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ABSTRACT: We present here three developments for the Commuted Piano Synthesis model

described more fully elswhere in these proceedings [3]: (1)a theoretical foundation and calibration
scheme for the required linearized piano hammer system; (2) a simple algorithmic synthesis approach

for the commuted soundboard impulse response, eliminating the need for any wave table memory;
and (3) a calibration method for the coupled string system, required for high quality two-stage piano
tone decay.

1 Background

Much study has been made of the piano and its parts, with an eye toward better understanding of
the acoustics, toward more reliable numerical modeling of the piano physics, toward the development

of high quality sound synthesis, and toward the development of cost-e�ective sound synthesis. Our
interest is in the catagory of sound synthesis informed by physics and acoustics. A high quality
physical approach to piano synthesis has been suggested which combines the Wave Digital Ham-

mer [5] with coupled string synthesis [2], using the 2D Digital Waveguide Mesh [7] as a soundboard
resonator, and using allpass �ltering methods to sti�en the soundboard and the piano strings [6].

On the other hand, we have proposed an algorithmic method of synthesizing the inharmonic pi-
ano tones constructing spectral regions with specially tuned FM oscillator pairs [4]. More recently,
we have developed a hybrid method known as Commuted Piano Synthesis [2, 3] which combines

the high quality and control of physical modeling synthesis with the cost-e�ectiveness of sampling
\synthesis". This method takes advantage of the commutativity of linear systems, and replaces the

high order soundboard resonator with its own sampled impulse response played into the string at its
excitation point. In order to implement Commuted Synthesis, we must linearize the hammer-string

interaction, which is the focus of the �rst part of this paper. We have further hybridized and simpli-
�ed the Commuted Piano Synthesis method by replacing the sampled soundboard impulse response
with a simple algorithmic synthesis method which idealizes the soundboard and makes its physical

charateristics easier to control. Lastly, presented here, is a method to calibrate the coupled piano
string algorithm to real physical data using only a simple recording of a hammer hitting one string.

2 Linearizing the Piano Hammer

A fully physical nonlinear model of the hammer-string system has been o�ered already [5]. However,

in order to implement Commuted Piano Synthesis [3], we must commute the resonant soundboard
system through the hammer system to the point of excitation in the commuted piano model. This

requires that we replace the entire hammer-string interaction with a linear �lter. Rather inconve-
niently, the hammer-string interaction is highly /it nonlinear in two important respects: First, the

felt itself is nonlinear in that it gets sti�er the more it is compressed. Second, the hammer leaves
the string at some point, which corresponds to a shift in the models from a string interacting with
a hammer to a string vibrating freely.



2.1 Linearized Analysis of the Piano Hammer-String System

Impedance of the Un-Terminated Ideal String The impedance experienced at some point
on an un-terminated string is purely resistive:

RS
�
= Fs=V = 2R0; (1)

where FS and V are the Laplace transforms of force and velocity at the driving point and R0 is the
wave impedance of the string, which is dependent on the squre root of string tension times string

density. The 2R0 in the above equation results from taking into account the impedance of both
halves of the string, as seen at the driving point.
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Figure 1: String Terminated on One Side Only

Impedance of the Terminated Ideal String In the case of the piano hammer-string interaction,

waves from the agra�e return and interact with the hammer before it leaves the string for most notes.
However, the return waves from the bridge end of the string do not make it back before the hammer
leaves the string, except in the very highest notes. Therefore, we formulate a half terminated string

impedance taking into account a one sided termination at the agra�e end, as shown in Figure 1.
The velocity response of a force impulse at the strike position is an impulse followed by an inverted

impulse which returns re
ected o� the essentially rigid agra�e end of the string T seconds later:
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(2)

Impedance of the Ideal Linear Hammer Let us assume that the hammer is of the form shown

in Figure 2, essentially a mass and spring system, where the spring represents the felt portion of the
hammer. We �nd that the impedance relation is:

FH = RH

�
V �

v0

s

�
where RH

�
=

ks

s2 + k=m
(3)

and where v0=s represents the step input of the intial striking velocity. RH has a zero at DC and
two conjugate poles indicating an oscillation frequency of

p
k=m.
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Figure 2: The Linear Mass-Spring Hammer Model

Connecting the Hammer to the String When the hammer is in contact with the string, we

take the velocity of the string equal to the velocity of the spring end of the hammer, and the force
on the string equal and opposite to the force on the spring, FS = �FH . Plugging in the string
impedance relation, V = Fs=Rs, we �nd:
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In the unterminated string case, we de�ne H1 as the transfer function from the initial striking

velocity step to the force experienced by the string (and, equivalently, by the hammer felt). Taking
the hammer to be a simple mass-spring system, we �nd that the H1 transfer function is now a

damped second order system, which looks just like the RH except for the under bracketed damping
term (6). For practical physical parameters, this is an over damped system with real poles.
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(6)

For the one side terminated string case, we de�ne HT . Again, we �nd HT is like RH but for the
under bracketed damping term, which in this case contains an interesting time delay part.
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2.2 Implementation

Conveniently, we �nd a recursion relationship between H1 and HT , which is independent of the

exact nature of the hammer impedance, RH .

HT =
H1

1� e�sTH1
(8)

This allows a simple recursive hammer �lter implementation of the form in Figure 3:
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Figure 3: Step-Driven Recursive Hammer Filter

Since, in this case, the hammer never leaves the string (from the linear system assumption), we

may prefer to include a cuto� envelope in the feedback loop to terminate the re
ections from the
agra�e at some point, or better, break out the �rst few re
ections in a feed forward formulation as

in Figure 4:
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Figure 4: Feed Forward Hammer Filter

Noting that H1 is a di�erentiated lowpass �lter,

H1 =
ks

s2 + k
2R0

s+ k
m

= sLp (9)

the step-driven hammer system of Figure 3 may be commuted to an impulse-driven system, as
required for Commuted Piano Synthesis [3]. This is shown in Figure 5. In this formulation, the

hammer feedback loop contains what is fundamentally a lowpass �lter and a DC-blocker. It is easy
to break this out into a feed forward form as in Figure 4.
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Figure 5: Impulse-Driven Recursive Hammer Filter

2.3 Analysis of Real Hammer-String Interaction Data

Using the Wave Digital Hammer [5] parameterized with measured data provided by [1], we were
able compute the forces experienced by terminated and un-terminated middle-C strings during a
hard hammer strike. In the upper left plot of Figure 6, we see the felt compression force curves

for a hammer hitting an unterminated middle-C string (dashed line) and a terminated middle-C
string (solid line). The multiple pulses correspond to return waves from the agra�e interacting with

the hammer while it is still in contact with the string. Note that in the unterminated string case,
the force curve ramps smoothly to zero and the hammer apparently comes to rest on the string

as in an over damped second order system. However, in the terminated string case, the hammer
leaves the string when the return waves �nally throw it away. The upper right plot of Figure 6
show the dB magnitude spectra of these force curves. Note, here, that the overall bandwidth of

both the terminated string and unterminated string hamme shock spectra are about the same. The
multi-pulse spectrum (solid line) di�ers from the single-pulse spectrum (dashed line) primarily in a

slight ringing of the lower spectrum region.
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Figure 6: Middle-C Struck Hard: Force signals computed using the WDH parameterized with physical

data taken from Chainge and Askenfelt (1994)

The lower right plot is the dB magnitude of the complex ratio of the multi-pulse spectrum and

the single-pulse spectrum. The several low frequency lobes correspong to the spectral peaks one
would expect from the hammer staying in contact with the string at the stike point (about 1/8 the

way along the string) for some �nite duration. It is of some interest that keeping the hammer in
contact with the string introduces spectral peaks about every eight harmonics, whereas an impulsive



strike at the same position on the string introduces spectral nulls every eight harmonics. The piano

hammer interaction is a compromise between these two extremes of behavior.
We further note that there are odd looking wiggles in the ratio spectrum, clearly visible around

the 5{10 kHz range. These correspond in width to the side lobes one would expect from rectangularly
windowing the time domain signal at exactly the point where the hammer leaves the terminated
string. Hence, the severe nonlinear e�ect of the hammer leaving the string (which changes the entire

linear system model) turns out in the spectral domain to be a simple convolution by the appropriate
rectangular window sinc function.

The lower left plot in Figure 6 shows the inverse transform of the ratio spectrum. This is what is
left of the multi-pulse hammer force signal if we de-convolve the single pulse force signal out of it. It

appears to be a recursively damped impulse train, with some DC blocking, eventually centening the
signal around zero. This is what was predicted by the linear hammer analysis as shown in Figure 5.

2.4 Spectral Modeling Approach to the Multi-Pulse E�ect

An alternative approach to hammer �lter design is to model the complex ratio spectrum as shown
in the lower right plot of Figure 6 directly as a low order �lter. This reduces the recursive or feed

forward �lter design methods of modeling multiple force pulses to a simple spectral equalization
�lter, as shown in Figure 7.
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Figure 7: Spectral EQ Method of Modeling the Hammer Filter

In this case, we used a fourth order �t for the single pulse hammer lowpass �lter. We then made
a sixth order equalization �lter �t to a few of the signi�cant low frequency features of the ratio
spectrum. The right hand plot of Figure 8 shows the equalization �lter �t. The left hand plot shows

the time domain output of the hammer �lter system shown in Figure 7. The thick dotted lines are
actual data as generated by the Wave Digital Hammer and the solid lines are the result of the �lter

�ts. Note that the phase information in the sixth-order ratio spectrum �t results in a very good time
domain approximation. In general, the coe�cients of the lowpass �lter part of this structure will be

highly dependent on strike velocity, the harder the strike, the wider the bandwidth. However, the
equalization part of this structure is reasonably consistant over strike velocity, and, in the simpli�ed
model, may be held constant over strike velocity, although it will vary over piano key number.
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Figure 8: Sixth Order Filter Fit to Ratio Spectrum



3 Excitation Synthesis with Nonlinearly Filtered Noise

The impulse response of the piano soundboard is fundamentally a superposition of many expo-
nentially decaying sinusoids, at least in its linear approximation. The reverberant e�ect of the
soundboard occurs as energy from the struck piano strings is coupled into these modes and rever-

berated. However, if there were some particular modes of the soundboard which were unusually
prominent, exhibiting a clear peak in the impulse response spectrum, and having an unusually long

decay time, then a string which contained this frequency in one of its partials would couple into this
mode more signi�cantly than a string which did not have that frequency among its partials. This
could produce unwanted unevenness in the piano tone from note to note. In general, much e�ort

has been applied to the design of real piano soundboards to avoid such situations as these. The
idealized piano soundboard should have a smooth, or 
at spectral response locally, although it is

evident that higher frequency modes decay a little faster that low frequency modes.
It is di�cult to design a resonant system with such a 
at response without using a very high order

�lter, for example the 2D Digital Waveguide Mesh [7]. On the other hand, it is easy to model the
impulse response of such a system as exponentially decaying white noise, with the possible extension
of a time varying low pass �lter applied to model high frequency modes decaying more quickly than

low frequency modes. Using such a nonlinearly �ltered noise model, we may synthesize any number
of reverberant systems which have the characteristic that they have more or less smooth responses

over the frequency spectrum, with no particular peaks of importance. The piano soundboard is a
system of this kind.

In Figure 9 we show such a soundboard impulse response synthesis system. White noise is being
fed into a time varying low pass �lter whose gain and bandwidth are both being controlled by en-
velopes. One possible implementation of this would use a one-pole low pass �lter whose denominator

coe�cient is being swept toward -1, thereby shrinking the bandwidth. If the numerator coe�cient
is modi�ed to keep gain at DC constant, the amplitude envelope might even be dispensed with in

a simpli�ed system. Alternatively, more elaborate noise �ltering systems may be used, possibly
breaking the noise into frequency bands which would be enveloped independently to calibrate to
some particular impulse response.
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Figure 9: Synthesis of Soundboard Tap with Nonlinearly Filtered Noise

Synthesizing Sustain Pedal E�ect Just as the dry soundboard impulse response may be com-

muted to the point of excitation, similarly we may commute the entire sampled impulse response
of the soundboard plus open strings with dampers raised to the point of excitation to obtain the
resonant e�ect of the sustain pedal. Further, since there are so many resonating partials, the spec-

tral response is essentially 
at and �ltered white noise with a long slow decay rate makes a good
synthetic approximation.

4 Calibrating Coupled Stings

4.1 The Coupled String Model

Figure 10 illustrates a coupled piano string model for one note of the piano. The Coupling Filter
represents the loss at the yielding bridge termination, and controls the coupling of energy between



and among the three strings. Each of the three string loops shown contain two Delay elements,

the �rst corresponding to the delay path from the hammer strike point to the agra�e and back,
the second corresponding to the delay path from the hammer strike point to the bridge and back.

The relative delay length ratio for most strings is about 1 to 8, although the relative delay lengths
may be set to model any particular piano string strike position. The input signals E1; E2; and E3

are taken from the output of the hammer �lter, which has been driven, in turn, by a soundboard

impulse response, or a nonlinearly �ltered noise excitation synthesis. Note that the input signals
are introduced into the string loops at two points, in positive and negative form: this models the

spectral combing e�ect of the relative strike position of the hammer on the string.
The signals C1; C2; and C3 should be set to 1:0 during the sustain portion of the piano sound,

and should be ramped to some appropriate loop attenuation factor, such as .95, at key release time.
Alternatively, some more elaborate release sound model might be used. Note that, for una corda
pedal e�ects, one or more of the signals E1; E2; or E3, should be set to zero at key strike time. This

causes the coupled string system to move quickly into its second stage decay rate, just as is found
in real piano sounds when the una corda pedal is depressed.

In this coupled string model, the delay lengths are �ne-tuned such that the e�ective pitch of each
of the three string loops is very nearly equal, but not exactly equal. This is the mechanism by which
two stage decay is synthesized in the commuted piano synthesis model. The Sti�ness Filters, as

shown in the Figure, are intended to be an allpass �lter structure which modi�es the phase response
of the loop so as to create the e�ect of the natural inharmonicity of the piano string partials. We

recommend a bank of one-pole allpass �lters as described in [6].
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Figure 10: Three Piano Strings Coupled at a Bridge Termination

4.2 Calibrating the Coupling Filter

Ideally, from a physical perspective, we would like to measure empirically the bridge impedance, Rb,
and the string impedance, R0; and then from these measurements compute the desired Coupling

Filter. However, following the spirit of the simpli�ed string loop model presented above, let us
say we have already calibrated a single string system and know LP (z), a lowpass �lter modeling

the per period attenuation of the tone, and AP (z), an allpass �lter summarizing the dispersion in
the string due to sti�ness. We have presumably done this by measuring the partial frequencies and



corresponding decay rates of a single piano string. This may be accomplished by physically damping

two of the three piano strings in a piano note group with felt, rubber, or some such means, and
then recording the sound of the remaining undamped string decaying after it is struck. The decay

rate of this single string should not contain very much two-stage decay interference from the other
damped strings, but should, instead, produce a reasonable single stage decay from which data about
the partial frequencies and their individual decay rates may be extracted.

Loss in a string-bridge system comes almost entirely from the bridge termination itself. That
is, the loss from viscous air drag and internal friction is very small compared to termination loss.

Therefore, let us simply say that LP (z)
�
= Tf (z) is the force wave transfer function at the bridge,

that the string is rigidly terminated at the other end so that the force wave transfer function there

is unity, and that the dispersion, AP (z), is entirely due to sti�ness in the string, and not due to any
signi�cant reactive qualities in the bridge. We may therefore write [2],

LP (z)
�
= Tf =

Rb �R0

Rb +R0

(10)

and solve for Rb in terms of LP ,

Rb = R0

1 + LP (z)

1� LP (z)
(11)

The coupling �lter for N strings coupled at an impedance Rb is [2]

Hb
�
=

2

N +Rb=R0

=
2

N +
1 + LP (z)

1� LP (z)

=
2(1� LP )

(1 +N) + (1�N)LP
(12)

In summary of this calibration approach, we have measured the sound of a single string decaying,

derived the loop loss �lter from this data, then taken this to be the force wave transfer function
at the bridge (since we assume that most all of the loss is due to yielding bridge, and the internal

string loss is small in this situation); from this point, we derive the bridge impedance and thence
the N-string coupling �lter.

In the model shown in Figure 10, we have three strings coupled, N = 3. However, several minus
signs have been commuted around in that �gure and the Coupling Filter is actually represented
by �Hb. To complete the model, the Tuning Filters should be tweaked by a good piano tuner to

achieve a �ne, full-bodied two-stage decay rate (around 0.5{2 Hz detuning between strings).

References

[1] Chaigne, A. and A. Askenfelt. \Numerical simulations of piano strings." I & II. JASA 95 (2)
and (3). 1994.

[2] Smith, J. O. \E�cient Synthesis of Stringed Musical Instruments." Proc. ICMC, Tokyo. 1993.

[3] Smith, J. O. and S. A. Van Duyne \Commuted Piano Synthesis." Elsewhere in these Proceedings.

[4] Van Duyne, S. A. \Low Piano Tones: Modeling Nearly Harmonic Spectra with Regions of FM."

Proc. ICMC, San Jose. 1992.

[5] Van Duyne, S. A.; Pierce, J. R. and J. O. Smith. \Traveling Wave Implementation of a Lossless
Mode-Coupling Filter and the Wave Digital Hammer." Proc. ICMC, �Arhus. 1994.

[6] Van Duyne, S. A. and J. O. Smith. \A Simpli�ed Approach to Modeling Dispersion Caused by

Sti�ness in Strings and Plates." Proc. ICMC, �Arhus. 1994.

[7] Van Duyne, S. A. and J. O. Smith. \Physical Modeling with the 2-D Digital Waveguide Mesh."
Proc. ICMC, Tokyo. 1993.


