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Course Overview

• Spectrum analysis, processing, and synthesis using
Short-Time Fourier Transforms (STFT)

• Processing motivated by the mechanics of hearing

• Applications include musical sound synthesis and
audio signal processing
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Main Pointers

• First Handout1

• Course Schedule and Outline2

– Assignments

– Weekly class schedule

– Pointers to all lecture overheads and
reading/viewing materials

• Class home page3

1http://ccrma.stanford.edu/~jos/intro421/
2http://ccrma.stanford.edu/~jos/intro421/Schedule_Assignments.html
3http://ccrma.stanford.edu/courses/421/
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Why The Fourier Transform

• Natural for visualizing audio signals:
The ear performs a kind of Fourier analysis

• Spectral models can be very compact and flexible:

– MPEG audio coding

– Sinusoidal modeling (“additive synthesis”)

– Sparse modeling elements for

∗ Machine listening

∗ Music Information Retrieval (MIR)

– AES talk4 on some history of audio spectral
modeling at CCRMA and elsewhere.

• Any Linear Time Invariant (LTI) system can be
implemented in the frequency domain by means of
the Fourier Transform (“FFT convolution”)

4http://ccrma.stanford.edu/~jos/pdf/AES-Heyser.pdf
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Audio Applications of the
Short-Time Fourier Transform (STFT)

• Frequency-domain display of audio signals

• Fast (FFT) convolution

• Robust, time-varying, linear filtering

• Fourier analysis, modification, and resynthesis

• Musical sound synthesis via spectral modeling:

– Additive synthesis using sinusoids

– Sines + Noise modeling

– Sines + Noise + Transients modeling

• Speech analysis and synthesis

• Vocoders

• Time scaling

• Pitch shifting (frequency scaling)

• Pitch (fundamental frequency) detection

• Noise reduction

• Audio compression (MPEG audio: .mp3, .m4a)

• Signal source separation in the frequency domain
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• Computational Auditory Scene Analysis (CASA)

• Machine listening

• Music Information Retrieval (MIR)

• Music identification (Shazam)

Audio Compression

Spectral audio processing is used in transform coders for
audio compression, such as

• MPEG AAC (10X common), and

• “MP3” (MPEG-II, Layer III — ≈ 10X-AAC at 8X)

Music 422 (EE 367C) is an entire CCRMA course
devoted to this topic (offered winter quarters).
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Main Pointer

The course schedule and outline5 (reachable from the
class home page6) lists the following information:

• Assignments

• Weekly class schedule

• Pointers to all lecture overheads

• Pointers to supplementary reading/listening

5http://ccrma.stanford.edu/~jos/intro421/Schedule Assignments.html
6http://ccrma.stanford.edu/courses/421/
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Notation

Frequency and Time:

ω denotes continuous radian frequency (rad/sec)

f denotes continuous frequency in Hertz (Hz)

ω = 2πf

ωk denotes discrete frequency, ωk = 2π(k/N)fs

ω, ωk ∈ R (frequencies are always real)

T = sampling interval (sec) (typically T = 1)

fs = sampling rate, fs =
1
T

tn = nT (discrete time)

n, k ∈ Z (integers)

t, tn ∈ R (times are always real)
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Introduction to Audio Spectrum Analysis

Spectrum analysis of real-world signals typically occurs
over short time segments. We are therefore most
interested in short-time spectrum analysis:

• Spectral content typically varies over time.

• The human ear uses less than one second of past
sound to form a spectrum.

• There is a limit to the length of signal we can analyze
at once.

To extract and analyze a sound segment, it is necessary
to apply a window function. An unmodified segment
extraction corresponds to a “rectangular window”.

Everything we ‘look at’ will be through a ‘window’, hence
it is important to realize what the window is doing to our
underlying signal.

Applications we’ll discuss first:

• Spectral Analysis for Display

• FIR Filter Design by Window Method
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Example of Windowing

Let’s look at a simple example of windowing to
demonstrate what happens when we turn an infinite
duration signal into a finite duration signal through
windowing.

Complex Sinusoid:

x(n) = ejωnT , 0 ≤ ωT < π

Notes:

• real part = cos(ωnT )

• The frequencies present in our signal are only positive.
A fancy name for x(n) is an ‘analytic signal’

This signal is infinite duration. (It doesn’t die out as n
increases.) In order to end up with a signal which dies
out eventually (so we can use the DFT), we need to
multiply our signal by a window (which does die out).
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Putting all this together, we get the following:

Our original signal (unwindowed, infinite duration), is

x(n) = ejω0nT , n ∈ Z

A portion of the real part, cos(ω0nT ), is plotted below:
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The imaginary part, sin(ω0nT ), is of course identical but
for a 90-degree phase-shift to the right.
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The Fourier Transform of this infinite duration signal is a
delta function at ω0:

X(ω) = 2πδ(ω − ω0) = δ(f − f0)

δ(f − f0)

f0 f0
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The following is a diagram of a typical window function:
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This may be called a “zero-centered” (or “zero phase”, or
“even”) window function, which means its phase in the
frequency domain is either zero or π, as we will see in
detail later. (Recall that a real and even function has a
real and even Fourier transform.) The window is also
nonnegative, as is typical.
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We might also require that our window be zero for
negative time. Such a window is said to be ‘causal’.
Causal windows are necessary for real-time processing:
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By shifting the original window in time by half its length,
we have turned the original non-causal window into a
causal window. The Shift property of the Fourier
Transform tells us that we have introduced a linear phase
term.
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The windowed complex sinusoid is:

xw(n) = w(n)x(n)
∆
= w(n)e−jω0nT n ∈ Z

(Note carefully the difference between w and ω.)
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The Convolution Theorem tells us that our multiplication
in the time domain results in a convolution in the
frequency domain. Hence, in our case, we will obtain the
convolution of a delta function at frequency ω0, and the
transform of the window:

Xw(ω) = (W ∗X)(ω) = W (ω − ω0)

The result of convolution with a delta function is the
original function, shifted to the location of the delta
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function. (The delta function is the identity element for
convolution.)
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Summary

• We saw that a sinusoid at amplitude A, frequency ω0,
and phase φ becomes a window transform shifted out
to frequency ω0, and scaled by Aejφ.

• Windowing in the time domain resulted in a
‘smearing’ or ‘smoothing’ in the frequency domain.
We need to be aware of this if we are trying to resolve
sinusoids which are close together in frequency.

• Windowing also introduced side lobes.
This is important when we are trying to resolve low
amplitude sinusoids in the presence of higher
amplitude signals. When we look at specific windows,
we will be looking at this behavior.

• The window w(n) can be thought of as the
time-domain sampling kernel at time 0

• The window transform W (ω) is the corresponding
frequency-domain sampling kernel at dc

• In ordinary sampling, we have sinc(t/T )/T and its
(rectangular) transform as the sampling kernels

There are many type of windows which serve various
purposes and exhibit various properties, as we shall see.
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The Rectangular Window

The rectangular window may be defined as:

wR(n)
∆
=

{

1, |n| ≤ M−1
2

0, otherwise
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Zero−Phase Rectangular Window − M = 21

• “Zero centered” definition (even in time domain)

• Need M odd in zero-centered case

• Scale window by 1/M to obtain unity dc gain

18



To see what happens in the frequency domain, we need
to look at the DTFT of the window:

WR(ω) = DTFTω(wR)
∆
=

∞
∑

n=−∞

wR(n)e
−jωn

=

M−1
2

∑

n=−M−1
2

e−jωn =
ejω

M−1
2 − e−jω

M+1
2

1− e−jω

where we used the closed form of a geometric series:

U
∑

n=L

rn =
rL − rU+1

1− r

We can factor out linear phase terms from the numerator
and denominator of the above expression to get

WR(ω) =
e−jω

1
2

e−jω
1
2

[

ejω
M
2 − e−jω

M
2

ejω
1
2 − e−jω

1
2

]

=
sin

(

M ω
2

)

sin
(

ω
2

)

∆
= M · asincM(ω)

where asincM(ω) denotes the aliased sinc function.

asincM(ω)
∆
=

sin(Mω/2)

M · sin(ω/2)

(also called the Dirichlet function)
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Rectangular Window Transform (Cont’d)

Above, we found the rectangular window transform to be
the aliased sinc function:

WR(ω) = M · asincM(ω)
∆
=

sin
(

M ω
2

)

sin
(

ω
2

)
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This (real) result is for the zero-centered rectangular
window. For the causal case, a linear phase term appears:

W c
R(ω) = e−j

M−1
2 ωMasincM(ω)

As the sampling rate goes to infinity, the aliased sinc
function approaches the regular sinc function

sinc(x)
∆
=

sin(πx)

πx
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More generally, we may plot both the magnitude and
phase of the window transform versus frequency:
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In audio work, we more typically plot the window
transform magnitude on a decibel (dB) scale:
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Since the DTFT of the rectangular window approximates
the sinc function, it should “roll off” at approximately 6
dB per octave, as verified in the log-log plot below:
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As the sampling rate approaches infinity, the
rectangular-window transform (asinc) converges exactly
to the sinc function. Therefore, the departure of the
roll-off from that of the sinc function can be ascribed to
aliasing in the frequency domain, due to sampling in the
time domain.
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Sidelobe Roll-Off Rate

In general, if the first n derivatives of a continuous
function w(t) exist (i.e., they are finite and uniquely
defined), then its Fourier Transform magnitude is
asymptotically proportional to

|W (ω)| →
constant

ωn+1
(as ω →∞)

Proof: Look up “roll-off rate” in text index.

• Thus, we have the following rule-of-thumb:

n derivatives ←→ −6(n + 1) dB per octave roll-off rate

(since 20 log10(2) = 6.0205999 . . .).

• This is also −20(n + 1) dB per decade.

• To apply this result, we normally only need to look at
the window’s endpoints. The interior of the window is
usually differentiable of all orders.

Examples:

• Amplitude discontinuity ←→ −6 dB/octave roll-off
• Slope discontinuity ←→ −12 dB/octave roll-off
• Curvature discontinuity ←→ −18 dB/octave roll-off

For discrete-time windows, the roll-off rate slows down at
high frequencies due to aliasing.
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In summary, the DTFT of the M -sample rectangular
window is proportional to the ‘aliased sinc function’:

asincM(ωT )
∆
=

sin(ωMT/2)

M sin(ωT/2)

≈
sin(πfMT )

MπfT
∆
= sinc(fMT )

Some important points (rect window transform):

• Zero crossings at integer multiples of ΩM
∆
=

2π

M
(= freq. sampling interval used by a length M DFT)

• Main lobe width is 2ΩM = 4π
M

• As M gets bigger, the main-lobe narrows
(better frequency resolution)

•M has no effect on the height of the side lobes
(Same as the “Gibbs phenomenon” for Fourier series)

• First side lobe only 13 dB down from main-lobe peak

• Side lobes roll off at approximately 6dB per octave

• A linear phase term arises when we shift the window
to make it causal, while the window transform is real
in the zero-centered case (i.e., when the window w(n)
is an even function of n)
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Frequency Resolution

The next series of plots shows the effect that an increased
window length has on our ability to resolve two sinusoids.

Two Cosines (“In-Phase” Case)

• 2 cosines separated by ∆ω = 2π
40

• Rectangular Windows of lengths: M = 20, 30, 40, 80
(∆ω = 1

2ΩM , 34ΩM ,ΩM , 2ΩM , where ΩM
∆
= 2π/M)
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Two Cosines (“In-Phase” Case) in Time Domain

• 2 cosines separated by ∆ω = 2π
40

• Rectangular Windows of lengths: M = 20, 30, 40, 80
(∆ω = 1

2ΩM , 34ΩM ,ΩM , 2ΩM , ΩM
∆
= 2π/M)
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One Sine and One Cosine
(“Phase Quadrature” Case)

• As above, but 1 sine and 1 cosine

• Note: least-resolved case appears resolved!

• Note: M = 40 case suddenly looks much worse

• Only the M = 80 case looks good at all phases
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One Sine and One Cosine
(“Phase Quadrature” Case)
All Four Resolutions Overlaid

• Same plots as on previous page, just overlaid

• Peak locations are biased in under-resolved cases,
both in amplitude and frequency
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The preceding figures suggest that, for a rectangular
window of length M , two sinusoids can be most reliably
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resolved when they are separated in frequency by a full
main-lobe width:

∆ω ≥ 2ΩM

(

ΩM
∆
=

2π

M

)

This implies there must be at least two full cycles of the
difference-frequency under the window.

We’ll see later that this is an overly conservative
requirement—a more careful study reveals that 1.44
cycles is sufficient for the rectangular window.
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Sinusoidal Interference as Amplitude Modulation

Resolving two closely spaced sinusoids is equivalent to
AM demodulation:

cos
(

ωct +
ωd

2
t
)

+cos
(

ωct−
ωd

2
t
)

= 2 cos (ωct) cos
(ωd

2
t
)

where ωd is the difference frequency in rad/s.

• Intuitively, it makes sense to require two cycles of the
difference-frequency ωd, since that is one cycle of the
equivalent AM modulation (two “beats”)
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Beating Heisenberg

In principle, arbitrarily small frequency separations can be
resolved if

• there is no noise, and

• we are sure we are looking at the sum of two ideal
sinusoids under the window

In this case, the maximum likelihood estimate (MLE) will
reliably find the six sinusoidal parameters (amplitude,
frequency, and phase for both sinusoids). We will return
to the MLE later in the quarter.

However, in practice, there is almost always some noise
and/or interference, so we normally require sinusoidal
frequency separation by on the order of a main-lobe
width (of the asinc function in this case, or the window
transform more generally) whenever possible.
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Minimizing Side-Lobe Level

In addition to minimizing main-lobe width to maximize
frequency-resolution, we also want minimum side-lobe
level.

The rectangular window provides an abrupt transition at
its edge. This minimizes main-lobe width while
maximizing side-lobe level among all windows in the
normal (monotonically decaying away from time 0) case.

We will soon look at other windows having a more
gradual transition to zero, thereby reducing side-lobe
level.
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Resolution Bandwidth (Resolving Sinusoids)

Our ability to resolve two closely spaced sinusoids is
determined by the main-lobe-width and sidelobe-level of
our window’s Fourier transform.

Let Bw denote the main lobe width in Hz, with the main
lobe width defined as the width between zero crossings:
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For the Rectangular Window (length M), we have

WR(ω) = asincM(ω)
∆
=

sin (MωT/2)

sin(ωT/2)
=

sin (MπfT )

sin(πfT )

Main lobe width is “two sidelobes wide”
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= 2
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Choosing Window Length to Resolve Sinusoids

A conservative requirement for resolving 2 sinusoids (in
noisy conditions) with a spacing of ∆f Hz is to choose a
window length M long enough so that their main lobes
are clearly discernible. For example, we may require that
their main lobes meet at the first zero crossings.
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To obtain the separation shown above, we must have
Bw ≤ ∆f , where Bw is the main lobe width in Hz, and
∆f is the sinusoidal frequency separation in Hz.

For the rectangular window, Bw can be expressed as

Bw = 2
fs
M
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Hence we need:

Bw = 2
fs
M
≤ ∆f

⇒ M ≥ 2
fs
∆f

or

M ≥ 2
fs

|f2 − f1|

• A length M rectangular window satisfying this
inequality is said to resolve the sinusoidal frequencies
f1 and f2

• This is equivalent to our previous observation since

M ≥ 2
fs
∆f

⇔ ∆f ≥ 2
fs
M

⇔ ∆ω ≥ 2ΩM

• In summary, to resolve sinusoidal frequencies f1 and
f2 under a rectangular window, it is sufficient for the
window length M to span at least 2 periods of the
difference frequency f2 − f1, where 2 is the width of
the main lobe, measured in sidelobe-widths.

• By the Fourier scaling theorem, K periods must
suffice for a main lobe of width KΩM .
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Closely Spaced Sinusoids as
Amplitude Modulation

The previous example looks like this in the time domain:
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• Over one “beat” of the difference frequency, the AM
modulation due to “sinusoidal interference” is
equivalent to a Hann window

• Modulation envelope is precisely sinusoidal

• In the absence of noise, and under the assumption of
sinusoidal modulation (or, equivalenly, interference by
one other sinusoid), all parameters can be recovered
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Resolving Sinusoidal Components Robustly

We cannot normally assume a sum of precisely two
sinusoids with no noise, and so we choose our window
length to resolve them robustly:

• FFT window length M spans at least two periods of
the difference frequency under a rectangular window
(and longer for other windows)

• ⇐⇒ Window transform (asinc) separated by a full
main-lobe width at the minimum supported
peak-frequency separation

• Any narrower peak spacing is then treated as
amplitude modulation that plays out over time as
spectral-frame amplitude modulation

We are still assuming that sinusoidal signal components
are present, at least over the window duration, but this is
commonly a good assumption.

38


