a rotation/reflection of range and rowspace (145) of
matrix A where Qy∈R(A) and Qx∈R(AT) (146).

https://www.mathworks.com/help/physmod/sm/mech/ref/gimbal.html
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Figure 190: 10×10 arrow matrix. Twenty eight nonzero (nz) entries indicated.

the Euclidean sense in Rn2

because Frobenius’ norm is orthogonally invariant (§2.2.1);

‖QTA‖F =
√

tr(ATQQTA) = ‖A‖F (1864)

(likewise for AQ). Were A symmetric, such a rotation would depart from Sn. One remedy
is to instead form product QTAQ because

‖QTAQ‖F =
√

tr(QTATQQTAQ) = ‖A‖F (1865)

By §A.1.1 no.33,
vec QTAQ = (Q ⊗ Q)T vec A (1866)

which is a rotation of the vectorized A matrix because Kronecker product of any orthogonal
matrices remains orthogonal; e.g, by §A.1.1 no.43,

(Q ⊗ Q)T(Q ⊗ Q) = I (1867)

Matrix A is orthogonally equivalent to B if B=STAS for some orthogonal matrix S .
Every square matrix, for example, is orthogonally equivalent to a matrix having equal
entries along the main diagonal. [237, §2.2, prob.3]

B.6 Arrow matrix

Consider a partitioned symmetric n×n-dimensional matrix A that has arrow [335] (or
arrowhead [378]) form constituted by vectors a, b∈Rn−1 and real scalar c :

A ,

[

δ(a) b
bT c

]

∈ Sn (1868)

Figure 190 illustrates sparsity pattern of an arrow matrix. Embedding of diagonal matrix
δ(a) makes relative sparsity increasing with dimension. Because an arrow matrix is a kind
of bordered matrix, eigenvalues of δ(a) and A are interlaced;

λn ≤ (ΞTa)n−1 ≤ λn−1 ≤ (ΞTa)n−2 ≤ · · · ≤ (ΞTa)1 ≤ λ1 (1869)

[379, §6.4] [237, §4.3] [375, §IV.4.1] denoting nonincreasingly ordered eigenvalues of A by
vector λ∈Rn, and those of δ(a) by ΞTa∈Rn−1 where Ξ is a permutation matrix arranging
a into nonincreasing order: δ(a)= Ξδ(ΞTa)ΞT (§A.5.1.2).
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B.6.1 positive semidefinite arrow matrix

i) Nonnegative main diagonal aº0 insures n−1 nonnegative eigenvalues in (1869).

Positive semidefiniteness is left determined by smallest eigenvalue λn :

A º 0
⇔ a º 0 , bT

(

I− δ(a)δ(a)†
)

= 0 , c− bTδ(a)†b ≥ 0
⇔ c ≥ 0 , b(1− cc†) = 0 , δ(a)− c†bbTº 0

(1870)

Schur complement condition (§A.4) bT
(

I− δ(a)δ(a)†
)

= 0 is most simply a requirement for

ii) a zero entry in vector b wherever there is a corresponding zero entry in vector a .

In other words, vector b can reside anywhere in a Cartesian subspace of Rn−1 that is
determined solely by indices of the nonzero entries in vector a .

iii) c≥ bTδ(a)†b provides a tight lower bound for scalar c .

As shown in §3.5.1, bTδ(a)†b is simultaneously convex in vectors a and b .
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Appendix C

Analytical Optimal Results

People have been working on Optimization since the ancient Greeks
[Zenodorus, circa 200bc] learned that a string encloses the most area when
it is formed into the shape of a circle.

−Roman Polyak

We speculate that optimization problems possessing analytical solution have convex
transformation or constructive global optimality conditions, perhaps yet unknown; e.g,
§4.11.2, §7.1.4, §B.5.3.0.2, (1901), §C.3.3.

C.1 Properties of infima
�

inf ∅ , ∞
sup ∅ , −∞ (1871)

� Given f(x) : X →R defined on arbitrary set X [234, §0.1.2]

inf
x∈X

f(x) = − sup
x∈X

−f(x)

sup
x∈X

f(x) = − inf
x∈X

−f(x)
(1872)

arg inf
x∈X

f(x) = arg sup
x∈X

−f(x)

arg sup
x∈X

f(x) = arg inf
x∈X

−f(x)
(1873)

� Given scalar κ and f(x) : X →R and g(x) : X →R defined on arbitrary set X
[234, §0.1.2]

inf
x∈X

(κ + f(x)) = κ + inf
x∈X

f(x)

arg inf
x∈X

(κ + f(x)) = arg inf
x∈X

f(x)
(1874)

inf
x∈X

κ f(x) = κ inf
x∈X

f(x)

arg inf
x∈X

κ f(x) = arg inf
x∈X

f(x)







, κ > 0 (1875)

inf
x∈X

(f(x) + g(x)) ≥ inf
x∈X

f(x) + inf
x∈X

g(x) (1876)

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 541
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� Given f(x) : X →R defined on arbitrary set X

arg inf
x∈X

|f(x)| = arg inf
x∈X

f(x)2 (1877)

� Given f(x) : X ∪ Y→R and arbitrary sets X and Y [234, §0.1.2]

X ⊂ Y ⇒ inf
x∈X

f(x) ≥ inf
x∈Y

f(x) (1878)

inf
x∈X∪Y

f(x) = min{ inf
x∈X

f(x) , inf
x∈Y

f(x)} (1879)

inf
x∈X∩Y

f(x) ≥ max{ inf
x∈X

f(x) , inf
x∈Y

f(x)} (1880)

C.2 Trace, singular and eigen values

� For A∈Rm×n and σ(A) denoting its singular values, the nuclear (Ky Fan) norm

‖A‖∗2 of matrix A (confer (46), (1746), [238, p.200]) is
∑

i

σ(A)i = tr
√

ATA = ‖A‖∗2 = sup
‖X‖2≤1

tr(XTA) = maximize
X∈R

m×n
tr(XTA)

subject to

[

I X
XT I

]

º 0

= 1
2 minimize

X∈S
m , Y ∈S

n
tr X + tr Y

subject to

[

X A
AT Y

]

º 0

(1881)

This nuclear norm is convexC.1 and dual to the spectral norm. [238, p.214]
[68, §A.1.6] Given singular value decomposition A = SΣQT∈ Rm×n (A.6), then
X⋆ = SQT∈ Rm×n is an optimal solution to maximization (confer §2.3.2.0.5) while
X⋆ = SΣST∈ Sm and Y ⋆ = QΣQT∈ Sn is an optimal solution to minimization [160].
Srebro [370] asserts

∑

i

σ(A)i = 1
2 minimize

U,V
‖U‖2

F + ‖V ‖2
F

subject to A = UV T

= minimize
U,V

‖U‖F‖V ‖F

subject to A = UV T

(1882)

� For A∈Rm×n and σ(A)1 connoting spectral norm,

σ(A)1 =
√

λ(ATA)1 = ‖A‖2 = sup
‖x‖=1

‖Ax‖2 = minimize
t∈R

t

subject to

[

tI A
AT tI

]

º 0

(607)

Denoting ρ = rankA

σ(A)ρ =
√

λ(ATA)ρ = ‖A†‖−1
2 = 1 /minimize

t∈R

t

subject to

[

tI A†

A†T tI

]

º 0

(1883)

which is equal to inf
‖x‖=1

‖Ax‖2 when A is full-rank; id est, when ρ=min{m, n}.

C.1 discernible as envelope of the rank function (1489) or as supremum of functions linear in A (Figure 81).
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By confining dyad uvT to the unit nuclear norm ball (97),

σ(A)1 = ‖A‖2 = sup
‖u‖=1 , ‖v‖=1

uTAv = maximize
Z∈R

m×n , X∈S
m , Y ∈S

n
tr(ZTA)

subject to trX + tr Y ≤ 2
[

X Z
ZT Y

]

º 0

(1884)

with corresponding left and right singular vectors (optimal) u⋆ and v⋆. Applying
(1891) to a result of Lanczos [188, p.207],

σ(A)1 = ‖A‖2 = sup
∥

∥

∥

∥

[

u
v

]∥

∥

∥

∥

=1

[

u
v

]T[

0 A
AT 0

] [

u
v

]

= maximize
X∈S

m+n

+

tr

(

X

[

0 A
AT 0

])

subject to trX = 1

= minimize
t∈R

t

subject to

[

0 A
AT 0

]

¹ t I

(1885)

whose corresponding left and right singular vectors are
√

2u⋆ and
√

2v⋆.

C.2.0.0.1 Exercise. Optimal matrix factorization.
Prove (1882).C.2 H

� For X∈ Sm, Y ∈ Sn, A∈ C⊆Rm×n for set C convex, and σ(A) denoting the
singular values of A [160, §3],

minimize
A

∑

i

σ(A)i

subject to A ∈ C
≡

1
2 minimize

A , X , Y
trX + trY

subject to

[

X A
AT Y

]

º 0

A ∈ C

(1886)

For feasible set C equal to the unit nuclear norm ball (97),

find A

subject to A ∈ {Z∈ Rm×n | ∑

i

σ(Z)i ≤ 1} ≡

find
A , X , Y

A

subject to trX + trY ≤ 2
[

X A
AT Y

]

º 0

(1887)

� For A∈SN
+ and β∈R

β tr A = maximize
X∈ SN

tr(XA)

subject to X ¹ βI
(1888)

But the following statement is numerically stable, preventing an unbounded solution
in direction of a 0 eigenvalue:

maximize
X∈ SN

sgn(β) tr(XA)

subject to X ¹ |β| I
X º −|β| I

(1889)

where β trA = tr(X⋆A). If β≥ 0 , then (Xº−|β|I) ← (Xº 0).

C.2Hint: Write A = SΣQT∈ R
m×n and

[

X A
AT Y

]

=

[

U
V

]

[UT V T ] º 0

Show U⋆ = S
√

Σ∈R
m×min{m, n} and V ⋆ = Q

√
Σ∈R

n×min{m, n}, hence ‖U⋆‖2
F = ‖V ⋆‖2

F .
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� For symmetric A∈ SN , its smallest and largest eigenvalue in λ(A)∈RN are
respectively [12, §4.1] [47, §I.6.15] [237, §4.2] [278, §2.1] [279]

min
i
{λ(A)i} = inf

‖x‖=1
xTA x = minimize

X∈ SN
+

tr(XA) = maximize
t∈R

t

subject to tr X = 1 subject to A º t I

(1890)

max
i

{λ(A)i} = sup
‖x‖=1

xTA x = maximize
X∈ SN

+

tr(XA) = minimize
t∈R

t

subject to tr X = 1 subject to A ¹ t I

(1891)

whereas
λNI ¹ A ¹ λ1I (1892)

The largest eigenvalue λ1 is always convex in A∈ SN because, given particular x ,
xTA x is linear in matrix A ; supremum of a family of linear functions is convex, as
illustrated in Figure 81.C.3 So, for A,B∈ SN , λ1(A + B)≤ λ1(A) + λ1(B). (1678)
Similarly, the smallest eigenvalue λN of any symmetric matrix is a concave function of
its entries; λN (A + B)≥ λN (A) + λN (B). (1678) For vN a normalized eigenvector
of A corresponding to the smallest eigenvalue, and v1 a normalized eigenvector
corresponding to the largest eigenvalue,

vN = arg inf
‖x‖=1

xTA x (1893)

v1 = arg sup
‖x‖=1

xTA x (1894)

� For A∈SN having eigenvalues λ(A)∈RN , consider the unconstrained nonconvex
optimization that is a projection of A on the rank-1 subset (§2.9.2.1, §3.6.0.0.1) of
the boundary of positive semidefinite cone SN

+ : Defining λ1 , maxi{λ(A)i} and
corresponding eigenvector v1

minimize
x

‖xxT− A‖2
F = minimize

x
tr(xxT(xTx) − 2AxxT+ ATA)

=

{ ‖λ(A)‖2 , λ1 ≤ 0

‖λ(A)‖2 − λ2
1 , λ1 > 0

(1895)

arg minimize
x

‖xxT− A‖2
F =

{

0 , λ1 ≤ 0

v1

√
λ1 , λ1 > 0

(1896)

Proof. This is simply the Eckart & Young solution from §7.1.2:

x⋆x⋆T =

{

0 , λ1 ≤ 0

λ1 v1v
T
1 , λ1 > 0

(1897)

Given nonincreasingly ordered diagonalization A = QΛQT where Λ = δ(λ(A))
(§A.5), then (1895) has minimum value

minimize
x

‖xxT−A‖2
F =



































‖QΛQT‖2
F = ‖δ(Λ)‖2 , λ1 ≤ 0

∥

∥

∥

∥

∥

∥

∥

∥

Q

















λ1

0
. . .

0









− Λ









QT

∥

∥

∥

∥

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

∥

∥







λ1

0...
0






− δ(Λ)

∥

∥

∥

∥

∥

∥

∥

2

, λ1 > 0

(1898)
¨

C.3Largest eigenvalue λ1 is analogous to supremum over dashed vertical line segment in the figure.
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C.2.0.0.2 Exercise. Rank-1 approximation.
Given symmetric matrix A∈SN , prove:

vN = arg maximize
x

‖xxT− A‖2
F

subject to ‖x‖ = 1
(1899)

v1 = arg minimize
x

‖xxT− A‖2
F

subject to ‖x‖ = 1
(1900)

where vN is a normalized eigenvector of A corresponding to its smallest eigenvalue and
v1 corresponds to its largest. What is each objective’s optimal value? H

� (Ky Fan, 1949) For eigenvalues λ(B)∈RN of B∈ SN arranged in nonincreasing
order, and for 1≤k≤N [12, §4.1] [251] [237, §4.3.18] [411, §2] [278, §2.1] [279]
N
∑

i=N−k+1

λ(B)i = inf
U∈ R

N×k

U TU=I

tr(UUTB) = minimize
X∈ SN

+

tr(XB)

subject to X ¹ I

tr X = k

(a)

= maximize
µ∈R , Z∈S

N
+

µ(k − N ) + tr(B − Z )

subject to µI º B − Z

(b)

k
∑

i=1

λ(B)i = sup
U∈ R

N×k

U TU=I

tr(UUTB) = maximize
X∈ SN

+

tr(XB)

subject to X ¹ I

tr X = k

(c)

= minimize
µ∈R , Z∈S

N
+

µk + trZ

subject to µI º B − Z

(d)

(1901)

Given ordered diagonalization B = QΛQT, (§A.5.1) then an optimal U for the
infimum is U⋆ = Q(: , N− k+1:N)∈RN×k whereas U⋆ = Q(: , 1: k)∈RN×k for the
supremum is more reliably computed. In both cases, X⋆ = U⋆U⋆T. Optimization (a)
searches the convex hull of outer product UUT of all N×k orthonormal matrices.
(§2.3.2.0.1)

� For B∈ SN whose eigenvalues λ(B)∈RN are arranged in nonincreasing order, and
for diagonal matrix Υ∈ Sk whose diagonal entries are arranged in nonincreasing
order where 1≤k≤N , we utilize the main-diagonal δ operator’s selfadjointness
property (1595): [14, §4.2]

k
∑

i=1

Υii λ(B)N−i+1 = inf
U∈ R

N×k

U TU=I

tr(ΥUTBU) = inf
U∈ R

N×k

U TU=I

δ(Υ)Tδ(UTBU)

= minimize
Vi∈SN

tr

(

B
k
∑

i=1

(Υii−Υi+1,i+1)Vi

)

subject to tr Vi = i , i=1 . . . k
I º Vi º 0 , i=1 . . . k

(1902)

where Υk+1,k+1 , 0. We speculate,

k
∑

i=1

Υii λ(B)i = sup
U∈ R

N×k

U TU=I

tr(ΥUTBU) = sup
U∈ R

N×k

U TU=I

δ(Υ)Tδ(UTBU) (1903)



546 APPENDIX C. SOME ANALYTICAL OPTIMAL RESULTS

Alizadeh shows: [12, §4.2]

k
∑

i=1

Υii λ(B)i = minimize
µ∈Rk , Zi∈SN

k
∑

i=1

iµi + trZi

subject to µiI + Zi − (Υii−Υi+1,i+1)B º 0 , i=1 . . . k

Zi º 0 , i=1 . . . k

= maximize
Vi∈SN

tr

(

B
k
∑

i=1

(Υii−Υi+1,i+1)Vi

)

subject to trVi = i , i=1 . . . k
I º Vi º 0 , i=1 . . . k (1904)

where Υk+1,k+1 , 0.

� The largest eigenvalue magnitude µ of A∈ SN

max
i

{|λ(A)i|} = minimize
µ∈R

µ

subject to −µI ¹ A ¹ µI
(1905)

is minimized over convex set C by semidefinite program: (confer §7.1.5)

minimize
A

‖A‖2

subject to A ∈ C
≡

minimize
µ , A

µ

subject to −µI ¹ A ¹ µI

A ∈ C
(1906)

id est,
µ⋆ , max

i
{|λ(A⋆)i| , i = 1 . . . N } ∈ R+ (1907)

� For B∈ SN whose eigenvalues λ(B)∈RN are arranged in nonincreasing order, let
Π λ(B) be a permutation of eigenvalues λ(B) such that their absolute value becomes
arranged in nonincreasing order: |Π λ(B)|1 ≥ |Π λ(B)|2 ≥ · · · ≥ |Π λ(B)|N . Then,
for 1≤k≤N [12, §4.3]C.4

k
∑

i=1

|Π λ(B)|i = minimize
µ∈R , Z∈SN

+

kµ + trZ

subject to µI + Z + B º 0
µI + Z − B º 0

= maximize
V ,W∈ SN

+

〈B , V − W 〉

subject to I º V , W
tr(V + W )= k

(1908)

For diagonal matrix Υ∈ Sk whose diagonal entries are arranged in nonincreasing
order where 1≤k≤N

k
∑

i=1

Υii|Π λ(B)|i = minimize
µ∈Rk , Zi∈SN

k
∑

i=1

iµi + trZi

subject to µiI + Zi + (Υii−Υi+1,i+1)B º 0 , i=1 . . . k

µiI + Zi − (Υii−Υi+1,i+1)B º 0 , i=1 . . . k

Zi º 0 , i=1 . . . k

= maximize
Vi ,Wi∈SN

tr

(

B
k
∑

i=1

(Υii−Υi+1,i+1)(Vi − Wi)

)

subject to tr(Vi + Wi) = i , i=1 . . . k
I º Vi º 0 , i=1 . . . k
I º Wi º 0 , i=1 . . . k (1909)

where Υk+1,k+1 , 0.

C.4We eliminate a redundant positive semidefinite variable from Alizadeh’s minimization. There exist
typographical errors in [337, (6.49) (6.55)] for this minimization.
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C.2.0.0.3 Exercise. Weighted sum of largest eigenvalues.
Prove (1903). H

� For A,B∈ SN whose eigenvalues λ(A) , λ(B)∈RN are respectively arranged in
nonincreasing order, and for nonincreasingly ordered diagonalizations A = WAΥWT

A

and B = WBΛWT
B [235] [278, §2.1] [279]

λ(A)Tλ(B) = sup
U∈ R

N×N

U TU=I

tr(ATUTBU) ≥ tr(ATB) (1932)

(confer (1937)) where optimal U is

U⋆ = WBWT
A ∈ RN×N (1929)

We can push that upper bound higher using a result in §C.4.2.1:

|λ(A)|T|λ(B)| = sup
U∈ C

N×N

U HU=I

re tr(ATU HBU) (1910)

For step function ψ as defined in (1761), optimal U becomes

U⋆ = WB

√

δ(ψ(δ(Λ)))
H√

δ(ψ(δ(Υ))) WT
A ∈ CN×N (1911)

C.3 Orthogonal Procrustes problem

Given A,B∈Rn×N , their product having full singular value decomposition (§A.6.2)

ABT , UΣQT∈ Rn×n (1912)

then an optimal solution R⋆ to the orthogonal Procrustes problem

minimize
R

‖A − RTB‖F

subject to RT = R−1
(1913)

maximizes tr(ATRTB) over the nonconvex manifold of orthogonal matrices: [237, §7.4.8]

R⋆ = QUT∈ Rn×n (1914)

Solution is unique if rankBVN = n ; (§5.7.2, confer Figure 189) [131, §2.4.1]

rankBVN = n ⇒ R⋆ unique (1915)

where VN is an auxiliary matrix defined in (1012). Optimal solution R⋆ can reveal
rotation/reflection (§5.5.2, §B.5) of one list in the columns of matrix A with respect to
another list in B . The optimal objective value of minimization is

‖A − R⋆TB‖2
F = tr

(

ATA + BTB − 2ABTR⋆
)

= tr(ATA) + tr(BTB) − 2 tr(UΣUT)

= ‖A‖2
F + ‖B‖2

F − 2δ(Σ)T1

(1916)

while the corresponding optimal objective value of trace maximization is

sup
RT=R−1

tr(ATRTB) = tr(ATR⋆TB) = δ(Σ)T1 ≥ tr(ATB) (1917)
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A necessary and sufficient condition for optimality

ABTR⋆ º 0 (1918)

holds whenever R⋆ is an orthogonal matrix. [196, §4]
In the particular circumstance that A is a vector and permutation of B , solution R⋆

is not necessarily a permutation matrix (§4.7.0.0.3) although the optimal objective value
(1916) will be 0.

The same optimal solution R⋆ (1914) solves

maximize
R

‖A + RTB‖F

subject to RT = R−1
(1919)

C.3.1 effect of scaling

Given matrices A,B∈Rn×N , we may account for scaling by factor ̺ in problem (1913);

minimize
R∈R

n×n, ̺∈R

‖A − ̺RTB‖F

subject to RT = R−1
(1920)

which has closed-form solution were R known: [260, §2.2]

0 = ∂
∂̺ tr

(

(A − ̺RTB)T(A − ̺RTB)
)

= − tr
(

ATRTB
)

+ ̺ tr
(

BTRRTB
) (1921)

Assuming orthogonal matrix R

̺⋆ =
tr(ATRTB)

tr(BTB)
(1922)

We propose solution for R by solving (1920) with scale factor ̺ set to 1. Then formula
(1922) provides ̺ , now implicitly nonnegative.

C.3.2 effect of translation

Consider impact of DC offset, in known lists A,B∈Rn×N , on problem (1913). Rotation
of B there is with respect to the origin, so better results may be obtained if offset is first
accounted. Because geometric centers of lists AV and BV are the origin, instead we solve

minimize
R

‖AV − RTBV ‖F

subject to RT = R−1
(1923)

where V ∈ SN is the geometric centering matrix (§B.4.1). [260, p.39] Now we define full
singular value decomposition

A V BT , UΣQT∈ Rn×n (1924)

and an optimal rotation matrix

R⋆ = QUT∈ Rn×n (1914)

The desired result is an optimally rotated offset list

R⋆TBV + A(I − V ) ≈ A (1925)

which most closely matches the list in A . Equality is attained when the lists are precisely
related by a rotation and an offset. When R⋆TB=A or B1=A1=0 , this result (1925)
reduces to R⋆TB ≈A .
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C.3.2.1 Translation of extended list

Suppose an optimal rotation matrix R⋆∈ Rn×n is derived as before from matrix B∈Rn×N,
but B were part of a larger list in the columns of [C B ]∈Rn×M+N where C∈Rn×M . In
that event, we wish to apply the rotation and translation to the larger list. The expression
supplanting the approximation in (1925) makes 1T of compatible dimension;

R⋆T[C−B11T 1
N BV ] + A11T 1

N (1926)

id est, C−B11T 1
N ∈Rn×M and A11T 1

N ∈Rn×M+N .

C.3.3 Procrustes relaxation

By replacing its feasible set with (Example 2.3.2.0.5) the convex hull of orthogonal
matrices, we relax Procrustes problem (1913) to a convex problem

minimize
R

‖A − RTB‖2
F = tr(ATA + BTB) − 2 maximize

R
tr(ATRTB)

subject to RT = R−1 subject to

[

I R
RT I

]

º 0
(1927)

whose adjusted objective must always equal Procrustes’ C.5 because orthogonal matrices
are the extreme points of this hull.

C.4 Two-sided orthogonal Procrustes

C.4.0.1 Minimization

Given symmetric A,B∈ SN , each having diagonalization (§A.5.1)

A , QAΛAQT
A , B , QBΛBQT

B (1928)

where eigenvalues are arranged in their respective diagonal matrix Λ in nonincreasing
order, then an optimal solution [154]

R⋆ = QBQT
A ∈ RN×N (1929)

to the two-sided orthogonal Procrustes problem

minimize
R

‖A − RTBR‖F

subject to RT = R−1
=

minimize
R

tr
(

ATA − 2ATRTBR + BTB
)

subject to RT = R−1
(1930)

maximizes tr(ATRTBR) over the nonconvex manifold of orthogonal matrices. Optimal
product R⋆TBR⋆ has the eigenvectors of A but the eigenvalues of B . [196, §7.5.1] The
optimal value for the objective of minimization is, by (51)

‖QAΛAQT
A − R⋆TQBΛBQT

B R⋆‖F = ‖QA(ΛA − ΛB)QT
A ‖F = ‖ΛA − ΛB‖F (1931)

while the corresponding trace maximization has optimal value

sup
RT=R−1

tr(ATRTBR) = tr(ATR⋆TBR⋆) = tr(ΛAΛB) ≥ tr(ATB) (1932)

The lower bound on inner product of eigenvalues is due to Fan (p.499).

C.5 and whose optimal numerical solution for n≤N (SDPT3 [400]) [199] is reliably observed to be
orthogonal.
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C.4.0.2 Maximization

Any permutation matrix is an orthogonal matrix. Defining a row- and column-swapping
permutation matrix (a reflection matrix, §B.5.3)

Ξ = ΞT =













0 1
·

·
1

1 0













(1933)

then an optimal solution R⋆ to the maximization problem [sic ]

maximize
R

‖A − RTBR‖F

subject to RT = R−1
(1934)

minimizes tr(ATRTBR) : [235] [278, §2.1] [279]

R⋆ = QBΞQT
A ∈ RN×N (1935)

The optimal objective value of maximization is

‖A − R⋆TBR⋆‖F = ‖QAΛAQT
A − R⋆TQBΛBQT

B R⋆‖F

= ‖QAΛAQT
A − QAΞTΛBΞQT

A‖F

= ‖ΛA − ΞΛBΞ‖F

(1936)

while the corresponding trace minimization has optimal value

inf
RT=R−1

tr(ATRTBR) = tr(ATR⋆TBR⋆) = tr(ΛAΞΛBΞ) (1937)

C.4.1 Procrustes’ relationship to linear programming

Although these two-sided Procrustes problems are nonconvex, there is a connection with
linear programming [14, §3] [278, §2.1] [279]: Given A,B∈ SN , this semidefinite program
in S and T

minimize
R

tr(ATRTBR) = maximize
S , T∈SN

tr(S + T )

subject to RT = R−1 subject to AT⊗ B − I ⊗ S − T ⊗ I º 0
(1938)

(where ⊗ signifies Kronecker product (§D.1.2.1)) has optimal objective value (1937).
These two problems in (1938) are strong duals (§2.13.1.1.2). Given ordered
diagonalizations (1928), make the observation:

inf
R

tr(ATRTBR) = inf
R̂

tr(ΛAR̂TΛBR̂) (1939)

because R̂,QT
BRQA on the set of orthogonal matrices (which includes the permutation

matrices) is a bijection. This means, basically, diagonal matrices of eigenvalues ΛA and
ΛB may be substituted for A and B , so only the main diagonals of S and T come into
play;

maximize
S , T∈SN

1Tδ(S + T )

subject to δ(ΛA ⊗ (ΞΛBΞ) − I ⊗ S − T ⊗ I) º 0
(1940)

a linear program in δ(S) and δ(T ) having the same optimal objective value as the
semidefinite program (1938).
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We relate their results to Procrustes problem (1930) by manipulating signs (1872) and
permuting eigenvalues:

maximize
R

tr(ATRTBR) = minimize
S , T∈SN

1Tδ(S + T )

subject to RT = R−1 subject to δ(I ⊗ S + T ⊗ I − ΛA ⊗ ΛB) º 0

= minimize
S , T∈SN

tr(S + T )

subject to I ⊗ S + T ⊗ I − AT⊗ B º 0

(1941)

This formulation has optimal objective value identical to that in (1932).

C.4.2 Two-sided orthogonal Procrustes via SVD

By making left- and right-side orthogonal matrices independent, we can push the upper
bound on trace (1932) a little further: Given real matrices A,B each having full singular
value decomposition (§A.6.2)

A , UAΣAQT
A ∈ Rm×n , B , UBΣBQT

B ∈ Rm×n (1942)

then a well-known optimal solution R⋆, S⋆ to the problem

minimize
R , S

‖A − SBR‖F

subject to RH = R−1

SH = S−1

(1943)

maximizes re tr(ATSBR) : [362] [331] [58] [229] optimal orthogonal matrices

S⋆ = UAUH
B ∈ Rm×m , R⋆ = QB QH

A ∈ Rn×n (1944)

[sic ] are not necessarily unique [237, §7.4.13] because the feasible set is not convex. The
optimal value for the objective of minimization is, by (51)

‖UAΣAQH
A − S⋆UBΣBQH

B R⋆‖F = ‖UA(ΣA − ΣB)QH
A ‖F = ‖ΣA − ΣB‖F (1945)

while the corresponding trace maximization has optimal value [47, §III.6.12]

sup
RH=R−1

SH=S−1

| tr(ATSBR) | = sup
RH=R−1

SH=S−1

re tr(ATSBR) = re tr(ATS⋆BR⋆) = tr(ΣT
A ΣB) ≥ tr(ATB)

(1946)

for which it is necessary

ATS⋆BR⋆ º 0 , BR⋆ATS⋆ º 0 (1947)

The lower bound on inner product of singular values in (1946) is due to von Neumann.
Equality is attained if UH

A UB = I and QH
B QA = I .

C.4.2.1 Symmetric matrices

Now optimizing over the complex manifold of unitary matrices (§B.5.2), the upper bound
on trace (1932) is thereby raised: Suppose we are given diagonalizations for (real)
symmetric A,B (§A.5)

A = WAΥWT
A ∈ Sn , δ(Υ) ∈ KM

B = WBΛWT
B ∈ Sn , δ(Λ) ∈ KM

(1948)
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having their respective eigenvalues in diagonal matrices Υ ,Λ∈ Sn arranged in
nonincreasing order (membership to the monotone cone KM (445)). Then by splitting
eigenvalue signs, we invent a symmetric SVD-like decomposition

A , UAΣAQH
A ∈ Sn , B , UBΣBQH

B ∈ Sn (1949)

where UA , UB , QA , QB ∈Cn×n are unitary matrices defined by (confer §A.6.2.2)

UA , WA

√

δ(ψ(δ(Υ))) , QA , WA

√

δ(ψ(δ(Υ)))
H
, ΣA = |Υ|

UB , WB

√

δ(ψ(δ(Λ))) , QB , WB

√

δ(ψ(δ(Λ)))
H
, ΣB = |Λ|

(1950)

where step function ψ is defined in (1761). In this circumstance,

S⋆ = UAUH
B = R⋆T∈ Cn×n (1951)

optimal matrices (1944) now unitary are related by transposition. The optimal value of
objective (1945) is

‖UAΣAQH
A − S⋆UBΣBQH

B R⋆‖F = ‖ |Υ| − |Λ| ‖F (1952)

while the corresponding optimal value of trace maximization (1946) is

sup
RH=R−1

SH=S−1

re tr(ATSBR) = tr(|Υ| |Λ|)
(1953)

C.4.2.2 Diagonal matrices

Now suppose A and B are diagonal matrices

A = Υ = δ2(Υ) ∈ Sn , δ(Υ) ∈ KM
B = Λ = δ2(Λ) ∈ Sn , δ(Λ) ∈ KM

(1954)

both having their respective main diagonal entries arranged in nonincreasing order:

minimize
R , S

‖Υ − SΛR‖F

subject to RH = R−1

SH = S−1

(1955)

Then we have a symmetric decomposition from unitary matrices as in (1949) where

UA ,
√

δ(ψ(δ(Υ))) , QA ,
√

δ(ψ(δ(Υ)))
H
, ΣA = |Υ|

UB ,
√

δ(ψ(δ(Λ))) , QB ,
√

δ(ψ(δ(Λ)))
H
, ΣB = |Λ|

(1956)

Procrustes solution (1944) again sees the transposition relationship

S⋆ = UAUH
B = R⋆T∈ Cn×n (1951)

but both optimal unitary matrices are now themselves diagonal. So,

S⋆ΛR⋆ = δ(ψ(δ(Υ)))Λδ(ψ(δ(Λ))) = δ(ψ(δ(Υ)))|Λ| (1957)
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C.5 Quadratics

C.5.1 minimization, convex

Given positive semidefinite matrix Aº 0 (§A.4.0.0.2)

inf
x∈R

n

1
2xTAx+bTx = 1

2 inf
x∈R

n

[xT 1 ]
[

A b
bT 0

][

x
1

]

=

{

− 1
2bTA†b , b∈R(A)

−∞ , otherwise
(1958)

where b∈R(A) is condition (1687) of the Schur complement.

C.5.1.0.1 Exercise. maximization, convex case.
Assume a negative semidefinite matrix A¹ 0. Write the analogue to (1958) for supremum
of a concave quadratic. H

C.5.2 minimization, nonconvex

[396, §2] [369, §2] Given symmetric matrix A∈ Sn, vector b∈Rn, and scalar ρ>0

minimize
x

1
2xTAx + bTx

subject to ‖x‖ ≤ ρ
⇔

i) (A + λ⋆I )x⋆ = −b
ii) λ⋆(‖x⋆‖ − ρ) = 0 , ‖x⋆‖ ≤ ρ
iii) A + λ⋆I º 0

(1959)

is a nonconvex problem for symmetric A unless Aº 0. But necessary and sufficient global
optimality conditions are known for any symmetric A : vector x⋆ solves minimization
(1959) iff ∃ Lagrange multiplier λ⋆≥ 0 satisfying the three corresponding conditions.
Conditions i and ii are necessary KKT conditions, [68, §5.5.3] while condition iii governs
passage to nonconvex global optimality and derived from (1958) like so: Lagrangian

L(x , λ) = 1
2xTAx + bTx + λ(xTx − ρ2) = 1

2xT(A + 2λI )x + bTx − λρ2 (1960)

has finite infimum, assuming A + 2λI º 0

inf
x∈R

n
L(x , λ) = − 1

2bT(A + 2λI )†b − ρ2λ , b ∈ R(A + 2λI ) (1961)

that is a lower bound to generally nonconvex problem (1959). λ⋆ is unique; it is the solution
to a convex dual problem that attempts the greatest lower bound to (1959), substituting
λ← 1

2λ

maximize
λ∈R+

inf
x∈R

n
L(x , λ) = maximize

λ∈R+

−bT(A + λI )†b − ρ2λ

subject to A + λI º 0
b ∈ R(A + λI )

(1962)

x⋆ is unique if A+λ⋆I≻0.
Equality-constrained problem

minimize
x

1
2xTAx + bTx

subject to ‖x‖ = ρ
⇔

i) (A + λ⋆I )x⋆ = −b
ii) ‖x⋆‖ = ρ
iii) A + λ⋆I º 0

(1963)

is nonconvex for any symmetric A matrix. x⋆ solves minimization (1963) iff ∃ λ⋆∈R
satisfying the associated conditions. λ⋆ and x⋆ are unique as before.

C.5.3 maximization, nonconvex

Hiriart-Urruty disclosed global optimality conditions in 1998 [232]C.6 for maximizing a
convex quadratic with convex constraints; a nonconvex problem [354, §32].

C.6. . . the assumptions in Theorem 8 ask for the Qi being positive definite (see the top of the page of
Theorem 8). I must confess that I do not remember why. −Jean-Baptiste Hiriart-Urruty
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Appendix D

Matrix Calculus

From too much study, and from extreme passion, cometh madnesse.

−Isaac Newton [183, §5]

D.1 Gradient, Directional derivative, Taylor series

D.1.1 Gradients

Gradient of a differentiable real function f(x) : RK→R with respect to its vector
argument is defined uniquely in terms of partial derivatives

∇f(x) ,















∂f(x)
∂x1

∂f(x)
∂x2
...

∂f(x)
∂xK















∈ RK (1964)

while the second-order gradient of the twice differentiable real function with respect to its
vector argument is traditionally called the Hessian ;

∇2f(x) ,

















∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xK

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xK

...
...

. . .
...

∂2f(x)
∂xK∂x1

∂2f(x)
∂xK∂x2

· · · ∂2f(x)
∂x2

K

















∈ SK (1965)

interpreted

∂2f(x)

∂x1∂x2
=

∂
(

∂f(x)
∂x1

)

∂x2
=

∂
(

∂f(x)
∂x2

)

∂x1
=

∂2f(x)

∂x2∂x1
(1966)

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 555
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The gradient of vector-valued function v(x) : R→RN on real domain is a row vector

∇v(x) ,
[

∂v1(x)
∂x

∂v2(x)
∂x · · · ∂vN (x)

∂x

]

∈ RN (1967)

while the second-order gradient is

∇2v(x) ,
[

∂2v1(x)
∂x2

∂2v2(x)
∂x2 · · · ∂2vN (x)

∂x2

]

∈ RN (1968)

Gradient of vector-valued function h(x) : RK→RN on vector domain is

∇h(x) ,















∂h1(x)
∂x1

∂h2(x)
∂x1

· · · ∂hN (x)
∂x1

∂h1(x)
∂x2

∂h2(x)
∂x2

· · · ∂hN (x)
∂x2

...
...

...
∂h1(x)
∂xK

∂h2(x)
∂xK

· · · ∂hN (x)
∂xK















= [∇h1(x) ∇h2(x) · · · ∇hN (x) ] ∈ RK×N

(1969)

while the second-order gradient has a three-dimensional written representation dubbed
cubix ;D.1

∇2h(x) ,















∇∂h1(x)
∂x1

∇∂h2(x)
∂x1

· · · ∇∂hN (x)
∂x1

∇∂h1(x)
∂x2

∇∂h2(x)
∂x2

· · · ∇∂hN (x)
∂x2

...
...

...

∇∂h1(x)
∂xK

∇∂h2(x)
∂xK

· · · ∇∂hN (x)
∂xK















=
[

∇2h1(x) ∇2h2(x) · · · ∇2hN (x)
]

∈ RK×N×K

(1970)

where the gradient of each real entry is with respect to vector x as in (1964).

The gradient of real function g(X) : RK×L→R on matrix domain is

∇g(X) ,















∂g(X)
∂X11

∂g(X)
∂X12

· · · ∂g(X)
∂X1L

∂g(X)
∂X21

∂g(X)
∂X22

· · · ∂g(X)
∂X2L

...
...

...
∂g(X)
∂XK1

∂g(X)
∂XK2

· · · ∂g(X)
∂XKL















∈ RK×L

=

[

∇X(:,1) g(X)

∇X(:,2) g(X)
. . .

∇X(:,L) g(X)
]

∈ RK×1×L

(1971)

where gradient ∇X(:, i) is with respect to the ith column of X . The strange appearance of

(1971) in RK×1×L is meant to suggest a third dimension perpendicular to the page (not

D.1The word matrix comes from the Latin for womb ; related to the prefix matri- derived from mater
meaning mother.
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a diagonal matrix). The second-order gradient has representation

∇2g(X) ,















∇∂g(X)
∂X11

∇∂g(X)
∂X12

· · · ∇∂g(X)
∂X1L

∇∂g(X)
∂X21

∇∂g(X)
∂X22

· · · ∇∂g(X)
∂X2L

...
...

...

∇∂g(X)
∂XK1

∇∂g(X)
∂XK2

· · · ∇∂g(X)
∂XKL















∈ RK×L×K×L

=

[

∇∇X(:,1) g(X)

∇∇X(:,2) g(X)
. . .

∇∇X(:,L) g(X)
]

∈ RK×1×L×K×L

(1972)

where the gradient ∇ is with respect to matrix X .
Gradient of vector-valued function g(X) : RK×L→RN on matrix domain is a cubix

∇g(X) ,

[

∇X(:,1) g1(X) ∇X(:,1) g2(X) · · · ∇X(:,1) gN (X)

∇X(:,2) g1(X) ∇X(:,2) g2(X) · · · ∇X(:,2) gN (X)
. . .

. . .
. . .

∇X(:,L) g1(X) ∇X(:,L) g2(X) · · · ∇X(:,L) gN (X)
]

= [∇g1(X) ∇g2(X) · · · ∇gN (X) ] ∈ RK×N×L

(1973)

while the second-order gradient has a five-dimensional representation;

∇2g(X) ,

[

∇∇X(:,1) g1(X) ∇∇X(:,1) g2(X) · · · ∇∇X(:,1) gN (X)

∇∇X(:,2) g1(X) ∇∇X(:,2) g2(X) · · · ∇∇X(:,2) gN (X)
. . .

. . .
. . .

∇∇X(:,L) g1(X) ∇∇X(:,L) g2(X) · · · ∇∇X(:,L) gN (X)
]

=
[

∇2g1(X) ∇2g2(X) · · · ∇2gN (X)
]

∈ RK×N×L×K×L

(1974)

The gradient of matrix-valued function g(X) : RK×L→RM×N on matrix domain has
a four-dimensional representation called quartix (fourth-order tensor)

∇g(X) ,











∇g11(X) ∇g12(X) · · · ∇g1N (X)

∇g21(X) ∇g22(X) · · · ∇g2N (X)
...

...
...

∇gM1(X) ∇gM2(X) · · · ∇gMN (X)











∈ RM×N×K×L (1975)

while the second-order gradient has a six-dimensional representation

∇2g(X) ,











∇2g11(X) ∇2g12(X) · · · ∇2g1N (X)

∇2g21(X) ∇2g22(X) · · · ∇2g2N (X)
...

...
...

∇2gM1(X) ∇2gM2(X) · · · ∇2gMN (X)











∈ RM×N×K×L×K×L (1976)

and so on.
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D.1.2 Product rules for matrix-functions

Given dimensionally compatible matrix-valued functions of matrix variable f(X) and g(X)

∇X

(

f(X)Tg(X)
)

= ∇X(f) g + ∇X(g) f (1977)

while [59, §8.3] [363]

∇X tr
(

f(X)Tg(X)
)

= ∇X

(

tr
(

f(X)Tg(Z )
)

+ tr
(

g(X) f(Z )T
)

)∣

∣

∣

Z←X
(1978)

These expressions implicitly apply as well to scalar-, vector-, or matrix-valued functions
of scalar, vector, or matrix arguments.

D.1.2.0.1 Example. Cubix.
Suppose f(X) : R2×2→R2 = XTa and g(X) : R2×2→R2 = Xb . We wish to find

∇X

(

f(X)Tg(X)
)

= ∇X aTX2b (1979)

using the product rule. Formula (1977) calls for

∇X aTX2b = ∇X(XTa)Xb + ∇X(Xb)XTa (1980)

Consider the first of the two terms:

∇X(f) g = ∇X(XTa)Xb

=
[

∇(XTa)1 ∇(XTa)2
]

Xb
(1981)

The gradient of XTa forms a cubix in R2×2×2 ; a.k.a, third-order tensor.

∂(XTa)1
∂X11

J

J

J

J

J

J

∂(XTa)2
∂X11

J

J

J

J

J

J

∂(XTa)1
∂X12

∂(XTa)2
∂X12

∂(XTa)1
∂X21

J

J

J

J

J

J

∂(XTa)2
∂X21

J

J

J

J

J

J

∂(XTa)1
∂X22

∂(XTa)2
∂X22

∇X(XTa)Xb =













































































(Xb)1

(Xb)2









∈ R2×1×2

(1982)

Because gradient of the product (1979) requires total change with respect to change in
each entry of matrix X , the Xb vector must make an inner product with each vector in
that second dimension of the cubix indicated by dotted line segments;

∇X(XTa)Xb =









a1 0
0 a1

a2 0
0 a2









[

b1X11 + b2X12

b1X21 + b2X22

]

∈ R2×1×2

=

[

a1(b1X11 + b2X12) a1(b1X21 + b2X22)
a2(b1X11 + b2X12) a2(b1X21 + b2X22)

]

∈ R2×2

= abTXT

(1983)

where the cubix appears as a complete 2×2×2 matrix. In like manner for the second
term ∇X(g) f
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∇X(Xb)XTa =









b1 0
b2 0

0 b1

0 b2









[

X11a1 + X21a2

X12a1 + X22a2

]

∈ R2×1×2

= XTabT ∈ R2×2

(1984)

The solution
∇X aTX2b = abTXT+ XTabT (1985)

can be found from Table D.2.1 or verified using (1978). 2

D.1.2.1 Kronecker product

A partial remedy for venturing into hyperdimensional matrix representations, such as
the cubix or quartix, is to first vectorize matrices as in (39). This device gives rise
to the Kronecker product of matrices ⊗ ; a.k.a, tensor product (kron() in Matlab).
Although its definition sees reversal in the literature, [374, §2.1] Kronecker product is not
commutative (B ⊗ A 6= A ⊗ B). We adopt the definition: for A∈Rm×n and B∈Rp×q

B ⊗ A ,











B11A B12A · · · B1qA
B21A B22A · · · B2qA

...
...

...
Bp1A Bp2A · · · BpqA











∈ Rpm×qn (1986)

for which A ⊗ 1 = 1 ⊗ A = A (real unity acts like Identity).
One advantage to vectorization is existence of the traditional two-dimensional matrix

representation (second-order tensor) for the second-order gradient of a real function with
respect to a vectorized matrix. From §A.1.1 no.36 (§D.2.1) for square A,B∈Rn×n, for
example [198, §5.2] [14, §3]

∇2
vec X tr(AXBXT) = ∇2

vec X vec(X)T(BT⊗A) vec X = B⊗AT+ BT⊗A ∈ Rn2×n2

(1987)

To disadvantage is a large new but known set of algebraic rules (§A.1.1) and the fact
that its mere use does not generally guarantee two-dimensional matrix representation of
gradients.

Another application of the Kronecker product is to reverse order of appearance in
a matrix product: Suppose we wish to weight the columns of a matrix S∈RM×N , for
example, by respective entries wi from the main diagonal in

W ,





w1 0
. . .

0 wN



∈ SN (1988)

A conventional means for accomplishing column weighting is to multiply S by diagonal
matrix W on the right side:

SW = S





w1 0
. . .

0 wN



=
[

S(: , 1)w1 · · · S(: , N)wN

]

∈ RM×N (1989)

To reverse product order such that diagonal matrix W instead appears to the left of S :
for I∈ SM (Law)

SW = (δ(W )T ⊗ I)











S(: , 1) 0 0

0 S(: , 2)
. . .

. . .
. . . 0

0 0 S(: , N)











∈ RM×N (1990)
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To instead weight the rows of S via diagonal matrix W ∈ SM , for I∈ SN

WS =











S(1 , :) 0 0

0 S(2 , :)
. . .

. . .
. . . 0

0 0 S(M , :)











(δ(W ) ⊗ I) ∈ RM×N (1991)

D.1.2.2 Hadamard product

For any matrices of like size, S , Y ∈ RM×N , Hadamard’s product ◦ denotes simple
multiplication of corresponding entries (.* in Matlab). It is possible to convert Hadamard
product into a standard product of matrices:

S ◦ Y =
[

δ(Y (: , 1)) · · · δ(Y (: , N))
]











S(: , 1) 0 0

0 S(: , 2)
. . .

. . .
. . . 0

0 0 S(: , N)











∈ RM×N (1992)

In the special case that S = s and Y = y are vectors in RM

s ◦ y = δ(s)y (1993)

sT⊗ y = ysT

s ⊗ yT = syT (1994)

D.1.3 Chain rules for composite matrix-functions

Given dimensionally compatible matrix-valued functions of matrix variable f(X) and
g(X) [398, §15.7]

∇X g
(

f(X)T
)

= ∇XfT∇f g (1995)

∇2
X g

(

f(X)T
)

= ∇X

(

∇XfT∇f g
)

= ∇2
Xf ∇f g + ∇XfT∇2

f g ∇Xf (1996)

D.1.3.1 Two arguments

∇X g
(

f(X)T, h(X)T
)

= ∇XfT∇f g + ∇XhT∇h g (1997)

D.1.3.1.1 Example. Chain rule for two arguments. [46, §1.1]

g
(

f(x)T, h(x)T
)

= (f(x) + h(x))
T
A(f(x) + h(x)) (1998)

f(x) =

[

x1

εx2

]

, h(x) =

[

εx1

x2

]

(1999)

∇x g
(

f(x)T, h(x)T
)

=

[

1 0
0 ε

]

(A +AT)(f + h) +

[

ε 0
0 1

]

(A +AT)(f + h) (2000)

∇x g
(

f(x)T, h(x)T
)

=

[

1 + ε 0
0 1 + ε

]

(A +AT)

([

x1

εx2

]

+

[

εx1

x2

])

(2001)

lim
ε→0

∇x g
(

f(x)T, h(x)T
)

= (A +AT)x (2002)

from Table D.2.1. 2

These foregoing formulae remain correct when gradient produces hyperdimensional
representation:
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D.1.4 First directional derivative

Assume that a differentiable function g(X) : RK×L→RM×N has continuous first- and
second-order gradients ∇g and ∇2g over dom g which is an open set. We seek
simple expressions for the first and second directional derivatives in direction Y∈RK×L :

respectively,
→Y

dg ∈ RM×N and
→Y

dg2 ∈ RM×N .

Assuming that the limit exists, we may state the partial derivative of the mnth entry
of g with respect to klth entry of X ;

∂gmn(X)

∂Xkl
= lim

∆t→0

gmn(X + ∆t ekeT
l ) − gmn(X)

∆t
∈ R (2003)

where ek is the kth standard basis vector in RK while el is the lth standard basis vector in
RL. Total number of partial derivatives equals KLMN while the gradient is defined in
their terms; mnth entry of the gradient is

∇gmn(X) =

















∂gmn(X)
∂X11

∂gmn(X)
∂X12

· · · ∂gmn(X)
∂X1L

∂gmn(X)
∂X21

∂gmn(X)
∂X22

· · · ∂gmn(X)
∂X2L

...
...

...
∂gmn(X)

∂XK1

∂gmn(X)
∂XK2

· · · ∂gmn(X)
∂XKL

















∈ RK×L (2004)

while the gradient is a quartix

∇g(X) =











∇g11(X) ∇g12(X) · · · ∇g1N (X)

∇g21(X) ∇g22(X) · · · ∇g2N (X)
...

...
...

∇gM1(X) ∇gM2(X) · · · ∇gMN (X)











∈ RM×N×K×L (2005)

By simply rotating our perspective of a four-dimensional representation of gradient matrix,
we find one of three useful transpositions of this quartix (connoted T1):

∇g(X)T1 =















∂g(X)
∂X11

∂g(X)
∂X12

· · · ∂g(X)
∂X1L

∂g(X)
∂X21

∂g(X)
∂X22

· · · ∂g(X)
∂X2L

...
...

...
∂g(X)
∂XK1

∂g(X)
∂XK2

· · · ∂g(X)
∂XKL















∈ RK×L×M×N (2006)

When a limit for ∆t∈R exists, it is easy to show by substitution of variables in (2003)

∂gmn(X)

∂Xkl
Ykl = lim

∆t→0

gmn(X + ∆t Ykl ekeT
l ) − gmn(X)

∆t
∈ R (2007)

which may be interpreted as the change in gmn at X when the change in Xkl is equal
to Ykl the klth entry of any Y∈RK×L. Because the total change in gmn(X) due to Y is
the sum of change with respect to each and every Xkl , the mnth entry of the directional
derivative is the corresponding total differential [398, §15.8]
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dgmn(X)|dX→Y =
∑

k, l

∂gmn(X)

∂Xkl
Ykl = tr

(

∇gmn(X)TY
)

(2008)

=
∑

k, l

lim
∆t→0

gmn(X + ∆t Ykl ekeT
l ) − gmn(X)

∆t
(2009)

= lim
∆t→0

gmn(X + ∆t Y ) − gmn(X)

∆t
(2010)

=
d

dt

∣

∣

∣

∣

t=0

gmn(X+ t Y ) (2011)

where t∈R . Assuming finite Y , equation (2010) is called the Gâteaux differential
[45, App.A.5] [234, §D.2.1] [410, §5.28] whose existence is implied by existence of the
Fréchet differential (the sum in (2008)). [290, §7.2] Each may be understood as the change
in gmn at X when the change in X is equal in magnitude and direction to Y .D.2 Hence
the directional derivative,

→Y

dg (X) ,











dg11(X) dg12(X) · · · dg1N (X)

dg21(X) dg22(X) · · · dg2N (X)
...

...
...

dgM1(X) dgM2(X) · · · dgMN (X)











∣

∣

∣

∣

∣

∣

∣

∣

∣

dX→Y

∈ RM×N

=











tr
(

∇g11(X)TY
)

tr
(

∇g12(X)TY
)

· · · tr
(

∇g1N (X)TY
)

tr
(

∇g21(X)TY
)

tr
(

∇g22(X)TY
)

· · · tr
(

∇g2N (X)TY
)

...
...

...
tr

(

∇gM1(X)TY
)

tr
(

∇gM2(X)TY
)

· · · tr
(

∇gMN (X)TY
)











=



















∑

k, l

∂g11(X)
∂Xkl

Ykl

∑

k, l

∂g12(X)
∂Xkl

Ykl · · · ∑

k, l

∂g1N (X)
∂Xkl

Ykl

∑

k, l

∂g21(X)
∂Xkl

Ykl

∑

k, l

∂g22(X)
∂Xkl

Ykl · · · ∑

k, l

∂g2N (X)
∂Xkl

Ykl

...
...

...
∑

k, l

∂gM1(X)
∂Xkl

Ykl

∑

k, l

∂gM2(X)
∂Xkl

Ykl · · · ∑

k, l

∂gMN (X)
∂Xkl

Ykl



















(2012)

from which it follows
→Y

dg (X) =
∑

k, l

∂g(X)

∂Xkl
Ykl (2013)

Yet for all X∈ dom g , any Y∈RK×L, and some open interval of t∈R

g(X+ t Y ) = g(X) + t
→Y

dg (X) + O(t2) (2014)

which is the first-order multidimensional Taylor series expansion about X . [398, §18.4]
[181, §2.3.4] Differentiation with respect to t and subsequent t-zeroing isolates the second
term of expansion. Thus differentiating and zeroing g(X+ t Y ) in t is an operation
equivalent to individually differentiating and zeroing every entry gmn(X+ t Y ) as in
(2011). So the directional derivative of g(X) : RK×L→RM×N in any direction Y ∈ RK×L

evaluated at X∈ dom g becomes

→Y

dg (X) =
d

dt

∣

∣

∣

∣

t=0

g(X+ t Y ) ∈ RM×N (2015)

D.2Although Y is a matrix, we may regard it as a vector in R
KL.
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(α , f(α))

∂H

υ T

f(x)

f(α + t y)

υ ,







∇xf(α)

1
2

→∇xf(α)

df(α)







✡
✡
✡
✡
✡
✡
✡
✡
✡
✡

Figure 191: Strictly convex quadratic bowl in R2×R ; f(x)= xTx : R2→R versus x
on some open disc in R2. Plane slice ∂H is perpendicular to function domain. Slice
intersection with domain connotes bidirectional vector y . Slope of tangent line T at
point (α , f(α)) is value of directional derivative ∇xf(α)Ty (2040) at α in slice direction y .
Negative gradient −∇xf(x)∈R2 is direction of steepest descent . [68, §9.4.1] [398, §15.6]
[181] [451] When vector υ∈R3 entry υ3 is half directional derivative in gradient direction

at α and when

[

υ1

υ2

]

= ∇xf(α) , then −υ points directly toward bowl bottom.

[320, §2.1, §5.4.5] [38, §6.3.1] which is simplest. In case of a real function g(X) : RK×L→R
→Y

dg (X) = tr
(

∇g(X)TY
)

(2037)

In case g(X) : RK→R
→Y

dg (X) = ∇g(X)TY (2040)

Unlike gradient, directional derivative does not expand dimension; directional
derivative (2015) retains the dimensions of g . The derivative with respect to t makes
the directional derivative resemble ordinary calculus (§D.2); e.g, when g(X) is linear,
→Y

dg (X) = g(Y ). [290, §7.2]

D.1.4.1 Interpretation of directional derivative

In the case of any differentiable real function g(X) : RK×L→R , the directional derivative
of g(X) at X in any direction Y yields the slope of g along the line {X+ t Y | t∈ R}
through its domain evaluated at t = 0. For higher-dimensional functions, by (2012), this
slope interpretation can be applied to each entry of the directional derivative.

Figure 191, for example, shows a plane slice of a real convex bowl-shaped function
f(x) along a line {α + t y | t∈R} through its domain. The slice reveals a one-dimensional
real function of t ; f(α + t y). The directional derivative at x = α in direction y is the
slope of f(α + t y) with respect to t at t = 0. In the case of a real function having
vector argument h(X) : RK→R , its directional derivative in the normalized direction of
its gradient is the gradient magnitude. (2040) For a real function of real variable, the
directional derivative evaluated at any point in the function domain is just the slope of
that function there scaled by the real direction. (confer §3.6)
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Directional derivative generalizes our one-dimensional notion of derivative to a
multidimensional domain. When direction Y coincides with a member of the standard
Cartesian basis ekeT

l (63), then a single partial derivative ∂g(X)/∂Xkl is obtained from
directional derivative (2013); such is each entry of gradient ∇g(X) in equalities (2037)
and (2040), for example.

D.1.4.1.1 Theorem. Directional derivative optimality condition. [290, §7.4]
Suppose f(X) : RK×L→R is minimized on convex set C⊆RK×L by X⋆, and the
directional derivative of f exists there. Then for all X∈ C

→X−X⋆

df(X) ≥ 0 (2016)

⋄

D.1.4.1.2 Example. Simple bowl.
Bowl function (Figure 191)

f(x) : RK → R , (x − a)T(x − a) − b (2017)

has function offset −b∈R , axis of revolution at x = a , and positive definite Hessian
(1965) everywhere in its domain (an open hyperdisc in RK ); id est, strictly convex
quadratic f(x) has unique global minimum equal to −b at x = a . A vector −υ based
anywhere in dom f × R pointing toward the unique bowl-bottom is specified:

υ ∝
[

x − a
f(x) + b

]

∈ RK× R (2018)

Such a vector is

υ =







∇xf(x)

1
2

→∇xf(x)

df(x)






(2019)

since the gradient is

∇xf(x) = 2(x − a) (2020)

and the directional derivative in direction of the gradient is (2040)

→∇xf(x)

df(x) = ∇xf(x)T∇xf(x) = 4(x − a)T(x − a) = 4(f(x) + b) (2021)

2

D.1.5 Second directional derivative

By similar argument, it so happens: the second directional derivative is equally simple.
Given g(X) : RK×L→RM×N on open domain,

∇∂gmn(X)

∂Xkl
=

∂∇gmn(X)

∂Xkl
=

















∂2gmn(X)
∂Xkl∂X11

∂2gmn(X)
∂Xkl∂X12

· · · ∂2gmn(X)
∂Xkl∂X1L

∂2gmn(X)
∂Xkl∂X21

∂2gmn(X)
∂Xkl∂X22

· · · ∂2gmn(X)
∂Xkl∂X2L

...
...

...
∂2gmn(X)
∂Xkl∂XK1

∂2gmn(X)
∂Xkl∂XK2

· · · ∂2gmn(X)
∂Xkl∂XKL

















∈ RK×L (2022)
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∇2gmn(X) =

















∇∂gmn(X)
∂X11

∇∂gmn(X)
∂X12

· · · ∇∂gmn(X)
∂X1L

∇∂gmn(X)
∂X21

∇∂gmn(X)
∂X22

· · · ∇∂gmn(X)
∂X2L

...
...

...

∇∂gmn(X)
∂XK1

∇∂gmn(X)
∂XK2

· · · ∇∂gmn(X)
∂XKL

















∈ RK×L×K×L

=















∂∇gmn(X)
∂X11

∂∇gmn(X)
∂X12

· · · ∂∇gmn(X)
∂X1L

∂∇gmn(X)
∂X21

∂∇gmn(X)
∂X22

· · · ∂∇gmn(X)
∂X2L

...
...

...
∂∇gmn(X)

∂XK1

∂∇gmn(X)
∂XK2

· · · ∂∇gmn(X)
∂XKL















(2023)

Rotating our perspective, we get several views of the second-order gradient:

∇2g(X) =











∇2g11(X) ∇2g12(X) · · · ∇2g1N (X)

∇2g21(X) ∇2g22(X) · · · ∇2g2N (X)
...

...
...

∇2gM1(X) ∇2gM2(X) · · · ∇2gMN (X)











∈ RM×N×K×L×K×L (2024)

∇2g(X)T1 =















∇∂g(X)
∂X11

∇∂g(X)
∂X12

· · · ∇∂g(X)
∂X1L

∇∂g(X)
∂X21

∇∂g(X)
∂X22

· · · ∇∂g(X)
∂X2L

...
...

...

∇∂g(X)
∂XK1

∇∂g(X)
∂XK2

· · · ∇∂g(X)
∂XKL















∈ RK×L×M×N×K×L (2025)

∇2g(X)T2 =















∂∇g(X)
∂X11

∂∇g(X)
∂X12

· · · ∂∇g(X)
∂X1L

∂∇g(X)
∂X21

∂∇g(X)
∂X22

· · · ∂∇g(X)
∂X2L

...
...

...
∂∇g(X)
∂XK1

∂∇g(X)
∂XK2

· · · ∂∇g(X)
∂XKL















∈ RK×L×K×L×M×N (2026)

Assuming the limits to exist, we may state the partial derivative of the mnth entry of g
with respect to klth and ij th entries of X ;

∂2gmn(X)
∂Xkl ∂Xij

= ∂
∂Xij

(

∂gmn(X)
∂Xkl

)

= lim
∆t→0

∂gmn(X+∆t ekeT
l )−∂gmn(X)

∂Xij ∆t

= lim
∆τ,∆t→0

(gmn(X+∆t ekeT
l +∆τ eieT

j )−gmn(X+∆t ekeT
l ))−(gmn(X+∆τ eieT

j )−gmn(X))
∆τ ∆t

(2027)

Differentiating (2007) and then scaling by Yij

∂2gmn(X)
∂Xkl ∂Xij

YklYij = lim
∆t→0

∂gmn(X+∆t Ykl ekeT
l )−∂gmn(X)

∂Xij ∆t Yij

= lim
∆τ,∆t→0

(gmn(X+∆t Ykl ekeT
l +∆τ Yij eieT

j )−gmn(X+∆t Ykl ekeT
l ))−(gmn(X+∆τ Yij eieT

j )−gmn(X))
∆τ ∆t

(2028)

which can be proved by substitution of variables in (2027). The mnth second-order total
differential due to any Y∈RK×L is
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d2gmn(X)|dX→Y =
∑

i,j

∑

k, l

∂2gmn(X)

∂Xkl ∂Xij
YklYij = tr

(

∇X tr
(

∇gmn(X)TY
)T

Y
)

(2029)

=
∑

i,j

lim
∆t→0

∂gmn(X + ∆t Y ) − ∂gmn(X)

∂Xij ∆t
Yij (2030)

= lim
∆t→0

gmn(X + 2∆t Y ) − 2gmn(X + ∆t Y ) + gmn(X)

∆t2
(2031)

=
d2

dt2

∣

∣

∣

∣

t=0

gmn(X+ t Y ) (2032)

Hence the second directional derivative,

→Y

dg2(X) ,











d2g11(X) d2g12(X) · · · d2g1N (X)

d2g21(X) d2g22(X) · · · d2g2N (X)
...

...
...

d2gM1(X) d2gM2(X) · · · d2gMN (X)











∣

∣

∣

∣

∣

∣

∣

∣

∣

dX→Y

∈ RM×N

=

















tr
(

∇tr
(

∇g11(X)TY
)T

Y
)

tr
(

∇tr
(

∇g12(X)TY
)T

Y
)

· · · tr
(

∇tr
(

∇g1N (X)TY
)T

Y
)

tr
(

∇tr
(

∇g21(X)TY
)T

Y
)

tr
(

∇tr
(

∇g22(X)TY
)T

Y
)

· · · tr
(

∇tr
(

∇g2N (X)TY
)T

Y
)

...
...

...

tr
(

∇tr
(

∇gM1(X)TY
)T

Y
)

tr
(

∇tr
(

∇gM2(X)TY
)T

Y
)

· · · tr
(

∇tr
(

∇gMN (X)TY
)T

Y
)

















=





















∑

i,j

∑

k, l

∂2g11(X)
∂Xkl ∂Xij

YklYij

∑

i,j

∑

k, l

∂2g12(X)
∂Xkl ∂Xij

YklYij · · · ∑

i,j

∑

k, l

∂2g1N (X)
∂Xkl ∂Xij

YklYij

∑

i,j

∑

k, l

∂2g21(X)
∂Xkl ∂Xij

YklYij

∑

i,j

∑

k, l

∂2g22(X)
∂Xkl ∂Xij

YklYij · · · ∑

i,j

∑

k, l

∂2g2N (X)
∂Xkl ∂Xij

YklYij

...
...

...
∑

i,j

∑

k, l

∂2gM1(X)
∂Xkl ∂Xij

YklYij

∑

i,j

∑

k, l

∂2gM2(X)
∂Xkl ∂Xij

YklYij · · · ∑

i,j

∑

k, l

∂2gMN (X)
∂Xkl ∂Xij

YklYij





















(2033)

from which it follows

→Y

dg2(X) =
∑

i,j

∑

k, l

∂2g(X)

∂Xkl ∂Xij
YklYij =

∑

i,j

∂

∂Xij

→Y

dg (X)Yij (2034)

Yet for all X∈ dom g , any Y∈RK×L, and some open interval of t∈R

g(X+ t Y ) = g(X) + t
→Y

dg (X) +
1

2!
t2

→Y

dg2(X) + O(t3) (2035)

which is the second-order multidimensional Taylor series expansion about X . [398, §18.4]
[181, §2.3.4] Differentiating twice with respect to t and subsequent t-zeroing isolates the
third term of the expansion. Thus differentiating and zeroing g(X+ t Y ) in t is an
operation equivalent to individually differentiating and zeroing every entry gmn(X+ t Y )
as in (2032). So the second directional derivative of g(X) : RK×L→RM×N becomes
[320, §2.1, §5.4.5] [38, §6.3.1]

→Y

dg2(X) =
d2

dt2

∣

∣

∣

∣

t=0

g(X+ t Y ) ∈ RM×N (2036)

which is again simplest. (confer (2015)) Directional derivative retains the dimensions of g .
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D.1.6 directional derivative expressions

In the case of a real function g(X) : RK×L→R , all its directional derivatives are in R :

→Y

dg (X) = tr
(

∇g(X)TY
)

(2037)

→Y

dg2(X) = tr
(

∇X tr
(

∇g(X)TY
)T

Y
)

= tr

(

∇X

→Y

dg (X)TY

)

(2038)

→Y

dg3(X) = tr

(

∇X tr
(

∇X tr
(

∇g(X)TY
)T

Y
)T

Y

)

= tr

(

∇X

→Y

dg2(X)TY

)

(2039)

In the case g(X) : RK→R has vector argument, they further simplify:

→Y

dg (X) = ∇g(X)TY (2040)

→Y

dg2(X) = Y T∇2g(X)Y (2041)

→Y

dg3(X) = ∇X

(

Y T∇2g(X)Y
)T

Y (2042)

and so on.

D.1.7 higher-order multidimensional Taylor series

Series expansions of the differentiable matrix-valued function g(X) , of matrix argument,
were given earlier in (2014) and (2035). Assume that g(X) has continuous first-, second-,
and third-order gradients over open set dom g . Then, for X∈ dom g and any Y ∈ RK×L,
the Taylor series is expressed on some open interval of µ∈R

g(X + µY ) = g(X) + µ
→Y

dg (X) +
1

2!
µ2

→Y

dg2(X) +
1

3!
µ3

→Y

dg3(X) + O(µ4) (2043)

or on some open interval of ‖Y ‖2

g(Y ) = g(X) +
→Y −X

dg(X) +
1

2!

→Y −X

dg2(X) +
1

3!

→Y −X

dg3(X) + O(‖Y ‖4) (2044)

which are third-order expansions about X . The mean value theorem from calculus is what
insures finite order of the series. [398] [46, §1.1] [45, App.A.5] [234, §0.4] These somewhat
unbelievable formulaeD.3 imply that a function can be determined over the whole of its
domain by knowing its value and all its directional derivatives at a single point X .

D.1.7.0.1 Example. Inverse-matrix function.
Say g(Y )= Y −1. From the table on page 572,

→Y

dg (X) =
d

dt

∣

∣

∣

∣

t=0

g(X+ t Y ) = −X−1Y X−1 (2045)

→Y

dg2(X) =
d2

dt2

∣

∣

∣

∣

t=0

g(X+ t Y ) = 2X−1Y X−1Y X−1 (2046)

D.3 e.g, real continuous and differentiable function of real variable f(x)= e−1/x2
has no Taylor series

expansion about x=0 , of any practical use, because each derivative equals 0 there.
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→Y

dg3(X) =
d3

dt3

∣

∣

∣

∣

t=0

g(X+ t Y ) = −6X−1Y X−1Y X−1Y X−1 (2047)

Let’s find the Taylor series expansion of g about X = I : Since g(I )= I , for ‖Y ‖2 < 1
(µ = 1 in (2043))

g(I + Y ) = (I + Y )−1 = I − Y + Y 2− Y 3 + . . . (2048)

If Y is small, (I + Y )−1 ≈ I − Y .D.4 Now we find Taylor series expansion about X :

g(X + Y ) = (X + Y )−1 = X−1 − X−1Y X−1 + 2X−1Y X−1Y X−1 − . . . (2049)

If Y is small, (X + Y )−1≈X−1 − X−1Y X−1. 2

D.1.7.0.2 Exercise. log det . (confer [68, p.644])
Find the first three terms of a Taylor series expansion for log detY . Specify an open
interval over which the expansion holds in vicinity of X . H

D.1.8 Correspondence of gradient to derivative

From the foregoing expressions for directional derivative, we derive a relationship between
gradient with respect to matrix X and derivative with respect to real variable t :

D.1.8.1 first-order

Removing evaluation at t = 0 from (2015),D.5 we find an expression for the directional
derivative of g(X) in direction Y evaluated anywhere along a line {X+ t Y | t∈R}
intersecting dom g

→Y

dg (X+ t Y ) =
d

dt
g(X+ t Y ) (2050)

In the general case g(X) : RK×L→RM×N , from (2008) and (2011) we find

tr
(

∇X gmn(X+ t Y )TY
)

=
d

dt
gmn(X+ t Y ) (2051)

which is valid at t = 0 , of course, when X∈ dom g . In the important case of a real
function g(X) : RK×L→R , from (2037) we have simply

tr
(

∇X g(X+ t Y )TY
)

=
d

dt
g(X+ t Y ) (2052)

When g(X) : RK→R has vector argument,

∇X g(X+ t Y )TY =
d

dt
g(X+ t Y ) (2053)

D.4Had we instead set g(Y )=(I + Y )−1, then the equivalent expansion would have been about X = 0.
D.5Justified by replacing X with X+ t Y in (2008)-(2010); beginning,

dgmn(X+ t Y )|dX→Y =
∑

k , l

∂gmn(X+ t Y )

∂Xkl
Ykl



D.1. GRADIENT, DIRECTIONAL DERIVATIVE, TAYLOR SERIES 569

D.1.8.1.1 Example. Gradient.
g(X) = wTXTXw , X∈ RK×L, w∈RL. Using the tables in §D.2,

tr
(

∇X g(X+ t Y )TY
)

= tr
(

2wwT(XT+ t Y T)Y
)

(2054)

= 2wT(XTY + t Y TY )w (2055)

Applying equivalence (2052),

d

dt
g(X+ t Y ) =

d

dt
wT(X+ t Y )T(X+ t Y )w (2056)

= wT
(

XTY + Y TX + 2t Y TY
)

w (2057)

= 2wT(XTY + t Y TY )w (2058)

which is the same as (2055). Hence, the equivalence is demonstrated.

It is easy to extract ∇g(X) from (2058) knowing only (2052):

tr
(

∇X g(X+ t Y )TY
)

= 2wT(XTY + t Y TY )w
= 2 tr

(

wwT(XT+ t Y T)Y
)

tr
(

∇X g(X)TY
)

= 2 tr
(

wwTXTY
)

⇔
∇X g(X) = 2XwwT

(2059)

2

D.1.8.2 second-order

Likewise removing the evaluation at t = 0 from (2036),

→Y

dg2(X+ t Y ) =
d2

dt2
g(X+ t Y ) (2060)

we can find a similar relationship between second-order gradient and second derivative: In
the general case g(X) : RK×L→RM×N from (2029) and (2032),

tr
(

∇X tr
(

∇X gmn(X+ t Y )TY
)T

Y
)

=
d2

dt2
gmn(X+ t Y ) (2061)

In the case of a real function g(X) : RK×L→R we have, of course,

tr
(

∇X tr
(

∇X g(X+ t Y )TY
)T

Y
)

=
d2

dt2
g(X+ t Y ) (2062)

From (2041), the simpler case, where real function g(X) : RK→R has vector argument,

Y T∇2
X g(X+ t Y )Y =

d2

dt2
g(X+ t Y ) (2063)

D.1.8.2.1 Example. Second-order gradient.
We want to find ∇2g(X)∈RK×K×K×K given real function g(X) = log detX having
domain intr SK

+ . From the tables in §D.2,

h(X) , ∇g(X) = X−1∈ intr SK
+ (2064)
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so ∇2g(X)=∇h(X). By (2051) and (2014), for Y ∈ SK

tr
(

∇hmn(X)TY
)

=
d

dt

∣

∣

∣

∣

t=0

hmn(X+ t Y ) (2065)

=

(

d

dt

∣

∣

∣

∣

t=0

h(X+ t Y )

)

mn

(2066)

=

(

d

dt

∣

∣

∣

∣

t=0

(X+ t Y )−1

)

mn

(2067)

= −
(

X−1 Y X−1
)

mn
(2068)

Setting Y to a member of {ekeT
l ∈ RK×K | k, l=1 . . . K} , and employing a property (41)

of the trace function we find

∇2g(X)mnkl = tr
(

∇hmn(X)TekeT
l

)

= ∇hmn(X)kl = −
(

X−1ekeT
l X−1

)

mn
(2069)

∇2g(X)kl = ∇h(X)kl = −
(

X−1ekeT
l X−1

)

∈ RK×K (2070)
2

From all these first- and second-order expressions, we may generate new ones by evaluating
both sides at arbitrary t (in some open interval) but only after differentiation.

D.2 Tables of gradients and derivatives

� Results may be validated numerically via Richardson extrapolation. [285, §5.4] [126]
When algebraically proving results for symmetric matrices, it is critical to take
gradients ignoring symmetry and to then substitute symmetric entries afterward.
[198] [72]

� i , j , k, ℓ ,K,L ,m , n ,M ,N are integers, unless otherwise noted, a , b∈Rn, x, y∈Rk,
A,B∈ Rm×n, X,Y ∈ RK×L, t , µ∈R .

� xµ means δ(δ(x)µ) for µ∈R ; id est, entrywise vector exponentiation. δ is the

main-diagonal linear operator (1592). x0 , 1 , X0 , I if square.

�

d
dx ,







d
dx1...
d

dxk






,

→y

dg(x) ,
→y

dg2(x) (directional derivatives §D.1), log x , ex, |x| , x/y

(Hadamard quotient), sgnx , ◦
√

x (entrywise square root), etcetera, are maps
f : Rk→ Rk that maintain dimension; e.g, (§A.1.1)

d

dx
x−1 , ∇x 1Tδ(x)−11 (2071)

� For A a scalar or square matrix, we have the Taylor series [86, §3.6]

eA ,
∞
∑

k=0

1

k!
Ak (2072)

Further, [379, §5.4]
eA ≻ 0 ∀A ∈ Sm (2073)

� For all square A and integer k

detkA = detAk (2074)
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D.2.1 algebraic

∇x x = ∇x xT = I ∈ Rk×k ∇XX = ∇XXT , I ∈ RK×L×K×L (Identity)

∇x1
Tx = ∇xxT1 = 1 ∈ Rk ∇X1TX1 = ∇X1TXT1 = 11T∈RK×L

∇x(Ax − b) = AT

∇x

(

xTA − bT
)

= A

∇x(Ax − b)T(Ax − b) = 2AT(Ax − b)
∇2

x (Ax − b)T(Ax − b) = 2ATA

∇x

√

(Ax − b)T(Ax − b)=AT(Ax − b)/‖Ax − b‖2 =∇x‖Ax − b‖2

∇xzT|Ax − b| = ATδ(z) sgn(Ax − b) , zi 6= 0 ⇒ (Ax − b)i 6= 0
∇x1

T|Ax − b| = ATsgn(Ax − b) = ∇x‖Ax − b‖1

∇x1
Tf(|Ax − b|) = ATδ

(

df(y)
dy

∣

∣

∣

y=|Ax−b|

)

sgn(Ax − b)

∇x

(

xTAx + 2xTBy + yTCy
)

=
(

A +AT
)

x + 2By
∇x(x + y)TA(x + y) =

(

A +AT
)

(x + y)
∇2

x

(

xTAx + 2xTBy + yTCy
)

= A +AT

∇X aTXb = ∇X bTXTa = abT

∇X aTX2b = XTabT+ abTXT

∇X aTX−1b = −X−TabTX−T

∇X(X−1)kl =
∂X−1

∂Xkl
= −X−1ekeT

l X−1,
confer
(2006)
(2070)

∇x aTxTxb = 2xaTb ∇X aTXTXb = X(abT+ baT)

∇x aTxxTb = (abT+ baT)x ∇X aTXXTb = (abT+ baT)X

∇x aTxTxa = 2xaTa ∇X aTXTXa = 2XaaT

∇x aTxxTa = 2aaTx ∇X aTXXTa = 2aaTX

∇x aTyxTb = baTy ∇X aTYXTb = baTY

∇x aTyTxb = ybTa ∇X aTY TXb = Y abT

∇x aTxyTb = abTy ∇X aTXY Tb = abTY

∇x aTxTyb = yaTb ∇X aTXTY b = Y baT
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algebraic continued

d
dt (X+ t Y ) = Y

d
dtB

T(X+ t Y )−1A = −BT(X+ t Y )−1 Y (X+ t Y )−1A
d
dtB

T(X+ t Y )−TA = −BT(X+ t Y )−T Y T(X+ t Y )−TA
d
dtB

T(X+ t Y )µA = . . . , −1 ≤ µ ≤ 1 , X , Y ∈ SM
+

d2

dt2
BT(X+ t Y )−1A = 2BT(X+ t Y )−1 Y (X+ t Y )−1 Y (X+ t Y )−1A

d3

dt3
BT(X+ t Y )−1A = −6BT(X+ t Y )−1 Y (X+ t Y )−1 Y (X+ t Y )−1Y (X+ t Y )−1A

d
dt

(

(X+ t Y )TA(X+ t Y )
)

= Y TAX + XTAY + 2 t Y TAY
d2

dt2

(

(X+ t Y )TA(X+ t Y )
)

= 2 Y TAY
d
dt

(

(X+ t Y )TA(X+ t Y )
)−1

=−
(

(X+ t Y )TA(X+ t Y )
)−1

(Y TAX + XTAY + 2 t Y TAY )
(

(X+ t Y )TA(X+ t Y )
)−1

d
dt((X+ t Y )A(X+ t Y )) = YAX + XAY + 2 t YAY
d2

dt2
((X+ t Y )A(X+ t Y )) = 2 YAY

D.2.2 trace Kronecker

∇vec X tr(AXBXT) = ∇vec X vec(X)T(BT⊗ A) vec X = (B ⊗AT + BT⊗A) vec X

∇2
vec X tr(AXBXT) = ∇2

vec X vec(X)T(BT⊗ A) vec X = B ⊗AT + BT⊗A (1987)
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D.2.3 trace

∇x µ x = µI ∇X tr µX = ∇X µ trX = µI

∇x 1Tδ(x)−11 = d
dxx−1 = −x−2 ∇X tr X−1 = −X−2T

∇x 1Tδ(x)−1y = −δ(x)−2y ∇X tr(X−1 Y ) = ∇X tr(Y X−1) = −X−TY TX−T

d
dxxµ = µxµ−1 ∇X tr Xµ = µXµ−1 , X∈ SM

∇X tr Xj = jX(j−1)T

∇x(b − aTx)−1 = (b − aTx)−2a ∇X tr
(

(B − AX)−1
)

=
(

(B − AX)−2A
)T

∇x(b − aTx)µ = −µ(b − aTx)µ−1a

∇x xTy = ∇x yTx = y ∇X tr(XTY ) = ∇X tr(Y XT) = ∇X tr(Y TX) = ∇X tr(XY T) = Y
∇x xTx = 2x ∇X tr(XTX ) = ∇X tr(XXT) = 2X

∇X tr(AXBXT) = ∇X tr(XBXTA) = ATXBT + AXB
∇X tr(AXBX) = ∇X tr(XBXA) = ATXTBT+ BTXTAT

∇X tr(AXAXAXAX) = ∇X tr(XAXAXAXA) = 4(AXAXAXA)T

∇X tr(AXAXAX) = ∇X tr(XAXAXA) = 3(AXAXA)T

∇X tr(AXAX) = ∇X tr(XAXA) = 2(AXA)T

∇X tr(AX) = ∇X tr(XA) = AT

∇X tr(Y Xk) = ∇X tr(Xk Y ) =
k−1
∑

i=0

(

XiY Xk−1−i
)T

∇X tr(XTY Y TXXTY Y TX) = 4Y Y TXXTY Y TX
∇X tr(XY Y TXTXY Y TXT) = 4XY Y TXTXY Y T

∇X tr(Y TXXTY ) = ∇X tr(XTY Y TX) = 2Y Y TX
∇X tr(Y TXTXY ) = ∇X tr(XY Y TXT) = 2XY Y T

∇X tr
(

(X + Y )T(X + Y )
)

= 2(X + Y ) = ∇X‖X + Y ‖2
F

∇X tr((X + Y )(X + Y )) = 2(X + Y )T

∇X tr(ATXB) = ∇X tr(XTABT) = ABT

∇X tr(ATX−1B) = ∇X tr(X−TABT) = −X−TABTX−T

∇X aTXb = ∇X tr(baTX) = ∇X tr(XbaT) = abT

∇X bTXTa = ∇X tr(XTabT) = ∇X tr(abTXT) = abT

∇X aTX−1b = ∇X tr(X−TabT) = −X−TabTX−T

∇X aTX
µ
b = . . .
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trace continued

d
dt tr g(X+ t Y ) = tr d

dt g(X+ t Y ) [238, p.491]

d
dt tr(X+ t Y ) = trY

d
dt trj(X+ t Y ) = j trj−1(X+ t Y ) tr Y

d
dt tr(X+ t Y )j = j tr

(

(X+ t Y )j−1 Y
)

(∀ j)

d
dt tr((X+ t Y )Y ) = trY 2

d
dt tr

(

(X+ t Y )k Y
)

= d
dt tr(Y (X+ t Y )k) = k tr

(

(X+ t Y )k−1 Y 2
)

, k∈{0, 1, 2}

d
dt tr

(

(X+ t Y )k Y
)

= d
dt tr(Y (X+ t Y )k) = tr

k−1
∑

i=0

(X+ t Y )i Y (X+ t Y )k−1−i Y

d
dt tr

(

(X+ t Y )−1 Y
)

= − tr
(

(X+ t Y )−1 Y (X+ t Y )−1 Y
)

d
dt tr

(

BT(X+ t Y )−1A
)

= − tr
(

BT(X+ t Y )−1 Y (X+ t Y )−1A
)

d
dt tr

(

BT(X+ t Y )−TA
)

= − tr
(

BT(X+ t Y )−T Y T(X+ t Y )−TA
)

d
dt tr

(

BT(X+ t Y )−kA
)

= . . . , k > 0
d
dt tr

(

BT(X+ t Y )µA
)

= . . . , −1 ≤ µ ≤ 1 , X , Y ∈ SM
+

d2

dt2
tr

(

BT(X+ t Y )−1A
)

= 2 tr
(

BT(X+ t Y )−1 Y (X+ t Y )−1 Y (X+ t Y )−1A
)

d
dt tr

(

(X+ t Y )TA(X+ t Y )
)

= tr
(

Y TAX + XTAY + 2 t Y TAY
)

d2

dt2
tr

(

(X+ t Y )TA(X+ t Y )
)

= 2 tr
(

Y TAY
)

d
dt tr

(

(

(X+ t Y )TA(X+ t Y )
)−1

)

=− tr
(

(

(X+ t Y )TA(X+ t Y )
)−1

(Y TAX + XTAY + 2 t Y TAY )
(

(X+ t Y )TA(X+ t Y )
)−1

)

d
dt tr((X+ t Y )A(X+ t Y )) = tr(YAX + XAY + 2 t YAY )
d2

dt2
tr((X+ t Y )A(X+ t Y )) = 2 tr(YAY )
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D.2.4 logarithmic determinant

x≻ 0 , detX > 0 on some neighborhood of X , and det(X+ t Y )> 0 on some open
interval of t ; otherwise, log( ) would be discontinuous. [93, p.75]

d
dx log x = x−1 ∇X log detX = X−T

∇2
X log det(X)kl =

∂X−T

∂Xkl
= −

(

X−1ekeT
l X−1

)T
, confer (2023)(2070)

d
dx log x−1 = −x−1 ∇X log detX−1 = −X−T

d
dx log xµ = µx−1 ∇X log detµX = µX−T

∇X log detX
µ

= µX−T

∇X log detXk = ∇X log detkX = kX−T

∇X log detµ(X+ t Y ) = µ(X+ t Y )−T

∇x log(aTx + b) = a 1
aTx+b

∇X log det(AX+ B) = AT(AX+ B)−T

∇X log det(I ± ATXA) = ±A(I ± ATXA)−TAT

∇X log det(X+ t Y )k = ∇X log detk(X+ t Y ) = k(X+ t Y )−T

d
dt log det(X+ t Y ) = tr ((X+ t Y )−1 Y )

d2

dt2
log det(X+ t Y ) = − tr ((X+ t Y )−1 Y (X+ t Y )−1 Y )

d
dt log det(X+ t Y )−1 = − tr ((X+ t Y )−1 Y )

d2

dt2
log det(X+ t Y )−1 = tr ((X+ t Y )−1 Y (X+ t Y )−1 Y )

d
dt log det(δ(A(x + t y) + a)2 + µI)

= tr
(

(δ(A(x + t y) + a)2 + µI)
−1

2δ(A(x + t y) + a)δ(Ay)
)
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D.2.5 determinant

∇X det X = ∇X det XT = det(X)X−T

∇X det X−1 = −det(X−1)X−T = −det(X)−1X−T

∇X detµX = µdetµ(X)X−T

∇X det X
µ

= µdet(X
µ
)X−T

∇X det Xk = k detk−1(X)
(

tr(X)I − XT
)

, X∈ R2×2

∇X det Xk = ∇X detkX = k det(Xk)X−T = k detk(X)X−T

∇X detµ(X+ t Y ) = µdetµ(X+ t Y )(X+ t Y )−T

∇X det(X+ t Y )k = ∇X detk(X+ t Y ) = k detk(X+ t Y )(X+ t Y )−T

d
dt det(X+ t Y ) = det(X+ t Y ) tr((X+ t Y )−1 Y )

d2

dt2
det(X+ t Y ) = det(X+ t Y )(tr2

(

(X+ t Y )−1 Y
)

− tr((X+ t Y )−1 Y (X+ t Y )−1 Y ))

d
dt det(X+ t Y )−1 = −det(X+ t Y )−1 tr((X+ t Y )−1 Y )

d2

dt2
det(X+ t Y )−1 = det(X+ t Y )−1(tr2((X+ t Y )−1 Y ) + tr((X+ t Y )−1 Y (X+ t Y )−1 Y ))

d
dt detµ(X+ t Y ) = µdetµ(X+ t Y ) tr((X+ t Y )−1 Y )

D.2.6 logarithmic

Matrix logarithm.

d
dt log(X+ t Y )µ = µY (X+ t Y )−1 = µ(X+ t Y )−1Y , X Y = Y X

d
dt log(I− t Y )µ = −µY (I− t Y )−1 = −µ(I− t Y )−1Y [238, p.493]
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D.2.7 exponential

Matrix exponential. [86, §3.6, §4.5] [379, §5.4]

∇Xetr(Y TX) = ∇Xdet eY TX = etr(Y TX)Y (∀X,Y )

∇X tr eY X = eY TXT

Y T = Y TeXTY T

(∀X,Y )
∇X tr

(

AeY X
)

= . . .

∇x1
TeAx = ATeAx

∇x1
Te|Ax| = ATδ(sgn(Ax))e|Ax| (Ax)i 6= 0

∇x log(1Tex) =
1

1Tex
ex

∇2
x log(1Tex) =

1

1Tex

(

δ(ex) − 1

1Tex
exexT

)

∇x

k
∏

i=1

x
1
k

i =
1

k

(

k
∏

i=1

x
1
k

i

)

1/x

∇2
x

k
∏

i=1

x
1
k

i = −1

k

(

k
∏

i=1

x
1
k

i

)(

δ(x)−2 − 1

k
(1/x)(1/x)T

)

d
dte

tY = etY Y = Y etY

d
dte

X+ t Y = eX+ t Y Y = Y eX+ t Y , X Y = Y X

d2

dt2
eX+ t Y = eX+ t Y Y 2 = Y eX+ t Y Y = Y 2eX+ t Y , X Y = Y X

d j

dt j
etr(X+ t Y ) = etr(X+ t Y ) trj(Y )

D.2.7.0.1 Exercise. Expand these tables.
Provide four unfinished table entries indicated by . . . in §D.2.1 & §D.2.3. H

D.2.7.0.2 Exercise. log . (§D.1.7, §3.5.4)
Find the first four terms of the Taylor series expansion for log x about x = 1. Plot the

supporting hyperplane to the hypograph of log x at

[

x
log x

]

=

[

1
0

]

. Prove log x ≤ x−1 .

H
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Appendix E

Projection

Rob Reiner’s “A Few Good Men” is one of those movies that tells you what
it’s going to do, does it, and then tells you what it did. It doesn’t think the
audience is very bright.

−Roger Ebert, 1992

For any t > 0 [190, §2.1]

I − A(ATA + t I )−1AT = t(AAT+ t I )−1 (2075)

For any A∈Rm×n, the pseudoinverse [237, §7.3 prob.9] [290, §6.12 prob.19] [189, §5.5.4]
[379, App.A]

A† , lim
t→0+

(ATA + t I )−1AT = lim
t→0+

AT(AAT+ t I )−1 ∈ Rn×m (2076)

is a unique matrix from the convex optimal solution set to minimizeX ‖AX − I‖2
F

(§3.6.0.0.2). Pseudoinverse A† is that unique matrix satisfying the Moore-Penrose
conditions : [239, §1.3] [449]

1. AA†A = A 3. (AA†)T = AA†

2. A†AA† = A† 4. (A†A)T = A†A
(2077)

which are necessary and sufficient to establish the pseudoinverse whose principal action is
to injectively map R(A) onto R(AT) (Figure 192). Conditions 1 and 3 are necessary and
sufficient for AA† to be the orthogonal projector on R(A) , while conditions 2 and 4 hold
iff A†A is the orthogonal projector on R(AT).

Range and nullspace of the pseudoinverse [309] [375, §III.1 exer.1]

R(A†) = R(AT) , R(A†T) = R(A) (2078)

N (A†) = N (AT) , N (A†T) = N (A) (2079)

can be derived by singular value decomposition (§A.6).

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 579

https://www.rogerebert.com/reviews/a-few-good-men-1992
https://ccrma.stanford.edu/~dattorro
https://www.convexoptimization.com
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x

Rn

x = A†p

x = A†bR(AT)

R(A)

N (A) N (AT)

0 = A†(b − p)
b−p

b

p

Rm

{b}

Ax = p

00
{x}

Figure 192: (confer Figure 18) Pseudoinverse A†∈ Rn×m action: [379, p.449]
Component of b in N (AT) maps to 0 , while component of b in R(A) maps to rowspace
R(AT). For any A∈Rm×n, p = AA†b and inversion is bijective ∀ p∈R(A). x=A†b ⇔
x∈R(AT) & b−Ax⊥R(A) ⇔ x⊥N (A) & b−Ax∈N (AT). [55]

The following relations reliably hold without qualification:

a. AT† = A†T

b. A†† = A
c. (AAT)† = A†TA†

d. (ATA)† = A†A†T

e. (AA†)† = AA†

f . (A†A)† = A†A

Yet for arbitrary A,B it is generally true that (AB)† 6= B†A† :

E.0.0.0.1 Theorem. Pseudoinverse of product. [202] [64] [280, exer.7.23]
For A∈Rm×n and B∈Rn×k

(AB)† = B†A† (2080)
if and only if

R(ATAB) ⊆ R(B) and R(BBTAT) ⊆ R(AT) (2081)
⋄

Pseudoinverse of normalized vector u is the vector transpose. Otherwise,

u† =
uT

‖u‖2
(2082)

U† = UT for orthonormal (including the orthogonal) matrices U . So, for orthonormal
matrices U,Q and arbitrary A

(UAQT)† = QA†UT (2083)

E.0.0.0.2 Exercise. Kronecker pseudoinverse.
Prove:

(A ⊗ B)† = A† ⊗ B† (2084)
H
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E.0.1 Logical deductions

When A is invertible, A† = A−1 ; so I† = I and A†A = AA† = I .
More generally, for A∈Rm×n [182, §5.3.3.1] [280, §7] [341]

g. A†A = I , A† = (ATA)−1AT , rankA = n
h. AA† = I , A† = AT(AAT)−1 , rankA = m

i . A†Aω = ω , ω ∈ R(AT)
j . AA†υ = υ , υ ∈ R(A)

k. A†A = AA† , A normal
l . Ak† = A†k , k an integer, A normal

Equivalent to the two corresponding Moore-Penrose condition (2077):

1. AT = ATAA† or AT = A†AAT

2. A†T = A†TA†A or A†T = AA†A†T

There exists a singularity in the definition of pseudoinverse:

0† = 0T , δ(0)† = δ(0)T (2085)

0 on the main diagonal of a diagonal matrix remains 0 in the pseudoinverse, whereas
nonzero entries are inverted. When A is symmetric, A† is symmetric and (§A.6)

A º 0 ⇔ A†º 0 (2086)

For any A∈Rm×n (§E.3.1)

A†A º 0 , AA†º 0 , I−A†A º 0 , I−AA†º 0 (2087)

E.0.1.0.1 Example. Solution to classical linear equation Ax = b .
In §2.5.1.1, the solution set to matrix equation Ax = b was represented as an intersection
of hyperplanes. Regardless of rank of A or its shape {thin, square, wide}, interpretation as
a hyperplane intersection (describing a possibly empty affine set) generally holds. Unique
solution occurs when the hyperplanes intersect at a single point; e.g, when A is invertible.

vector b not in range of matrix A
Given arbitrary matrix A (of any rank and dimension) and vector b not necessarily in
R(A) , we wish to find a best solution x⋆ to

Ax ≈ b (2088)

in a Euclidean sense by solving an algebraic expression for orthogonal projection of b on
R(A)

minimize
x

‖Ax − b‖2
2 (2089)

Necessary and sufficient condition for optimal solution to this unconstrained optimization
is the so-called normal equation that results from zeroing the convex objective’s gradient:
(§D.2.1)

ATA x = ATb (2090)

normal because ATA is a normal matrix and error vector b−Ax is perpendicular to R(A) ;
id est, AT(b−Ax)=0. Given any matrix A and any vector b , the normal equation
is solvable exactly; always so, because R(ATA)=R(AT) and ATb∈R(AT). Given
particular xp∈R(AT) solving (2090), then it is necessarily unique in R(AT) (Figure 192)
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and xp = x⋆ = A†b . When A is thin-or-square full-rank, normal equation (2090) can be
solved exactly by inversion:

x⋆ = (ATA)−1ATb ≡ A†b (2091)

For matrix A of arbitrary rank and shape, on the other hand, ATA might not be invertible.
Yet the normal equation can always be solved exactly by: (2076)

x⋆ = lim
t→0+

(ATA + t I )−1ATb = A†b (2092)

invertible for any positive value of t by (1628). Matrix inversion is rarely performed
numerically in solution of the normal equation.E.1 [422] Yet theoretically, exact inversion
(2091) and this pseudoinverse solution (2092) each solve the same limited regularization

lim
t→0+

minimize
x

‖Ax − b‖2
2 + t ‖x‖2

2 ≡ lim
t→0+

minimize
x

∥

∥

∥

∥

[

A√
t I

]

x −
[

b
0

]∥

∥

∥

∥

2

2

(2093)

simultaneously providing least squares solution to (2089) and the classical least norm
solutionE.2 [379, App.A.4] [55]

minimize
x

‖x‖2
2

subject to Ax = AA†b
(2094)

where AA†b is the orthogonal projection of vector b on R(A). Least norm solution can be
interpreted as orthogonal projection of the origin 0 on affine subset A= {x |Ax=AA†b} ;
(§E.5.0.0.6, §E.5.0.0.7)

minimize
x

‖x − 0‖2
2

subject to x ∈ A (2095)

equivalently, maximization of the Euclidean ball until it kisses A ; rather, arg dist(0,A).

vector b in range of matrix A
If matrix A is rank deficient or wide, then there exists an infinite number of exact
solutions x when b∈R(A) and many ways to find them: for arbitrary choice of norm
here, (§3.2.0.1.2)

find x
subject to Ax = b

(1)

minimize
x

‖Ax − b‖ (2)

minimize
x

xTATAx − 2xTATb (3)

find x
subject to ATAx = ATb

(4)

minimize
x

‖ATAx − ATb‖ (5)

(2096)

Depending upon numerical method of solution, each problem formulation can produce a
different result. But each solution can always be decomposed into a sum of two vectors
(Figure 18): a unique vector xp from rowspace R(AT) and vector η from nullspace N (A)

x⋆ = xp+ η (2097)

E.1 nor in solution to Ax = b even were matrix A itself invertible.
E.2This means: optimal solutions of lesser norm [sic ] than the so-called least norm solution (2094) can

be obtained (at expense of approximation Ax ≈ b ; hence, of perpendicularity) by ignoring the limiting
operation and introducing finite positive values of t into (2093).
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where xp = A†b is the solution of least Euclidean norm:

minimize
x

‖x‖2
2

subject to Ax = b
(2098)

2

E.1 Idempotent matrices

Projection matrices are square and defined by idempotence, P 2 =P ; [379, §2.6] [239, §1.3]
equivalent to the condition: P be diagonalizable [237, §3.3 prob.3] with eigenvalues
φi ∈ {0, 1}. [469, §4.1 thm.4.1] Idempotent matrices are not necessarily symmetric. The
transpose of an idempotent matrix remains idempotent; PTPT = PT. Solely excepting
P = I , all projection matrices are neither orthogonal (§B.5) or invertible. [379, §3.4] The
collection of all projection matrices of particular dimension does not form a convex set.

Suppose we wish to project nonorthogonally (obliquely ) on the range of any particular
matrix A∈Rm×n. All idempotent matrices projecting nonorthogonally on R(A) may be
expressed: (confer (2123))

P = A(A† + BZT) ∈ Rm×m (2099)

where R(P )=R(A) ,E.3 B∈Rn×k for positive integer k is arbitrary, and Z∈Rm×k is any
matrix whose range is in N (AT) ; id est,

ATZ = A†Z = 0 (2100)

Evidently, the collection of nonorthogonal projectors projecting on R(A) is an affine subset

Pk =
{

A(A† + BZT) | B∈ Rn×k
}

(2101)

When matrix A in (2099) is thin full-rank (A†A = I ) or has orthonormal columns
(ATA = I ), either property leads to a biorthogonal characterization of nonorthogonal
projection:

E.1.1 Biorthogonal characterization of projector

Any nonorthogonal projector P 2 =P ∈Rm×m, projecting on nontrivial R(U) , can be
defined by a biorthogonality condition QTU = I ; the biorthogonal decomposition of P
being (confer (2099))E.4

P = UQT , QTU = I (2102)

whereE.5 (§B.1.1.1)

R(P )=R(U) , N (P )=N (QT) (2103)

E.3Proof. R(P )⊆R(A) is obvious [379, §3.6]. By (145) and (146),

R(A† + BZT) = {(A† + BZT)y | y ∈ R
m}

⊇ {(A† + BZT)y | y ∈ R(A)} = R(AT)

R(P ) = {A(A† + BZT)y | y ∈ R
m}

⊇ {A(A† + BZT)y | (A† + BZT)y ∈ R(AT)} = R(A) ¨

E.4 A ← U , A† + BZT← QT

E.5Proof. Obviously, R(P ) ⊆ R(U). Because QTU = I

R(P ) = {UQTx | x ∈ R
m}

⊇ {UQTUy | y ∈ R
k} = R(U) ¨
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and where generally (confer (2133))E.6

P 2 =P , PT 6= P , P † 6= P , ‖P‖2 6= 1 , P ² 0 (2104)

and P is not nonexpansive (2134) (2331). P 2 =P is necessary and sufficient.

(⇐) To verify assertion (2102) we observe: because idempotent matrices are
diagonalizable (§A.5), [237, §3.3 prob.3] they must have the form (1722)

P = SΦS−1 =

m
∑

i=1

φi siw
T
i =

k ≤m
∑

i=1

siw
T
i (2105)

that is a sum of k = rankP independent projector dyads (idempotent dyads,
§B.1.1, §E.6.2.1) where φi ∈ {0, 1} are the eigenvalues of P [469, §4.1 thm.4.1]
in diagonal matrix Φ∈Rm×m arranged in nonincreasing order, and where
si , wi∈Rm are the right- and left-eigenvectors of P , respectively, which are
independent and real.E.7 Therefore

U , S(: , 1: k) = [ s1 · · · sk ] ∈ Rm×k (2106)

is the full-rank matrix S∈Rm×m having m− k columns (corresponding to 0
eigenvalues) truncated, while

QT , S−1(1 : k , :) =





wT
1...

wT
k



 ∈ Rk×m (2107)

is matrix S−1 having the corresponding m− k rows truncated. By the
0 eigenvalues theorem (§A.7.3.0.1), R(U)=R(P ) , R(Q)=R(PT) , and

R(P ) = span {si | φi = 1 ∀ i}
N (P ) = span {si | φi = 0 ∀ i}
R(PT) = span {wi | φi = 1 ∀ i}
N (PT) = span {wi | φi = 0 ∀ i}

(2108)

Thus biorthogonality QTU = I is a necessary condition for idempotence, and
so the collection of nonorthogonal projectors projecting on R(U) is the affine
subset Pk =UQT

k where Qk = {Q | QTU = I , Q∈Rm×k}.

(⇒) Biorthogonality is a sufficient condition for idempotence;

P 2 =

k
∑

i=1

siw
T
i

k
∑

j=1

sjw
T
j = P (2109)

id est, if the cross-products are annihilated, then P 2 =P . ¨

Nonorthogonal projection of x on R(P ) has expression like a biorthogonal expansion,

Px = UQTx =
k

∑

i=1

wT
i x si (2110)

E.6Orthonormal decomposition (2130) (confer §E.3.4) is a special case of biorthogonal decomposition
(2102) characterized by (2133). So, characteristics (2104) are not necessary conditions for biorthogonality.
E.7Eigenvectors of a real matrix corresponding to real eigenvalues must be real. (§A.5.0.0.2)
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x

Px

cone(Q)

cone(U)

T

T ⊥ R(Q)

Figure 193: Nonorthogonal projection of x∈R3 on R(U)= R2 under biorthogonality
condition; id est, Px=UQTx such that QTU = I . Any point along imaginary line T
connecting x to Px will be projected nonorthogonally on Px with respect to horizontal
plane constituting R2 = aff cone(U) in this example. Extreme directions of cone(U)
correspond to two columns of U ; likewise for cone(Q). For purpose of illustration,
we truncate each conic hull by truncating coefficients of conic combination at unity. Conic
hull cone(Q) is headed upward at an angle, out of plane of page. Nonorthogonal projection
would fail were N (QT) in R(U) (were T parallel to a line in R(U)).

When the domain is restricted to range of P , say x=Uξ for ξ∈Rk, then
x = Px = UQTUξ = Uξ and expansion is unique because the eigenvectors are linearly
independent. Otherwise, any component of x in N (P )=N (QT) will be annihilated.
Direction of nonorthogonal projection is orthogonal to R(Q) ⇔ QTU = I ; id est, for
Px∈R(U) (confer (2120))

Px − x ⊥ R(Q) in Rm (2111)

E.1.1.0.1 Example. Illustration of nonorthogonal projector.
Figure 193 shows cone(U) , conic hull of the columns of

U =





1 1
−0.5 0.3

0 0



 (2112)

from nonorthogonal projector P =UQT. Matrix U has a limitless number of left inverses
because N (UT) is nontrivial. Similarly depicted is left inverse QT from (2099)

Q = U†T+ ZBT =





0.3750 0.6250
−1.2500 1.2500

0 0



 +





0
0
1



 [ 0.5 0.5 ]

=





0.3750 0.6250
−1.2500 1.2500

0.5000 0.5000





(2113)

where Z∈N (UT) and matrix B is selected arbitrarily; id est, QTU = I because U is
full-rank.
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Direction of projection on R(U) is orthogonal to R(Q). Any point along line T in
the figure, for example, will have the same projection. Were matrix Z instead equal
to 0 , cone(Q) would become the relative dual to cone(U) (sharing the same affine hull;
§2.13.9, confer Figure 60a). In that case, projection Px=UU†x of x on R(U) becomes
orthogonal projection (and unique minimum-distance). 2

E.1.2 Idempotence summary

Nonorthogonal subspace-projector P is a (convex) linear operator defined by idempotence
or biorthogonal decomposition (2102) but characterized not by symmetry or positive
semidefiniteness or nonexpansivity (2134).

E.2 I−P , Projection on algebraic complement

It follows from the diagonalizability of idempotent matrices that I − P must also be a
projection matrix because it too is idempotent, and because it may be expressed

I − P = S(I − Φ)S−1 =

m
∑

i=1

(1 − φi)siw
T
i (2114)

where (1 − φi)∈ {1, 0} are the eigenvalues of I − P (1629) whose eigenvectors si , wi are
identical to those of P in (2105). A consequence of that complementary relationship of
eigenvalues is the fact, [392, §2] [386, §2] for subspace projector P = P 2∈Rm×m

R(P ) = span {si | φi = 1 ∀ i} = span {si | (1 − φi) = 0 ∀ i} = N (I − P )
N (P ) = span {si | φi = 0 ∀ i} = span {si | (1 − φi) = 1 ∀ i} = R(I − P )
R(PT) = span {wi | φi = 1 ∀ i} = span {wi | (1 − φi) = 0 ∀ i} = N (I − PT)
N (PT) = span {wi | φi = 0 ∀ i} = span {wi | (1 − φi) = 1 ∀ i} = R(I − PT)

(2115)

that is easy to see from (2105) and (2114). Idempotent I−P therefore projects vectors
on its range: N (P ). Because all eigenvectors of a real idempotent matrix are real and
independent, the algebraic complement of R(P ) [264, §3.3] is equivalent to N (P ) ;E.8

id est,

R(P )⊕ N (P ) = R(PT)⊕ N (PT) = R(PT)⊕ N (P ) = R(P )⊕ N (PT) = Rm (2116)

because R(P ) ⊕ R(I−P )= Rm. For idempotent P ∈Rm×m, consequently,

rankP + rank(I − P ) = m (2117)

E.2.0.0.1 Theorem. Projector Rank Trace. [469, §4.1 prob.9] (confer §E.3.2.0.1)

P 2 = P
⇔

rankP = trP and rank(I − P ) = tr(I − P )
(2118)

⋄
E.8Same phenomenon occurs with symmetric (nonidempotent) matrices, for example. When summands

in A ⊕ B = R
m are orthogonal vector spaces, the algebraic complement is the orthogonal complement.
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E.2.1 Universal projector characteristic

Although projection is not necessarily orthogonal and R(P ) 6⊥ R(I − P ) in general, still
for any projector P and any x∈Rm

Px + (I − P )x = x (2119)

must hold where R(I − P )=N (P ) is the algebraic complement of R(P ). Algebraic
complement of closed convex cone K , for example, is the negative dual cone −K∗. (2257)
(Figure 198)

E.3 Symmetric idempotent matrices

When idempotent matrix P is symmetric, then P is an orthogonal projector. In other
words, the direction of projection of point x∈Rm on subspace R(P ) is orthogonal to
R(P ) ; id est, for P 2 =P ∈ Sm and projection Px∈R(P )

Px − x ⊥ R(P ) in Rm (2120)

(confer (2111)) Perpendicularity is a necessary and sufficient condition for orthogonal
projection on a subspace. [127, §4.9]

A condition equivalent to (2120) is: Norm of direction x−Px is the infimum over
all nonorthogonal projections of x on R(P ) ; [290, §3.3] for P 2 =P ∈ Sm, R(P )=R(A) ,
matrices A,B ,Z and positive integer k as defined for (2099), and given x∈Rm

‖x − Px‖2 = ‖x − AA†x‖2 = inf
B∈R

n×k
‖x − A(A† + BZT)x‖2 = dist(x , R(P )) (2121)

E.3.0.0.1 Proof. Minimum Euclidean norm (2121). (confer §E.7.2.0.1)
Vector 2-norm is a convex function. Setting gradient of the norm-square to 0 (§D.2),

(

ATABZT − AT(I − AA†)
)

xxTA = 0
⇔

ATABZTxxTA = 0

(2122)

because AT = ATAA†. The infimum, over any affine subset of nonorthogonal projectors
(2101) indexed by k , is attained for R(B)⊆N (A). Projector P =AA† is unique; the
minimum-distance projector is the orthogonal projector, and vice versa. ¨

We get (confer (2099))
P = AA† ∈ Sm (2123)

so this projection matrix must be symmetric by (2077). Then for any matrix A∈Rm×n,
symmetric idempotent P projects a given vector x in Rm orthogonally on R(A). Vector
A†x in Rn comprises coefficients of projection. Under either condition (2120) or (2121),
the projection Px is unique minimum-distance; for subspaces, perpendicularity and
minimum-distance conditions are equivalent.

E.3.1 Four subspaces

We summarize the orthogonal projectors projecting on the four fundamental subspaces:
for A∈Rm×n

A†A : Rn on R(A†A) = R(AT) = R(ATA)
AA† : Rm on R(AA†) = R(A) = R(AAT)
I−A†A : Rn on R(I−A†A) = N (A) = R(I−ATA)
I−AA† : Rm on R(I−AA†)= N (AT)= R(I−AAT)

(2124)
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Given a known subspace, matrix A is neither unique or necessarily full-rank. Despite that,
a basis for each fundamental subspace comprises the linearly independent column vectors
from its associated symmetric projection matrix:

basisR(AT) ⊆ A†A ⊆ R(AT)
basisR(A) ⊆ AA† ⊆ R(A)
basisN (A) ⊆ I−A†A ⊆ N (A)
basisN (AT) ⊆ I−AA† ⊆ N (AT)

(2125)

For completeness:E.9 (2115)

N (A†A) = N (A) = N (ATA)
N (AA†) = N (AT)= N (AAT)
N (I−A†A) = R(AT) = N (I−ATA)
N (I−AA†)= R(A) = N (I−AAT)

(2126)

Orthogonal projector P (2123) is symmetric and unique despite particular matrix A whose
columns span subspace R(P ).

E.3.1.0.1 Proof. Subspace projector symmetry and uniqueness.
Rearrange columns of matrix A∈Rm×n in [ΛT ΛD ] so basis Λ is thin-or-square full-rank.
ΛT represents transformation of basis maintaining span, ΛD represents linear dependence.
T represents any dimensionally compatible invertible matrix while arbitrary matrix D has
any number of columns. Defining column permutation Ξ ,

AΞ = [U V ] , [ ΛT ΛD ] , K ,
(

I + V TU†TU†V
)−1

(2127)

then

[U V ]† =

[

U† − U†V K V TU†TU†

K V TU†TU†

]

(2128)

by [95, cor.1.2].

P = AΞΞ†A† = AA† = [U V ] [U V ]† = UU† ∈ Sm (2129)

because UU†V = V . Ξ†A† and UU†= ΛΛ† follow from Theorem E.0.0.0.1. ¨

E.3.2 Orthogonal characterization of projector

Any symmetric projector P 2 =P ∈ Sm, projecting on nontrivial R(Q) , can be defined by
orthonormality condition QTQ = I . When thin matrix Q∈Rm×k is orthonormal (has
orthonormal columns), then Q† = QT by the Moore-Penrose conditions (2077). Hence,
any P having an orthonormal decomposition (§E.3.4)

P = QQT , QTQ = I (2130)

where [379, §3.3] (1793)

R(P ) = R(Q) , N (P ) = N (QT) (2131)

is an orthogonal projector projecting on R(Q) ; for Px∈R(Q) (confer (2111))

Px − x ⊥ R(Q) in Rm (2132)

E.9Proof is by singular value decomposition (§A.6.1.1): N (A†A)⊆N (A) is obvious. Conversely, suppose
A†Ax=0. Then xTA†Ax=xTQQTx=‖QTx‖2 = 0 where A=UΣQT is the subcompact SVD. Because
R(Q)=R(AT) , then x∈N (A) which implies N (A†A)⊇N (A). ∴ N (A†A)=N (A). ¨
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From (2130), orthogonal projector P is obviously positive semidefinite (§A.3.1.0.6);
necessarily, (confer (2104))

P 2 =P , PT = P , P † = P , ‖P‖2 = 1 , P º 0 (2133)

and ‖Px‖ = ‖QQTx‖ = ‖QTx‖ because ‖Qy‖ = ‖y‖ ∀ y ∈ Rk. P 2 =P is also sufficient.
All orthogonal projectors are therefore nonexpansive because

√

〈Px , x〉 = ‖Px‖ = ‖QTx‖ ≤ ‖x‖ ∀x∈Rm (2134)

the Bessel inequality, [127] [264] with equality when x∈R(Q).
From the diagonalization of idempotent matrices (2105) on page 584

P = SΦST =

m
∑

i=1

φi sis
T
i =

k ≤m
∑

i=1

sis
T
i (2135)

orthogonal projection of point x on R(P ) has expression like an orthogonal expansion
[127, §4.10]

Px = QQTx =

k
∑

i=1

sT
i x si (2136)

where

Q = S(: , 1: k) = [ s1 · · · sk ] ∈ Rm×k (2137)

and where the si [sic ] are orthonormal eigenvectors, of symmetric idempotent P ,
corresponding to eigenvalues φi ∈ {0, 1}. When the domain is restricted to range of P ,
say x=Qξ for ξ∈Rk, then x = Px = QQTQξ = Qξ and expansion is unique. Otherwise,
any component of x in N (QT) will be annihilated.

E.3.2.0.1 Theorem. Symmetric Projector Rank Trace. (confer §E.2.0.0.1, (1633))

PT = P , P 2 = P
⇔

rankP = tr P = ‖P‖2
F and rank(I − P ) = tr(I − P ) = ‖I − P‖2

F

(2138)

⋄

Proof. We take, as given, Theorem E.2.0.0.1 establishing idempotence. We have left
only to show trP =‖P‖2

F ⇒ PT=P , established in [469, §7.1]. ¨

E.3.3 Summary, symmetric idempotent

(confer §E.1.2) Orthogonal projector P is a (convex) linear operator defined [234, §A.3.1]
by idempotence and symmetry, and characterized by positive semidefiniteness and
nonexpansivity. The algebraic complement (§E.2) to R(P ) becomes the orthogonal
complement R(I − P ) ; id est, R(P )⊥ R(I − P ).

E.3.4 Orthonormal decomposition

When Z =0 in the general nonorthogonal projector A(A† + BZT) (2099), an orthogonal
projector results (for any matrix A) characterized principally by idempotence and
symmetry. Any real orthogonal projector may, in fact, be represented by an orthonormal
decomposition such as (2130). [239, §1 prob.42]
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To verify that assertion for the four fundamental subspaces (2124), we need
only to express A by subcompact singular value decomposition (§A.6.1.1):
From pseudoinverse (1764) of A = UΣQT∈ Rm×n

AA† = U ΣΣ†UT = UUT, A†A = QΣ†ΣQT = QQT

I − AA† = I − UUT = U⊥U⊥T, I − A†A = I − QQT = Q⊥Q⊥T
(2139)

where U⊥∈Rm×m−rank A holds columnar an orthonormal basis for the
orthogonal complement of R(U) , and likewise for Q⊥∈Rn×n−rank A.
Existence of an orthonormal decomposition is sufficient to establish
idempotence and symmetry of an orthogonal projector (2130). ¨

E.3.5 Unifying trait of all projectors: direction

Whereas nonorthogonal projectors possess only a biorthogonal decomposition (§E.1.1),
equivalences (2139) show: orthogonal projectors simultaneously possess a biorthogonal
decomposition (AA† whence Px = AA†x) and an orthonormal decomposition (UUT

whence Px = UUTx). Orthogonal projection of a point is unique but its expansion is
not; e.g, A can have dependent columns.

E.3.5.1 orthogonal projector, orthonormal decomposition

Consider orthogonal expansion of x∈R(U) :

x = UUTx =
n

∑

i=1

uiu
T
i x (2140)

a sum of one-dimensional orthogonal projections (§E.6.3) where

U , [u1 · · · un ] and UTU = I (2141)

and where the subspace projector has two expressions: (2139)

AA† , UUT (2142)

where A∈Rm×n has rank n . The direction of projection of x on uj for some j∈{1 . . . n} ,
for example, is orthogonal to uj but parallel to a vector in the span of all remaining vectors
constituting the columns of U ;

uT
j (uju

T
j x − x) = 0

uju
T
j x − x = uju

T
j x − UUTx ∈ R({ui | i=1 . . . n , i 6=j}) (2143)

E.3.5.2 orthogonal projector, biorthogonal decomposition

We get a similar result for biorthogonal expansion of x∈R(A). Define

A , [ a1 a2 · · · an ] ∈ Rm×n (2144)

and rows of the pseudoinverseE.10

A† ,











a∗T
1

a∗T
2
...

a∗T
n











∈ Rn×m (2145)

E.10Notation * in this context connotes extreme direction of a dual cone; e.g, (417) or Example E.5.0.0.3.
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under biorthogonality condition A†A = I . In biorthogonal expansion (§2.13.9)

x = AA†x =
n

∑

i=1

aia
∗T
i x (2146)

the direction of projection of x on aj for some particular j∈{1 . . . n} , for example,
is orthogonal to a∗

j and parallel to a vector in the span of all the remaining vectors
constituting the columns of A ;

a∗T
j (aj a∗T

j x − x) = 0

aj a∗T
j x − x = aj a∗T

j x − AA†x ∈ R({ai | i=1 . . . n , i 6=j})
(2147)

E.3.5.3 nonorthogonal projector, biorthogonal decomposition

Because the result in §E.3.5.2 is independent of matrix symmetry AA†=(AA†)T, we must
get the same result for any nonorthogonal projector characterized by a biorthogonality
condition; namely, for nonorthogonal projector P = UQT (2102) under biorthogonality
condition QTU = I , in biorthogonal expansion of x∈R(U)

x = UQTx =
k

∑

i=1

uiq
T
i x (2148)

where
U , [u1 · · · uk ] ∈ Rm×k

QT ,





qT
1...

qT
k



 ∈ Rk×m
(2149)

the direction of projection of x on uj is orthogonal to qj and parallel to a vector in the
span of the remaining ui :

qT
j (uj qT

j x − x) = 0

uj qT
j x − x = uj qT

j x − UQTx ∈ R({ui | i=1 . . . k , i 6=j}) (2150)

E.4 Algebra of projection on affine subsets

Let PAx denote orthogonal or nonorthogonal projection of x on affine subset A,R + α
where R is a subspace and α∈A . Let PRx denote projection of x on R in the same
direction. Then, because R is parallel to A , it holds:

PAx = PR+αx = PRx + (I − PR)α

= PR(x − α) + α
(2151)

Orthogonal or nonorthogonal subspace-projector PR is a linear operator (PA is not).
PR(x + y)=PRx whenever y⊥R and PR is an orthogonal projector.

E.4.0.0.1 Theorem. Orthogonal projection on affine subset. [127, §9.26]
Let A=R + α be an affine subset where α∈A , and let R⊥ be the orthogonal
complement of subspace R . Then PAx is the orthogonal projection of x on A if and
only if

PAx ∈ A , 〈PAx − x , a − α〉 = 0 ∀ a ∈ A (2152)
or if and only if

PAx ∈ A , PAx − x ∈ R⊥ (2153)
⋄
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E.4.0.0.2 Example. Intersection of affine subsets.
When designing an optimization problem, intersection of sets is easy to express when the
individual sets themselves are. Suppose A={x |Ax=b} and C={x |Cx=d} denote two
affine subsets. Then membership to their intersection

A ∩ C =

{

x |
[

A
C

]

x =

[

b
d

]}

(2154)

is realized as solution to simultaneous equations. In 1937, Kaczmarz instead proposed
alternating projection (§E.11) on hyperplanes (whose normals constitute the rows of
matrices A and C) as a means to overcome numerical instability when solving very large
systems. The intersection may then be described as fixed points of projection on affine
subsets, assuming A ∩ C 6= ∅

A ∩ C = {x | PCPAx = x} (2155)

an affine system of equations, by (2151), extensible to M intersecting hyperplanes
(§E.5.0.0.5):

A ∩ C = {x | PM · · · P1x = x} (2156)
2

E.5 Projection examples

E.5.0.0.1 Example. Orthogonal projection on orthogonal basis.
Orthogonal projection on a subspace can instead be accomplished by orthogonally
projecting on the individual members of an orthogonal basis for that subspace. Suppose,
for example, matrix A∈Rm×n holds an orthonormal basis for R(A) in its columns;
A , [ a1 a2 · · · an ]. Then orthogonal projection of vector x∈Rn on R(A) is a sum of
one-dimensional orthogonal projections

Px = AA†x = A(ATA)−1ATx = AATx =

n
∑

i=1

aia
T
i x (2157)

where each symmetric dyad aia
T
i is an orthogonal projector projecting on R(ai). (§E.6.3)

Because ‖x−Px‖ is minimized by orthogonal projection, Px is considered to be the best
approximation (in the Euclidean sense) to x from the set R(A). [127, §4.9] 2

E.5.0.0.2 Example. Orthogonal projection on span of nonorthogonal basis.
Orthogonal projection on a subspace can also be accomplished by projecting
nonorthogonally on the individual members of any nonorthogonal basis for that subspace.
This interpretation is, in fact, the principal application of the pseudoinverse we discussed.
Now suppose matrix A holds a nonorthogonal basis for R(A) in its columns,

A = [ a1 a2 · · · an ] ∈ Rm×n (2144)

and define the rows a∗T
i of its pseudoinverse A† as in (2145). Then orthogonal projection

of vector x∈Rn on R(A) is a sum of one-dimensional nonorthogonal projections

Px = AA†x =

n
∑

i=1

aia
∗T
i x (2158)

where each nonsymmetric dyad aia
∗T
i is a nonorthogonal projector projecting on R(ai) ,

(§E.6.1) idempotent because of biorthogonality condition A†A = I .
The projection Px is regarded as the best approximation to x from the set R(A) , as

it was in Example E.5.0.0.1. 2
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x

z

y

0

a1 ⊥ a∗
2

a2 ⊥ a∗
1

x = y + z = Pa1
x + Pa2

x

a1

a2

a∗
1

a∗
2

K

K∗

K∗

Figure 194: (confer Figure 67) Biorthogonal expansion of point x∈ aff K is found by
projecting x nonorthogonally on extreme directions of polyhedral cone K⊂ R2. (Dotted
lines of projection bound this translated negated cone.) Direction of projection Pa1

on
extreme direction a1 is orthogonal to extreme direction a∗

1 of dual cone K∗ and parallel
to a2 (§E.3.5); similarly, direction of projection Pa2

on a2 is orthogonal to a∗
2 and parallel

to a1 . Point x is sum of nonorthogonal projections: x on R(a1) and x on R(a2).
Expansion is unique because extreme directions of K are linearly independent. Were
a1 orthogonal to a2 , K would be identical to K∗ and nonorthogonal projections would
become orthogonal.
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E.5.0.0.3 Example. Biorthogonal expansion as nonorthogonal projection.
Biorthogonal expansion can be viewed as a sum of components, each a nonorthogonal
projection on the range of an extreme direction of a pointed polyhedral cone K ; e.g,
Figure 194.

Suppose matrix A∈Rm×n holds a nonorthogonal basis for R(A) in its columns as in
(2144), and the rows of pseudoinverse A† are defined as in (2145). Assuming the most
general biorthogonality condition (A† + BZT)A = I with BZT defined as for (2099), then
biorthogonal expansion of vector x is a sum of one-dimensional nonorthogonal projections;
for x∈R(A)

x = A(A† + BZT)x = AA†x =

n
∑

i=1

aia
∗T
i x (2159)

where each dyad aia
∗T
i is a nonorthogonal projector projecting on R(ai). (§E.6.1) The

extreme directions of K=cone(A) are {a1 . . . an} the linearly independent columns of A ,
while the extreme directions {a∗

1 . . . a∗
n} of relative dual cone K∗∩aff K=cone(A†T)

(§2.13.10.4) correspond to the linearly independent (§B.1.1.1) rows of A†. Directions
of nonorthogonal projection are determined by the pseudoinverse; id est, direction of
projection aia

∗T
i x−x on R(ai) is orthogonal to a∗

i .E.11

Because the extreme directions of this cone K are linearly independent, component
projections are unique in the sense:

� There is only one linear combination of extreme directions of K that yields a
particular point x∈R(A) whenever

R(A) = aff K = R(a1) ⊕ R(a2) ⊕ . . . ⊕ R(an) (2160)
2

E.5.0.0.4 Example. Nonorthogonal projection on elementary matrix.
Suppose PY is a linear nonorthogonal projector projecting on subspace Y , and suppose
the range of a vector u is linearly independent of Y ; id est, for some other subspace M
containing Y suppose

M = R(u) ⊕ Y (2161)

Assuming PMx = Pux + PYx holds, then it follows for vector x∈M
Pux = x − PYx , PYx = x − Pux (2162)

nonorthogonal projection of x on R(u) can be determined from nonorthogonal projection
of x on Y , and vice versa.

Such a scenario is realizable were there some arbitrary basis for Y populating a full-rank
thin-or-square matrix A

A , [ basisY u ] ∈ RN×n+1 (2163)

With Pu =A(: , n + 1)A†(n + 1 , :) and PY =A(: , 1:n)A†(1 :n , :) , then PM=AA† fulfills
the requirements. Observe, PM is an orthogonal projector whereas PY and Pu are
nonorthogonal projectors.

Now suppose, for example, PY is an elementary matrix (§B.3); in particular,

PY = I − e11
T =

[

0
√

2VN
]

∈ RN×N (2164)

where Y=N (1T). We have M= RN , A = [
√

2VN e1 ] , and u = e1 . Thus Pu = e11
T

is a nonorthogonal projector projecting on R(u) in a direction parallel to a vector in Y
(§E.3.5), and PYx = x − e11

Tx is a nonorthogonal projection of x on Y in a direction
parallel to u . 2

E.11This remains true in high dimension although only a little more difficult to visualize in R
3 ; confer ,

Figure 68.
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E.5.0.0.5 Example. Projecting on hyperplane, halfspace, slab.

� Given hyperplane representation having b∈R and nonzero normal a∈Rn

∂H = {y | aTy = b} ⊂ Rn (118)

orthogonal projection of any point x∈Rn on that hyperplane [242, §3.1] is unique:

Px = x − a(aTa)−1(aTx − b)
= (I − aa†)x + aa†yp

(2165)

where yp is any particular solution to aTy = b .

� Orthogonal projection of x on the halfspace parametrized by b∈R and nonzero
normal a∈Rn

H− = {y | aTy ≤ b} ⊂ Rn (110)

is the point
Px = x − a(aTa)−1max{0 , aTx − b} (2166)

� Orthogonal projection of x on the convex slab (Figure 13), for c < b

{y | c ≤ aTy ≤ b} ⊂ Rn (2167)

is the point [176, §5.1]

Px = x − a(aTa)−1
(

max{0 , aTx − b} − max{0 , c − aTx}
)

(2168)

2

E.5.0.0.6 Example. Projecting origin on a hyperplane. (confer §2.4.2.0.2)
Given the hyperplane representation having b∈R and nonzero normal a∈Rn

∂H = {y | aTy = b} ⊂ Rn (118)

orthogonal projection of the origin P0 on that hyperplane is the unique optimal solution
to a minimization problem: (2121)

‖P0 − 0‖2 = inf
y∈∂H

‖y − 0‖2

= inf
ξ∈R

n−1
‖Zξ + x‖2

(2169)

where x is any solution to aTy=b , and where the columns of Z∈Rn×n−1 constitute a
basis for N (aT) so that y = Zξ + x ∈ ∂H for all ξ∈ Rn−1.

The infimum can be found by setting the gradient (with respect to ξ) of the strictly
convex norm-square to 0. We find the minimizing argument

ξ⋆ = −(ZTZ )−1ZTx (2170)

so
y⋆ =

(

I − Z(ZTZ )−1ZT
)

x (2171)

and from (2124)

P0 = y⋆ = a(aTa)−1aTx =
a

‖a‖
aT

‖a‖ x =
a

‖a‖2
aTx , A†Ax = a

b

‖a‖2
(2172)

In words, any point x in the hyperplane ∂H projected on its normal a (confer (2201))
yields that point y⋆ in the hyperplane closest to the origin. 2
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E.5.0.0.7 Example. Projection on affine subset.
The technique of Example E.5.0.0.6 is extensible. Given an intersection of hyperplanes

A = {y | Ay = b} ⊂ Rn (153)

where each row of A∈Rm×n is nonzero and b∈R(A) , then the orthogonal projection Px
of any point x∈Rn on A is the solution to a minimization problem:

‖Px − x‖2 = inf
y∈A

‖y − x‖2

= inf
ξ∈R

n−rank A
‖Zξ + yp − x‖2

(2173)

where yp is any solution to Ay = b , and where the columns of Z∈Rn×n−rank A constitute

a basis for N (A) so that y = Zξ + yp∈ A for all ξ∈ Rn−rank A. When rank of wide matrix
A is n−1 , then A describes a line; when rankA = 1 , then A describes a hyperplane.

The infimum is found by setting the gradient of the strictly convex norm-square to 0.
The minimizing argument is

ξ⋆ = −(ZTZ )−1ZT(yp − x) (2174)

so
y⋆ =

(

I − Z(ZTZ )−1ZT
)

(yp − x) + x (2175)
and from (2124),

Px = y⋆ = x − A†(Ax − b)

= (I − A†A)x + A†Ayp

(2176)

which is a projection of x on N (A) then translated perpendicularly with respect to the
nullspace until it meets the affine subset A . A†= AT(AAT)−1 when A is wide full-rank
(§E.0.1). 2

E.5.0.0.8 Example. Projection on affine subset, vertex-description.
Suppose now we instead describe the affine subset A in terms of some given minimal set
of generators arranged columnar in X∈ Rn×N (79); id est,

A = aff X = {Xa | aT1=1} ⊆ Rn (81)

Here minimal set means XVN = [x2−x1 x3−x1 · · · xN−x1 ]/
√

2 (1078) is full-rank
(§2.4.2.2) where VN ∈RN×N−1 is the Schoenberg auxiliary matrix (§B.4.2). For N = 2
affinely independent generators, A represents a line; for N = n affinely independent
generators, A represents a hyperplane. Then the orthogonal projection Px of any point
x∈Rn on A is the solution to a minimization problem:

‖Px − x‖2 = inf
aT1=1

‖Xa − x‖2

= inf
ξ∈RN−1

‖X(VN ξ + ap) − x‖2
(2177)

where ap is any solution to aT1=1. We find the minimizing argument

ξ⋆ = −(V T
NXTXVN )−1V T

NXT(Xap − x) (2178)

and so the orthogonal projection is [241, §3]

Px = Xa⋆ = (I − XVN (XVN )†)Xap + XVN (XVN )†x (2179)

a projection of point x on R(XVN ) then translated perpendicularly with respect to that
range until it meets the affine subset A . 2
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Figure 195: Line segment represents best affine fit to same set in R2by (a) linear regression,
(b) principal component analysis (PCA, §E.5.0.0.9). Linear regression resembles PCA but
differs insofar as regression minimizes distances of points in range of a real affine function
(“vertical” distance). (Drawing by Gavin Simpson.)

E.5.0.0.9 Example. Line fit to point cloud.
Principal component analysis (PCA) has found application to machine learning . One
interpretation of PCA is to find a line maximizing Euclidean distances between (variance
of) projections of given points on that line. A dual interpretation of PCA (Figure 195b)
finds that line best fitting the same set of points by minimizing distances from points to
line. Traditionally, PCA is carried out under the 2-norm; minimum Euclidean distance
projection. But Brooks, Dulá, and Boone show that projection under 1-norm provides a
better distance measure when outliers are problematic. [73]

In two dimensions, a line is a hyperplane. Orthogonal projection Px of point x on a
hyperplane is described in Example E.5.0.0.5. Euclidean distance from hyperplane

∂H = {y | aTy = b} ⊂ Rn (118)

to a point x∈Rn is

dist(Px , x) =
1

‖a‖2

∣

∣aTx − b
∣

∣ (2180)

Given a cloud of N points X = [x1 · · · xN ]∈Rn×N , minimization of distances is stated

minimize
a∈R

n, b∈R

∣

∣aTX − b1T
∣

∣1

subject to ‖a‖2 = 1
(2181)

having nonconvex constraint but solvable by convex iteration as in Example 4.7.0.0.1.
Although projection on the hyperplane is orthogonal under 2-norm here, the objective is a
1-norm having lower bound equal to zero which occurs in the circumstance that all points
in the cloud belong to the same hyperplane.

In higher dimension, a line is an intersection of n−1 independent hyperplanes

A = {y | Ay = b} ⊂ Rn (153)

where A∈Rn−1×n is full-rank. Euclidean distance from A to a given point x is (§E.5.0.0.7)

dist(PAx , x) = ‖A†A(x − yp)‖2 (2182)

where yp is any point on the line. This says distance between line A and point x is the
same as projecting difference x−yp on hyperplane R(AT) and then measuring length of
the projected difference vector.

https://www.fromthebottomoftheheap.net/2014/01/09/pcurve-part-2
https://www.youtube.com/watch?v=ey2PE5xi9-A
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But minimizing distances to a point cloud that way is difficult. Instead we observe:
any line in Rn is orthogonal to a hyperplane

R , {y | aTy = 0} ⊂ Rn (2183)

containing the origin; an n−1-dimensional subspace of Rn. Then the line is described

A = R⊥+ yp = {aξ + yp | ξ∈R} (2184)

From algebra of projection (2151)

PAx = PR⊥+yp
x = PR⊥(x − yp) + yp (2185)

and from projection on orthogonal complement (2256)

PAx = x − PR(x − yp) = x − PRx + yp (2186)

where yp is assumed to be the point of line/subspace intersection.

dist(PAx , x) = dist(x−PR(x−yp) , x) = ‖PR(x−yp)‖2 = ‖(I−aa†)(x − yp)‖2 (2187)

where a†yp = 0 by (2183). This says: distance between line A and point x is the same as
length of difference vector x−yp as it appears in its projection on subspace R . Absolute

distances to the point cloud are minimized, for P , I−aa†

minimize
P∈S

n, yp∈R
n

N
∑

i=1

‖Pxi − yp‖2

subject to trP = n−1
tr(I − P ) = 1
rankP = n−1
rank(I − P ) = 1

(2188)

which has nonconvex feasible set necessary and sufficient for P to be a rank n−1
projection matrix by Theorem E.2.0.0.1. Matrix symmetry provides orthogonal projection.
Equivalent semidefinite program (§3.5.3)

minimize
P∈S

n, yp∈R
n, t∈RN

1Tt + (〈W , P 〉 + 〈I−W , I−P 〉)λ

subject to

[

tiI Pxi − yp

(Pxi − yp)T ti

]

º 0 , i=1 . . . N

tr P = n−1
tr(I − P ) = 1

(2189)

handles rank constraints by choosing direction matrix W via convex iteration (§4.5.1).
1Tt represents 1-norm although projection remains orthogonal. λ is a positive scalar
determined via bisection so that 〈W, P 〉 + 〈I−W, I−P 〉 just vanishes.

Conventional PCA would set y⋆
p = 1

N X1 to geometric center of the given point cloud,
then identify a best fitting line as parallel to a principal eigenvector of XXT∈Rn×n ;
which is, the same as left principal singular vector of X∈Rn×N (p.514).E.12 Although
less computationally intensive than (2189), the conventional approach generally produces
a different line. Linear regression is to be preferred, over either approach to PCA, when
data derives from a function (not geometry). 2

E.12Cleve Moler, father of Matlab, provides direct numerical correspondence between singular value
decomposition and principal component analysis. [441]
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E.6 Vectorization interpretation
Projection on a matrix

E.6.1 Nonorthogonal projection on a vector

Nonorthogonal projection of vector x on the range of vector y is accomplished using a
normalized dyad P0 (§B.1); videlicet,

〈z, x〉
〈z, y〉 y =

zTx

zTy
y =

yzT

zTy
x , P0 x (2190)

where 〈z, x〉/〈z, y〉 is the coefficient of projection on y . Because P 2
0 =P0 and

R(P0)=R(y) , rank-1 matrix P0 is a nonorthogonal projector dyad projecting on R(y).
Direction of nonorthogonal projection is orthogonal to z ; id est,

P0 x − x ⊥ R(PT
0 ) (2191)

E.6.2 Nonorthogonal projection on vectorized matrix

Formula (2190) is extensible. Given X,Y,Z∈Rm×n, we have a one-dimensional
nonorthogonal projection of X in isomorphic Rmn on the range of vectorized Y : (§2.2)

〈Z , X 〉
〈Z , Y 〉 Y , 〈Z , Y 〉 6= 0 (2192)

where 〈Z , X 〉/〈Z , Y 〉 is the coefficient of projection. The inequality accounts for
the fact: projection on R(vec Y ) is in a direction orthogonal to vecZ . Projection is
one-dimensional because vectorized Y represents a point in Rmn.

E.6.2.1 Nonorthogonal projection on dyad

Now suppose we have nonorthogonal projector dyad

P0 =
yzT

zTy
∈ Rm×m (2193)

Analogous to (2190), for X∈ Rm×m

P0XP0 =
yzT

zTy
X

yzT

zTy
=

zTXy

(zTy)2
yzT =

〈zyT, X 〉
〈zyT, yzT〉 yzT (2194)

is a one-dimensional nonorthogonal projection of matrix X on the range of vectorized
dyad P0 ; from which it follows:

P0XP0 =
zTXy

zTy

yzT

zTy
=

〈

zyT

zTy
, X

〉

yzT

zTy
= 〈PT

0 , X 〉P0 =
〈PT

0 , X 〉
〈PT

0 , P0〉
P0 (2195)

Yet this relationship between matrix product and vector inner-product only holds for a
dyad projector. When nonsymmetric projector P0 is rank-1 as in (2193), therefore,

R(vec P0XP0) = R(vec P0) in Rm2

(2196)

and
P0XP0 − X ⊥ PT

0 in Rm2

(2197)
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E.6.2.1.1 Example. Eigenvalues λ as coefficients of nonorthogonal projection.
(confer §E.6.4.1.1) Any diagonalization (§A.5)

X = SΛS−1 =
m

∑

i=1

λi siw
T
i ∈ Rm×m (1722)

may be expressed as a sum of one-dimensional nonorthogonal projections of X , each on
the range of a vectorized eigenmatrix Pj , sjw

T
j ;

X =
m
∑

i, j=1

〈(Seie
T
j S−1)T, X 〉Seie

T
j S−1

=
m
∑

j=1

〈(sjw
T
j )T, X 〉 sjw

T
j +

m
∑

i, j=1
j 6= i

〈(Seie
T
j S−1)T, SΛS−1〉Seie

T
j S−1

=
m
∑

j=1

〈(sjw
T
j )T, X 〉 sjw

T
j

,
m
∑

j=1

〈PT
j , X 〉Pj =

m
∑

j=1

sjw
T
j Xsjw

T
j =

m
∑

j=1

Pj XPj

=
m
∑

j=1

λj sjw
T
j

(2198)

This biorthogonal expansion of matrix X is a sum of nonorthogonal projections because
the term outside the projection coefficient 〈 〉 is not identical to the inside-term. (§E.6.4)
The eigenvalues λj are coefficients of nonorthogonal projection of X , while the remaining
M(M−1)/2 coefficients (for i 6=j) are zeroed by projection. When Pj is rank-1 as in
(2198),

R(vec PjXPj) = R(vec sjw
T
j ) = R(vec Pj) in Rm2

(2199)
and

PjXPj − X ⊥ PT
j in Rm2

(2200)

Were matrix X symmetric, its eigenmatrices would also be. So, the one-dimensional
projections would become orthogonal. (§E.6.4.1.1) 2

E.6.3 Orthogonal projection on a vector

The formula for orthogonal projection of vector x on the range of vector y is basic analytic
geometry ; a.k.a one-dimensional projection [15, §3.3] [379, §3.2] [417, §2.2] [456, §1-8]

〈y, x〉
〈y, y〉 y =

yTx

yTy
y =

yyT

yTy
x , P1 x (2201)

where 〈y, x〉/〈y, y〉 is the coefficient of projection on R(y). An equivalent description is:
Vector P1 x is the orthogonal projection of vector x on R(P1) = R(y). Rank-1 matrix
P1 is a projection matrix because P 2

1 =P1 . The direction of projection is orthogonal

P1 x − x ⊥ R(P1) (2202)

because PT
1 = P1 .

E.6.4 Orthogonal projection on a vectorized matrix

From (2201), given instead X , Y ∈Rm×n, we have the one-dimensional orthogonal
projection of matrix X in isomorphic Rmn on the range of vectorized Y : (§2.2)

〈Y , X 〉
〈Y , Y 〉 Y (2203)
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where 〈Y , X 〉/〈Y , Y 〉 is the coefficient of projection. For orthogonal projection, the term
outside the vector inner-products 〈 〉 must be identical to the terms inside in three places.
Projection is one-dimensional because Y describes a point in vector space Rmn.

E.6.4.1 Orthogonal projection on dyad

There is opportunity for insight when Y is a dyad yzT (§B.1): Instead given X∈ Rm×n,
y∈Rm, and z∈Rn

〈yzT, X 〉
〈yzT, yzT〉 yzT =

yTXz

yTy zTz
yzT (2204)

is the one-dimensional orthogonal projection of X in isomorphic Rmn on the range of
vectorized yzT. To reveal obscured symmetric projection matrices P1 and P2 we rewrite
(2204):

yTXz

yTy zTz
yzT =

yyT

yTy
X

zzT

zTz
, P1XP2 (2205)

So, for projector dyads, projection (2205) is the orthogonal projection in Rmn if and only
if projectors P1 and P2 are symmetric;E.13 in other words,

� for one-dimensional orthogonal projection on the range of a vectorized dyad yzT,
the term outside the vector inner-products 〈 〉 in (2204) must be identical to the
terms inside in three places.

When P1 and P2 are rank-1 symmetric projectors as in (2205), (39)

R(vec P1XP2) = R(vec yzT) in Rmn (2206)

and
P1XP2 − X ⊥ yzT in Rmn (2207)

When y=z then P1 =P2 =PT
2 and

P1XP1 = 〈P1 , X 〉P1 =
〈P1 , X 〉
〈P1 , P1〉

P1 (2208)

meaning, P1XP1 is equivalent to one-dimensional orthogonal projection of matrix X on
the range of vectorized projector dyad P1 . Yet this relationship between matrix product
and vector inner-product does not hold for general symmetric projector matrices.

E.6.4.1.1 Example. Eigenvalues λ as coefficients of orthogonal projection.
(confer §E.6.2.1.1) Let C represent any convex subset of subspace SM , and let C1 be any
element of C . Then C1 can be expressed as the orthogonal expansion

C1 =

M
∑

i=1

M
∑

j=1
j ≥ i

〈Eij , C1〉Eij ∈ C ⊂ SM (2209)

E.13For diagonalizable X∈ R
m×m (§A.5), its orthogonal projection (in isomorphic R

m2

) on the range of
vectorized yzT∈ R

m×m becomes:

P1XP2 =
m

∑

i=1

λi P1 siw
T
i P2

When R(P1) = R(wj) and R(P2) = R(sj) , the j th dyad term from the diagonalization is isolated but
only, in general, to within a scale factor because neither set of left or right eigenvectors is necessarily
orthonormal unless X is a normal matrix [469, §3.2]. Yet when R(P2)=R(sk) , k 6=j∈{1 . . . m} , then
P1XP2 =0.
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where Eij ∈ SM is a member of the standard orthonormal basis for SM (62). This expansion
is a sum of one-dimensional orthogonal projections of C1 ; each projection on the range
of a vectorized standard basis matrix. Vector inner-product 〈Eij , C1〉 is the coefficient of
projection of svec C1 on R(svec Eij).

When C1 is any member of a convex set C whose dimension is L , Carathéodory’s
theorem [131] [354] [234] [45] [46] guarantees that no more than L +1 affinely independent
members from C are required to faithfully represent C1 by their linear combination.E.14

Dimension of SM is L=M(M+1)/2 in isometrically isomorphic RM(M+1)/2. Yet
because any symmetric matrix can be diagonalized, (§A.5.1) C1∈SM is a linear
combination of its M eigenmatrices qiq

T
i (§A.5.0.3) weighted by its eigenvalues λi ;

C1 = QΛQT =

M
∑

i=1

λi qiq
T
i (2210)

where Λ∈ SM is a diagonal matrix having δ(Λ)i =λi , and where Q=[ q1 · · · qM ] is an
orthogonal matrix in RM×M containing corresponding eigenvectors.

To derive eigenvalue decomposition (2210) from expansion (2209), M standard basis
matrices Eij are rotated (§B.5) into alignment with the M eigenmatrices qiq

T
i of C1 by

applying a similarity transformation; [379, §5.6]

{QEijQ
T} =

{

qiq
T
i , i = j = 1 . . . M

1√
2

(

qiq
T
j + qjq

T
i

)

, 1 ≤ i < j ≤ M

}

(2211)

which remains an orthonormal basis for SM . Then remarkably

C1 =
M
∑

i, j=1
j ≥ i

〈QEijQ
T, C1〉QEij Q

T

=
M
∑

i=1

〈qiq
T
i , C1〉 qiq

T
i +

M
∑

i, j=1
j > i

〈QEijQ
T, QΛQT〉QEij Q

T

=
M
∑

i=1

〈qiq
T
i , C1〉 qiq

T
i

,
M
∑

i=1

〈Pi , C1〉Pi =
M
∑

i=1

qiq
T
i C1 qiq

T
i =

M
∑

i=1

Pi C1Pi

=
M
∑

i=1

λi qiq
T
i

(2212)

this orthogonal expansion becomes the diagonalization; still a sum of one-dimensional
orthogonal projections. The eigenvalues

λi = 〈qiq
T
i , C1〉 (2213)

are clearly coefficients of projection of C1 on the range of each vectorized eigenmatrix.
(confer §E.6.2.1.1) The remaining M(M−1)/2 coefficients (i 6=j) are zeroed by projection.
When Pi is rank-1 symmetric as in (2212),

R(svec Pi C1Pi) = R(svec qiq
T
i ) = R(svec Pi) in RM(M+1)/2 (2214)

and
Pi C1Pi − C1 ⊥ Pi in RM(M+1)/2 (2215)

2

E.14Carathéodory’s theorem guarantees existence of a biorthogonal expansion for any element in aff C
when C is any pointed closed convex cone.
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E.6.4.2 Positive semidefiniteness test as orthogonal projection

For any given X∈ Rm×m the familiar quadratic construct yTXy≥ 0 , over broad domain,
is a fundamental test for positive semidefiniteness. (§A.2) It is a fact that yTXy is
always proportional to a coefficient of orthogonal projection; letting z in formula (2204)
become y∈Rm, then P2 =P1 = yyT/yTy= yyT/‖yyT‖2 (confer (1796)) and formula (2205)
becomes

〈yyT, X 〉
〈yyT, yyT〉 yyT =

yTXy

yTy

yyT

yTy
=

yyT

yTy
X

yyT

yTy
, P1XP1 (2216)

Product P1XP1 is the one-dimensional orthogonal projection of X in isomorphic Rm2

on the range of vectorized P1 because, by (2203) for rankP1 =1 and P 2
1 =P1∈ Sm

(confer (2195))

P1XP1 =
yTXy

yTy

yyT

yTy
=

〈

yyT

yTy
, X

〉

yyT

yTy
= 〈P1 , X 〉P1 =

〈P1 , X 〉
〈P1 , P1〉

P1 (2217)

The coefficient of orthogonal projection 〈P1 , X 〉= yTXy/(yTy) is also known as Rayleigh’s
quotient.E.15 When P1 is rank-1 symmetric as in (2216),

R(vec P1XP1) = R(vec P1) in Rm2

(2218)

and
P1XP1 − X ⊥ P1 in Rm2

(2219)

The test for positive semidefiniteness, then, is a test for nonnegativity of the coefficient
of orthogonal projection of X on the range of each and every vectorized extreme direction
yyT (§2.8.1) from the positive semidefinite cone in the ambient space of symmetric matrices.

E.6.4.3 PXP º 0

In some circumstances, it may be desirable to limit the domain of test yTXy≥ 0 for
positive semidefiniteness; e.g, {‖y‖= 1}. Another example of limiting domain-of-test
is central to Euclidean distance geometry: For R(V )=N (1T) , the test −V D V º 0
determines whether D∈ SN

h is a Euclidean distance matrix. The same test may be stated:
For D∈ SN

h (and optionally ‖y‖=1)

D ∈ EDMN ⇔ −yTDy = 〈yyT, −D〉 ≥ 0 ∀ y ∈ R(V ) (2220)

The test −V D V º 0 is therefore equivalent to a test for nonnegativity of the coefficient of
orthogonal projection of −D on the range of each and every vectorized extreme direction
yyT from the positive semidefinite cone SN

+ such that R(yyT)=R(y)⊆R(V ). (Validity
of this result is independent of whether V is itself a projection matrix.)

E.15When y becomes the j th eigenvector sj of diagonalizable X , for example, 〈P1 , X 〉 becomes the j th

eigenvalue: [230, §III]

〈P1 , X 〉|y=sj
=

sT
j

(

m
∑

i=1
λi siw

T
i

)

sj

sT
j sj

= λj

Similarly for y = wj , the j th left-eigenvector,

〈P1 , X 〉|y=wj
=

wT
j

(

m
∑

i=1
λi siw

T
i

)

wj

wT
j wj

= λj

A quandary may arise regarding the potential annihilation of the antisymmetric part of X when sT
j Xsj

is formed. Were annihilation to occur, it would imply the eigenvalue thus found came instead from the
symmetric part of X . The quandary is resolved recognizing that diagonalization of real X admits complex
eigenvectors; hence, annihilation could only come about by forming re(sH

j Xsj) = sH
j (X +XT)sj/2

[237, §7.1] where (X +XT)/2 is the symmetric part of X , and sH
j denotes conjugate transpose.
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E.7 Projection on matrix subspaces

E.7.1 PXP interpretation for higher-rank P

For a projection matrix P of rank greater than 1 , PXP is generally not commensurate

with 〈P,X 〉
〈P,P 〉 P as is the case for projector dyads (2217). Yet for a symmetric idempotent

matrix P of any rank we are tempted to say, erroneously, “PXP is the orthogonal
projection of X∈ Sm on R(vec P ) ”. The fallacy is: vec PXP does not necessarily belong
to the range of vectorized P ; the most basic requirement for projection on R(vec P ).

E.7.1.0.1 Theorem. Kronecker projector. [374, §2.7]
Given any projection matrices P1 and P2 (subspace projectors), then

P1 ⊗ P2 , P1 ⊗ I (2221)

are projection matrices. The product preserves symmetry when present. ⋄

But for P of any rank, by this theorem, we may always say: PXP is the orthogonal
projection of X∈ Sm on R(P ⊗ P ) because vec PXP = (P ⊗ P ) vec X (§A.1.1 no.33).
Only when projection matrix P has rank 1 may we say

vec PXP = (P ⊗ P ) vec X = 〈P , X 〉 vec P

R(vec PXP ) = R(P ⊗ P ) = R(vec P )
(2222)

E.7.2 Orthogonal projection on matrix subspaces

With A1∈ Rm×n, B1∈Rn×k, Z1∈Rm×k, A2∈Rp×n, B2∈Rn×k, Z2∈Rp×k as defined for
nonorthogonal projector (2099), and defining

P1 , A1A
†
1 ∈ Sm , P2 , A2A

†
2 ∈ Sp (2223)

then, given dimensionally compatible X

‖X − P1XP2‖F = inf
B1 , B2∈R

n×k
‖X − A1(A

†
1 + B1Z

T
1 )X(A†T

2 + Z2B
T
2 )AT

2 ‖F (2224)

As for all subspace projectors, range of the projector is the subspace on which projection
is made: {P1Y P2 | Y ∈ Rm×p}. For projectors P1 and P2 of any rank, altogether, this
means projection P1XP2 is unique minimum-distance, orthogonal

P1XP2 − X ⊥ {P1Y P2 | Y ∈ Rm×p} in Rmp (2225)

and P1 and P2 must each be symmetric (confer (2205)) to attain the infimum.

E.7.2.0.1 Proof. Minimum Frobenius norm (2224). (confer §E.3.0.0.1)

Defining P , A1(A
†
1 + B1Z

T
1 ) ,

inf
B1 , B2

‖X − A1(A
†
1 + B1Z

T
1 )X(A†T

2 + Z2B
T
2 )AT

2 ‖2
F

= inf
B1 , B2

‖X − PX(A†T
2 + Z2B

T
2 )AT

2 ‖2
F

= inf
B1 , B2

tr
(

(XT− A2(A
†
2 + B2Z

T
2 )XTPT)(X − PX(A†T

2 + Z2B
T
2 )AT

2 )
)

= inf
B1 , B2

tr
(

XTX−XTPX(A†T
2 +Z2B

T
2 )AT

2−A2(A
†
2+B2Z

T
2 )XTPTX

+A2(A
†
2+B2Z

T
2 )XTPTPX(A†T

2 +Z2B
T
2 )AT

2

)

(2226)
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Necessary conditions for a global minimum are ∇B1
=0 and ∇B2

=0. Terms not containing
B2 in (2226) will vanish from gradient ∇B2

; (§D.2.3)

∇B2
tr

(

−XTPXZ2B
T
2AT

2−A2B2Z
T
2XTPTX+A2A

†
2X

TPTPXZ2B
T
2AT

2

+A2B2Z
T
2XTPTPXA†T

2 AT
2+A2B2Z

T
2XTPTPXZ2B

T
2AT

2

)

= −2AT
2X

TPXZ2 + 2AT
2A2A

†
2X

TPTPXZ2 + 2AT
2A2B2Z

T
2XTPTPXZ2

= AT
2

(

−XT+ A2A
†
2X

TPT+ A2B2Z
T
2XTPT

)

PXZ2

= 0 ⇔
R(B1)⊆ N (A1) and R(B2)⊆ N (A2)

(2227)

(or Z2 = 0) because AT = ATAA†. Symmetry requirement (2223) is implicit. Were instead

PT , (A†T
2 + Z2B

T
2 )AT

2 and the gradient with respect to B1 observed, then similar results
are obtained. The projector is unique. Perpendicularity (2225) establishes uniqueness
[127, §4.9] of projection P1XP2 on a matrix subspace. The minimum-distance projector
is the orthogonal projector, and vice versa. ¨

E.7.2.0.2 Example. PXP redux & N (V).
Suppose we define a subspace of m×n matrices, each elemental matrix having columns
constituting a list whose geometric center (§5.5.1.0.1) is the origin in Rm :

Rm×n
c , {Y ∈ Rm×n | Y 1 = 0}

= {Y ∈ Rm×n | N (Y ) ⊇ 1} = {Y ∈ Rm×n | R(Y T) ⊆ N (1T)}
= {XV | X∈ Rm×n} ⊂ Rm×n

(2228)

the nonsymmetric geometric center subspace. Further suppose V ∈ Sn is a projection
matrix having N (V )=R(1) and R(V ) = N (1T). Then linear mapping T (X)=XV is
the orthogonal projection of any X∈ Rm×n on Rm×n

c in the Euclidean (vectorization)
sense because V is symmetric, N (XV )⊇1 , and R(VXT)⊆N (1T).

Now suppose we define a subspace of symmetric n×n matrices each of whose columns
constitute a list having the origin in Rn as geometric center,

Sn
c , {Y ∈ Sn | Y 1 = 0}

= {Y ∈ Sn | N (Y ) ⊇ 1} = {Y ∈ Sn | R(Y ) ⊆ N (1T)}
(2229)

the geometric center subspace. Further suppose V ∈ Sn is a projection matrix, the same
as before. Then V X V is the orthogonal projection of any X∈ Sn on Sn

c in the Euclidean
sense (2225) because V is symmetric, V X V 1=0 , and R(V X V )⊆N (1T). Two-sided
projection is necessary only to remain in the ambient symmetric matrix subspace. Then

Sn
c = {V X V | X∈ Sn} ⊂ Sn (2230)

has dim Sn
c = n(n−1)/2 in isomorphic Rn(n+1)/2. We find its orthogonal complement

as the aggregate of all negative directions of orthogonal projection on Sn
c : the

translation-invariant subspace (§5.5.1.1)

Sn⊥
c , {X − V X V | X∈ Sn} ⊂ Sn

= {u1T+ 1uT | u∈Rn}
(2231)
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characterized by doublet u1T+ 1uT (§B.2).E.16 Defining geometric center mapping

V(X) = −1

2
V X V (1114)

consistently with (1114), then N (V)=R(I − V) on domain Sn analogously to vector
projectors (§E.2); id est,

N (V) = Sn⊥
c (2232)

a subspace of Sn whose dimension is dim Sn⊥
c = n in isomorphic Rn(n+1)/2. Intuitively,

operator V is an orthogonal projector; any argument duplicitously in its range is a fixed
point. So, this symmetric operator’s nullspace must be orthogonal to its range.

Now compare the subspace of symmetric matrices having all zeros in the first row and
column

Sn
0

, {Y ∈ Sn | Y e1 = 0}

=

{[

0 0T

0 I

]

X

[

0 0T

0 I

]

| X∈ Sn

}

=
{

[

0
√

2VN
]T

Z
[

0
√

2VN
]

| Z ∈ Sn
}

(2233)

where P =

[

0 0T

0 I

]

is an orthogonal projector and [0
√

2VN ] is a nonorthogonal

projector (§B.4.2 no.7). Then, similarly, PXP is the orthogonal projection of any X∈ Sn

on Sn
0

in the Euclidean sense (2225). Like Sn
c (§6.8.1.1.1), Sn

0
is invariant to projection on

a positive semidefinite cone. The orthogonal complement of Sn
0

is

Sn⊥
0

,

{[

0 0T

0 I

]

X

[

0 0T

0 I

]

− X | X∈ Sn

}

⊂ Sn

=
{

ueT
1 + e1u

T | u∈Rn
}

(2234)

Obviously, Sn
0
⊕ Sn⊥

0
= Sn. 2

E.8 Range, Rowspace interpretation

For idempotent matrices P1 and P2 of any rank, P1XPT
2 is a projection of R(X) on R(P1)

and a projection of R(XT) on R(P2) : For any given X = UΣQT =
∑η

i=1 σi uiq
T
i ∈ Rm×p,

as in compact SVD (1743),

P1XPT
2 =

η
∑

i=1

σi P1 uiq
T
i PT

2 =

η
∑

i=1

σi P1ui (P2 qi)
T (2235)

where η , min{m, p}. Recall: ui∈R(X) and qi∈R(XT) when the corresponding
singular value σi is nonzero. (§A.6.1) So P1 projects ui on R(P1) while P2 projects

E.16Proof.

{X − V X V | X∈ S
n} = {X − (I − 1

n
11T)X(I − 11T 1

n
) | X∈ S

n}
= { 1

n
11TX + X11T 1

n
− 1

n
11TX 11T 1

n
| X∈ S

n}

Because {X1 | X∈ S
n}= R

n,

{X − V X V | X∈ S
n} = {1ζT + ζ 1T − 11T(1Tζ 1

n
) | ζ∈R

n}
= {1ζT(I − 11T 1

2n
) + (I − 1

2n
11T)ζ 1T | ζ∈R

n}

where I− 1
2n

11T is invertible. ¨
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qi on R(P2) ; id est, the range and rowspace of any X are respectively projected on the
ranges of P1 and P2 .E.17

E.9 Projection on convex set

Thus far we have discussed only projection on subspaces. Now we generalize, considering
projection on arbitrary convex sets in Euclidean space; convex because point of projection
is then unique, minimum-distance, and a convex optimization problem:

For projection PCx of point x on any closed set C⊆Rn it is obvious:

C ≡ {PCx | x∈Rn} = {x∈Rn | PCx = x} (2236)

where PC is a projection operator that is convex when C is convex. [68, p.88]
If C⊆Rn is a closed convex set, then for each and every x∈Rn there exists a unique

point PCx belonging to C that is closest to x in the Euclidean sense. Like (2121), unique
projection Px (or PCx) of a point x on convex set C is that point in C closest to x ;
[290, §3.12]

‖x − Px‖2 = inf
y∈C

‖x − y‖2 = dist(x , C) (2237)

There exists a converse (in finite-dimensional Euclidean space):

E.9.0.0.1 Theorem. (Bunt-Motzkin) Convex set if projections unique. [447, §7.5]
[231] If C ⊆Rn is a nonempty closed set and if for each and every x in Rn there is a
unique Euclidean projection Px of x on C belonging to C , then C is convex. ⋄

Borwein & Lewis propose, for closed convex set C [61, §3.3 exer.12d]

∇‖x − Px‖2
2 = 2(x − Px) (2238)

for any point x whereas, for x /∈C

∇‖x − Px‖2 = (x − Px) ‖x − Px‖−1
2 (2239)

E.9.0.0.2 Exercise. Norm gradient.
Prove (2238) and (2239). (Not proved in [61].) H

A well-known equivalent characterization of projection on a convex set is a generalization
of the perpendicularity condition (2120) for projection on a subspace:

E.9.1 Dual interpretation of projection on convex set

E.9.1.0.1 Definition. Normal vector. [354, p.15]
Vector z is normal to convex set C at point Px∈ C if

〈z , y−Px〉 ≤ 0 ∀ y ∈ C (2240)

△

A convex set has at least one nonzero normal at each of its boundary points. [354, p.100]
(Figure 71) Hence, the normal or dual interpretation of projection:

E.17When P1 and P2 are symmetric and R(P1)=R(uj) and R(P2)=R(qj) , then the j th dyad term from
the singular value decomposition of X is isolated by the projection. Yet if R(P2)=R(qℓ) , ℓ 6=j∈{1 . . . η} ,
then P1XP2 =0.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Motzkin.html
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E.9.1.0.2 Theorem. Unique minimum-distance projection. [234, §A.3.1] [290, §3.12]
[127, §4.1] [89] (Figure 202b p.622) Given a closed convex set C⊆Rn, point Px is the
unique projection of a given point x∈Rn on C (Px is that point in C nearest x) if and
only if

Px ∈ C , 〈x − Px , y − Px〉 ≤ 0 ∀ y ∈ C (2241)
⋄

As for subspace projection, convex operator P is idempotent in the sense: for each and
every x∈Rn, P (Px)=Px . Yet operator P is nonlinear;

� Projector P is a linear operator if and only if convex set C (on which projection is
made) is a subspace. (§E.4)

E.9.1.0.3 Theorem. Unique projection via normal cone.E.18 [127, §4.3]
Given closed convex set C⊆Rn, point Px is the unique projection of a given point x∈Rn

on C if and only if
Px ∈ C , Px − x ∈ (C − Px)∗ (2242)

In other words, Px is that point in C nearest x if and only if Px − x belongs to that cone
dual to translate C − Px . ⋄

E.9.1.1 Dual interpretation as optimization

Deutsch [129, thm.2.3] [130, §2] and Luenberger [290, p.134] carry forward Nirenberg’s
dual interpretation of projection [322] as solution to a maximization problem: Minimum
distance from a point x∈Rn to a convex set C⊂Rn can be found by maximizing distance
from x to hyperplane ∂H over the set of all hyperplanes separating x from C . Existence
of a separating hyperplane (§2.4.2.7) presumes that point x lies on the boundary or
exterior to set C .

The optimal separating hyperplane is characterized by the fact that it also supports C .
Any hyperplane supporting C (Figure 32a) has form

∂H− =
{

y∈Rn | aTy = σC(a)
}

(133)

where support function
σC(a) = sup

z∈C
aTz (571)

is convex w.r.t a . When point x is finite and set C contains finite points, under this
dual interpretation, if the supporting hyperplane is a separating hyperplane then the
support function is finite. From Example E.5.0.0.5, projection P∂H−

x of x on any given
supporting hyperplane ∂H− is

P∂H−
x = x − a(aTa)−1

(

aTx − σC(a)
)

(2243)

With reference to Figure 196, identifying

H+ = {y∈Rn | aTy ≥ σC(a)} (111)

then

‖x − PCx‖ = sup
∂H− | x∈H+

‖x − P∂H−
x‖ = sup

a | x∈H+

‖a(aTa)−1(aTx − σC(a))‖

= sup
a | x∈H+

1
‖a‖ |aTx − σC(a)| (2244)

E.18 −(C − Px)∗ is the normal cone to set C at point Px . (§E.11.3.2)
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C

κa

∂H−

x

PCx

(a)

(b)

H−

H+

P∂H−
x

Figure 196: Dual interpretation of projection of point x on convex set C in R2.
(a) κ = (aTa)−1

(

aTx − σC(a)
)

. (b) Minimum distance from x to C is found by
maximizing distance to all hyperplanes supporting C and separating it from x . Distance
of maximization is unique over any convex set.
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which can be expressed, for arbitrary positive constant τ

‖x − PCx‖ =
1

τ
maximize

a
aTx − σC(a)

subject to ‖a‖ ≤ τ
(2245)

The unique minimum-distance projection on convex set C is therefore

PCx = x − a⋆
(

a⋆Tx − σC(a⋆)
) 1

τ2
(2246)

where optimally ‖a⋆‖= τ .

E.9.1.1.1 Exercise. Dual projection technique on polyhedron.
Test that projection paradigm from Figure 196 on any convex polyhedral set. H

E.9.1.1.2 Exercise. Projection on boundary from inside.
Now suppose that point x lies interior to convex set C . What is the consequence of

1

τ
minimize

a
σC(a) − aTx

subject to ‖a‖ = τ
(2247)

Is this program convex?E.19 Why can we not say ‖a‖≤ τ here? State conditions under
which a boundary solution is unique. H

E.9.1.2 Dual interpretation of projection on cone

In the circumstance that set C is a closed convex cone K and there exists a hyperplane
separating given point x from K , then optimal σK(a⋆) takes value 0 [234, §C.2.3.1]. So
problem (2245) for projection of x on C=K becomes convex:

‖x − PKx‖ =
1

τ
maximize

a
aTx

subject to ‖a‖ ≤ τ

a ∈ K◦

(2248)

Here, the norm inequality can be handled by Schur complement (§3.5.3). Normals a to
all hyperplanes supporting K belong to the polar cone K◦=−K∗ by definition: (326)

a ∈ K◦ ⇔ 〈a , x〉 ≤ 0 for all x ∈ K (2249)

Projection on cone K is

PKx = (I − 1

τ2
a⋆a⋆T)x (2250)

whereas projection on the polar cone −K∗ is (§E.9.2.2.1)

PK◦ x = x − PKx =
1

τ2
a⋆a⋆Tx (2251)

Negating vector a , this convex maximization problem (2248) becomes a minimization
(the same problem) and the polar cone becomes the dual cone:

‖x − PKx‖ = −1

τ
minimize

a
aTx

subject to ‖a‖ ≤ τ

a ∈ K∗

(2252)

E.19Hint: §4.7.0.0.1.
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R(P )

R(P )⊥

x − (I−P )x

(I−P )x

x

Figure 197: (confer Figure 95, Figure 198) Given orthogonal projection (I−P )x of x on
orthogonal complement R(P )⊥, projection on R(P ) is immediate: x − (I−P )x .

E.9.2 Projection on cone

When convex set C is a cone, there is a finer statement of optimality conditions:

E.9.2.0.1 Theorem. Unique projection on cone. [234, §A.3.2]
Let K⊆ Rn be a closed convex cone, and K∗ its dual (§2.13.1). Then Px is the unique
minimum-distance projection of x∈Rn on K if and only if

Px ∈ K , 〈Px − x , Px〉 = 0 , Px − x ∈ K∗ (2253)

⋄

In words, Px is the unique minimum-distance projection of x on K if and only if

1) projection Px lies in K
2) direction Px−x is orthogonal to the projection Px

3) direction Px−x lies in the dual cone K∗.

As the theorem is stated, it admits projection on K not full-dimensional; id est, on closed
convex cones in a proper subspace of Rn.

Projection on K of any point x∈−K∗, belonging to the negative dual cone, is the origin.
By (2253): the set of all points reaching the origin, when projecting on K , constitutes
the negative dual cone; a.k.a, the polar cone

K◦ = −K∗ = {x∈Rn | Px = 0} (2254)

E.9.2.1 Relationship to subspace projection

Conditions 1 and 2 of Theorem E.9.2.0.1 are common with orthogonal projection on a
subspace R(P ) :
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1) Condition 1 corresponds to the most basic requirement; namely, the projection
Px∈R(P ) belongs to the subspace (confer (2236))

K = {Px | x∈Rn} , R(P ) (2255)

2) Recall the perpendicularity requirement for projection on a subspace:

Px − x ⊥ R(P ) or Px − x ∈ R(P )⊥ (2120)

which corresponds to condition 2.

3) Yet condition 3 is a generalization of subspace projection; id est, for unique
minimum-distance projection on a closed convex cone K , polar cone −K∗

(Figure 198) plays the role that R(P )⊥ plays for subspace projection (Figure 197):

PRx = x − PR⊥ x (2256)

Indeed, −K∗ is the algebraic complement in the orthogonal vector sum (p.636) [311]
[234, §A.3.2.5]

K ⊞ −K∗= Rn ⇔ cone K is closed and convex (2257)

Given unique minimum-distance projection Px on K satisfying Theorem E.9.2.0.1,
then by projection on the algebraic complement via I−P in §E.2 we have

−K∗ = {x − Px | x∈Rn} = {x∈Rn | Px = 0} = N (P ) (2258)

consequent to Moreau (2261). Converse (2258)(2255) ⇒ (2257) holds as well.
Recalling that any subspace is a closed convex coneE.20

K = R(P ) ⇔ −K∗ = R(P )⊥ (2259)

meaning, when a cone is a subspace R(P ) , then the dual cone becomes its orthogonal
complement R(P )⊥. In this circumstance, condition 3 becomes coincident with
condition 2.

Properties, of projection on cones in what follows, further generalize to subspaces by: (4)

K = R(P ) ⇔ −K = R(P ) (2260)

E.9.2.2 Salient properties: Projection Px on closed convex cone K
[234, §A.3.2] [127, §5.6] For x , x1 , x2∈Rn

1. PK(αx) = α PKx ∀α≥0 (nonnegative homogeneity)

2. ‖PKx‖ ≤ ‖x‖
3. PKx = 0 ⇔ x ∈ −K∗

4. PK(−x) = −P−Kx

5. (Jean-Jacques Moreau, 1962) [311]

x = x1 + x2 , x1∈K , x2∈−K∗, x1⊥ x2

⇔
x1 = PKx , x2 = P−K∗ x

(2261)

6. K = {x − P−K∗ x | x∈Rn} = {x∈Rn | P−K∗ x = 0}
7. −K∗ = {x − PKx | x∈Rn} = {x∈Rn | PKx = 0} (2258)

E.20 but a proper subspace is not a proper cone (§2.7.2.2.1).
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K

K◦

Px

(I−P )x

x

Figure 198: (confer Figure 197) Given minimum-distance projection (I−P )x of x on
negative dual cone K◦, projection on K is immediate: x − (I−P )x = Px .

E.9.2.2.1 Corollary. I−P for cones. (confer §E.2)
Denote by K⊆ Rn a closed convex cone, and call K∗ its dual. Then x−P−K∗ x is the
unique minimum-distance projection of x∈ Rn on K if and only if P−K∗ x is the unique
minimum-distance projection of x on −K∗ the polar cone. ⋄

Proof. Assume x1 = PKx . Then by Theorem E.9.2.0.1 we have

x1∈ K , x1− x ⊥ x1 , x1− x ∈ K∗ (2262)

Now assume x − x1 = P−K∗ x . Then we have

x − x1 ∈ −K∗ , −x1 ⊥ x − x1 , −x1 ∈ −K (2263)

But these two assumptions are apparently identical. We must therefore have

x−P−K∗ x = x1 = PKx (2264)

¨

E.9.2.2.2 Corollary. Unique projection via dual or normal cone. [127, §4.7]
(§E.11.3.2, confer Theorem E.9.1.0.3) Given point x∈Rn and closed convex cone K⊆Rn,
the following are equivalent statements:

1. point Px is the unique minimum-distance projection of x on K

2. Px ∈ K , x − Px ∈ −(K − Px)∗ = −K∗∩ (Px)⊥

3. Px ∈ K , 〈x − Px , Px〉 = 0 , 〈x − Px , y〉 ≤ 0 ∀ y ∈ K ⋄
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E.9.2.2.3 Example. Unique projection on nonnegative orthant. (confer (1439))
To project matrix H∈Rm×n on the selfdual orthant (§2.13.6.1) of nonnegative matrices
Rm×n

+ in isomorphic Rmn, from Theorem E.9.2.0.1, necessary and sufficient conditions
are:

H⋆ ≥ 0
tr

(

(H⋆− H)TH⋆
)

= 0
H⋆− H ≥ 0

(2265)

where the inequalities denote entrywise comparison. The optimal solution H⋆ is simply
H having all its negative entries zeroed;

H⋆
ij = max{Hij , 0} , i , j∈{1 . . . m} × {1 . . . n} (2266)

Now suppose the nonnegative orthant is translated by T ∈Rm×n ; id est, consider
Rm×n

+ + T . Then projection on the translated orthant is [127, §4.8]

H⋆
ij = max{Hij , Tij} (2267)

2

E.9.2.2.4 Example. Unique projection on truncated convex cone.
Consider the problem of projecting a point x on a closed convex cone that is artificially
bounded; really, a bounded convex polyhedron having a vertex at the origin:

minimize
y∈RN

‖x − Ay‖2

subject to y º 0

‖y‖∞ ≤ 1

(2268)

where the convex cone has vertex-description (§2.12.2.0.1), for A∈Rn×N

K = {Ay | y º 0} (2269)

and where ‖y‖∞ ≤ 1 is the artificial bound. This is a convex optimization problem
having no known closed-form solution, in general. It arises, for example, in the fitting of
hearing aids designed around a programmable graphic equalizer (a filter bank whose only
adjustable parameters are gain per frequency band each bounded above by unity). [110]
[111] The problem is equivalent to a Schur-form semidefinite program (§3.5.3)

minimize
y∈RN , t∈R

t

subject to

[

tI x − Ay
(x − Ay)T t

]

º 0

0 ¹ y ¹ 1

(2270)

2

E.9.3 nonexpansivity

E.9.3.0.1 Theorem. Nonexpansivity. [208, §2] [127, §5.3]
When C ⊂ Rn is an arbitrary closed convex set, projector P projecting on C is
nonexpansive in the sense: for any vectors x, y∈Rn

‖Px − Py‖ ≤ ‖x − y‖ (2271)

with equality when x−Px = y−Py .E.21 ⋄

E.21This condition for equality corrects an error in [89] (where the norm is applied to each side of the
condition given here) easily revealed by counterexample.
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Proof. [60]

‖x − y‖2 = ‖Px − Py‖2 + ‖(I − P )x − (I − P )y‖2

+ 2〈x − Px , Px − Py〉 + 2〈y − Py , Py − Px〉 (2272)

Nonnegativity of the last two terms follows directly from the unique minimum-distance
projection theorem (§E.9.1.0.2). ¨

The foregoing proof reveals another flavor of nonexpansivity; for each and every x, y∈Rn

‖Px − Py‖2 + ‖(I − P )x − (I − P )y‖2 ≤ ‖x − y‖2 (2273)

Deutsch shows yet another: [127, §5.5]

‖Px − Py‖2 ≤ 〈x − y , Px − Py〉 (2274)

E.9.4 Easy projections

� To project any matrix H∈Rn×n orthogonally in the Euclidean/Frobenius sense on

subspace of symmetric matrices Sn in isomorphic Rn2

, take symmetric part of H ;
(§2.2.2.0.1) id est, (H+HT)/2 is the projection.

� To project any matrix H∈Rn×n orthogonally in the Euclidean/Frobenius sense on

symmetric hollow subspace Sn
h in isomorphic Rn2

(§2.2.3.0.1, §7.0.1), take symmetric
part then zero all entries along main diagonal or vice versa (because this is projection
on intersection of two subspaces); id est, (H + HT)/2 − δ2(H).

� To project a matrix on nonnegative orthant Rm×n
+ , simply clip all negative entries to

0. Likewise, projection on nonpositive orthant Rm×n
− sees all positive entries clipped

to 0. Projection on other orthants is equally simple with appropriate clipping.

� Projecting on hyperplane, halfspace, slab: §E.5.0.0.5.

� Projection of y∈Rn on a (closed) Euclidean ball B = {x∈Rn | ‖x − a‖ ≤ γ} (12):

PBy =







γ
y − a

‖y − a‖ + a , ‖y − a‖ > γ

y , ‖y − a‖ ≤ γ
(2275)

Projection on ball boundary ∂B={x∈Rn | ‖x−a‖=γ} from nearly anywhere in Rn :

P∂By = γ
y − a

‖y − a‖ + a , y 6= a (2276)

� Clipping each entry of point x∈Rn, that is in excess of |1| , is equivalent to
unique minimum-distance projection of x on a unit hypercube centered at the origin.
(confer §E.11.3.2) This is also Euclidean projection on a unit ∞-norm ball.

� Euclidean (minimum-distance) projection of y∈Rn on unit 1-norm ball:

minimize
x

‖y − x‖2

subject to ‖x‖1≤ 1
(2277)

Numerical algorithms for projection on nonnegative simplex and 1-norm ball: [150].
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� Projection of x∈Rn on a (rectangular) hyperbox : [68, §8.1.1]

C = {y∈Rn | l ¹ y ¹ u , l ≺ u} (2278)

P (x)k=0...n =







lk , xk ≤ lk
xk , lk ≤ xk ≤ uk

uk , xk ≥ uk

(2279)

� Orthogonal projection of x on a Cartesian subspace, whose basis is a given subset of
the Cartesian axes, zeroes entries corresponding to remaining (complementary) axes.

� Projection of x on set of all cardinality-k vectors {y | card y≤ k} keeps k entries of
greatest magnitude and clips to 0 those remaining.

� Unique minimum-distance projection of H∈ Sn on positive semidefinite cone
Sn

+ , in Euclidean/Frobenius sense, is accomplished by eigenvalue decomposition
(diagonalization) followed by clipping all negative eigenvalues to 0.

� Unique minimum-distance projection, on a generally nonconvex subset of all matrices
belonging to Sn

+ having rank not exceeding ρ , (§2.9.2.1) is accomplished by clipping
all negative eigenvalues of a decomposition to 0 and zeroing smallest nonnegative
eigenvalues keeping only ρ largest. (§7.1.2)

� Unique minimum-distance projection of H∈ Rm×n, in Euclidean/Frobenius sense
on a generally nonconvex subset of all m×n matrices having rank no greater than
k , is the singular value decomposition (SVD §A.6) of H having all singular values
beyond its kth zeroed. This is also a solution to projection in sense of spectral norm.
[375, p.79, p.208]

� Projection of a real vector on the monotone nonnegative cone is identical to its
projection on the monotone cone followed by clipping all negative entries of the
result to 0. [318, §5]

� Projection on monotone nonnegative cone KM+⊂Rn
+ in less than one cycle (in sense

of alternating projections §E.11): [430].

� Fast projection on a simplicial cone: [437].

� Projection on closed convex cone K of any point x∈−K∗, belonging to polar cone,
is equivalent to projection on origin. (§E.9.2)

� PSN
+∩ SN

c
= PSN

+
PSN

c
(1383)

� P
R

N×N
+ ∩ SN

h
= P

R
N×N
+

PSN
h

(§7.0.1.1)

� P
R

N×N
+ ∩ S

N = P
R

N×N
+

P
S

N (§E.9.5)
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Figure 199: Closed convex set C belongs to subspace Rn (shown bounded in sketch and
drawn without proper perspective). Point y is unique minimum-distance projection of x
on C ; equivalent to product of orthogonal projection of x on Rn and minimum-distance
projection of result z on C .

E.9.4.0.1 Exercise. Projection on spectral norm ball.
Find the unique minimum-distance projection on the convex set of all m×n matrices
whose largest singular value does not exceed 1 ; id est, on {X∈ Rm×n | ‖X‖2 ≤ 1} the
spectral norm ball (§2.3.2.0.5). H

E.9.4.1 notes

Projection on Lorentz (second-order) cone (183): [68, exer.8.3c].
Ferreira & Németh [166, §3] provide a formula for projection on dimensionally extended

Lorentz cone (184). In [165, cor.11] they provide a formula for projection on a hyperplane
under any vector norm; e.g, a formula for convex problem

minimize
x

‖y − x‖1

subject to x∈ ∂H (2280)

Deutsch [130] provides an algorithm for projection on polyhedral cones.
Youla [468, §2.5] lists closed forms for eleven “useful projections” of square-integrable

univariate and bivariate real functions on various convex sets.
Unique minimum-distance projection on boundary of an ellipsoid: Example 4.7.0.0.1.

E.9.5 Projection on convex set in subspace

Suppose a convex set C is wholly contained in some subspace Rn. Then unique
minimum-distance projection of any point in Rn⊕ Rn⊥ on C can be accomplished by
first projecting orthogonally on that subspace, and then projecting the result on C ;E.22

[127, §5.14] id est, the ordered product of two individual projections.

E.22The goal, here, is to project on C while remaining in that subspace.
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Proof. (⇐) To show that, suppose unique minimum-distance projection PCx on C⊂ Rn

is y as illustrated in Figure 199;

‖x − y‖ ≤ ‖x − q‖ ∀ q ∈ C (2281)

Further suppose PR
n x equals z . By the Pythagorean theorem

‖x − y‖2 = ‖x − z‖2 + ‖z − y‖2 (2282)

because x−z ⊥ z−y . (2120) [290, §3.3] Then point y = PCx is the same as PCz because

‖z − y‖2 = ‖x − y‖2 − ‖x − z‖2 ≤ ‖z − q‖2 = ‖x − q‖2 − ‖x − z‖2 ∀ q ∈ C (2283)

which holds by assumption (2281).
(⇒) Now suppose z = PR

n x and

‖z − y‖ ≤ ‖z − q‖ ∀ q ∈ C (2284)

meaning y = PCz . Then point y is identical to PCx because

‖x − y‖2 = ‖x − z‖2 + ‖z − y‖2 ≤ ‖x − q‖2 = ‖x − z‖2 + ‖z − q‖2 ∀ q ∈ C (2285)

by assumption (2284). ¨

This proof is extensible via translation argument. (§E.4) Unique minimum-distance
projection on a convex set contained in an affine subset is, therefore, similarly
accomplished.

Projecting matrix H∈Rn×n on convex cone K= Sn∩ Rn×n
+ in isomorphic Rn2

can be
accomplished, for example, by first projecting on Sn and only then projecting the result
on Rn×n

+ (confer §7.0.1). This is because projection product P
R

n×n
+

PS
n is equivalent to

projection on the subset of the nonnegative orthant in the symmetric matrix subspace.

E.10 Projection on intersection of subspaces

Given subspaces R1 and R2 and their projectors P , closed-form projection on their
intersection was given by Anderson & Duffin in 1969: [37, §1]

PR1∩R2
= 2PR1

(PR1
+ PR2

)†PR2
(2286)

In 2015, Ben-Israel provided a general formula for projection on intersection of an arbitrary

number of subspaces R,
L
⋂

i=1

Ri : [37, §4]

PR = I − Q†Q (2287)

where

Q , I − 1
L

L
∑

i=1

PRi
(2288)

which reduces to (2286) when number L=2 .E.23

E.23Remark 4.3.a in [37] to the contrary, regarding reduction, is incorrect. R1∩R2 =R2∩R1 is a subspace.
Subspace projectors are symmetric and unique. (§E.3.1.0.1)
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E.11 Alternating projection

Alternating projection is an iterative technique for finding a point in the intersection of
a number of arbitrary closed convex sets Ck , or for determining distance between two
nonintersecting closed convex sets. Because it can sometimes be difficult or inefficient
to compute the intersection or express it analytically, one naturally asks whether it is
possible to instead project (unique minimum-distance) alternately on the individual Ck ;
often easier and what motivates adoption of this technique. Once a cycle of alternating
projections (an iteration) is complete, we then iterate (repeat the cycle) until convergence.
If the intersection of two closed convex sets is empty, then by convergence we mean the
iterate (the result after a cycle of alternating projections) settles to a point of minimum
distance separating the sets.

While alternating projection can find the point in the nonempty intersection closest to
a given point b , it does not necessarily find the closest point. Finding that closest point
is made dependable by an elegantly simple enhancement via correction to the alternating
projection technique: this Dykstra algorithm (2326) for projection on the intersection is
one of the most beautiful projection algorithms ever discovered. It is accurately interpreted
as the discovery of what alternating projection originally sought to accomplish: unique
minimum-distance projection on the nonempty intersection of a number of arbitrary closed
convex sets Ck . Alternating projection is, in fact, a special case of the Dykstra algorithm
whose discussion we defer until §E.11.3.

E.11.0.1 commutative projectors

A product of projection operators is generally not another projector. Given two arbitrary
convex sets C1 and C2 and their respective minimum-distance projection operators P1

and P2 : If projectors commute (P1P2 =P2P1) for each and every x∈Rn, then it is easy
to show P1P2x∈ C1∩ C2 and P2P1x∈ C1∩ C2 . When projectors commute, their product
is a projector; some point in the intersection can be found in a finite number of steps.
While commutativity is a sufficient condition, it is not necessary; e.g, §6.8.1.1.1.

When C1 and C2 are subspaces, in particular, projectors P1 and P2 commute if and
only if P1P2 = PC1∩ C2

or iff P2P1 = PC1∩ C2
or iff P1P2 is the orthogonal projection on a

Euclidean subspace. [127, lem.9.2] Subspace projectors will commute, for example, when
P1(C2)⊂C2 or P2(C1)⊂C1 or C1⊂ C2 or C2⊂C1 or C1⊥C2 . When subspace projectors
commute, this means we can find a point from the intersection of those subspaces in a
finite number of steps; in fact, the closest point. Orthogonal projection on orthogonal
subspaces (or intersecting orthogonal affine subsets), in particular, can be performed in
any order to find the closest point in their intersection in a number of steps = number of
subspaces (or affine subsets).

E.11.0.2 noncommutative projectors

Typically, one considers the method of alternating projection when projectors do not
commute; id est, when P1P2 6=P2P1 .

The iconic example for noncommutative projectors illustrated in Figure 200 shows the
iterates converging to the closest point in the intersection of two arbitrary convex sets.
Yet simple examples like Figure 201 reveal that noncommutative alternating projection
does not always yield the closest point, although we shall show it always yields some point
in the intersection or a point that attains the distance between two convex sets.

Alternating projection is also known as successive projection [211] [208] [70], cyclic
projection [176] [301, §3.2], successive approximation [89], or projection on convex sets
[372] [373, §6.4]. It is traced back to von Neumann, 1933 [420], and later Wiener [452]
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C1

C2

K⊥
C1∩C2

(Pb) + Pb

b

Pb

Figure 200: First several alternating projections, in von Neumann-style projection (2299)
of point b , converging on closest point Pb • in intersection of two closed convex sets in R2 :
C1 and C2 partially drawn in vicinity of their intersection. For this particular example,
it is possible to start anywhere in a large neighborhood of b and still converge to Pb .
Pointed normal cone K⊥ at Pb (458) is translated to Pb the unique minimum-distance
projection of b on intersection. Alternating projections are themselves robust with respect
to significant noise because they belong to this translated normal cone.

who showed that higher iterates of a product of two orthogonal projections on subspaces
converge at each point in the ambient space to the unique minimum-distance projection on
the intersection of the two subspaces. More precisely, if R1 and R2 are closed subspaces
of a Euclidean space and P1 and P2 respectively denote orthogonal projection on R1 and
R2 , then for each vector b in that space,

lim
i→∞

(P1P2)
i
b = PR1∩R2

b (2289)

Deutsch [127, thm.9.8, thm.9.35] shows rate of convergence for subspaces to be geometric
[467, §1.4.4]; bounded above by κ2i+1‖b‖ , i=0, 1, 2 . . . , where 0≤κ<1 :

‖ (P1P2)
i
b − PR1∩R2

b ‖ ≤ κ2i+1‖b‖ (2290)

This means convergence can be slow when κ is close to 1. Rate of convergence on
intersecting halfspaces is also geometric. [128] [342]

This von Neumann sense of alternating projection may be applied to convex sets that
are not subspaces, although convergence is not necessarily to the unique minimum-distance
projection on the intersection. Figure 200 illustrates one application where convergence
is reasonably geometric and the result is the unique minimum-distance projection.
Figure 201, in contrast, demonstrates convergence in one iteration to a fixed point (of the
projection product)E.24 in the intersection of two halfspaces; a.k.a, feasibility problem.
It was Dykstra who in 1983 [151] (§E.11.3) first solved this projection problem.

E.11.0.3 the bullets

Alternating projection has, therefore, various meaning dependent on the application or
field of study; it may be interpreted to be: a distance problem, a feasibility problem

E.24Fixed point of mapping T : R
n→R

n is a point x whose image is identical under the map; id est, Tx=x .
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H1

H2

b

Pb

P2b

P1P2b

H1 ∩ H2

Figure 201: The sets {Ck} in this example comprise two halfspaces H1 and H2 . This
von Neumann-style alternating projection in R2 quickly converges to P1P2b (feasibility).
Unique minimum-distance projection on intersection is, of course, Pb .

(von Neumann), or a projection problem (Dykstra):

� Distance. Figure 202a-b. Find a unique point of projection P1b∈C1 that attains
the distance between any two closed convex sets C1 and C2 ;

‖P1b − b‖ = dist(C1 , C2) , inf
z∈C2

‖P1z − z‖ (2291)

� Feasibility. Figure 202c,
⋂ Ck 6= ∅ . Given a number L of indexed closed convex

sets Ck⊂Rn, find any fixed point in their intersection by iterating (i) a projection
product starting from b ;

( ∞
∏

i=1

L
∏

k=1

Pk

)

b ∈
L
⋂

k=1

Ck (2292)

� Optimization. Figure 202c,
⋂ Ck 6= ∅ . Given a number of indexed closed convex

sets Ck⊂Rn, uniquely project a given point b on
⋂ Ck ;

‖Pb − b‖ = inf
x∈⋂ Ck

‖x − b‖ (2293)

E.11.1 Distance and existence

Existence of a fixed point is established:

E.11.1.0.1 Theorem. Distance. [89]
Given any two closed convex sets C1 and C2 in Rn, then P1b∈C1 is a fixed point of
projection product P1P2 if and only if P1b is a point of C1 nearest C2 . ⋄
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C2

C2

C2

C1

C1

C1

Pb

P1b

P1P2b

{y | (b −P1b)
T(y −P1b)=0}

y

(a)

(b)

(c)

b

b

a

Figure 202:
(a) (distance) Intersection of two convex sets in R2 is empty. Method of alternating
projection would be applied to find that point in C1 nearest C2 .
(b) (distance) Given b∈C2 , by projection theorem E.9.1.0.2, point • P1b∈C1 is nearest
b iff (b−P1b)

T(y−P1b)≤ 0 ∀ y∈C1 . When P1b attains distance between the two sets,
hyperplane {y | (b−P1b)

T(y−P1b)=0} separates C1 from C2 . [68, §2.5.1]
(c) (0 distance) Intersection is nonempty; distance between sets equals 0.

(feasibility) We may just want a fixed point of projection product P1P2b in
⋂ Ck .

(optimization) Or we may want that point Pb in
⋂ Ck nearest point b .
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Proof. (⇒) Given fixed point a =P1P2a∈C1 with b ,P2a∈C2 in tandem so that
a =P1b , then by the unique minimum-distance projection theorem (§E.9.1.0.2)

(b − a)T(u − a) ≤ 0 ∀u∈C1

(a − b)T(v − b) ≤ 0 ∀ v∈C2

⇔
‖a − b‖ ≤ ‖u − v‖ ∀u∈C1 and ∀ v∈C2

(2294)

by Cauchy-Schwarz inequality [354]

|〈x, y〉| ≤ ‖x‖ ‖y‖ (2295)

(with equality iff x=κy where κ∈R (35) [264, p.137]).
(⇐) Suppose a∈C1 and ‖a − P2a‖≤ ‖u − P2u‖ ∀u∈C1 and we choose u =P1P2a .
Then

‖u − P2u‖ = ‖P1P2a − P2P1P2a‖ ≤ ‖a − P2a‖ ⇔ a = P1P2a (2296)

Thus a = P1b (with b =P2a∈C2) is a fixed point in C1 of the projection product P1P2 .E.25

¨

E.11.2 Feasibility and convergence

The set of all fixed points of any nonexpansive mapping is a closed convex set. [185, lem.3.4]
[30, §1] The projection product P1P2 is nonexpansive by Theorem E.9.3.0.1 because, for
any vectors x, a∈Rn

‖P1P2 x − P1P2 a‖ ≤ ‖P2x − P2a‖ ≤ ‖x − a‖ (2297)

If the intersection of two closed convex sets C1 ∩ C2 is empty, then the iterates converge
to a point of minimum distance, a fixed point of the projection product. Otherwise,
convergence is to some fixed point in their intersection (a feasible solution) whose existence
is guaranteed by virtue of the fact that each and every point in the convex intersection is
in one-to-one correspondence with fixed points of the nonexpansive projection product.

Bauschke & Borwein [30, §2] argue that any sequence monotonic in the sense of Fejér
is convergent:E.26

E.11.2.0.1 Definition. Fejér monotonicity. [312]
Given closed convex set C 6= ∅ , then a sequence xi∈Rn, i=0, 1, 2 . . . , is monotonic in the
sense of Fejér with respect to C iff

‖xi+1 − c‖ ≤ ‖xi − c‖ for all i≥0 and each and every c ∈ C (2298)
△

Given x0 , b , if we express each iteration of alternating projection by

xi+1 = P1P2 xi , i=0, 1, 2 . . . (2299)

and define any fixed point a =P1P2 a , then sequence xi is Fejér monotone with respect
to fixed point a because

‖P1P2 xi − a‖ ≤ ‖xi − a‖ ∀ i ≥ 0 (2300)

by nonexpansivity. The nonincreasing sequence ‖P1P2 xi − a‖ is bounded below hence
convergent because any bounded monotonic sequence in R is convergent; [299, §1.2]
[46, §1.1] P1P2 xi+1 = P1P2 xi = xi+1 . Sequence xi therefore converges to some fixed
point. If the intersection C1 ∩ C2 is nonempty, convergence is to some point there by the
distance theorem. Otherwise, xi converges to a point in C1 of minimum distance to C2 .

E.25Point b=P2a can be shown, similarly, to be a fixed point of product P2P1 .
E.26Other authors prove convergence by different means; e.g, [208] [70].
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C2 = A = {y | [ 1 1 ] y = 1}

C1 = R2

+

b

θ

Pb = (
∞
∏

j=1

2
∏

k=1

Pk)b

y1

y2

Figure 203: From Example E.11.2.0.2 in R2 showing von Neumann-style alternating
projection to find feasible solution belonging to intersection of nonnegative orthant with
hyperplane A . Point Pb lies at intersection of hyperplane with ordinate axis. In this
particular example, feasible solution found is coincidentally optimal. Rate of convergence
depends upon angle θ ; as it becomes more acute, convergence slows. [208, §3]
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Figure 204: Example E.11.2.0.2 in R1000 ; geometric convergence of iterates in norm.
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E.11.2.0.2 Example. Hyperplane/orthant intersection.
Find a feasible solution (2292) belonging to the nonempty intersection of two convex sets:
given full-rank A∈Rm×n and β∈R(A)

C1 ∩ C2 = Rn
+∩ A = {y | y º 0} ∩ {y | Ay = β} ⊂ Rn (2301)

the nonnegative orthant intersecting affine subset A (an intersection of hyperplanes).
Projection of an iterate xi∈Rn on A is calculated

P2 xi = xi − AT(AAT)−1(Axi − β) (2176)

while, thereafter, projection of the result on the orthant is simply

xi+1 = P1P2 xi = max{0, P2 xi} (2302)

where the maximum is entrywise (§E.9.2.2.3).
One realization of this problem in R2 is illustrated in Figure 203: For A = [ 1 1 ] ,

β =1 , and x0 = b = [−3 1/2 ]T, iterates converge to a feasible solution Pb = [ 0 1 ]T.
To give a more palpable sense of convergence in higher dimension, we do this

example again but now we compute an alternating projection for the case A∈R400×1000,
β∈R400, and b∈R1000, all of whose entries are independently and randomly set to a
uniformly distributed real number in the interval [−1 , 1]. Convergence is illustrated in
Figure 204. 2

This application of alternating projection to feasibility is extensible to any finite number
of closed convex sets.

E.11.2.1 Relative measure of convergence

Inspired by Fejér monotonicity, the alternating projection algorithm (from the example of
convergence illustrated by Figure 204) employs a redundant sequence: The first sequence

(indexed by j) estimates point (
∞
∏

j=1

L
∏

k=1

Pk)b in a presumably nonempty intersection of L

convex sets. Then quantity
∥

∥

∥

∥

∥

∥

xi −





∞
∏

j=1

L
∏

k=1

Pk



b

∥

∥

∥

∥

∥

∥

(2303)

(in second sequence xi) is observed per iteration i for convergence. A priori knowledge of
a feasible solution (2292) is both impractical and antithetical. We need another measure:

Nonexpansivity implies
∥

∥

∥

∥

∥

(

L
∏

ℓ=1

Pℓ

)

xk,i−1 −
(

L
∏

ℓ=1

Pℓ

)

xki

∥

∥

∥

∥

∥

= ‖xki − xk,i+1‖ ≤ ‖xk,i−1 − xki‖ (2304)

where
xki , Pkxk+1,i ∈ Rn, xL+1,i , x1,i−1 (2305)

xki represents unique minimum-distance projection of xk+1,i on convex set k at iteration
i . So a good convergence measure is total monotonic sequence

εi ,
L

∑

k=1

‖xki − xk,i+1‖ , i=0, 1, 2 . . . (2306)

where lim
i→∞

εi = 0 whether or not the intersection is nonempty.
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E.11.2.1.1 Example. Under- and over-projection. [65, §3]
Consider the following variation of alternating projection: We begin with some point
x0∈Rn then project that point on convex set C and then project that same point x0 on
convex set D . To the first iterate, we assign x1 = 1

2(PC(x0) + PD(x0)). More generally,

xi+1 =
1

2
(PC(xi) + PD(xi)) , i=0, 1, 2 . . . (2307)

Because the Cartesian product of convex sets remains convex, (§2.1.8) we can reformulate
this problem.

Consider the convex set

Z ,

[

C
D

]

(2308)

representing Cartesian product C×D . Now, those two projections PC and PD are
equivalent to one projection on the Cartesian product; id est,

PZ

([

xi

xi

])

=

[

PC(xi)
PD(xi)

]

(2309)

Define the subspace

R ,

{

v∈
[

Rn

Rn

] ∣

∣

∣

∣

[ I −I ] v = 0

}

(2310)

By the results in Example E.5.0.0.7

PRZ

([

xi

xi

])

= PR

([

PC(xi)
PD(xi)

])

= 1
2

[

PC(xi) + PD(xi)
PC(xi) + PD(xi)

]

(2311)

This means the proposed variation of alternating projection is equivalent to an alternation
of projection on convex sets Z and R . If Z and R intersect, these iterations will converge
to a point in their intersection; hence, to a point in the intersection of C and D .

We need not apply equal weighting to the projections, as supposed in (2307). In that
case, definition of R would change accordingly. 2

E.11.2.1.2 Example. Affine subset ∩ positive semidefinite cone: A ∩ Sn
+ .

Consider the problem of finding X∈ Sn that satisfies

X º 0 , 〈Aj , X 〉 = bj , j =1 . . . m (2312)

given nonzero Aj ∈ Sn and real bj . Here we take C1 to be the positive semidefinite cone
Sn

+ while C2 is the affine subset of Sn

C2 = A , {X | 〈Aj , X 〉= bj , j =1 . . . m} ⊆ Sn

= {X | tr(Aj X)= bj , j =1 . . . m}

= {X |





svec(A1)
T

...
svec(Am)T



svec X = b}

, {X | A svec X = b}

(2313)

where b = [bj ] ∈ Rm, A ∈ Rm×n(n+1)/2, and symmetric vectorization svec is defined by
(59). Projection of iterate Xi∈ Sn on A is: (§E.5.0.0.7)

P2 svec Xi = svec Xi − A†(A svec Xi − b) (2314)
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Euclidean distance from Xi to A is therefore

dist(Xi , A) = ‖Xi − P2Xi‖F = ‖A†(A svec Xi − b)‖2 (2315)

Projection of P2Xi ,
∑

j λj qjq
T
j on the positive semidefinite cone (§7.1.2) is found from

its eigenvalue decomposition (§A.5.1);

P1P2Xi =

n
∑

j=1

max{0 , λj} qjq
T
j (2316)

Distance from P2Xi to the positive semidefinite cone is therefore

dist(P2Xi , Sn
+) = ‖P2Xi − P1P2Xi‖F =

√

√

√

√

n
∑

j=1

(min{0 , λj})2 (2317)

When the intersection is empty, A ∩ Sn
+ = ∅ , the iterates converge to that positive

semidefinite matrix closest to A in the Euclidean sense. Otherwise, convergence is to
some point in the nonempty intersection.

Barvinok (§2.9.3.0.1) shows that if a solution to (2312) exists, then there exists an
X∈A ∩ Sn

+ such that

rankX ≤
⌊
√

8m + 1 − 1

2

⌋

(279)

2

E.11.2.1.3 Example. Semidefinite matrix completion.
Continuing Example E.11.2.1.2: When m≤n(n + 1)/2 and the Aj matrices are distinct
members of the standard orthonormal basis {Eℓq ∈ Sn} (62)

{Aj ∈ Sn, j =1 . . . m} ⊆ {Eℓq} =

{

eℓe
T
ℓ , ℓ = q = 1 . . . n

1√
2
(eℓe

T
q + eqeT

ℓ ) , 1 ≤ ℓ < q ≤ n

}

(2318)

and when the constants bj are set to constrained entries of variable X , [Xℓq]∈ Sn

{bj , j =1 . . . m} ⊆
{

Xℓq , ℓ = q = 1 . . . n

Xℓq

√
2 , 1 ≤ ℓ < q ≤ n

}

= {〈X,Eℓq〉} (2319)

then the equality constraints in (2312) fix individual entries of X∈ Sn. Thus the feasibility
problem becomes a positive semidefinite matrix completion problem. Projection of iterate
Xi∈ Sn on A simplifies to (confer (2314))

P2 svec Xi = svec Xi − AT(A svec Xi − b) (2320)

From this we can see that orthogonal projection is achieved simply by setting corresponding
entries of P2Xi to the known entries of X , while the entries of P2Xi remaining are set
to corresponding entries of the current iterate Xi .

Using this technique, we find a positive semidefinite completion for









4 3 ? 2
3 4 3 ?
? 3 4 3
2 ? 3 4









(2321)
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dist(P2Xi , Sn
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Figure 205: Distance (confer (2317)) between PSD cone and iterate (2320) in affine subset
A (2313) for Laurent’s completion problem; initially, decreasing geometrically.

Initializing the unknown entries to 0 , they all converge geometrically to 1.5858 (rounded)
after about 42 iterations.

Laurent gives a problem for which no positive semidefinite completion exists: [275]









1 1 ? 0
1 1 1 ?
? 1 1 1
0 ? 1 1









(2322)

Initializing unknowns to 0 , by alternating projection we find the constrained matrix closest
to the positive semidefinite cone,









1 1 0.5454 0
1 1 1 0.5454

0.5454 1 1 1
0 0.5454 1 1









(2323)

and we find the positive semidefinite matrix closest to affine subset A (2313):









1.0521 0.9409 0.5454 0.0292
0.9409 1.0980 0.9451 0.5454
0.5454 0.9451 1.0980 0.9409
0.0292 0.5454 0.9409 1.0521









(2324)

These matrices (2323) and (2324) attain the Euclidean distance dist(A , Sn
+). Convergence

is illustrated in Figure 205. 2

E.11.3 Optimization and projection

Unique projection on the nonempty intersection of arbitrary convex sets, to find the
closest point therein, is a convex optimization problem. The first successful application
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H1

H2

b

x12

x21

x11

x22

H1 ∩ H2

Figure 206: H1 and H2 are same halfspaces as in Figure 201. Dykstra’s alternating
projection algorithm generates alternations b , x21 , x11 , x22 , x12 , x12 . . . x12 . Path
illustrated from b to x12 in R2 terminates at desired result: Pb in Figure 201. The {yki}
correspond to first two difference vectors drawn (in first iteration i=1), then oscillate
between zero and a negative vector thereafter. These alternations are not so robust in
presence of noise as for the example in Figure 200.

of alternating projection to this problem is attributed to Dykstra [151] [69] who in 1983
provided an elegant algorithm that prevails today. In 1988, Han [211] rediscovered the
algorithm and provided a primal−dual convergence proof. A synopsis of the history of
alternating projectionE.27 can be found in [71] where it becomes apparent that Dykstra’s
work is seminal; his algorithm appears in work as diverse as machine control. [214, §5]

E.11.3.1 Dykstra’s algorithm

Assume we are given some point b ∈ Rn and closed convex sets {Ck⊂Rn | k=1 . . . L}.
Let xki∈Rn and yki∈Rn respectively denote a primal and dual vector (whose meaning
can be deduced from Figure 206 and Figure 207) associated with set k at iteration i .
Initialize

yk0 = 0 ∀ k=1 . . . L and x1,0 = b (2325)

Denoting by Pkt the unique minimum-distance projection of t on Ck , and for convenience
xL+1,i = x1,i−1 (2305), calculation of iterate x1i proceeds:E.28

for i=1, 2, 3 . . . until convergence {
for k=L . . . 1 {

t = xk+1,i − yk,i−1

xki = Pkt
yki = Pkt − t

}
}

(2326)

E.27For a synopsis of alternating projection applied to distance geometry, see [405, §3.1].
E.28We reverse order of projection (k =L . . . 1) in the algorithm for continuity of exposition.

https://books.google.com/books?id=GRxmIwN9u_UC&pg=PA130&dq=Smart+Devices+Machines+Advanced+Manufacturing+dykstra&hl=en&sa=X&ved=0ahUKEwi9gKiT3o7VAhVBwVQKHVNhD9gQ6AEIJzAA#v=onepage&q=Smart_Devices_Machines_Advanced_Manufacturing_dykstra&f=false
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0

H1

H2

Pb

b

K⊥
H1∩H2

(0)

K⊥
H1∩H2

(Pb) + Pb

K , H1 ∩ H2

Figure 207: Two examples (truncated): normal cone to H1 ∩ H2 at the origin and at
boundary point Pb . H1 and H2 are the same halfspaces from Figure 206. Normal cone
at origin K⊥

H1∩H2
(0) is simply −K∗.

Assuming a nonempty intersection, then iterates converge to the unique minimum-distance
projection of point b on that intersection; [127, §9.24]

Pb = lim
i→∞

x1i (2327)

In the case that all Ck are affine, then calculation of yki is superfluous and the algorithm
becomes identical to alternating projection. [127, §9.26] [176, §1] Dykstra’s algorithm is
so simple, elegant, and represents such a tiny increment in computational intensity over
alternating projection, it is nearly always arguably cost effective.

E.11.3.2 Normal cone

Glunt [184, §4] observes that the overall effect of Dykstra’s iterative procedure is to drive
t toward the translated normal cone to

⋂ Ck at the solution Pb (translated to Pb).
Normal cone (§2.13.11) derives its name from its graphical construction; which is,

loosely speaking, to draw outward-normals at Pb (Definition E.9.1.0.1) to all the convex
sets Ck touching Pb . Relative interior of the normal cone subtends these normal vectors.

Projection on convex set C of any point in the translated normal cone K⊥
C (a∈C) + a

is identical to a ; in other words, point a is that point in C closest to any point belonging
to the translated normal cone K⊥

C (a) + a ; e.g, Theorem E.4.0.0.1. Any point belonging
to −K∗, projected on K , projects on the origin. More generally, [127, §4.5]

K⊥
K(a) = −(K − a)∗ (2328)

K⊥
K(a∈K) = −K∗∩ a⊥ (2329)

Normal cone at 0 in Figure 207 is the vector sum (§2.1.8) of two normal cones;
[61, §3.3 exer.10] for H1∩ intrH2 6= ∅

K⊥
H1∩H2

(0) = K⊥
H1

(0) + K⊥
H2

(0) (2330)

This formula applies more generally to other points in the intersection.
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The normal cone to
⋂ Ck at Pb in Figure 201 is ray {ξ(b−Pb) | ξ≥0} illustrated

in Figure 207. Applying Dykstra’s algorithm to that example, convergence to the
desired result is achieved in two iterations as illustrated in Figure 206. Yet applying
Dykstra’s algorithm to the example in Figure 200 does not improve rate of convergence,
unfortunately, because the given point b and all the alternating projections already belong
to the translated normal cone at the vertex of intersection.

E.11.3.3 speculation

Dykstra’s algorithm always converges at least as quickly as classical alternating projection,
never slower [127], and it succeeds where alternating projection fails. Rate of convergence
is wholly dependent on particular geometry of a given problem. From these few examples
we surmise: unique minimum-distance projection on blunt (not sharp or acute, informally)
full-dimensional polyhedral cones may be found by Dykstra’s algorithm in few iterations.
But total number of alternating projections, constituting those iterations, can never be
less than number of convex sets.
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Appendix F

Notation, Definitions, Glossary

b scalar or column vector (italic abcdefghijklmnopqrstuvwxyz)

bi ith entry of vector b=[bi , i=1 . . . n] or ith b vector from a list {bj , j =1 . . . n}
or ith iterate of vector b

bi:j or b(i :j) : truncated vector comprising ith through j th entry of vector b (294)

bk(i :j) or bi:j,k : truncated vector comprising ith through j th entry of vector bk

bT vector transpose or row vector

bH complex conjugate transpose b∗T

A matrix (italic ABCDEFGHIJKLMNOPQRSTUV WXY Z)

AT Matrix transpose [Aij ] ← [Aji] is a linear operator.
Regarding A as a linear operator, AT is its adjoint.

A−T matrix transpose of inverse; and vice versa,
(

A−1
)T

=
(

AT
)−1

(confer p.493 no.47)

AT1 first of various transpositions of a cubix or quartix A (p.561, p.565)

A−1 inverse of matrix A

A† Moore-Penrose pseudoinverse of matrix A (§E)

Aij or A(i , j) : ij th entry of matrix A =

1 2 3




· · ·
· · ·
· · ·





1

2

3

or rank-1 matrix aia
T
j (§4.11)

A(i , j) A is a function of i and j

Ai ith matrix from a set or ith principal submatrix (1286) or ith iterate of A

A(i , :) or Ai: : ith row of matrix A

A(: , j) or A:j : j th column of matrix A [189, §1.1.8]

A(i :j , k :ℓ) or Ai:j,k:ℓ : submatrix; ith through j th row and kth through ℓth column of A

√
positive square root

◦
√

x entrywise positive square root of vector x

Dattorro, Convex Optimization � Euclidean Distance Geometry, Mεβoo, 2005, v2019.10.28. 633

https://ccrma.stanford.edu/~dattorro
https://www.convexoptimization.com
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ℓ
√

positive ℓth root

A1/2 and
√

A A1/2 is any matrix such that A1/2A1/2 =A .
For A∈ Sn

+ ,
√

A∈ Sn
+ is unique and

√
A
√

A =A . [61, §1.2] (§A.5.1.4)

◦
√

D = [
√

dij ] absolute distance matrix (1474) or

Hadamard positive square root : D = ◦
√

D ◦ ◦
√

D

thin a skinny matrix; meaning, more rows than columns:









When there are more equations than unknowns,
we say that the system Ax = b is overdetermined. [189, §5.3]

wide a fat matrix; meaning, more columns than rows:
[ ]

underdetermined

hollow matrix having 0 main diagonal

A some set (calligraphic ABCDEFGHIJKLMNOPQRST UVWXYZ)

A set of vectors or matrices (blackboard ABCDEFGHIJKLMNOPQRSTUVWXYZ)

F discrete Fourier transform (889)
(Euler Fraktur ABCD E F GHIJKLMNOPQR ST UVWXYZ)

F(C ∋A) smallest face (176) that contains element A of set C

G(K) generators (§2.13.4.2.1) of set K ;
any collection of points and directions whose hull constructs K

Lν
ν level set (573)

Lν sublevel set (577)

Lν superlevel set (672)

L Lagrangian (517)

E member of elliptope Et (1215) parametrized by scalar t

E elliptope (1194)

E elementary matrix

Eij member of standard orthonormal basis for symmetric (62) or symmetric hollow (78)
matrices

id est from the Latin meaning that is

e.g exempli gratia, from the Latin meaning for sake of example

sic from the Latin meaning so or thus or in this manner ; something meant as written

videlicet from the Latin meaning it is permitted to see

ibidem from the Latin meaning in the same place

no. number, from the Latin numero

vs. versus, from the Latin
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a.i. affinely independent (§2.4.2.3)

c.i. conically independent (§2.10)

l.i. linearly independent

w.r.t with respect to

a.k.a also known as

re real part

im imaginary part

ı or 
√
−1

⊆ ⊇ subset, superset

⊂ ⊃ proper subset, proper superset

∩ ∪ intersection, union

∈ membership, element belongs to, or element is a member of

∋ membership, contains as in C ∋ y (C contains element y)

Ä such that

∃ there exists

∴ therefore

∀ for all, or over all

& (ampersand) and

& (ampersand italic) and

∝ proportional to

∞ infinity

≡ equivalent to

, defined equal to, equal by definition

≈ approximately equal to

≃ isomorphic to or with

∼= congruent to or with

Hadamard quotient as in, for x, y∈Rn,
x

y
, [xi/yi , i=1 . . . n ]∈Rn

◦ Hadamard product of matrices: x ◦ y , [xi yi , i=1 . . . n ]∈Rn (§D.1.2.2, §A.1.1)

⊗ Kronecker product of matrices (§D.1.2.1, §A.1.1)

⊕ vector sum of sets X =Y ⊕ Z where every element x∈X has unique expression
x = y + z where y∈Y and z∈Z ; [354, p.19] then summands are algebraic
complements. X =Y ⊕ Z ⇒ X =Y + Z . Now assume Y and Z are nontrivial
subspaces. X =Y + Z ⇒ X =Y ⊕ Z ⇔ Y ∩ Z=0 [355, §1.2] [127, §5.8]. Each
element from a vector sum (+) of subspaces has unique expression (⊕) when a basis
from each subspace is linearly independent of bases from all the other subspaces.
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⊖ likewise, unique vector difference of sets

⊞ orthogonal vector sum of sets X =Y ⊞ Z where every element x∈X has unique
orthogonal expression x = y + z where y∈Y , z∈Z , and y ⊥ z . [377, p.51]
X =Y ⊞ Z ⇒ X =Y + Z . If Z⊆Y⊥ then X =Y ⊞ Z ⇔ X =Y ⊕ Z . [127, §5.8]
If Z=Y⊥ then summands are orthogonal complements.

± plus or minus or plus and minus

\ as in \A means logical not A , or relative complement of set A ; id est,
\A = {x /∈A} ; e.g, B\A , {x∈B | x /∈A} ≡ B ∩\A

⇐ and ⇒ necessary and sufficient, is implied by and implies; e.g,
A is necessary: A ⇐ B , A is sufficient: A ⇒ B
A ⇐ B ⇔ \A ⇒ \B , A ⇒ B ⇔ \A ⇐ \B
if B then A , if A then B
B only if A , A only if B

⇔ if and only if (iff) or corresponds with or necessary and sufficient or logical
equivalence

is plural are, as in A is B means A ⇒ B ; conventional usage of English language
imposed by logicians

; and : insufficient and unnecessary, does not imply and is not implied by ; e.g,
A is insufficient: A ; B , A is unnecessary: A : B ,
A ; B ⇔ \A : \B , A : B ⇔ \A ; \B .

← is replaced with; substitution, assignment

→ goes to, or approaches, or maps to

t → 0+ t goes to 0 from above; meaning, from the positive [234, p.2]

...
. . . · · · as in 1 · · · 1 means ones in a row or

[ s1 · · · sN ] means continuation; a matrix whose columns are si for i=1 . . . N
or as in n(n−1)(n−2) · · · 1 means continuation of a product

. . . as in i=1 . . . N meaning, i is a sequence of successive integers beginning with 1 and
ending with N ; id est, 1 . . . N = 1:N

: as in f : Rn→Rm meaning f is a mapping,
or sequence of successive integers specified by bounds as in i :j = i . . . j
(if j < i then sequence is descending)

f real function or multidimensional function a.k.a operator or frequency in hertz

s Laplace variable σ + ıω = σ + ı2πf

s SI unit seconds

f : M→R meaning f is a mapping from ambient space M to ambient R , not necessarily
denoting either domain or range

| as in f(x) | x∈ C means with the condition(s) or such that or evaluated for, or
as in {f(x) | x∈ C} means evaluated for each and every x belonging to set C

g|xp
expression g evaluated at xp
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A,B as in, for example, A,B ∈ SN means A∈ SN and B ∈ SN

(a, b) open interval between a and b in R
or variable pair perhaps of disparate dimension

[a, b ] closed interval or line segment between a and b in R

( ) hierarchal, parenthetical, optional

(

n
k

)

,



































1 , k = 0

−1k (−n+k−1)!
k!(−n−1)! , k > 0

−1n−k (−k−1)!
(n−k)!(−n−1)! , k ≤ n

0 , n < k < 0











n < 0 [265]

0 , k < 0 or k > n
n!

k!(n−k)! , otherwise

}

n ≥ 0

binomial coefficient on Z2

! factorial; id est, for integer n>0 , n! , n(n−1)(n−2) · · · 1 , (−n)!,∞ , 0!,1

{ } curly braces denote a set or list; e.g, {Xa | aº0} the set comprising Xa evaluated
for each and every aº0 where membership of a to some space is implicit, a union;
or {0, 1}n represents a binary vector of dimension n

〈 〉 angle brackets denote vector inner-product (35) (40)

[ ] matrix or vector, or quote insertion, or citation

[dij ] matrix whose ij th entry is dij

[xi] vector whose ith entry is xi

xp particular value of x

x0 particular instance of x , or initial value of a sequence xi

x1 first entry of vector x , or first element of a list {xi}

xε extreme point

x+ vector x whose negative entries are replaced with 0 : x+ = 1
2 (x + |x|) (548)

nonnegative part of x or clipped vector x

x− x− , 1
2 (x − |x|) : nonpositive part of x = x++ x−

x̌ known data

x⋆ optimal value of variable x . optimal ⇒ feasible

x∗ complex conjugate or dual variable or extreme direction of dual cone

f∗ convex conjugate function f∗(s)= sup{〈s , x〉 − f(x) | x∈dom f }

PCx or Px projection of point x on set C , P is operator or idempotent matrix

Pkx projection of point x on set Ck or on range of implicit vector

δ(A) (a.k.a diag(A) , §A.1) vector made from main diagonal of A if A is a matrix;
otherwise, diagonal matrix made from vector A

δ2(A) ≡ δ(δ(A)). For vector or diagonal matrix Λ , δ2(Λ) = Λ

https://www.wolframalpha.com/input/?i=binomial(-1,0)
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δ(A)2 = δ(A)δ(A) where A is a vector

λi(X) ith entry of vector λ is function of X

λ(X)i ith entry of vector-valued function of X

λ(A) vector of eigenvalues of matrix A (§A.5) (a nonlinear vector-valued function)

λ(A) spectral cone Kλ for matrix set A (§5.11.2.3)

σ(A) vector of singular values of matrix A (§A.6) (a nonlinear vector-valued function
always arranging in nonincreasing order), or support function in direction A

Σ diagonal matrix of singular values, not necessarily square

∑

sum. Empty sum equals, conventionally, 0 or 0

π(γ) nonlinear permutation operator (or presorting function) arranges vector γ into
nonincreasing order (§7.1.3). πi is a permutation matrix; e.g, (918).

Ξ permutation matrix

Π doublet or permutation operator or matrix or set of all permutation matrices

∏

product. Empty product equals, conventionally, 1 or I

ψ(Z) signum-like step function that returns a scalar for matrix argument (742),
it returns a vector for vector argument (1761)

Ω electrical unit Ohm or relative-angle matrix (1082) or radian frequency

D symmetric hollow matrix of distance-square or Euclidean distance matrix

D Euclidean distance matrix operator

DT(X) adjoint operator

D(X)T transpose of D(X)

D−1(X) inverse operator

D(X)−1 inverse of D(X)

D⋆ optimal value of variable D

D∗ dual to variable D

V geometric centering operator, V(D)=−V D V 1
2 (1114)

VN VN (D)=−V T
NDVN (1128)

V N×N symmetric elementary, auxiliary, projector, geometric centering matrix,
R(V )=N (1T) , N (V )=R(1) , V 2 =V (§B.4.1)

VN N×N−1 Schoenberg auxiliary matrix
R(VN )=N (1T) , N (V T

N )=R(1) (§B.4.2)

VX VXV T
X ≡ V TXTXV (1306)

X point list ((79) having cardinality N) arranged columnar in Rn×N ,
or set of generators, or extreme directions, or matrix variable
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G Gram matrix XTX (1015)

r affine dimension (1160)

αc geometric center (1091)

ρ rank of matrix or bound on affine dimension

k number of conically independent generators

k raw-data domain of Magnetic Resonance Imaging (MRI) machine, as in k-space

n Euclidean (ambient spatial) dimension of list X∈ Rn×N , or integer

η noise factor or noise signal or normal vector or min{m, n}

N cardinality of list X∈ Rn×N , or integer

epi function epigraph

dom function domain

Rf function range

R(AT) the subspace: rowspace of A (145) or span basisR(AT) ; R(AT) ⊥ N (A)

R(A) the subspace: range of A (146) or span basisR(A) ; R(A) ⊥ N (AT)

span as in spanA = R(A) = {Ax | x∈Rn} when A is a matrix

basisR(A) overcomplete columnar basis for range of A
or minimal set constituting generators for vertex-description of R(A)
or linearly independent set of vectors spanning R(A)

N (A) the subspace: nullspace of A (147) a.k.a kernel of A ; N (A) ⊥ R(AT)

Rn Euclidean n-dimensional real vector space (nonnegative integer n);
a subspace, conventionally, but not a proper subspace. [264, §2.1]
R0 = 0. R = R1 or vector space of unspecified dimension. [456]

Rm×n Euclidean vector space of m by n dimensional real matrices

× Cartesian product. Rm×n−m , Rm×(n−m). K1×K2 =

[

K1

K2

]

[

Rm

Rn

]

Rm× Rn = Rm+n

Z the real integers

N the nonnegative natural numbers; id est, Z+

Bn, Bn×n {0, 1}n and {0, 1}n×n binary vectors of respective dimension n and n×n

Bn
± , Bn×n

± {−1, 1}n and {−1, 1}n×n bipolar binary vectors of dimension n and n×n

Cn, Cn×n Euclidean complex vector space of respective dimension n and n×n

Rn
+ , Rn×n

+ nonnegative orthant in Euclidean vector space of respective dimension n and n×n

Rn
− , Rn×n

− nonpositive orthant in Euclidean vector space of respective dimension n and n×n
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Sn subspace of real symmetric n×n matrices; the symmetric matrix subspace.
S0 = 0. S = S1 or symmetric subspace of unspecified dimension.

Sn⊥ orthogonal complement of Sn in Rn×n, the antisymmetric matrices (54)

Sn
+ convex cone comprising all (real) symmetric positive semidefinite n×n matrices,

the positive semidefinite cone

intr Sn
+ interior of convex cone comprising all (real) symmetric positive semidefinite n×n

matrices; id est, positive definite matrices

Sn
+(ρ) = {X∈ Sn

+ | rankX ≥ ρ} (269) convex set of all positive semidefinite n×n
symmetric matrices whose rank equals or exceeds ρ

EDMN cone of N×N Euclidean distance matrices in the symmetric hollow subspace
√

EDMN nonconvex cone of N×N Euclidean absolute distance matrices in the symmetric
hollow subspace (§6.3)

Sn
0

subspace comprising all symmetric n×n matrices having all zeros in first row and
column (2233) (§5.4.2.1)

Sn
h subspace comprising all symmetric hollow n×n matrices (0 main diagonal), the

symmetric hollow subspace (69)

Sn⊥
h orthogonal complement of Sn

h in Sn, the set of all diagonal matrices (70)

Sn
c subspace comprising all geometrically centered symmetric n×n matrices;

geometric center subspace SN
c = {Y ∈ SN | Y 1=0} (2229)

Sn⊥
c orthogonal complement of Sn

c in Sn (2231); translation-invariant subspace

Rm×n
c subspace comprising all geometrically centered m×n matrices (2228)

Rn×n
h subspace of symmetric [sic ] matrices having 0 main diagonal;

a.k.a, real hollow subspace (66)

Rn×n⊥
h subspace of antisymmetric antihollow matrices (67)

X⊥ basisN (XT) (§2.13.10, §E.3.4)

x⊥ N (xT) ; {y∈Rn | xTy = 0} (§2.13.11.1.1)

‖ parallel as in A‖B meaning A is parallel to or a translation of B (and vice versa)

⊥ as in A⊥B meaning A is orthogonal to or perpendicular to B (and vice versa)
where A and B are sets, vectors, or matrices. When A and B are vectors (35) (36)
(or matrices (40) under Frobenius’ norm),
A ⊥ B ⇔ 〈A ,B〉= 0 ⇔ ‖A + B‖2 = ‖A‖2 + ‖B‖2

R(P )⊥ N (PT) ; orthogonal complement of R(P ) (fundamental subspace relations (141))

N (P )⊥ R(PT)

R⊥ = {y∈Rn | 〈x, y〉=0 ∀x∈R} (381).
Orthogonal complement of R in Rn when R is a subspace

K⊥ normal cone (458)

A⊥ normal cone to affine subset A (§3.1.1.2.2)
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K cone

K∗ dual cone −K◦

K◦ polar cone −K∗

D◦ polar variable D

360◦ angular degree; e.g, 360◦⇔ 2π radians

KM+ monotone nonnegative cone

KM monotone cone

Kλ spectral cone

K∗
λδ cone of majorization

H halfspace

H− halfspace described using an outward-normal (110) to the hyperplane partially
bounding it

H+ halfspace described using an inward-normal (111) to the hyperplane partially
bounding it

∂H hyperplane; id est, partial boundary of halfspace

∂H supporting hyperplane

∂H− a supporting hyperplane having outward-normal with respect to set it supports

∂H+ a supporting hyperplane having inward-normal with respect to set it supports

∂ partial derivative or partial differential or matrix of distance-square squared (1514)
or boundary of set K as in ∂K (18) (25)

d derivative or differential
√

dij (absolute) distance scalar

dij distance-square scalar, EDM entry

d vector of distance-square

dij lower bound on distance-square dij

dij upper bound on distance-square dij

AB closed line segment between points A and B

AB matrix multiplication of A and B

C closure of set C

x(n) discrete time average

g′ first derivative of possibly multidimensional function with respect to real argument

g′′ second derivative with respect to real argument
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→Y

dg first directional derivative of possibly multidimensional function g in direction
Y∈RK×L (maintains dimensions of g)

→Y

dg2 second directional derivative of g in direction Y

∇ gradient from calculus, ∇f is shorthand for ∇xf(x). ∇f(y) means ∇yf(y)
or gradient ∇xf(y) of f(x) with respect to x evaluated at y

∇2 second-order gradient

∆ difference or discrete differential or distance scalar (Figure 28) or first-order
difference matrix (902) or infinitesimal difference operator (§D.1.4)

△ijk triangle made by vertices i , j , and k

v̈ coefficient vector for two spectral factors, Figure 181 level 2

...
v coefficient vector corresponding to four spectral factors, Figure 181 level 3

....
v vector containing numerator or denominator coefficients of eight spectral factors;

level 4 in a bifurcation tree like Figure 181

CPU central processing unit

3D three-dimensional or three dimensions

DC direct current (0 Hz)

DCT discrete cosine transform

DFT discrete Fourier transform F (889), IDFT represents inverse DFT

FFT fast Fourier transform, a numerical method for efficient calculation of DFT

DSP digital signal processing

D/A or DAC digital to analog converter

A/D or ADC analog to digital converter

DUT device under test

dB decibel, unit of measurement for ratio r : 20 log10(r)dB = 10 log10(r
2)dB

dBFS FS connotes w.r.t full scale.
0dBFS is highest digital signal level achievable before clipping

Fs =1/T , sample rate in Hz

T sample period or matrix or operator

T matrix transpose or linear operator adjoint

Hz hertz (cycles per second), kHz means kilohertz, MHz megahertz, GHz gigahertz

EDM Euclidean distance matrix

PSD positive semidefinite

SDP semidefinite program
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SOCP second-order cone program

LP linear program

QUBO quadratic unconstrained binary optimization

PCA principal component analysis

SVD singular value decomposition

PPM parts per million

snr signal to noise ratio

thd+n total harmonic distortion plus noise = (n+d)/s (pure signal)

imd+n (total) intermodulation distortion plus noise = (n+d)/s (normalized pure signal)

RMS root mean square

RC resistor capacitor

USA United States of America

in function f in x means x as argument to f
or x in C means element x is a member of set C

on function f(x) on A means A is dom f
or relation ¹ on A means A is set whose elements are subject to ¹
or projection of x on A means A is body on which projection is made
or operating on vector identifies argument type to f as “vector”

over function f(x) over C means f evaluated at each and every element of set C

one-to-one injective map or unique correspondence between sets

onto function f(x) maps onto M means f over its domain is a surjection w.r.t M

injection f that is one-to-one

surjection f that is onto

bijection f that is one-to-one and onto

orthant generalization of two-dimensional quadrant x to higher dimension

orthogonality generalization of two-dimensional perpendicularity ⊥ to higher dimension

decomposition orthonormal (2130, p.588), biorthogonal (2102, p.583)

expansion orthogonal (2140, p.590), biorthogonal (413, p.149)

vector column vector in Rn ; identifiable by Cartesian coordinates of point at its head

entry scalar element or real variable constituting a vector or matrix

cubix member of RM×N×L

quartix member of RM×N×L×K

feasible as in feasible solution, means satisfies the (“subject to”) constraints of an
optimization problem, may or may not be optimal
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feasible set most simply, the set of all variable values satisfying all constraints of an optimization
problem

active set an inequality constraint is termed active when it is met with equality; the set of all
active constraints

solution set most simply, the set of all optimal solutions to an optimization problem; a subset of
the feasible set and not necessarily a single point

set collection of elements in which order and multiplicity are ignored.
A set member is called element [449]

list ordered set retaining multiplicity

optimal as in optimal solution, means a solution to an optimization problem. An optimal
solution is not necessarily unique, but there is no better solution. optimal ⇒ feasible

optimum optimal value, usually the objective. Can be unique

same as in same problem, means optimal solution set for one problem is identical to optimal
solution set of another (without transformation)

equivalent as in equivalent problem, means optimal solution to one problem can be derived from
optimal solution to another via suitable transformation

convex as in convex problem, essentially means a convex objective function optimized over
a convex set (§4)

objective the three objectives of Optimization are minimize (not min), maximize (not max),
and find

program Semidefinite program is any convex minimization, maximization, or feasibility
problem constraining a variable to a subset of a positive semidefinite cone.
Prototypical semidefinite program conventionally means: a semidefinite program
having linear objective, affine equality constraints, but no inequality constraints
except for cone membership. (§4.1.1)
Linear program is any feasibility problem, or minimization or maximization of a
linear objective, constraining the variable to some polyhedron. (§2.13.1.1.2)
Prototypical linear program conventionally means: a linear program having linear
objective, affine equality constraints, but no inequality constraints except for
membership to a nonnegative orthant. (§4.1)

natural order with reference to stacking columns in a vectorization means a vector made from
superposing column 1 on top of column 2 then superposing the result on column 3
and so on; as in a vector made from entries of the main diagonal δ(A) means taken
from left to right and top to bottom

partial order relation ¹ is a partial order, on a set, if it possesses reflexivity, antisymmetry, and
transitivity (§2.7.2.2)

operator mapping to a vector space (a multidimensional function)

projector short for projection operator ; not necessarily minimum-distance nor representable
by matrix

sparsity ratio of number of nonzero entries to matrix-dimension product
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tight with reference to a bound means a bound that can be met,
with reference to an inequality means equality is achievable

trivial with reference to 0 matrix, function, solution, or {0} subspace

∅ empty set, an implicit member of every set

0 real zero

0 origin or vector or matrix of real zeros

O sort-index matrix

O order of magnitude or polynomial order or computational intensity :
O(N ) is first-order, O(N 2) is second-, and so on

1 real one

1 vector of real ones. 1= δ2(1) , δ(1)= I

1m 1 ∈ Rm

ei vector whose ith entry is 1 (otherwise 0);
ith member of the standard basis for Rm (63)

I Roman numeral one or capital i

I Identity operator or matrix I = δ2(I ) , δ(I )=1

Im I ∈ Sm

I index set, a discrete set of indices

max maximum [234, §0.1.1] or largest element of a totally ordered set

maximal characterizes a maximum that is, somehow, not necessarily unique; id est,
maximum ; unique maximum

maximize
x

find maximum of objective function w.r.t independent variables x .
Subscript x ← x∈C may hold implicit constraints if context clear;
e.g, semidefiniteness

arg argument of operator or function, or variable of optimization

supX supremum of totally ordered set X , least upper bound, may or may not belong to
set [234, §0.1.1]; e.g, range X of real function

arg sup f(x) argument x at supremum of function f ; not necessarily unique or a member of
function domain

subject to specifies constraints of an optimization problem; generally, inequalities and affine
equalities. Subject to implies: anything not an independent variable is constant, an
assignment, or substitution

min minimum [234, §0.1.1] or smallest element of a totally ordered set

minimal describes a minimum that is, in some sense, not necessarily unique; id est,
minimum ; unique minimum
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minimize
x

find objective function minimum w.r.t independent variables x .
Subscript x ← x∈C may hold implicit constraints if context clear;
e.g, semidefiniteness

find
x

find any feasible solution, specified by the (“subject to”) constraints, w.r.t independent
variables x . Subscript x ← x∈C may hold implicit constraints if context clear;
e.g, semidefiniteness. “find” denotes a feasibility problem; it is the third objective of
Optimization

inf X infimum of totally ordered set X , greatest lower bound, may or may not belong to
set [234, §0.1.1]; e.g, range X of real function

arg inf f(x) argument x at infimum of function f ; not necessarily unique or a member of
function domain

iff if and only if , necessary and sufficient ; also the meaning indiscriminately attached
to appearance of the word “if ” in the statement of a mathematical definition,
[152, p.106] [299, p.4] an esoteric practice worthy of abolition because of ambiguity
thus conferred

rel relative

intr interior

lim limit

sgn signum function or sign; for x∈Rn, sgn(x) =

[{

xi/|xi| , xi 6= 0
0 , xi = 0

]

round round to nearest integer

mod modulus function

tr matrix trace

rank as in rankA , rank of matrix A ; dimR(A) (143)

dim dimension, dim Rn = n , dim Rm×n = m×n
dim(x∈Rn) = n , dimR(x∈Rn) = 1
dim(A∈Rm×n) = m×n , dimR(A∈Rm×n) = rankA

aff affine hull

dim aff affine dimension r

card cardinality, number of nonzero entries cardx , ‖x‖0

or N is cardinality of list X∈ Rn×N (p.255)

conv convex hull (§2.3.2)

cone conic hull (§2.3.3)

cenv convex envelope (§7.2.2.1)

content of high-dimensional bounded polyhedron, volume in R3, area in R2, and so on

cof matrix of cofactors corresponding to matrix argument

dist absolute distance between point or set arguments; e.g, dist(x , B)
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vec columnar vectorization of m×n matrix,
Euclidean dimension mn (39)

svec columnar vectorization of symmetric n×n matrix,
Euclidean dimension n(n + 1)/2 (59)

dvec columnar vectorization of symmetric hollow n×n matrix,
Euclidean dimension n(n − 1)/2 (76)

Á(x, y) complex sinusoid phase or angle between vectors x and y
or dihedral angle between affine subsets

ÁR angle induced by rotation matrix R (1099) or phase of transfer function R

º generalized inequality, membership to pointed closed convex cone; e.g, Aº 0 means:

• vector or matrix A must be expressible in a biorthogonal expansion having
nonnegative coordinates with respect to extreme directions of some implicit
pointed closed convex cone K (§2.13.2.0.1, §2.13.8.1.1),

• or comparison to the origin with respect to some implicit pointed closed convex
cone (2.7.2.2),

• or (when K= Sn
+) matrix A belongs to the positive semidefinite cone of

symmetric matrices (nonnegative eigenvalues, §2.9.0.1),

• or (when K= Rn
+) vector A belongs to the nonnegative orthant (each vector

entry is nonnegative, §2.3.1.1)

º
K

as in x º
K

z means x − z ∈ K (189)

≻ strict generalized inequality, membership to cone interior; A≻ 0 means:

• vector or matrix A must be expressible in a biorthogonal expansion having
positive coordinates with respect to extreme directions of some implicit pointed
closed convex cone K (§2.13.2.0.1, §2.13.8.1.1),

• or comparison to the origin with respect to the interior of some implicit pointed
closed convex cone (2.7.2.2),

• or (when K= Sn
+) matrix A belongs to the interior of the positive semidefinite

cone of symmetric matrices (positive eigenvalues, §2.9.0.1),

• or (when K= Rn
+) vector A belongs to the interior of the nonnegative orthant

(each vector entry is positive, §2.3.1.1)

⊁ not positive definite

≥ scalar inequality, total order, greater than or equal to; comparison of scalars,
or entrywise comparison of vectors or matrices with respect to R+

nonnegative for a∈Rn, a º 0 ; id est, nonnegative entries when w.r.t nonnegative orthant;
coefficients of vector on boundary of or interior to pointed closed convex cone K

> greater than

positive for a∈Rn, a ≻ 0 ; id est, positive (nonzero) entries when w.r.t nonnegative orthant;
coefficients to no vector on boundary of pointed closed convex cone K

⌊ ⌋ floor function, ⌊x⌋ is greatest integer not exceeding x
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⌊

¸
⌋

download button

| | entrywise absolute value of scalars, vectors, and matrices

log natural (or Napierian) logarithm

det matrix determinant

‖x‖ =

√

n
∑

j=1

|xj |2 Euclidean norm or vector 2-norm ‖x‖2 (§3.2)

‖x‖2
2 = xTx = 〈x , x〉 Euclidean norm square ‖x‖2 (§3.1.1.1)

‖x‖
ℓ

= ℓ

√

n
∑

j=1

|xj |ℓ vector ℓ-norm, convex for ℓ ≥ 1.

nonconvex (not a norm) for 0 < ℓ < 1 (§3.2)

‖x‖0 = cardx “0-norm” or cardinality of vector x (§4.6.1)

‖x‖1 = 1T|x| 1-norm, dual infinity-norm (§3.2)

‖x‖∞ = max{|xj | ∀ j} infinity-norm (§3.2)

‖x‖n
k

=
k
∑

i=1

π(|x|)i k-largest norm (§3.2.2.1)

‖X‖2 = sup
‖a‖=1

‖Xa‖2 = σ1 =
√

λ(XTX)1 matrix 2-norm or spectral norm, (607)

largest singular value [189, p.56]. For x a vector: ‖δ(x)‖2 = ‖x‖∞ .

‖Xa‖2 ≤ ‖X‖2‖a‖2 (2331)

‖X‖∗2 = 1Tσ(X) nuclear norm, dual spectral norm (§C.2)

‖X‖ =
√

∑

i, j

X 2
ij Frobenius’ matrix norm ‖X‖F (§2.2.1)
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[135] Ivan Dokmanić, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. Euclidean distance matrices: A
short walk through theory, algorithms and applications, February 2015.
https://www.convexoptimization.com/TOOLS/EDMapplications.pdf
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[204] Rémi Gribonval and Morten Nielsen. Highly sparse representations from dictionaries are unique
and independent of the sparseness measure. Applied and Computational Harmonic Analysis,
22(3):335–355, May 2007.
https://www.convexoptimization.com/TOOLS/R-2003-16.pdf

[205] Karolos M. Grigoriadis and Eric B. Beran. Alternating projection algorithms for linear matrix
inequalities problems with rank constraints. In Laurent El Ghaoui and Silviu-Iulian Niculescu,
editors, Advances in Linear Matrix Inequality Methods in Control, chapter 13, pages 251–267.
SIAM, 2000.

[206] Peter Gritzmann and Victor Klee. On the complexity of some basic problems in computational
convexity: II. Volume and mixed volumes. Technical Report TR:94-31, DIMACS, Rutgers
University, 1994.
http://dimacs.rutgers.edu/TechnicalReports/TechReports/1994/94-31.ps

https://www.convexoptimization.com/TOOLS/maxcut-jacm.pdf
https://www.convexoptimization.com/TOOLS/GolubKahan.pdf
https://www.convexoptimization.com/TOOLS/MatrixComp.pdf
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.409
https://www.convexoptimization.com/TOOLS/focuss.pdf
https://www.convexoptimization.com/TOOLS/GOWER1968.pdf
https://www.convexoptimization.com/TOOLS/Gower2.pdf
https://www.convexoptimization.com/TOOLS/Gower1.pdf
http://cvxr.com
http://cvxr.com/cvx/doc/CVX.pdf
https://www-ee.stanford.edu/~gray/toeplitz.pdf
http://people.math.aau.dk/~mnielsen/reprints/sparse_unions.pdf
https://www.convexoptimization.com/TOOLS/R-2003-16.pdf
http://dimacs.rutgers.edu/TechnicalReports/TechReports/1994/94-31.ps


BIBLIOGRAPHY 659

[207] Peter Gritzmann and Victor Klee. On the complexity of some basic problems in computational
convexity: II. Volume and mixed volumes. In T. Bisztriczky, P. McMullen, R. Schneider, and
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[209] Osman Güler and Yinyu Ye. Convergence behavior of interior-point algorithms. Mathematical
Programming, 60(2):215–228, 1993.

[210] P. R. Halmos. Positive approximants of operators. Indiana University Mathematics Journal,
21:951–960, 1972.

[211] Shih-Ping Han. A successive projection method. Mathematical Programming, 40:1–14, 1988.

[212] Godfrey H. Hardy, John E. Littlewood, and George Pólya. Inequalities. Cambridge University Press,
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[378] Nevena Jakovčević Stor, Ivan Slapničar, and Jesse L. Barlow. Accurate eigenvalue decomposition
of real symmetric arrowhead matrices and applications. Linear Algebra and its Applications,
464:62–89, January 2015.
https://arxiv.org/abs/1302.7203

[379] Gilbert Strang. Linear Algebra and its Applications. Harcourt Brace, third edition, 1988.

[380] Gilbert Strang. Calculus. Wellesley-Cambridge Press, 1992.

[381] Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, second edition, 1998.

[382] Gilbert Strang. Course 18.06: Linear algebra, 2004.
https://web.mit.edu/18.06/www/Course-Info/Tcodes.html
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inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry.
Journal of Molecular Biology, 182:295–315, 1985.

https://www.convexoptimization.com/wikimization/index.php/Projection_on_Polyhedral_Cone#Fast_projection_on_monotone_nonnegative_cone
https://www.convexoptimization.com/wikimization/index.php/Fermat_point
https://www.convexoptimization.com/wikimization/index.php/Filter_design_by_convex_iteration
https://www.convexoptimization.com/wikimization/index.php/Complementarity_problem#Fixed_point_problems
https://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry#High-order_polynomials
https://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry#Map_of_the_USA
https://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry
https://www.convexoptimization.com/wikimization/index.php/Projection_on_Polyhedral_Cone#Projection_on_simplicial_cones
http://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry#Rank_reduction_subroutine.2C_RRf.28.29
https://www.convexoptimization.com/wikimization/index.php/Sampling_Sparsity
https://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry#Signal_dropout_problem
https://www.convexoptimization.com/wikimization/index.php/Cleve's_Cubicle
https://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry#Singular_Value_Decomposition_.28SVD.29_by_rank-1_transformation
https://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry#Sturm_.26_Zhang.27s_procedure_for_constructing_dyad-decomposition
https://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry#isedm.28.29
https://www.convexoptimization.com/TOOLS/CSCam-ICIP06.pdf
https://www.youtube.com/watch?v=UV_RlCAc5Zs
http://www.cs.ucsd.edu/~saul/papers/sde_cvpr04.pdf
http://mathworld.wolfram.com
https://www.convexoptimization.com/TOOLS/White.pdf


[455] Willie W. Wong. Cayley-Menger determinant and generalized N-dimensional Pythagorean theorem,
November 2003. Application of Linear Algebra: Notes on Talk given to Princeton U. Math Club.
https://www.convexoptimization.com/TOOLS/gp-r.pdf

[456] William Wooton, Edwin F. Beckenbach, and Frank J. Fleming. Modern Analytic Geometry.
Houghton Mifflin, 1975.

[457] Margaret H. Wright. The Interior-Point Revolution in Optimization: History, Recent Developments,
and Lasting Consequences. Bulletin of the American Mathematical Society, 42(1):39–56, January
2005.

[458] Stephen J. Wright. Primal-Dual Interior-Point Methods. SIAM, 1997.

[459] Shao-Po Wu. max-det Programming with Applications in Magnitude Filter Design. A dissertation
submitted to the department of Electrical Engineering, Stanford University, December 1997.

[460] Shao-Po Wu and Stephen Boyd. sdpsol: A parser/solver for semidefinite programming and
determinant maximization problems with matrix structure, May 1996.
https://web.stanford.edu/%7Eboyd/old software/SDPSOL.html

[461] Shao-Po Wu and Stephen Boyd. sdpsol: A parser/solver for semidefinite programs with matrix
structure. In Laurent El Ghaoui and Silviu-Iulian Niculescu, editors, Advances in Linear Matrix
Inequality Methods in Control, chapter 4, pages 79–91. SIAM, 2000.
https://web.stanford.edu/%7Eboyd/papers/sdpsol.html

[462] Shao-Po Wu, Stephen Boyd, and Lieven Vandenberghe. FIR filter design via spectral factorization
and convex optimization. In Biswa Nath Datta, editor, Applied and Computational Control,
Signals, and Circuits, volume 1, chapter 5, pages 215–246. Birkhäuser, 1998.
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ψ , 236, 516, 638
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Précis, 369
reduction, 400
spectral projection, 468

face, 76
hull, see hull
independence, see independence
interior, 34
intersection, 70, 592
map, see transformation
membership relation, 174
normal cone, 158
set, 33, 50
subset, 33, 58

hyperplane intersection, 70
independence, 64, 70, 71
nullspace basis span, 70
parallel, 33
projector, 583, 591
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constraint, 338, 339, 341, 354
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matrix, 357
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filter, 474–477, 479, 480
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op amp, 474, 475
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boundary, 39
Euclidean, 34, 175, 177, 178, 342, 615
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∞-norm, 175–178
norm, 175–178
nuclear norm, 55–57, 543
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spectral norm, 58, 617

Barker & Carlson, 114
barrier, see interior-point
Barvinok, 31, 90, 110, 112, 114, 223, 224, 234, 235,

238–240, 339, 341, 342, 351, 627
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basis, 48, 149, 639
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Schur-form, 506
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Bauschke, 623
bees, 27, 342
Bellman & Fan, 219
Ben-Israel, 69, 134, 226, 618
Bessel, 589
bijection, 643, see bijective
bijective, 42, 44, 46, 94, 145, 643

Gram-form, 363, 364
inner-product form, 365, 366
invertible, 44, 580
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isometry, 45, 394
linear, 43, 45, 47, 49, 112
orthogonal, 45, 394, 453, 534, 550

− B − continued, 177
binary

distance matrix, 207
program, see program
search, 211, 477, 478

binomial, see coefficient
biorthogonal

decomposition, 583, 590
expansion, see expansion

biorthogonality, 147, 149
condition, 145, 510, 526

Birkhoff, 57
bisection method, 211, 477, 478
Biswas

Pratik, 251, 262, 354
Suddhendu, 523

blades, 127
Blu, 288
Blumenthal, 330
Boone, 597
Borg & Groenen, 24, 392
Borwein, 74, 84, 607, 623
bound

greatest
lower, 227, 553, 646
upper, 222, 339, 451

least
lower, 267, 348, 446, 451, 452
upper, 645

polyhedral, 406
boundary, 34, 35, 39, 53, 76, 641

0 , 82, 85
extreme, 88
of affine, 33, 39
of cone, 85, 143–145

EDM, 404, 406, 410, 416
membership, 138, 227
membership relation, 132, 138, 227
over PSD, 143
polyhedral, 145
PSD, 35, 91, 96, 107–109, 227, 420
ray, 85

of convex set, 39
of ellipsoid, 39, 274, 275
of halfspace, 60
of hypercube slice, 295
of open set, 35
of point, 39
of ray, 77
-point, 78
relative, 34, 35, 39, 53, 76

bounded, 51
bowl, 196, 201, 563, 564
box, 67, 616, see also hypercube
Boyd, 457, 461
bridge, 354, 375, 427, 446, 458
Bronstein, 24
Brooks, 597
Bunt, 109, 607

− C − , 31

calculus
matrix, 555
of inequalities, 7
of variations, 135

Cambini, 213
Carathéodory’s theorem, 131, 602
card , 646
cardinality, 263, 334, 646, 648

1-norm heuristic, 265, 460
-1 , 177, 178, 269, 270
constraint, see constraint
convex

envelope, see convex
iteration, see convex

geometry, 178, 180, 270
minimization, see minimization
monotonicity, 199
quasiconcavity, 182, 199, 263
reduction, see minimization
regularization, 286, 486

Carlson, 114
Cartesian

axes, 33, 52, 65, 80, 86, 121, 126, 265, 616
cone, see orthant
coordinates, 391, 643
product, 40, 224, 626, 639

cone, 81, 82, 129
function, 174

subspace, 265, 616
cartography, 26, 390–392

stellar, 19, 355, 395
Cauchy-Schwarz, 71, 623
Cayley-Menger

determinant, 398, 400
form, 370, 384, 451, 468

cellular, 353
telephone network, 352

center
geometric, 337, 340, 358, 389, 639
gravity, 358
mass, 358

central path, 224
certificate, 169, 226, 227, 244, 304, 324

null, 132, 139
Chabrillac & Crouzeix, 422
chain rule, 560

two argument, 560
Chu, 7
c.i, 111–114, 635
circle

antenna, 22
conic section, 102–104
Fantope, 54
Fermat point, 340
hyperplane, 62
intersection, 277, 280, 345, 346
Optimization, 541
projection on, 615
pyramid, 400
quarter, 76, 535
singular value decomposition, 514, 515
unit, 484

clipping, 7, 183, 444, 615, 616, 637
closed, see set
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− C − continued, 31
coefficient

binomial, 181, 271, 637
projection, 46, 419, 421, 504, 587, 600–603

nonorthogonal, 147, 599, 600
cofactor, 399
combinatorial, see problem
compaction, 251, 262, 338, 341, 424, 461
comparable, 84, 146
complement

algebraic, 77, 79, 122, 159, 586, 589, 635
projection on, 586, 612
projector, 587

halfspace, 58
orthogonal, 46, 69, 245, 586, 589, 636, 640

cone, dual, 122, 125, 126, 612
cone, normal, 158
projection on, 612
vector, 640

relative, 74, 636
complementarity, 159, 176, 264

linear, 162
maximal, 219, 224, 239
problem, 162

linear, 162
semidefinite, 219, 229, 244
strict, 229

complementary
affine dimension, 435
dimension, 69
eigenvalues, 586
halfspace, 61
inertia, 385, 505, 506
slackness, 229
subspace, see complement

complexity, see computational intensity
compressed sensing, 175, 177–180, 182, 234, 266,

267, 273, 274, 287–289, 294, 318
formula, 267, 288
nonnegative, 179, 180, 267–272
Procrustes, 278
prototypical, 268

compression, signal, 318
compressive sampling, see compressed sensing
computational intensity

alternating projection, 630
O , 645
presolver, 271
rank reduction, 235
SDP, 219, 250, 262

concave, 171, 172, see also function
condition

biorthogonality, 145, 510, 526
convexity, 201

first-order, 201, 204, 206, 208
second-order, 205, 209, 210

Moore-Penrose, 579, 581
necessary, 636
optimality, see optimality
orthogonality, 587
orthonormality, 148, 149, 588
sufficient, 636

cone, 58, 77, 81, 641, 646
∅ , 77

0 , 82, 85, see cone, origin
algebra, 130
blade, 127
boundary, see boundary
Cartesian, see orthant

product, 81, 82, 129
circular, 37, 81, 92, 102–105, 183, 439

axis, 102–104
Lorentz, see cone, Lorentz
right, 102

closed, see set, closed
convex, 58, 77, 81, 82, 87

subsets, 108
difference, 40, 130
dimension, 111
dual, 122–128, 136, 151–157, 163–166, 641

Cartesian product, 129
construction, 123, 124
convex, 122
dual, 129, 136
facet, 145, 166
formula, 136, 151–157, 165
full-dimensional, 130
halfspace-description, 122, 123, 136, 137
in subspace, 130, 132, 149, 152, 153
intersection, 130
of intersection, 130
of nonsimplicial, 163
origin, 125
orthogonal complement, 122, 125, 126, 612
pointed, 119, 130
product, Cartesian, 129
proper, 130
property, 128
self-, 132, 141, 142
spectral, 386, 387
unique, 122, 145
vertex-description, 151, 163–166√

EDM , 405, 407, 456
EDM, 334, 403–405, 423

angle, 101
axis, 101, 382, 405, 411, 412
boundary, 404, 406, 410, 416
circular, 102
construction, 411
convexity, 407
decomposition, 436
dual, 429, 430, 434, 437–440
equality, 26, 403, 431, 438
extreme direction, 413
face, 412, 414
interior, 404, 410
one-dimensional, 88, 406, 420, 429
origin, 406, 429
polar, 418, 436, 437, 467, 468
positive semidefinite, 414, 420, 431

face, 85–87
intersection, 138
pointed, 82
PSD, 116
smallest, 82, 138–140, 180, 271, 273
smallest, EDM, 412
smallest, generators, 139, 140, 271
smallest, PSD, 97–100, 110, 419, 431, 438
smallest, subspace, 98
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− cone − continued, 77
facet, 145, 166
full-dimensional, 77, 86, 119, 125, 128, 140,

141, 145, 150, 155
dual, 130

halfline, 77, 81, 82, 87, 88, 112, 119
halfspace, see halfspace
hull, 88, 101, 130
ice cream, see cone, circular
interior, see interior
intersection, 82

dual of, 130
of dual, 130
pointed, 82

invariance, see invariance
line, 82, 119, 130
Lorentz, 81, 82, 85

circular, 81, 103, 105, 183
dual, 125, 141
extended, 81, 617
face, 116
polyhedral, 117, 125

majorization, 494
membership, see membership relation
monotone, 155–157, 385, 470, 552, 616

nonnegative, 153–155, 386, 387, 391, 393,
394, 451, 452, 470, 494, 616

negative, 146, 593
nonconvex, 77–80
nonpointed, 82, 87, 145

c.i, 111
dual, 130
EDM, dual, 429
monotone, 155, 156, 385
polyhedral, 86, 114, 115, 119, 128
spectral, 386, 387

nonsimplicial, 112, 113, 163, 165–167
normal, 158–163, 174, 416, 608, 613, 620, 630,

640
affine, 158
elliptope, 161
membership relation, 158
origin, 159
orthant, 159
orthogonal complement, 158
translated, 620, 630, 631

one-dimensional, 77, 81, 82, 85, 112, 117, 119
EDM, 88, 406, 420, 429
PSD, 87

origin, 58, 77, 81, 82, 85, 112, 117
dual, 125
EDM, 406, 429
normal, 159
pointed, 87, 119

orthant, see orthant
pointed, 82–87, 119, 131, 144, 147, 157

closed convex, 82–85, 114, 117
dual, 119, 130
face, 82
intersection, 82
nonconvex, 82
nullspace, 119
origin, 87, 119
polyhedral, 86, 119, 128, 144

polar, 77, 122, 416, 467, 610–613, 616, 641
EDM, 418, 436, 437, 467, 468
positive semidefinite, 433, 437

polyhedral, 58, 112–120
dual, 113, 130, 132, 136, 142, 144, 145
equilateral, 142
face, 115, see cone
facet, 145, 166
halfspace-description, 116
majorization, 470
nonpointed, 86, 114, 115, 119, 128
pointed, 86, 119, 128, 144
proper, 113
vertex-description, 58, 119, 132, 144

positive semidefinite, 37, 90–92, 433
angle, 101
axis, 102
boundary, 35, 91, 96, 107–109, 227, 420
circular, 92, 102–105, 183
convex subsets, 108
dimension, 97
dual, 141, 153
EDM, 414, 420, 431
equality, 26, 403, 431
extreme direction, 87, 92, 101
face, see cone, face
hyperplane, supporting, 97, 98
inscription, 106
interior, 90, 226
inverse image, 93, 144, 190, 191, 209, 215,

224
one-dimensional, 87
optimization, 223
polar, 433, 437
polyhedral, 105
rank, 97–100, 108, 220, 502
visualization, 221

product, Cartesian, 81, 82, 129
proper, 85

dual, 130
nonsimplicial, 163
polyhedral, 113

quadratic, 81, 183
ray, 77, 81, 82, 112, 119

EDM, 88
positive semidefinite, 87

recession, 125
rotated, 183

EDM, 439
Lorentz, 105, 183
orthant, 120, 142, 148
positive semidefinite, 105

second-order, see cone, Lorentz
selfdual, see cone, dual
shrouded, 142, 440
simplicial, 59, 112, 120, 121, 146, 616

decomposition, 164, 165, 400
dual, 130, 146, 152

spectral, 384–386, 450, 638, 641
dual, 386, 387
orthant, 452

subspace, 81, 117, 119
sum, 81, 130
supporting hyperplane, see hyperplane
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− cone − continued, 77
tangent, 416
transformation, see transformation
two-dimensional, 112
union, 77, 79, 130, 164
unique, 90, 122, 404
vertex, 82

none, 82, 86, 87, 114, 115, 119, 128

− C − continued, 31
congruence, 361, 635

transformation, see transformation
conic

combination, 58, 77, 118
constraint, 159, 162, 163, 183
coordinates, 122, 149, 151, 167–169

inversion, 168
hull, see hull
independence, see independence
problem, 127, 159, 162, 163, 174, 218

dual, 127, 218
section, 102

circular cone, 104
conjugate

complex, 291, 494, 518, 519, 533, 603, 633, 637
convex, 129, 131, 132, 136, 145, 152, 158
function, 460, 637
gradient, 294

conservation of dimension, 69, 368, 517, 518, 529
constellation, 19, 21, 355
constraint

active, see constraint, inequality
angle, 338, 339, 341, 354
binary, 230, 281, 314
cardinality, 263–267, 273, 274, 293

full-rank, 234
nonnegative, 179, 182, 263–272
projection on PSD cone, 286
rank-1 , 286

conic, 159, 162, 163, 183
equality, 135, 163

affine, 217
Gram, 338, 339, 341, 354
inequality, 162, 217, 240

active, 140, 240, 644
log, 194, 195
nonnegative, 57, 71, 72, 162, 176–180, 218, 274
norm, 193, 274, 277, 278, 280, 282, 516, 597,

598
Frobenius, 193
spectral, 58

orthogonal, 323–326, 355, see Procrustes
orthonormal, 276, 324–326
permutation, see polyhedron, permutation
polynomial, 183, 185, 279, 280, 506
quadratic, 220, 279

convex, 193
nonconvex, 194

qualification, see Slater
quasiconvex, 217
rank, 243–247, 276, 279, 280, 320, 322, 462,

468
cardinality, 286
eigenvalue decomposition, 616

indefinite, 318
projection on matrices, 616
projection on PSD cone, 196, 286, 450, 454,

544, 616
singular value decomposition, 616
wide matrix, 318

Schur-form, 58
singular value, 58
sort, 393
tractable, 217

content, 399, 646
contour plot, 159, 202
contraction, 58, 162, 294, 296
control theory, 186, 471, 629
convergence, 247, 394, 619

geometric, 620
measure, 232

convex, 7, 19, 31, 171, 173, 644
combination, 31, 58, 118
envelope, 459, 460

bilinear, 214
cardinality, 233, 460
rank, 257, 351, 459, 460

form, 8, 217
geometry, 31

fundamental, 60, 65, 68, 329, 337
hull, see hull
iteration

accelerant, 326
cardinality, 263–268, 273, 274
cardinality-1 , 269, 270
convergence, 247
indefinite, 318
optimality, 244, 247, 264, 324
optimality, local, 247, 265, 268, 274, 324
orthogonal matrix, 323, 355
orthonormal matrix, 276
rank, 243–247, 462
rank-1 , 276, 322–324, 471
singular value decomposition, 324–326
stall, 247, 265, 268, 275, 282, 321
wide matrix, 318

log-, 215
optimization, 7, 19, 173, 217, 345

art, 8, 234, 250, 472
fundamental, 217
solution set, 173, 321

polyhedron, see polyhedron
problem, see problem
program, see problem
quadratic, see function
strictly, see function, convex

convexity, 171, 183
condition

first-order, 201, 204, 206, 208
second-order, 205, 209, 210

eigenvalue, 375, 503, 544
K- , 172
log , 215
norm, 58, 172, 173, 175–178, 194, 200, 542,

648
of difference, 334

projector, 586, 589, 607, 608
property, 215
strict, see function, convex
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− C − continued, 31
coordinates, conic, see conic
cosine, 42, see trigonometry
CPU, 642
Crippen & Havel, 354
Critchley, 364, 467
criterion

EDM, 337, 338, 418, 422
dual, 434

Finsler, 422
metric versus matrix, 370
Schoenberg, 25, 26, 337, 338, 384, 404, 415,

418, 435, 438–441, 603
Crouzeix, 422
cubix, 556, 558, 643
curvature, 205, 212
curve fit

linear, 288, 326, 327, 597, 598
rational polynomial, 476, 480

cvx, 261, 280, 316
cylinder, 55

− D − , 337
Dahl, 316, 317
Dantzig, 57, 218, 219
d’Aspremont, 92, 286
dB, 642
DC, 642
DCT, see discrete cosine transform
decomposition, 643

biorthogonal, 583, 590
completely PSD, 81, 248
dyad, 520
eigenvalue, see eigen
extreme direction, 102
factorization

nonnegative, 248
positive, 248
spectral, 481, 482

Moreau, 162, 612
nullspace, 61, 582
orthonormal, 588–590
simplicial, 164, 165, 400
singular value, see singular value

deconvolution, 288
definite, see matrix, positive
Definitions, 633
de Leeuw, 387, 447, 457, 463
Delsarte, 342
deprecation, 140, 270, 271
dereverberation, 20, 21
derivative, 196, 641

directional, 204, 561–568
dimension, 563, 570
gradient, 564
second, 564

discrete approximation, 570
gradient, 568
multivariate, 565
partial, 555, 561, 641
table, 570–577
trace, 210, 574

D’Errico, 509
descent

gradient, 196, 563
Newton, 196
steepest, 196, 563

description
conversion, 122
halfspace-, 59–61

of affine, 70
of dual cone, 122, 123, 136, 137
of polyhedral cone, 116
of polyhedron, 116
of subspace, 69

vertex-, 58, 59, 87
of affine, 70
of dual cone, 151, 163–166
of halfspace, 114, 115
of hyperplane, 63
of polyhedral cone, 58, 119, 132, 144
of polyhedron, 53, 118
of subspace, 69, 118
projection on affine, 596

determinant, 211, 396, 499, 508, 576
Cayley-Menger, 398, 400
inequality, 502
inverse, 211, 570
power, 570
product, 500

Kronecker, 493
Deutsch, 608, 615, 617, 620
Deza, 236, 418
DFT, see discrete Fourier transform
diag() , see δ
diagonal, 491–493, 501, 581, 637

δ , 491–493, 499, 501, 509, 581, 637
binary, 584
commutative, 500
diagonalization, 512
dominance, 107
inequality, 502
nonnegative, 501
orthogonal, 513
positive semidefinite, 501
pseudoinverse, 581
values

eigen, 509
singular, 513

zero, 517, 581
diagonalizable, 148, 509–511

rank, 499, 510
simultaneously, 98, 229, 499, 500, 519

diagonalization, 37, 74, 509, 510, 512, 616
diagonal matrix, 512
expansion by, 148
symmetric, 511

diamond, 178, 360
difference, 642

cone, 40, 130
of functions, 182, 194, 266
positive semidefinite, 110
set, 40, 130, 636
vector, 40, 130, 636

differentiable, see function
differential, 641

discrete, 642
Fréchet, 562
Gâteaux, 562
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partial, 641

− D − continued, 337
differentiation, numerical, 570
diffusion, 424
digital signal processing, see signal
dilation, 392
dimension, 33, 646

affine, see affine
complementary, 69
conservation, 69, 368, 517, 518, 529
domain, 45
embedding, 50
Euclidean, 639
face, 75

positive semidefinite cone, 97, 98
invariance, 45
nullspace, 69
Précis, 369
range, 45
rank, 69, 111, 368, 369, 646

Dirac, 288, 523
direction, 77, 86, 561

extreme, see extreme
gradient descent, 196, 563
matrix, 244–247, 257, 286, 343, 463

analytical, 245
existence, 244
Identity, 246, 318
interpretation, 245

Newton, 196
projection, 587, 590, 599, 600

nonorthogonal, 585, 586, 594, 599
parallel, 590, 591, 593, 594

steepest descent, 196, 563
vector, 244–247, 264–266

analytical, 265
existence, 244
Identity, 246, 318
interpretation, 264, 265, 460
optimality condition, 244, 264
unity, 265

disc, 53
discrete

cosine transform, 289, 486
derivative approximation, 570
differential, 642
Fourier transform, 45, 289, 290, 294, 634, 642

inverse, 290, 291
Laplace, 484
-time Fourier transform, 484

discretization, 136, 172, 205, 438
dissimilarity, 388
dist , 607, 621, 646
distance, 334, 621, 622

1-norm, 177, 178, 207, 208, 382
absolute, 330, 382
binary, 207
comparative, see distance, ordinal
Euclidean, 334, 355, 356
geometry, 19, 352
matrix, see EDM
maximization, 609
minimization, 587, 604
ordinal, 390–395

origin to affine, 63, 582, 595
1-norm, 177, 178
nonnegative, 179, 180, 269

property, 330
self, 330
-square, 334, 336
taxicab, see distance, 1-norm

distortion, 289, 318, 474
analysis, 473
intermodulation, 473
spatial, 47

Dokmanić, 20
Donoho, 318
doublet, see matrix
dropout problem, 485–489
dual

affine dimension, 435
dual, 129, 132, 136, 228, 231, 285
feasible set, 224
function, 127, 129, 227, 285
norm, 125, 542, 648
problem, 125–128, 168, 181, 218, 227, 230, 429

strong, 128, 129, 228, 285, 339, 550
via primal, 125, 127–129, 230

projection
on cone, 77, 122, 437, 467, 610–613
on convex set, 607, 609, 610
on EDM cone, 437, 467, 468
on subspace, 611, 612

variable, 125, 162, 163, 168, 637
duality, 127, 339

gap, 128, 129, 225, 228, 229, 285
strong, 127–129, 169, 186, 229
weak, 127, 227

Duensing, 289
Dulá, 597
dvec , 49, 393, 647
D:Wave, 312–316
dyad, see matrix
Dykstra, 620, 621, 630

algorithm, 619, 629–631

− E − , 376
earO, 479, 480
Ebert, 579
Eckart & Young, 27, 448, 450, 472, 544
edge, 75√

EDM , 407
EDM, 26, 329, 334, 441, 642

closest, 449
composition, 380–382, 405–407
construction, 409
criterion, 337, 338, 418, 422

dual, 434
definition, 334, 407

Gram-form, 336, 416
inner-product form, 355
interpoint angle, 336
relative-angle form, 357

dual, 434, 435
eigenvalue, 369, 383, 392, 408
exponential entry, 380–382, 422
graph, 332, 342, 346, 348, 349
indefinite, 383
invariance, see invariance
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membership relation, 438
nonnegative, 434
projection, 421
range, 410
rank, 369, 410
subgraph, 424, 425
test, numerical, 332, 337, 448
unique, 379, 389, 450

− E − continued, 376
eigen, 509

decomposition, 509–512
2 × 2 , 512
positive semidefinite, 515
Procrustes, 549
projection, 616
rank constrained, 616
SVD, 515, 516
unique, 510

matrix, 91, 148, 510
spectrum, 384

ordered, 385, 450–452
unordered, 386

value, 497, 509, 542, 544
λ , 491, 499, 501, 509, 511, 638
convexity, 375, 503, 544
distinct, 509, 510
doublet, 527
dyad, 524
EDM, 369, 383, 392, 408
Identity, 498, 544
inequality, 499, 549
interlaced, 374, 383, 503, 538
intertwined, see eigenvalue, interlaced
inverse, 510, 512, 516
largest, 375, 503, 544–546
left, 509
maximum, see eigenvalue, largest
minimum, see eigenvalue, smallest
of sum, 503
ordering, 502, 511
positive semidefinite, 498, 502, 515
precision, 509
principal, 286, 511
product, 499–501, 516, 547
projection, 584, 586, 589, 600–602
rank, 499, 510, 511
real, 494, 509, 511
repeated, 109, 509, 510
Schur, 507
singular value, 513, 515, 516
smallest, 375, 381, 429, 503, 544, 545
sum of, 44, 491, 499, 545, 546
symmetric matrix, 511, 516
transpose, 509
unique, 102, 509
zero, 517, 524

vector, 509, 544, 545
distinct, 510
EDM, 408
left, 509, 510
l.i, 509, 510
normal matrix, 511
orthogonal, 510, 511
principal, 286, 287, 511, 598

real, 509, 511, 518
singular, 514, 598
symmetric matrix, 511
unique, 510

elbow, 445, 446
element, 644
El Ghaoui, 286
ellipsoid, 31, 36–39, 275

ball, 31
boundary, 39, 274, 275
invariance, 42
singular value decomposition, 514, 515

elliptope, 161, 231–233, 338, 345, 376, 377, 382, 416,
417

smooth, 376
vertex, 232, 376, 377

embedding, 366
dimension, 50

empty
interior, 34
set, see set

entanglement, 313
entry, 33, 172, 633, 637, 638, 641, 643

largest, 181, 534
smallest, 181
zero, 517

epigraph, 171, 173, 188, 189, 209, 215
form, 193, 466, 598
intersection, 188, 194, 216
nonconvex, 188, 204

equal loudness, 479, 480
equality

constraint, 135, 163
affine, 217

EDM cone, 26, 403, 431
dual, 438

PSD cone, 26, 403, 431
equation, normal, 581, 582
equivalent, 644, see problem
Ericson, 344
errata, 166, 186, 249, 364, 546, 614, 618
Eternity II, 296, 297, 299–310

extreme point, 305
hypersphere, 310
maximization, 309
quantum, 315, 316

Euclidean
ball, 34, 177, 178, 342, 615

boundary, 615
maximization, 582
smallest, 51

distance, 329, 334
geometry, 19, 346, 352, 603
matrix, see EDM

metric property, 330, 371
fifth, 331–333, 395–397, 401

norm, see 2-norm
projection, 108
space, 31, 32, 329, 639

ambient, 32, 429, 439
exclusive

mutually, 134
expansion, 149, 643

biorthogonal, 122, 131, 145, 148, 149, 584, 590
EDM, 413
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projection, 590, 593, 594
unique, 147–150, 414, 526, 590, 593, 594

implied by diagonalization, 148
orthogonal, 48, 122, 148, 589, 590
w.r.t orthant, 149

− E − continued, 376
exponent, see function, fractional
exposed, 74, 75

closed, 414
direction, 88
extreme, 78, 82, 115
face, 75, 116
point, 75, 78, 88

density, 76
extrapolation

direction vector, 326
Richardson, 570

extreme, 74
boundary, 88
direction, 72, 86–89

conic independence, 114
distinct, 86
dual cone, 113, 124, 145, 149–155, 164–166
dual monotone cone, 155
EDM cone, 88, 413, 434
monotone nonnegative cone, 154, 155
none, 82, 86, 87, 114, 115, 119, 128
of 0 , 87
one-dimensional, 87, 88
orthant, 72
PSD cone, 87, 92, 101
shared, 166
supporting hyperplane, 145
unique, 86

exposed, 78, 82, 115
point, 57, 74–76, 78, 223

cone, 82, 110
Fantope, 53, 54, 245
feasible set, 244
hypercube slice, 265

ray, 86, 416
sum, 87
transitivity, 76

− F − , 76
f , 636, see also function
face, 36, 75

∅ , 75
affine, 76
algebra, 76
cone, see cone
exposed, see exposed
halfspace, 75
hyperplane, 75
intersection, 138
isomorphic, 97, 339, 412
of face, 76
polyhedron, 115, 116
smallest, 76, 97–100, 138–140, 634, see cone
subspace, 75
transitivity, 76

facet, 75, 145, 166
facial recognition, 24
factorial, 637

factorization, see decomposition
Fan, 53, 219, 244, 257, 499, 542, 545, 549
Fantope, 53, 54, 102, 191, 244, 245

extreme point, 53, 54, 245
Linear Program analogue, 264

Farkas’ lemma, 131–134
positive definite, 226

not, 227
positive semidefinite, 225

fax, 207
Fazel, 461
feasibility, see problem
feasible, see solution
Fejér, 141, 199, 623, 625
Fenchel, 23, 171, 460
Fermat point, 340
Ferreira, 617
Feynman, 311
Fiacco & McCormick, 219
fifth metric property, see Euclidean
filter

bank, 614
design, 472

arbitrary magnitude, 474, 475, 480, 484
implementation, 482

find, 644, 646
finitely generated, 116, 117
Finsler, 422
floor, 647
flowgraph, 475
Forsgren, Gill, & Wright, 217
Fourier transfer function, 481
Fourier transform, 481, 482

discrete, 45, 289, 290, 294, 634, 642
inverse, 290, 291
-time, 484

fast, see Fourier transform, discrete
frame, 114
Frankel, 703
Fréchet differential, 562
Fredholm, 69
Frisch, 219
Frobenius, 43, see norm
Fs, 485, 642
Fukuda, 50
full, 34

-dimensional, 34, 85
cone, 77, 86, 119, 125, 128, 140, 141, 145,

150, 155
cone, dual, 130

-rank, 70, 234
function, 171, 636, see also operator

affine, 40, 42, 174, 186, 187, 198
inverse, 40, 42, 186
monotonic, 199
supremum, 188, 542
transformation, 200, 215

bilinear, 214
biquadratic, 214
composition, 183, 199, 216, 560

affine, 200, 215
concave, 171, 172, 183, 214, 461, 544
conjugate, 460, 637
continuity, 172, 189, 206, 215
convex, 171, 188, 335, 357
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difference, 182, 194, 266
invariance, 172, 189, 215
nonlinear, 172, 187
simultaneously, 190, 191, 209
strictly, 172, 173, 199, 201, 202, 205, 210,

457, 461, 465, 563, 564
sum, 173, 200, 216
supremum, 188, 194, 216

− function − continued, 171
differentiable, 172, 187, 201, 203, 210

non, 172, 177, 197, 215, 293, 294
distance

1-norm, 207, 208
binary, 207
Euclidean, 334, 355, 356

dual, see dual
exponential, 200, 213, 567, see also matrix
fractional, 190, 200, 205, 209

curve fit, 476, 480
exponent, 184, 577
inverted, 183, 184, 570, 577
maximization, 457
minimization, 506
power, 184, 577
projector, 191
pseudo, 190
root, 183, 634
square root, 184, 214, 457, 502, 512, 634

inverse, 40, 42, 186
inverted, see function, fractional
invertible, 42, 44, 45
Lagrangian, see Lagrangian
linear, see operator
log, see log
matrix, 171, 173, 206

chain rule, 560
convexity, 208, 210
epigraph, 209
gradient, 557
line theorem, 210
product, 558

monotonic, 171, 181, 199, 215
affine, 199
bilinear, 214
biquadratic, 214
cardinality, 199
composition, 199, 216
norm, 176, 182, 266
quasilinear, 213, 215
rank, 199, 459
strictly, 199, 214

multidimensional, 171, 206, 644
affine, 174, 186
convexity, 208, 209
gradient, 195
line theorem, 210
monotonic, 199
quasiconvex, 212

negative, 183, 541
nonconvex, 188, 206, 446, 463
norm, 175, see norm
objective, see objective
odd, 236, 516
presorting, 181, 264, 450–453, 469, 492, 638

product, 190, 200, 213–215
projection, see projector
pseudoconvex, 213
quadratic, 205, 210, 493, 506, 603

binary, 314, 316
convex, 173, 193, 335, 356, 358, 553
convex, strictly, 173, 196, 201, 205, 210,

465, 563, 564
distance, 334
maximization, see maximization
minimization, see minimization
nonconvex, 279, 553
nonnegative, 506

quantization, 184, 185
quasiconcave, 212–215, 236

cardinality, 182, 199, 263
not, 215
rank, 107
strictly, 212, 213

quasiconvex, 108, 188, 211–215, 356
constraint, 217
continuity, 212, 215
not, 215
strictly, 212, 213

quasilinear, 205, 213, 215, 516
quotient, see function, fractional
ratio, see function, fractional
signum, 213, 236, 293, 516, 570, 571, 577, 638,

646
smooth, 172, 177, 294
sorting, 181, 264, 450–453, 469, 492, 638
square, see norm
square root, see function, fractional
sstress, 446, 447
step, 638

matrix, 236
vector, 516

strain, 447
stress, 206, 446, 447, 463
support, 67, 187, 608

algebra, 187
transfer, 474, 475, 481, 482, 484
trivial, 173
vector, 171, 173, 638

convexity, 204
epigraph, 189
gradient, 556, 557
line theorem, 210
montonicity, 199
sublevel, 189

− F − continued, 76
fundamental

algebra, 509
linear, 69

convex
geometry, 60, 65, 68, 329, 337
optimization, 217

metric property, 330, 371
semidefiniteness test, 141, 494, 603
subspace, 41, 69, 524, 527, 528, 580, 587

projector, 587

− G − , 137
Gaffke & Mathar, 430
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− G − continued, 137
Gale, 348
Galtier, 184
gap

bisection, 477
duality, 128, 129, 225, 228, 229, 285
quantum, 315–317
time, 485–489
trace−rank, 459

Gâteaux differential, 562
Gauss, 7, 344
generators, 50, 58, 87, 118, 137, 634

c.i, 114
face, smallest, 139, 140, 271
finite, 116, 117
hull, 118

affine, 50, 63, 596
conic, 58, 114, 115
convex, 53

l.i, 114
minimal set, 53, 63, 114, 309, 639

affine, 596
extreme, 87, 145
halfspace, 114, 115
hyperplane, 114
orthant, 172
PSD cone, 92, 141, 207

unique, see unique
geometric

center, 337, 340, 358, 389, 639
operator, 364
subspace, see subspace

Hahn-Banach theorem, 60, 65, 68
mean, 577
multiplicity, 510

Geršgorin, 105
Gill, 217
gimbal, 536, 537
global

optimality, see optimality
positioning system, 21, 249

Glossary, 633
Glunt, 465, 630
Golub, 495
Gordan, 134
Gould, 219
Gower, 329, 375
GPS, see global
gradient, 135, 187, 195, 196, 201, 202, 555, 569

affine, 187, 198
composition, 560
conjugate, 294
derivative, 568

directional, 564
descent, 196, 563
dimension, 195
first-order, 568
image, 292
monotonic, 199
norm, 182, 183, 196, 571, 573, 587, 595, 596,

604, 607
normal, 159, 196, 202
of nonlinear f , 187
product, 558

second-order, 569
sparsity, 289
table, 570–577
zero, 135, 196, 197, 213, 604

Gram
-form

bijective, 363, 364
EDM definition, 336, 416
injective, 359, 363, 364
invariance, 359
inversion, 364
problem, see problem, proximity

matrix, 255, 336, 345
unique, 359, 363

Gregory, 342
Groenen, 24, 392
Gross, 27

− H − , 60
Hadamard

product, 43, 456, 491–493, 560, 635
of vectors, 560
positive semidefinite, 501
transpose, 493

quotient, 570, 577, 635
square root, 634

Hahn-Banach, 60, 65, 68
halfline, 77, 81, 82, 87, 88, 112, 119, 214
halfplane, 125, 127, 474, 482
halfspace, 58–61, 114, 115, 119, 128

H+ , 60, 641
H− , 60, 641
angle, 60, 69
boundary, 60
complement, 58
cone, 115, 117
-description, see description
interior, 39
intersection, 61, 129, 141

cone, 116
dual cone, 122
polyhedra, 116

polarity, 60
vertex-description of, see description

halftone, 207
Han, 629
Hardy-Littlewood-Pólya, 451
Havel, 354
Hayden & Wells, 193, 403, 408, 414, 464, 465
hearing

aid, 614
compensation, 479, 480
test, 479

Herbst, 514
Hessian, 195, 555
hexagon, 341
Hindi, 461
Hiriart-Urruty, 67, 553
hollow, 634, see matrix & subspace
homogeneity

convexity, 215
EDM, 335
norm, 175
partial order, 84
projection, 612
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− H − continued, 60
homotopy, 264
honeycomb, 27
Hong, 465
Horn & Johnson, 206, 495–497
horn, flared, 81
Householder, 529
Hu, 308, 309
Huang

Feng, 289
Hong-Xuan, 348

hull, 50
affine, 33, 50–53, 65, 118, 646

cone, 51, 111, 125, 138, 149–151, 153, 586
cone, EDM, 364, 429
cone, positive semidefinite, 51
correlation matrices rank-1 , 51
empty set, 51
point, 34, 51
unique, 50

conic, 52, 58, 88, 118, 145
empty set, 58

convex, 50–52, 88, 118, 330
cardinality-1 vectors, 178, 269
cone, 88, 101, 130
dyads, 55, 56
empty set, 53
extreme directions, 87
orthogonal matrices, 58
orthonormal matrices, 58
outer product, 53–57, 245, 545
permutation matrices, 57
positive semidefinite cone, 101
projection matrices, 53, 245, 545
rank-1 matrices, 55, 56
rank-1 symmetric matrices, 53, 101
unique, 51

Huo, 265
hyperboloid, 520
hyperbox, 67, 616
hypercube, 44, 67, 178, 615

nonnegative, 233
slice, nonnegative, 265, 295

hyperdimensional, 398, 559, 560
hyperdisc, 564
hyperparallelepiped, 118
hyperplane, 58, 60–63, 198

angle, 69
hypersphere radius, 62
independence, 70
intersection, 70, 138

cone, 116
convex set, 65, 423
polyhedra, 116

movement, 62, 72, 73, 180
normal, 61
nullspace, 60, 61
parallel, 33
separating, 68, 130, 132, 133

strictly, 68
supporting, 65–67, 159, 201, 202

cone, 122, 123, 138, 145
cone, EDM, 429
cone, PSD, 97, 98

exposed face, 75
polarity, 67
strictly, 67, 82, 201
trivially, 65, 140
unique, 201, 202

tangent, 67, 201–203
vertex-description of, see description

hypersphere, 338, 377, see also Euclidean ball
boundary, 53, 256
circum-, 310, 369
Eternity II, 310
intersection, 277, 280
packing, 342
radius, 62

hypersurface, 311
hypograph, 189, 194, 195, 215, 577
Hz, 642

− I − , 645
idempotent, see matrix
Identity, see matrix
iff, 646
image, 40, 41

affine, 40
inverse, 40, 41, 143

affine, 40
cone, 93, 130, 144, 190, 191, 209, 215, 224

magnetic resonance, 288
IMD+N, 643
in, 643
inactive, see active set
independence

affine, 59, 63, 64, 112, 115
preservation, 64
subset, 64, 70, 71

conic, 22, 59, 111–115, 234, 309
versus dimension, 111
dual cone, 153
extreme direction, 114
preservation, 112
rows, 153, 157, 160, 386, 387
unique, 111, 115, 150, 151

hyperplane, 70
linear, 32, 59, 111, 112, 114, 234, 271, 526

matrix, 500
of subspace, 32, 635
preservation, 32

inequality
active, see constraint, inequality
angle, 332, 397

matrix, 357
Bessel, 589
calculus, 7
Cauchy-Schwarz, 71, 623
constraint, 162, 217, 240
determinant, 502
diagonal, 502
eigenvalue, 499, 549
generalized, 84, 122, 131, 647

dual, 131
dual PSD, 141
partial order, 84, 91

Hardy-Littlewood-Pólya, 451
Identity, 498, 544
inverse, 183, 502



684 INDEX

− inequality − continued, 141
Jensen, 200
linear, 20, 31, 60, 132

matrix, 141, 143, 144, 224, 227
log, 194, 195, 577
Löwner, 91, 498, 501, 502

inverse, 502
norm, 175, 648

triangle, 175
polynomial, 185, 506
rank, 502
semidefinite, see Löwner
singular value, 551
spectral, 384
sum, 147
trace, 501, 502
triangle, 330, 331, 356, 371–375, 380, 395–399,

406, 407
norm, 175
strict, 373
unique, 396
vector, 175

variation, 135
volume, 399

− I − continued, 645
inertia, 383, 505

complementary, 385, 505, 506
preservation, 383, 500
Sylvester’s law, 500

infimum, 541, 646, see also minimum
of concave functions, 216
of quasiconcave functions, 216

inflection, 205
injection, 643, see injective
injective, 44, 45, 85, 168, 361, 643

Gram-form, 359, 363, 364
inner-product form, 365, 366
invertible, 44, 579, 580
non, 46
nullspace, 44

innovation, rate, 288
interior, 34, 35, 39, 76, 646

0 , 82, 85
algebra, 34, 39, 143
empty, 34
of affine, 34
of cone, 143–145

EDM, 404, 410
membership relation, 131, 152
polyhedral, 145
PSD, 90, 226

of halfspace, 39
of point, 34, 35
of ray, 77
-point, 34

antisymmetry, 116
barrier, 8, 220, 342
complementarity, 219
dimension, 298, 344, 464
method, 217, 232, 262
rank, 437
solver intensity, 219, 443

relative, 34, 39, 76

transformation, 143
intersection, 39, see also tangent

affine, 592
cone, 82

dual of, 130
of dual, 130
pointed, 82

epigraph, 188, 194, 216
face, 138
halfspace, 61, 129, 141

cone, 116
dual cone, 122
polyhedra, 116

hyperplane, 70, 138
cone, 116
convex set, 65, 423
polyhedra, 116

line
with boundary, 36
with circle, 277, 280

nullspace, 73
planes, 71
positive semidefinite cone

affine, 110, 227
geometric center subspace, 519
line, 347

subspace, 73, 618
invariance

closure, 34, 116, 143
cone, 81, 112, 130, 404

pointed, 82, 85, 119
convexity, 39, 40
dimension, 45
EDM, 358

Gram-form, 359
inner-product form, 361
reflection, 359
rotation, 359
scaling, 335
translation, 358, 359, 363, 378

ellipsoid, 42
function, convex, 172, 189, 215
isometric, 21, 348, 358, 361, 388, 389
optimization, 176, 187, 244, 541, 542, 644
orthogonal, 45, 394, 446, 533, 538
rotation, 102
scaling, 215, 541
set, 382
translation

function, 172, 215, 541
subspace, 427, 605, 640

inverse
additive, 40
determinant, 211, 570
image, see image
matrix, see matrix
minimization, see function, fractional
nullspace, 41, 44, 580
pseudo, see matrix, pseudoinverse

inversion
conic coordinates, 168
Gram-form, 364

invertible, see also matrix
injective, 44, 579, 580
operator, 42, 44, 45, 143
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− I − continued, 645
is, 636
isedm() , 332, 337, 448
Ising, 313, 314
isometry, 45, 348, 358, 394
isomorphic, 43, 46, 48, 635

face, 97, 339, 412
isometrically, 36, 44, 48, 94, 141
non, 519

isomorphism, 43, 143, 144, 364, 366, 394, 404
isometric, 44, 45, 47, 49, 394

symmetric hollow subspace, 49
symmetric matrix subspace, 47

projection, 44
isotonic, 392
iterate, 619, 626, 627, 629
iteration

alternating projection, see projection
convex, see convex

−  − , 290
Jacobian, 195
Jensen, 200
Johnson, 206, 495–497
Jordan, 286

− K − , 77
Kaczmarz, 592
Karhunen-Loéve transform, 388
Karmarkar, 219
kernel, see nullspace
Kimmel, 24
Kirschhoffer, 296
kissing, 129, 177, 178, 268–270, 582

number, 342
problem, 342

KKT conditions, 162, 163, 449, 553
Klanfer, 338
Klee, 87
Korkine, 344
Krein-Rutman, 130
Kreyszig, 330, 371
Kronecker product, see product
Kuhn, 340

− L − , 188
Lagrange, 127, 231

multiplier, 135, 553
sign, 168

Lagrangian, 168, 339, 553, 634
max cut, 284, 285
origins, 174

Lanckriet, 286
Lanczos, 543
Laplace

discrete, 484
transfer function, 474, 475, 482

zero implementation, 474
variable, 484, 636

Lasserre, 226
Lasso, 288
lattice, 251–254, 257–259

regular, 27, 251
Laurent, 235, 236, 380, 418, 422, 628

vertex, 376
Lauterbur, 288
Law, 289, 559
least

1-norm, 177, 178, 230, 268
nonnegative, 269, 270

energy, 338, 461
norm, 178, 231, 582, 583
squares, 7, 249, 250, 582

Legendre, 7, 460
Lemaréchal, 19, 67
Lewis, 74, 84, 116, 607
l.i, 32, 64, 111, 114, 509, 526, 635
Liang, 348
limit, 646
line, 32, 33, 51, 198, 209

cone, 81
fit, 288, 326, 327, 597, 598
tangent, 37, 38, 348

linear
algebra, 69, 491
bijection, see bijective
complementarity, 162
function, see operator
independence, see independence
inequality, 31, 60, 132

matrix, 141, 143, 144, 224, 227
injective, see injective
map, see transformation
operator, 40, 48, 171, 186, 336, 364, 365, 394,

414, 491, 606
projector, 46, 586, 589, 591, 608

program, see program
regression, 288, 597, 598
surjective, see surjective
transformation, see transformation

list, 19, 26, 50, 637, 638, 644
generating, 118, see generators
of points in X , 50
reconstruction, see reconstruction

Littlewood, 451
Liu, 403, 408, 414, 464
localization, 21, 347

sensor network, 249–262
standardized test, 251
unique, 22, 250, 346, 348
wireless, 249, 255, 352

log, 576, 577
barrier, see interior-point
constraint, 194, 195
-convex, 215
det, 211, 351, 461, 568, 575

Löwner inequality, 91, 498, 501, 502
inverse, 502

LP, 643, see program, linear
Luenberger, 608
Lustig, 289
Lyapunov, 493

− M − , 155
machine

control, 186, 471, 629
learning, 21, 24, 471, 597

Magaia, 514
majorization, 494
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cone, 494
symmetric hollow, 494

− M − continued, 155
manifold, 21, 25, 96, 424, 425

matrix, 57, 58, 446, 470, 534, 547
map, see transformation

isotonic, 390, 392
USA, 26, 390–395

Mardia, 448
Markov process, 429
Marsden, 330
Martein, 213
Marziliano, 288
Mason flowgraph, 475
mater, 556
Mathar, 430, 530
Mathematica, 326, 475
Matlab, 4, 28, 537

Ax = b , 582
backslash, 230, 582
cartography, 391, 393
conic independence, 111
convex iteration

accelerant, 327
stall, 275

cvx, 280
EDM, 448
Eternity II, 309
fast max cut, 286
Hadamard product, 560
Kronecker product, 559
Moler, 598
MRI, 287, 290, 293–295
noise, 260
notation, 268
polynomial feasibility, 281
quantum, 316
signal dropout, 489
singular value decomposition, 325, 514
sum

Pythagorean, 535, 536
matrix, 556

0 , 304
adjacency, 308
angle

interpoint, 336, 338
relative, 357

antisymmetric, 46, 47, 494, 533, 640
antihollow, 48, 49, 444, 640
subspace, 46, 47

arrow, 538, 539
auxiliary, 338, 530

Householder, 530
orthonormal, 532
projector, 530
Schoenberg, 335, 531, 596, 638
table, 533

binary, see matrix, Boolean
Boolean, 51, 232, 234, 376, 377, 639

orthogonal, 57
bordered, 374, 383

arrow, 538
calculus, 555
circulant, 211, 530

normal, 511
permutation, 290, 302–304, 306
symmetric, 290

commutative, see product
completion, see problem
correlation, 376, 388

rank-1 , 51, 377
decomposition, see decomposition
determinant, see determinant
diagonal, see diagonal
diagonalizable, see diagonalizable
direction, see direction
distance

1-norm, 207, 382
absolute, 329, 382, 406, 407, 447, 456–458,

634
binary, 207
Euclidean, see EDM

doublet, 359, 527, 606
nullspace, 527, 528
range, 527, 528

dyad, 521, 523–527
-decomposition, 520
hull, 53
independence, 73, 148, 389, 410, 525, 526
negative, 523
nullspace, 523, 524
projection on, 599, 601
projector, 524, 525, 584, 599
pseudoinverse, 524
range, 523, 524
sum, 509, 512, 526, 527
symmetric, 101, 503, 504, 525

EDM, see EDM
elementary, 382, 528, 530

nullspace, 528, 529
range, 528, 529

entry, see entry
Euclidean distance, see EDM
exponential, 211, 570, 577, see also EDM
factorization, see decomposition
fat, see wide
Fourier, 45, 290
fractional, see function
full-rank, 70
Gale, 348
geometric centering, 338, 359, 404, 427, 530
Gram, see Gram
Hermitian, 494
hollow, 48, 49, 634, 640
Householder, 529, 534

auxiliary, 530
idempotent, 586

nonsymmetric, 583
range, 583
symmetric, 587, 589
transpose, 583

Identity, 645
direction vector, 246, 318
eigen, 498
Fantope, 53, 54
inequality, 498, 544
orthogonal, 57, 277, 529, 534
permutation, 57, 277, 529
positive definite, 57, 101, 102, 504, 534
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projection, 504

− matrix − continued, 556
indefinite, 318, 383
indices, 330
inverse, 210, 633

Ax = b , 582
Identity, 568
injective, 580
minimization, see function, fractional
of sum, 567
positive definite, 502
product, 493
symmetric, 512
transpose, 493, 633
update, 525

invertible, 509, 510
Jordan form, 498, 510
measurement, 443
nonexpansive, 533
nonnegative, 383, 415, 434, 443, 614

definite, see matrix, positive semidefinite
factorization, 248

nonsingular, 510, 512
normal, 44, 498, 511, 513, 581
normalization, 233
nullspace, see nullspace
orthogonal, 45, 360, 511, 514, 533–537

diagonal, 513
entry, largest, 534
manifold, 57, 446, 470, 534, 547
normal, 511
permutation, 57, 277, 533
product, see product
symmetric, 529, 534
transpose, 533

orthonormal, 45, 53, 58, 245, 276, 359, 513,
514, 532, 533, 545, 588, 589

manifold, 58
nonexpansive, 533
pseudoinverse, 580
square, 533

partitioned, 505–508, see Schur
permutation, 57, 277, 299, 303, 370, 533

δ , 493, 512
circulant, 290, 302–304, 306
extreme point, 57, 305
orthogonal, 57, 277, 533
positive semidefinite, 57
product, see product
symmetric, 290, 529, 550

positive definite, 91
eigenvalues, 498, 502, 515
inverse, 502
positive real numbers, 206
singular values, 515

positive factorization, 248
positive semidefinite, 90–110, 141, 383,

494–508
2 × 2 , 183–185, 280
completely, 81, 248
difference, 110
dyad, 504
eigenvalues, 498, 502, 515
extreme direction decomposition, 102

nonnegative versus, 383
nonsymmetric, 497
permutation, 57
projection, 504, 589
pseudoinverse, 581
rank, see rank
singular values, 515
square root, 502, 512, 634
sum, eigenvalues, 503
sum, nullspace, 73
sum, rank, see rank
symmetry versus, 495
test-domain, 494, 603
zero entry, 517

product, see product
projection, 530, 583–591

diagonal, 94
eigenvalue, 584, 586, 589
nonorthogonal, 583
orthogonal, 587
positive semidefinite, 504, 589
product, see product
rank, see rank
transpose, 583

pseudoinverse, 41, 94, 149, 197, 231, 505,
579–581

0 , 581
by SVD, 516
inverse, 580, 581
nullspace, 41, 579, 580
of dyad, 524
of partitioned, 588
of product, 580
of projection, 580, 589
of vector, 580
orthonormal, 580
positive semidefinite, 581
range, 41, 579, 580
symmetric, 516, 581
transpose, 147, 580
unique, 197, 579

quotient, see Hadamard
range, see range
rank, see rank
reflection, see reflection
rotation, see rotation
Schur-form, see Schur
similarity, 502, 602

sign, 504
simple, 523
skinny, see thin
sort index, 391
square, 210
square root, 502, 634, see matrix, positive

semidefinite
Stiefel, see matrix, orthonormal
stochastic, 57, 277
sum

eigenvalues, 503
nullspace, 73
rank, see rank

symmetric, 42, 46–49, 494, 511, 640
antihollow, 48, 640
eigenvalues, 511, 516
Hermitian, 494
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inverse, 512
normal, 511
pseudoinverse, 516, 581
real numbers, 206
singular values, 516
subspace, 46, 47

− matrix − continued, 556
symmetrized, 495
thin, 45, 149, 634
trace, see trace
transpose, 633

conjugate, 494, 533, 633
idempotent, 583
inverse, 493, 633
pseudoinverse, 580

unitary, 533
symmetric, 290, 291

wide, 46, 70, 318, 634
zero definite, 520, 521

− M − continued, 155
max, 645
max cut problem, 284
maximal, 645
maximization, see also supremum

Eternity II, 309
of ball, 177, 178, 180, 582
of distance, 427, 609
of norm, 311, 542
of Procrustes, 550
of quadratic, 285

nonconcave, 311, 544, 553
of Rayleigh quotient, 544
of trace, 427, 542

maximize, 644, 645
maximum, 645

of totally ordered set, 645
variance unfolding, 424, 429

McCormick, 219
membership, 51, 84, 91, 647

boundary, 138, 227
relation, 131, 152

affine, 174
boundary, 132, 138, 227
discretized, 136, 137, 141, 438
EDM, 438
interior, 131, 152, 225
normal cone, 158
orthant, 51, 137, 138
subspace, 152

Menger, 370, 384, 398, 400, 451, 468
metric, 45, 207, 329, 330

audio, 480
postulate, 330
property, 330, 371

fifth, 331–333, 395–397, 401
space, 330

min, 645
minimal, 645

cardinality, see minimization
element, 83, 84, 173, 174
minimum, 173, 174
rank, see minimization
set, see set

minimization, 134, 158, 251, 541, 564
affine function, 187
fractional, see function, fractional
norm

1-, 176, see problem
2-, 176, 340, 598
∞-, 177
Frobenius, 176, 193, 196, 197, 447, 455, 604
nuclear, 318, 460, 543
square vs. square root, 176

of ball, 180
of cardinality, 177, 178, 263–267, 273, 274, 293

Boolean, 230
by perturbation, 240
nonnegative, 179–182, 263–269, 271, 272
rank connection, 245
rank, full, 234
rank-1 , 286
reduction, 240–242

of distance, 587, 604
of quadratic

binary, 314, 316
convex, 163, 193, 394, 553
nonconvex, 544, 553

of rank, 243–247, 276, 320, 322, 462, 468
by perturbation, 235
cardinality connection, 245
cardinality constrained, 286
indefinite, 318
reduction, 220, 234–238
wide matrix, 318

of Rayleigh quotient, 544
of trace, 245, 246, 318, 345, 459–461, 506, 543
on hypercube, 67
Schur-form, 506, 525

minimize, 644, 646
minimizer, 173

unique, 172, 173
minimum, 645

element, 83, 84, 173, 174
unique, 83, 84, 173, 174

global, 171, 173, 192, 211, 564, 605
local, 173
minimal, 173, 174
norm, see least
of convex function, 173
of totally ordered set, 645
phase, 474, 482
unique, 171, 564

Minkowski, 40, 117
MIT, 319
Mizukoshi, 50
modulus, 646
molecular conformation, 21, 23, 27, 354
Moler, 535, 598
Monckton, 296, 298, 299, 304, 309
monotonic, 192, 199, 247, 265, 623, 625

Fejér, 623
function, see function
gradient, 199
noisily, 247, 266

Moore-Penrose
conditions, 579, 581
inverse, see matrix, pseudoinverse

Moreau, 162, 612
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− M − continued, 155
Morrison

Donald, 535
Winifred J, 525

Motzkin, 109, 134, 281, 607
Mount, 480
MRI, 287–290, 292, 639
Muller, 514
multidimensional

function, see function
objective, 83, 84, 173, 174, 262, 293
scaling, 21, 387, 407, 448, 472

ordinal, 392
multilateration, 249, 352
multiobjective optimization, 83, 84, 173, 174, 262,

293
multipath, 352
multiplicity, 499, 510
Musin, 342, 344

− N − , 69
necessary, 636
neighbor

base station, 353
nearest, 25, 424–428
pixel, 290, 292, 294
qubit, 312, 313

neighborhood graph, 424, 425
Németh, 135, 162, 617
Nemirovski, 443
nested

sequence, 373
sublevel set, 202

Newton, 342, 555
direction, 196

Nigam, 354
Nirenberg, 608
node, 251–254, 257–261, 283, 284
nondegeneracy, 330
nonexpansive, 162, 533, 584, 589, 614
nonnegative, 370, 647

constraint, 57, 71, 72, 162, 176–180, 218, 274
factorization, 248
part, 183, 444, 615, 616, 637
polynomial, 85, 506

nonnegativity, 175, 330
nonorthogonal

basis, 149, 592
projection on, 592

projection, see projection
nonvertical, 198
norm, 173, 175, 176, 178–183, 263, 648

-0 , 516
0-, see 0-norm
1-, see 1-norm
2-, see 2-norm
∞-, see ∞-norm
k-largest, 181, 182, 266, 309, 648

gradient, 182, 183
monotonicity, 182

ℓ-, 175, 648
ball, see ball
constraint, see constraint
convexity, see convexity

dual, 125, 542, 648
equivalence, 175
Euclidean, see 2-norm
Frobenius, 44, 173, 245, 446, 648

maximal, 311
minimal, 176, 193, 196, 197, 455, 604
orthogonal matrix, 533
orthonormal matrix, 53
Schur-form, 193

gradient, 182, 183, 196, 571, 573, 587, 595,
596, 604, 607

homogeneity, 175
inequality, 175, 648

triangle, 175
Ky Fan, 542
least, 178, 231, 582, 583
nuclear, see nuclear
of difference, 334
of dyad, 524
of outer product, 524
orthogonally invariant, 45, 394, 446, 533, 538
properties, 175
regularization, 282, 582
residual, 287
spectral, 58, 194, 245, 446, 456, 514, 524, 529,

542, 616, 648
ball, 58, 617
constraint, 58
dual, 542, 648
inequality, 648
orthogonal matrix, 533
Schur-form, 194, 542

square, 173, 200, 573, 595, 596, 604, 648
vs. square root, 172, 176, 193, 200, 446, 587,

598
normal, 61, 607

cone, see cone
distribution, 179, 267, 289, 321, 489
equation, 581, 582
facet, 145
gradient, 159, 196
inward, 60, 429
outward, 60
vector, 61, 158, 607

not, 636
-necessarily, 645

Notation, 633
NP-hard, 286, 296, 463
nuclear

magnetic resonance, 23, 354
norm, 245, 318, 460, 542, 543, 648

ball, 55–57, 543
nullspace, 41, 61, 69–74, 530, 580, 606, 639

algebra, 523
basis, 61, 70, 73, 74, 100, 135, 151, 160, 514,

588, 595, 596, 640
Schur-form, 506
vectorized, 74, 100

cone, pointed, 119
decomposition, 61, 582
dimension, 69
doublet, 527, 528
dyad, 523, 524
elementary matrix, 528, 529
-form, 69
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− nullspace − continued, 41
hyperplane, 60, 61
injective, 44
intersection, 73
inverse, 41, 44, 580
of product, 368, 500, 523, 527, 588
operator, see operator
orthogonal complement, 69
projector, 587
pseudoinverse, 41, 579, 580
set, 138
sum, 73

numerical precision, see precision

− O − , 645
objective, 67, 68, 127, 134, 158, 159, 644

convex, 217
strictly, 457, 461

linear, 186, 257, 345
multidimensional, 83, 84, 173, 174, 262, 293
nonlinear, 187
polynomial, 279
quadratic

convex, 163, 193, 394, 465, 553
nonconvex, 311, 553

real, 173
value, 227, 237

offset, see invariance, translation
on, 643
one-to-one, 643, see injective
only if, 636
onto, 643, see surjective
op amp, 474, 475
open, see set
operator, 636, 644, see also transformation

adjoint, 42, 43, 130, 435, 633, 638
self, 42, 339, 434, 491

affine, see function
injective, see injective
invertible, 42, 44, 45, 143
linear, 40, 48, 171, 186, 336, 364, 365, 394,

414, 491, 606
projector, 46, 586, 589, 591, 608

nonlinear, 172, 187
nullspace, 359, 363–365, 606
permutation, 181, 264, 450–453, 469, 492, 638
projection, see projector
quadratic, convex, 335, 358
surjective, see surjective
unitary, 45, 533

optimal, 7, 19, 644
optimum, 173, 174, 644

optimality
condition, 228

conic problem, 128, 159, 163
direction vector, 244, 264
directional derivative, 564
dual, 125
first-order, 134, 135, 158, 159, 162, 163
KKT, 162, 163, 449, 553
linear program, 128
semidefinite program, 229
Slater, 128, 169, 225, 228, 229
unconstrained, 135, 196, 197, 213, 604

constraint
conic, 159, 162, 163
equality, 135, 163
inequality, 162
nonnegative, 162

global, 7, 19, 173, 192, 217
convex iteration, 244, 247, 264, 324

local, 7, 19, 173, 217
convex iteration, 247, 265, 268, 274, 324

optimization, 19, 217
algebra, 176, 541, 542
combinatorial, 57, 68, 180, 230, 281, 284, 299,

304, 314, 315, 377, 471
Procrustes, 276

conic, see problem
convex, 7, 19, 173, 217, 345

art, 8, 234, 250, 472
fundamental, 217
solution set, 173, 321

invariance, 176, 187, 244, 541, 542, 644
multiobjective, 83, 84, 173, 174, 262, 293
programming, 217
quantum, 311–315
tractable, 217
vector, 83, 84, 173, 174, 262, 293

optimum, 644
optimal, 173, 174, 644

order
natural, 42, 491, 644
nonincreasing, 452, 638

eigenvalue, 502, 511
singular value, 513

O , 645
of projection, 444–446, 617, 629
partial, 51, 81, 83, 84, 137, 138, 145, 146, 644,

647
generalized inequality, 84, 91
on orthant, 138
on symmetric, 91, 501
property, 84

total, 83, 84, 122, 645–647
transitivity, 84, 91, 501, 644

origin, 31, 32, see also zero
cone, see cone
projection of, 63, 178, 582, 595

1-norm, 177
projection on, 611, 616
subspace, 32, 47, 639, 640, 645
translation to, 367

Orion nebula, 21
orthant, 33, 120, 122, 131, 138, 149, 159, 643

dual, 141
extreme direction, 72
nonnegative, 132, 434

orthogonal, 42, 587, 604, 640
basis, 48, 49, 73, 590

projection on, 592
complement, see complement
condition, 587
constraint, 323, 355, see Procrustes
equivalence, 538
expansion, 48, 122, 148, 589, 590
invariance, 45, 394, 446, 533, 538
matrix, see matrix
projection, see projection
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set, 138, 640
sum, 636
vector, 42, 640

− O − continued, 645
orthogonality, 587, 643

matrix, 640
set, 138, 640
vector, 42, 640

orthonormal, 42
condition, 148, 149, 588
constraint, 276
decomposition, 588–590
matrix, see matrix

over, 643
overdetermined, 634

− P − , 584
PageRank, 429
parallel, 33, 640
parallelepiped, 118
parallelogram, 118
Pardalos, 348
Parhizkar, 20
pattern recognition, 21
PCA, see principal component analysis
Penrose conditions, 579, 581
pentahedron, 399
pentatope, 120, 399
permutation, see matrix

constraint, see polyhedron, permutation
perpendicular, 640, see orthogonal
Perron, 383
perturbation

cardinality, 240, 241
rank, 235–237

Pfender & Ziegler, 342
phantom, 287–290, 292, 295
phase, 647

minimum, 474, 482
-transition, 179, 267

Photoshop, 319
plan, 67
plane, 58

segment, 86
point

boundary, 78
of hypercube slice, 295

exposed, see exposed
extreme, see extreme
feasible, see solution
fixed, 247, 294, 606, 620–623
inflection, 205
-list, see list
minimal, see minimal element
vector, 87, 643

Pólya, 451
Polyak, 541
polychoron, 39, 116, 120, 398, 399
polyhedron, 36, 50, 67, 116–120, 122, 375

bounded, 53, 57, 117, 180
face, 115, 116
halfspace, see halfspace

-description, 116
norm ball, 177

permutation, 57, 58, 276–278, 305, 315
vertex, 310

range form, 118
stochastic, see polyhedron, permutation
transformation

linear, 112, 116, 132
unbounded, 33, 36, 117
vertex, 57, 117, 177

-description, 53, 118
polynomial

constraint, 183, 185, 279, 280, 506
convex, 205
inequality, 185, 506
Motzkin, 281
nonconvex, 279
nonnegative, 85, 506
objective, 279
quadratic, see function
rational, curve fit, see function, fractional

polytope, 116
positive, 647

completely, 81, 248
factorization, 248
semidefinite, see matrix
strictly, 371

power, see function, fractional
Précis, 369
precision

antisymmetry, 116
eigenvalue, 509
inequalities, complementary, 116
numerical, 219, 220, 324, 325, 479
perturbation, 236
quadruple, 479
solver, 293

barrier, 8, 220, 342
crippling, 219
dimension, 219, 443
hollowness, 471
interior-point, 220, 232, 262, 298, 344, 464

variables, 219, 298
presolver, 139, 271–273, 299, 307–309

en masse, 139
aggregation, 271

primal
feasible set, 220, 224
problem, 127, 218

via dual, 125, 128, 129, 230
principal

component analysis, 286, 388, 472, 597, 598
singular value decomposition, 598

eigenvalue, 286, 511
eigenvector, 286, 287, 511, 598
submatrix, 98, 345, 396, 399, 413

face, 98
leading, 99, 371, 373
positive semidefinite, 503
rank, 98, 503

principle
halfspace-description, 60
separating hyperplane, 68
supporting hyperplane, 65

problem
1-norm, 176–180, 230

nonnegative, 179, 180, 265, 267–272, 460
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signed, 273, 274

− problem − continued, 296
ball packing, 342
Boolean, 57, 68, 230, 281, 304, 314, 315, 377
combinatorial, 57, 68, 180, 230, 281, 284, 299,

304, 314, 315, 377, 471
Procrustes, 276

complementarity, 162
linear, 162

completion, 251–254, 260, 290, 298, 331, 332,
345–349, 374, 380, 401, 423–425, 472

geometry, 424
semidefinite, 627, 628

compressed sensing, see compressed sensing
concave, 217
conic, 127, 159, 162, 163, 174, 218

dual, 127, 218
convex, 128, 135, 159, 163, 177, 186, 192, 194,

219, 224, 454, 607, 644
definition, 217
geometry, 19, 22
nonlinear, 217
statement as solution, 8, 217
tractable, 217

dropout, signal, 485–489
dual, see dual
epigraph form, 193, 466, 598
equivalent, 176, 187, 244, 256, 541, 542, 644
Eternity II, see Eternity II
feasibility, 20, 111, 119, 138, 139, 644, 646

semidefinite, 227, 243, 244, 322
Gram-form, see problem, proximity
kissing, 342
max cut, 284
minimax, 51, 127, 128
nonconvex, 8

EDM, PSD, 446, 452–454
LP, 71
map, 26, 390
polynomial, 280
projection, 454
stress, 463

nonlinear, 345
convex, 217

open, 26, 107, 247, 387, 414, 471
permutation, 57, 276, 278, 299, 301, 303–305,

315
primal, see primal
Procrustes, see Procrustes
proximity, 443, 444, 446, 448, 456, 464

EDM, nonconvex, 452
Gram-form, 455, 458, 466
in spectral norm, 456
rank heuristic, 460, 462
semidefinite, 450, 457, 458, 465, 466

quadratic
binary, 314, 316
convex, 163, 394, 553
nonconvex, 311, 553

quasiconvex, 211, 478
same, 644
sphere packing, 342
sstress, 446, 447
strain, 447

stress, 206, 446, 447, 463
tractable, 217
tug of war, 340

− P − continued, 584
procedure

alternating projection, 630
audio

test, 473
bisection, 477
cardinality reduction, 242
rank reduction, 235

Procrustes
combinatorial, 276
compressed sensing, 278
convexity, 549
diagonal, 552
linear program, 550
maximization, 550
orthogonal, 547, 548

two sided, 549, 551
orthonormal, 276
permutation, 276, 548
relaxation, 549
symmetric, 551
translation, 548
unique solution, 547
vector, 276, 548

product, 213, 559, 638
Cartesian, 40, 224, 626, 639

cone, 81, 82, 129
function, 174

commutative, 211, 229, 499, 500, 519, 619
determinant, 500
eigenvalue, 499–501, 547

-of, 500, 501, 516
empty, 638
function, 190, 200, 213–215
gradient, 558
Hadamard, see Hadamard
inner

cosine, 42, 339, 355, 356
EDM definition, 355
matrix, 336
vector, 60, 153, 214, 219, 288, 533, 599, 637
vector, positive semidefinite, 141
vectorized matrix, 42–44, 498
zero, see product, zero

inverse, 493
transpose, 493

Kronecker, 94, 491–493, 550, 559, 560
δ , 493
determinant, 493
diagonal, 493
dimension, 559
eigen, 493
gradient, 572
inverse, 290, 493
of vectors, 560
orthogonal, 538
permutation, 492, 533
positive semidefinite, 334, 501
projector, 604
pseudoinverse, 493, 580
range, 604
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rank, 493
trace, 493
transpose, 493
vectorization, 493

− product − continued, 638
nullspace, 368, 500, 523, 527, 588
orthogonal, 533
outer, 53–57, 245, 545

norm, 524
positive semidefinite, 96
vector, see matrix, dyad

permutation, 533
positive definite, 496

nonsymmetric, 496
positive semidefinite, 501, 504

matrix outer, 96
nonsymmetric, 500
vector inner, 141
zero, 519

projection, 431, 445, 446, 616–619, 621
projector, 431, 599, 604, 619
pseudofractional, 190
pseudoinverse, 580
quasiconcave, 214
range, 500, 523, 527, 587
rank, 368, 499, 500
singular value of, 516
symmetric, 500
tensor, 559
trace, see trace
transpose, 493

inverse, 493
zero, 42, 61, 63, 73, 132, 519, 520, 640

PSD, 91, 97–101, 229, 519

− P − continued, 584
program, 67, 217

binary, 304, 305, 307
quadratic, 314, 315

class, 220
convex, see problem
geometric, 7, 220
integer, 57, 68, 377
linear, 67, 71–73, 128, 176, 186, 217–220, 342,

644
dual, 128, 218
prototypical, 128, 218, 644

nonlinear
convex, 217

plan, 67
quadratic, 163, 219, 220, 394

binary, 314, 315
nonconvex, 311

quadratically constrained, 193, 220, 279
second-order cone, 219, 220
semidefinite, 128, 176, 186, 217–220, 278, 644

dual, 128, 218
equality constraint, 91
prototypical, 128, 218, 228, 240, 644
Schur-form, 183, 193, 194, 394, 457, 466,

542, 598, 614
solver intensity, 219

type, 220
programming, optimization, 217

projection, 579, 584, 589
1-norm, 617
I − P , 586, 612, 613
algebra, 591
alternating, 342, 619, 620

angle, 624
convergence, 623–625, 628
distance, 621, 622
Dykstra algorithm, 619, 629, 630
feasibility, 621–623
iteration, 466, 619, 623, 630
on affine∩PSD cone, 626
on EDM cone, 465
on halfspaces, 621
on orthant∩ hyperplane, 624, 625
on subspace/affine, orthogonal, 619
optimization, 621, 622, 628
over/under, 626

biorthogonal expansion, 590, 593, 594
coefficient, 46, 419, 421, 504, 587, 600–603

nonorthogonal, 147, 599, 600
cyclic, 619
direction, 587, 590, 599, 600

nonorthogonal, 585, 586, 594, 599
parallel, 590, 591, 593, 594

dual, see dual
easy, 615
eigenvalue, 600–602

decomposition, 616
Euclidean, 108, 444–450, 456, 464, 607
isomorphism, 44
matrix, see matrix
minimum-distance, 135, 586, 587, 604–608
nonorthogonal, 337, 447, 456, 583–585, 593,

599
of origin, 177, 178

oblique, see projection, nonorthogonal
of convex set, 42
of hypercube, 44
of matrix, 604, 605
of origin, 63, 582, 595

1-norm, 177, 178
of polyhedron, 116
of PSD cone, 95
on affine, 42, 591, 596

hyperplane, 63, 595
of origin, 63, 177, 178, 582, 595
orthogonal, 619
vertex-description, 596

on ball
1-norm, 615
∞-norm, 615
ellipsoidal, boundary, 274, 275
Euclidean, 615
Euclidean, boundary, 615
spectral norm, 617

on basis
nonorthogonal, 592
orthogonal, 592

on box, 616
on cardinality k , 616
on circle, 615
on complement

algebraic, 586, 612
orthogonal, 612
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− projection − continued, 589
on cone, 611, 612, 616

dual, see dual
Lorentz (second-order), 617
monotone nonnegative, 386, 394, 451, 452,

616
polar, see dual, projection, on cone
polyhedral, 617
simplicial, 616
truncated, 614

on cone, EDM, 456, 457, 464–468
boundary, 468
dual, see dual

on cone, PSD, 108, 448–450, 616
boundary, 27, 454
cardinality constrained, 286
geometric center subspace, 431
rank constrained, 196, 450, 454, 544, 616
rank-1 , 286

on convex set, 135, 607, 608
boundary, 454, 610
dual, see dual
in affine subset, 618
in subspace, 617

on convex sets, 619
on dual, see dual
on dyad, 599, 601
on ellipsoid boundary, 274, 275
on function domain, 189
on geometric center subspace, 431, 605
on halfspace, 595
on hyperbox, 616
on hypercube, 615
on hyperplane, 595, see projection, on affine
on hypersphere, 615
on intersection, 618–622, 624, 626–630
on line, 596
on origin, 611, 616
on orthant, 452, 614, 615

in subspace, 452
on range, 581, 582, 587
on rank constrained matrices, 616
on rowspace, 46, 587
on simplex, 615
on slab, 595
on subspace, 42, 587

Cartesian, 616
elementary, 594
face, 98
hollow symmetric, 448, 615
intersection, 618
matrix, 604
orthogonal, 619
orthogonal complement, 77, 122, 611
polyhedron, 116
symmetric matrices, 615

on vector
cardinality k , 616
nonorthogonal, 599
orthogonal, 600

on vectorized matrix, 599, 600
one-dimensional, 599–601
order of, 444–446, 617, 629
orthogonal, 581, 582, 587, 600

product, 431, 445, 446, 616–619, 621
range/rowspace, 606
semidefiniteness test as, 603
singular value decomposition, 616
spectral, 427, 451, 452

norm, 456, 616
unique, 452

successive, 619
two sided, 604–606
umbral, 42
unique, 586, 587, 604, 607, 608
vectorization, 418, 605

− P − continued, 584
projector, 42, 587, 608, 644

affine subset, 591
auxiliary matrix, 530
characteristic, 586, 589

nonorthogonal, 584
orthogonal, 589

commutative, 619
non, 619

complement, 587
convexity, 586, 589, 607, 608
direction, see projection
dyad, 524, 525, 584, 599
fractional function, 191
linear operator, 46, 586, 589, 591, 608
nonexpansive, 162, 584, 589, 614
nonorthogonal, 337, 584, 585, 591, 599

affine subset, 583
nullspace, 587
orthogonal, 587–590
product, 431, 599, 604, 619
range, 587
rank trace, 586, 589
rowspace, 46, 587
semidefinite, 504, 589
subspace, 588, 604

fundamental, 587
symmetric, 587–589, 604
unique, 587, 588, 605

proper
cone, see cone
subset, 635
subspace, 32, 48, 49, 125, 149, 153, 429, 612

prototypical
complementarity problem, 162
compressed sensing, 268
coordinate system, 122
linear program, 128, 218, 644
SDP, 128, 218, 228, 240, 644
signal, 288

PSD, see matrix, positive semidefinite
pseudoinverse, see matrix
puzzle, Eternity II, see Eternity II
pyramid, 400

− Q − , 533
quadrant, 33, 643
quadratic, see function
quadrature, 299, 301, 360, 361
quantization

function, 184, 185
quantum annealer, 315
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rotation, 298, 360, 361
sigma delta converter, 20

quantum
annealer, 311–315
computing, 284, 342
Eternity II, 315, 316
gap, 315–317

quartix, 557, 643
quasi-, see function
qubit, 311

coupling, 313
neighboring, 312, 313

QUBO, 314–316, 643
quotient

Hadamard, see Hadamard
Rayleigh, 603

optimization, 544

− R − , 69
range, 41, 52, 69, 580, 604, 639

basis, 87, 514, 588, 592, 594, 639
complement, 151
vectorized, 74

dimension, 45
doublet, 527, 528
dyad, 523, 524
EDM, 410
elementary matrix, 528, 529
-form, 69

polyhedron, 118
idempotent, 583
of product, 500, 523, 527, 587

Kronecker, 604
of vectorization, 599, 600, 602–604
orthogonal complement, 69
projector, 587
pseudoinverse, 41, 579, 580
reflection, 537
rotation, 536, 537
rowspace projection, 606

rank, 69, 499, 500, 646
-ρ subset, 96, 109, 448–454, 468, 472
-0 , 97, 109, 221, 222, 245
-1 , 504, 523

Boolean, 51, 232, 234, 376, 377
correlation, 51, 377
hull, 53, 55, 56, 101
modification, 525, 528
PSD, 101, 280, 503, 504, 525
singular value decomposition, 326
subset, 196
symmetric, 101, 280, 503, 504, 525
transformation, 322, 323
update, see rank-1 , modification

constraint, see constraint
convex

envelope, see convex
iteration, see convex
subsets, 108

dimension, 69, 111, 368, 369, 646
affine, 369, 462

EDM, 369, 410
eigenvalue, 499, 510, 511

decomposition, 616
full, 70, 234

heuristic, 460, 462
indefinite, 318
inequality, 502
Kronecker, see product
log det, 461, 462
minimization, see minimization
monotonicity, 199, 459
of diagonalizable, 499, 510
of product, 368, 499, 500
of projection matrix, 586, 589
of symmetric, 98, 511
of transpose, 368, 500
partitioned matrix, 507
positive semidefinite cone, 220, 502

convex subsets, 108
face, 97–100

Précis, 369
quasiconcavity, 107, 199, 459
reduction, see minimization
regularization, 262, 263, 276, 283, 321, 322,

462, 471
Schur-form, 507, 508
singular value, 513, 514

decomposition, 616
sum, 107

positive semidefinite, 107, 108, 499, 500
trace

gap, 459
heuristic, 245, 246, 318, 459–461, 543

ray, 77
boundary of, 77
cone, 77, 81, 82, 112, 119

boundary, 85
EDM, 88
positive semidefinite, 87

extreme, 86, 416
interior, 77

Rayleigh quotient, 603
optimization, 544

realizable, 19, 341, 447, 448
reconstruction, 387

isometric, 348, 391
isotonic, 390–395
list, 387, 391

unique, 332, 345–349, 358, 361, 424
recursion, 294, 437, 491, 503
reflection, 359, 360, 534, 550

Householder, 529
invariance, 359
of matrix, 537
of range, 537
of vector, 534
prevention, 360
signal, 20, 352

reflexivity, 84, 501, 644
regular

lattice, 27, 251
simplex, 120, 399
tetrahedron, 397, 407

regularization
cardinality, 286, 486
norm, 282, 289, 293, 582
rank, 262, 263, 276, 283, 321, 322, 462, 471

relative, 34, 646
relaxation, 57, 68, 180, 231, 233, 347, 377, 393, 549
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− R − continued, 69
residual

amplitude, 179
norm, 287

reweighting, 265, 461
Richardson, 570
Riemann, 219
Riordan, 299
Robberto, 21
robotics, 22, 28
Rockafellar, 67, 85, 86, 116, 125
room geometry, 20, 21
root, see function, fractional
rotation, 359–361, 533, 536, 537, 548

clockwise, 360
invariance, 102, 359
of cone, see cone, rotated
of matrix, 537
of range, 536, 537
quadrature, 301, 360, 361
vector, 105, 360, 361, 533

round, 646
rowspace, 41, 69, 580, 639

projector, 46, 587
range projection, 606

Rutman, 130

− S − , 119
s , 474, 484, 636
saddle, 129

value, 127, 129, 219
same, 644
Saul, 25, 424, 426, 428
Saunders, 304, 305, 307, 479
scaling, 387, see also homogeneity

frequency, 479
invariance, 215, 335, 541
multidimensional, 21, 387, 407, 448, 472

ordinal, 392
unidimensional, 462

Schütte & van der Waerden, 342
Schoenberg, 25, 329, 337, 375, 380, 382, 393, 447,

448
auxiliary matrix, 335, 531, 596, 638
criterion, 25, 26, 337, 338, 384, 404, 415, 418,

435, 438, 439, 441, 603
Schur, 494

complement, 256, 347, 477, 505, 507
conditions, 505, 517, 539, 553

-form, 505–508
anomaly, 194
convex set, 93
minimization, 506, 525
norm, Frobenius, 193
norm, spectral, 58, 194, 542
nullspace, 506
quadratic, 506
rank, 507, 508
semidefinite program, 183, 193, 194, 394,

457, 466, 542, 598, 614
sparse, 507

Schwarz, 71, 623
SDP, see program, semidefinite
semidefinite

positive, see matrix
program, see program

sensor, 22, 249, 251–254, 257–261
network localization, 249–262, 345, 351

sequence, 623
nested, 373

set, 26, 637, 644
active, 140, 240, 644
Cartesian product, 40
closed, 32–35, 60, 61, 143

and open, 32, 35
cone, 90, 96, 114, 116, 117, 129, 130, 132,

143, 225, 226, 404
exposed, 414
polyhedron, 114, 116

connected, 31, 84, 96, 222
convex, 31

invariance, 39, 40
projection on, 135, 607, 608

dense, 76
difference, 40, 130, 636
empty, 33, 34, 39, 82, 541

affine, 33
closed, 35
cone, 77
face, 75
hull, 51, 53, 58
open, 35

feasible, 7, 39, 57, 135, 158, 173, 217, 644
dual, 224
extreme point, 244
primal, 220, 224

intersection, see intersection
invariance, 382
level, 159, 186, 188, 196, 202, 213, 217

affine, 187
minimal, 53, 63, 114, 309, 639

affine, 596
extreme, 87, 145
halfspace, 114, 115
hyperplane, 114
orthant, 172
positive semidefinite cone, 92, 141, 207

nonconvex, 26, 35, 77–81, 390
nullspace, 138
open, 32–35, 131

affine, 33
and closed, 32, 35

ordered, 26
origin, 32, 77, 82, 85, see zero
orthogonal, 138
projection of, 42
Schur-form, 93
smooth, 376
solution, 173, 321, 644
sublevel, 188, 203, 209, 212

convex, 189, 202, 506
nested, 202
normal, 159, 196
quasiconvex, 212

sum, see sum, vector
superlevel, 189, 212

quasiconcave, 212
union, 40, 76, 77, 79, 99

sgn , 213, 236, 293, 516, 570, 571, 577, 638, 646
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− S − continued, 119
Shannon, 288
shape, 21
shell, 256
Shepp-Logan, 287–290, 292, 295
Sherman-Morrison-Woodbury, 525
shift, see invariance, translation
shroud, 360, 361, 417

cone, 142, 440
SIAM, 218
sigma delta, 19, 20
sign, 646
signal

distortion, see distortion
dropout, 485–489
processing, 20, 21

analog, 474, 480
compression, 318
digital, 19, 20, 28, 288, 388, 473, 484–489

reflection, 20, 352
similarity, 388, see transformation
simplex, 119, 120

area, 398
content, 399
method, 8, 219, 220, 262, 270, 271, 342
nonnegative, 269, 270, 615
regular, 120, 399
unit, 119, 120
volume, 399

singular value, 513, 542
σ , 491, 492, 638
constraint, 58
decomposition, 512–516, 542

2 × 2 , 326
compact, 512
convex iteration, 324, 325
diagonal, 552
ellipsoid, 514, 515
full, 514
geometrical, 514, 515
positive semidefinite, 515
principal component analysis, 598
Procrustes, 547, 551
projection, 616
pseudoinverse, 516
rank constrained, 616
real, 513
subcompact, 513
symmetric, 515, 516, 552
unique, 324, 513

eigenvalue, 513, 515, 516
inequality, 551
inverse, 516
largest, 58, 194, 542, 617, 648
normal matrix, 44, 513
ordering, 513
product, 516
rank, 513, 514
smallest, 542
sum of, 44, 56, 542, 543
triangle inequality, 56

singular vector, 543
eigenvector, 514, 598
orthonormal, 324

SIOPT, 219
slab, 33, 256, 595
slack

complementary, 229
variable, 218, 224, 240

Slater, 128, 169, 225, 228, 229
slice, 103, 141, 351, 563
slope, 196
SNR, 643
SOCP, see program, second-order cone
solid, 116, 120, 397
solution, 217

analytical, 193, 217, 541
feasible, 68, 135, 225, 621–625, 643

dual, 228, 229
strictly, 225, 228

global, 217
local, 217
numerical, 260
optimal, 68, 71–73, 173, 644
problem statement as, 8, 217
set, 173, 321, 644
trivial, 32
unique, see unique
vertex, 68, 180, 219, 220, 232, 270, 271, 278,

342
sort

function, 181, 264, 450–453, 469, 492, 638
index matrix, 391
largest entries, 181
monotone nonnegative, 452
smallest entries, 181

span, 52, 639
sparsity, 175–182, 230, 234, 263–268, 273, 274, 286,

288, 304, 644
gradient, 289
nonnegative, 179, 267, 269–272

spectahedron, 53
spectral

cone, 384–386, 450, 638, 641
dual, 386, 387
orthant, 452

factorization, 481, 482
inequality, 384
norm, see norm
projection, see projection

sphere, see hypersphere
packing, 342

square, see matrix, see norm
root, 633, 641, see function, fractional, see

matrix
Srebro, 56, 542
Starck, 289
steepest descent, 196, 563
Stiemke, 134
strain, see problem
Strang, 69, 498
stress, see problem
strict

complementarity, 229
feasibility, 225, 228
positivity, 371
triangle inequality, 373

Sturm, 520
subject to, 645
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− S − continued, 119
submatrix, see principal
submeasurable, 8
subset, proper, 635
subspace, 32, 639

0 , 32, 47, 639, 640, 645
algebra, 32, 69, 523
antihollow

antisymmetric, 48, 49, 444, 640
symmetric, 48, 640

antisymmetric, 46, 47
Cartesian, 265, 616
complementary, see complement
fundamental, 41, 69, 524, 527, 528, 580, 587

projector, 587
geometric center, 362, 363, 403, 427, 431–433,

459, 519, 605, 640
dimension, 362, 605
orthogonal complement, 97, 359, 427, 605,

640
hollow, 48, 362, 433, 640

dimension, 49, 362
independence, 32, 635
intersection, 73, 618

hyperplane, 70
nullspace basis span, 70
parallel, 33
proper, 32, 48, 49, 125, 149, 153, 429, 612
representation, 69
smallest, face, 98
symmetric, 46, 47
tangent, 96
translation invariant, 359, 363, 427, 605, 640
trivial, see subspace, 0
vectorization, 73

successive
approximation, 619
projection, 619

sufficient, 636
sum, 40, 638

empty, 638
Minkowski, 40
of eigenvalues, 44, 491, 499, 545, 546
of extremes, 87
of functions, 173, 200, 216
of matrices

eigenvalues, 503
nullspace, 73
rank, 107, 499, 500

of singular values, 44, 56, 542, 543
Pythagorean, 534, 535
vector, 40, 526, 635

of cones, 81, 130
orthogonal, 130, 612, 636
unique, 47, 122, 526, 635, 636

superset, 635
supremum, 51, 541, 645, see maximum

of affine functions, 188, 542, 544
of convex functions, 188, 194, 216
of quasiconvex functions, 216
supporting hyperplane, 65–67, 609

surjection, 643, see surjective
surjective, 45, 361, 363, 365, 451, 643

linear, 365, 366, 378, 379

SVD, see singular value decomposition
svec , 47, 218, 647
Swiss roll, 25
Sylvester, 500, 526
symmetry, 330

− T − , 633
tangent

cone, 416
hyperplane, 67, 201–203
line, 37, 38, 347, 348, 563
subspace, 96

Tanner, 267
Tarazaga, 403, 408, 414, 464
taxicab, see distance, 1-norm
Taylor series, 204, 206, 461, 562, 564–570, 577
tensor, 557–559
tesseract, 44
tetrahedron, 120, 269, 398

angle inequality, 397
regular, 397, 407

THD+N, 643
Theobald, 245, 499
theorem

0 eigenvalues, 517
alternating projection, distance, 621
alternative, 132–134, 139

EDM, 441
Fredholm, 69
semidefinite, 226
weak, 134

Barvinok, 110
Bunt-Motzkin, 607
Carathéodory, 131, 602
compressed sensing, 267, 288
cone

faces, 85
intersection, 82

conic coordinates, 167
convexity condition, 201
decomposition

dyad, 520
directional derivative, 564
discretized membership, 137
dual cone intersection, 164
duality

strong, 128, 229
weak, 127, 227

EDM, 378
eigenvalue

of difference, 503
of sum, 503
order, 502
zero, 517

elliptope vertices, 377
exposed, 88
extreme existence, 75
extremes, 87, 88, 119
Farkas’ lemma, 131–134

not positive definite, 227
positive definite, 226
positive semidefinite, 225

fundamental
algebra, 509
algebra, linear, 69
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convex optimization, 217

− theorem − continued, 217
generalized inequality and membership, 131
Geršgorin discs, 105, 106
gradient monotonicity, 199
Hahn-Banach, 60, 65, 68
halfspaces, 61
Hardy-Littlewood-Pólya, 451
hypersphere, 377
inequalities, 451
intersection, 39
inverse image, 40, 43

closedness, 143
Klee, 87
line, 210, 215
linearly independent dyads, 526
majorization, 494
mean value, 567
Minkowski, 117
monotone nonnegative sort, 452
Motzkin, 607

transposition, 134
nonexpansivity, 614
pointed cones, 82
positive semidefinite, 497

convex subsets, 108
matrix sum, 107
principal submatrix, 503
symmetric, 504

projection
algebraic complement, 613
on affine, 591
on cone, 611
on convex set, 608
on PSD geometric intersection, 431
on subspace, 42
unique minimum-distance, 608
via dual cone, 613
via normal cone, 608

projector
rank trace, 586, 589
semidefinite, 504

proper-cone boundary, 85
Pythagorean, 279, 356, 618
range of dyad sum, 527
rank

affine dimension, 369
partitioned matrix, 507
Schur-form, 507, 508
trace, 586, 589

real eigenvector, 509
sparse sampling, 267, 288
sparsity, 179
Sylvester, 500, 526
Tour, 380
Weyl, 117

eigenvalue, 503
zero eigenvalues, 517

− T − continued, 633
thin, see matrix
tight, 331, 645
Torgerson, 364
tr , 491, 499, 501, 646

trace, 186, 491, 542, 543, 573, 646
commutative, 499
derivative, 210, 574
eigenvalues, 491, 499
heuristic, 245, 246, 318, 459–461, 543
inequality, 501, 502
maximization, 427
minimization, 245, 246, 318, 345, 459–461,

506, 543
nonnegative, 501
of product, 43, 492, 493, 499, 501

gradient, 573
of projection matrix, 586, 589
positive semidefinite, 501
product, 493, 501
−rank gap, 459
vec, 43, 492, 493
zero, 517, 519

trajectory, 382, 422
sensor, 350

transform
cosine, discrete, 289, 486
Fourier, 481, 482

discrete, 45, 289, 290, 294, 634, 642
discrete time, 484
inverse discrete, 290, 291

Karhunen-Loéve, 388
Laplace, 474, 475, 482
Legendre-Fenchel, 460
sparsifying, 288, 289
z , 484

transformation
affine, 40, 42, 65, 143

function, 200, 215
inverse, 42
positive semidefinite cone, 93

bijective, see bijective
bilinear, 485
congruence, 383, 500
coordinate, 405, 406

rotation, 455, 537
injective, see injective
invertible, 42, 44, 45
linear, 32, 41, 64, 112, 580

cone, 81, 85, 112, 116, 132, 143, 145
cone, dual, 130, 132, 438
inverse, 41, 404, 580
polyhedron, 112, 116, 132

rank-1 , 322, 323
rigid, 21, 348
similarity, 502, 602

sign, 504
surjective, see surjective

transitivity
face, 76
order, 84, 91, 501, 644

trefoil, 424, 426, 428
triangle, 331

inequality, see inequality
triangulation, 22, 164
trigonometry

cosine, 42, 339
law, 355, 398

distance, 355
Gram, 336



700 INDEX

inequality, 332
inner product, 42, 339, 355, 356
relative angle, 357

trilateration, 22, 39
tandem, 351
unique, 345–347

trivial, 645, see zero
Tucker, 133, 162, 449

− U − , 53
unbounded below, 68, 71, 72, 133, 216
underdetermined, 320, 634
unfolding, 424, 429
unfurling, 424
uniform distribution, 247, 260, 266, 321, 489, 625
unimodal, 211–213
unique

cone, 90, 122, 404
dual, 122, 145

direction, extreme, 86
EDM, 379, 389, 450
eigen

value, 102, 509
vector, 510

expansion, biorthogonal, 147–150, 414, 526,
590, 593, 594

generators, 119
Gram matrix, 359, 363
hull

affine, 50
convex, 51

hyperplane, supporting, 201, 202
independence, conic, 111, 115, 150, 151
inequality, triangle, 396
localization, 22, 250, 346, 348
minimizer, 172, 173
minimum, 171, 564

element, 83, 84, 173, 174
projection, 586, 587, 604, 607, 608

spectral, 452
projector, 587, 588, 605
pseudoinverse, 197, 579
reconstruction, 332, 345–349, 358, 361, 424
solution, 454, 457, 461, 467

convex, 172, 173
geometry, 39, 348
list, 455
Procrustes, 547
quasiconvex, 213

sum, vector, 47, 122, 526, 635, 636
SVD, 324, 513
trilateration, 345–347

unraveling, 424, 426, 428
untieing, 426, 428
update

inverse, 525
rank-1 , 525

− V − , 338
value

absolute, 175, 176, 206
eigen, see eigen
objective, 227, 237
saddle, 127, 129, 219

Van Loan, 495

variable
dual, 125, 162, 163, 168, 637
matrix, 63
nonnegative, see constraint
slack, 218, 224, 240

variance
maximum, 25, 424, 429
principal component analysis, 597
uniform, 260

variation
calculus, 135
total, 292

vec , 42, 94, 290, 492, 493, 647
product, 493
trace, 43, 492, 493

vector, 32, 643
binary, 51, 233, 281, 313, 314, 376, 637, 639
difference, 40, 130, 636
direction, see direction
dual, 629
entry, see entry
indices, 633
magnitude, 534, 535
normal, 61, 158, 607
optimization, 83, 84, 173, 174, 262, 293
parallel, 590, 591, 593, 594
Perron, 383
point, 87, 643
primal, 629
product

inner, see product, inner
outer, see matrix, dyad
zero, see zero, product

pseudoinverse, 580
quadrature, 112, 360
reflection, 534
rotation, 105, 360, 361, 533
space, 31, 32, 639

ambient, 32, 429, 439
Euclidean, 329

sum, see sum
vectorization, 42, see vec svec dvec

inner product, 42–44, 498
Kronecker product, 493
projection, 418, 599, 600, 605
subspace, 73
symmetric, 47

hollow, 49
Venn diagram

EDM, 445
program class, 220
sets, 117

vertex, 36, 37, 57, 75, 78, 177, 376
-description, see description
elliptope, 232, 376, 377
Laurent, 376
of cone, 82

none, 82, 86, 87, 114, 115, 119, 128
polyhedron, 57, 117, 177
solution, 68, 180, 219, 220, 232, 270, 271, 278,

342
Vetterli, 288
volume, see also content

facet, 398, 399
inequality, 399
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polyhedron, 399
pyramid, 400
simplex, 399, 400
tetrahedron, 399

von Neumann, 311, 465, 551, 619–621, 624
Voronoi diagram, 353
vortex, 411

− W − , 244
wavelet, 288, 289
wedge, 86, 125
Weinberger & Saul, 25, 424, 426, 428
Wells, 193, 403, 408, 414, 464, 465
Weyl, 117, 132, 503
wide, see matrix
Wiener, 619
WinEdt, 4
wireless location, 21, 249, 255, 352
womb, 556
Woodbury, 525
Wright, 217
Wüthrich, 23

− X − , 638

− Y − , 210
Yates, 509
Ye, 134, 224, 349, 354
Youla, 617
Young, 27, 448, 450, 472, 544

− Z − , 61
z , 484

transfer function, 484
transform, 484

Zenodorus, 541
zero, 516–521, 645, see also origin

boundary, 82, 85
cone, 82, 85
definite, 520, 521
diagonal, 517, 581
eigenvalue, 517, 524
entry, 517, 581
function, 173
gradient, 135, 196, 197, 213, 604
interior, 82, 85
matrix, 304
-norm, see 0-norm
norm-, 516
-pad, 237, 514
product, 42, 61, 63, 73, 132, 519, 520, 640

PSD, 91, 97–101, 229, 519
pseudoinverse, 581
rank, 97, 109, 221, 222, 245
solution, 32, 645
subspace, 32, 47, 639, 640, 645
trace, 517, 519
transfer function, 474

Zhang
Fuzhen, 496, 497
Shuzhong, 520

Ziegler, 342
Zinoviev, 344
Zolotarev, 344
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