
THE HYBRID MOBILE INSTRUMENT:
RECOUPLING THE HAPTIC, THE PHYSICAL, AND THE VIRTUAL

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF MUSIC

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Romain Pierre Denis Michon
June 2018

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/rd318qn0219

© 2018 by Romain Pierre Denis Michon. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/rd318qn0219

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Chris Chafe, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Julius Smith, III, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Ge Wang

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Matthew Wright,

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

The decoupling of the “controller” from the “synthesizer” is one of the defining characteristic of digital
musical instruments (DMIs). While this allows for much flexibility, this “demutualization” (as Perry
Cook termed) sometimes results in a loss of intimacy between the performer and the instrument.

In this thesis, we introduce a framework to craft “mutualized” DMIs by leveraging the concepts
of augmented mobile device, hybrid instrument design, and skill transfer from existing performer
technique.

Augmented mobile instruments combine commodity mobile devices with passive and active el-
ements that can take part in the production of sound (e.g., resonators, exciter, etc.), while adding
new affordances to the device and changing its form and overall aesthetics. Screen interfaces can be
designed to facilitate skill transfer, accelerating the learning and the mastery of such instruments.

Hybrid instrument design mutualizes physical and “physically-informed” virtual elements, taking
advantage of recent progress in physical modeling and digital fabrication. This design ethos allows
physical/acoustical elements to be substituted with virtual/digital ones and vice versa (as long as it
is physically possible).

A set of tools to design hybrid mobile instruments is introduced and evaluated. Overall, we
demonstrate how this approach can help digital luthiers to think about DMI design “as a whole” in
order to create mutualized instruments. Through a series of case studies, we discuss aesthetic and
design implications when making such hybrid instruments.

iv

Acknowledgments

Where to start? So many people need to be thanked for their various contributions to this work.
First, I owe so much to my four advisors Professors Julius O. Smith, Chris Chafe, Ge Wang,

and Matt Wright. Julius was my former advisor when I came to CCRMA as a visiting researcher
in 2011. He’s one of the most enthusiast and curious person I know. He provided me with constant
inestimable feedback, and I wouldn’t be here today without his help and support. Chris Chafe has
done so much for me since I started my PhD. He got me involved in so many fun and interesting
projects. He’s the “benevolent father” of CCRMA, looking at all his kids. His knowledge and
understanding of our field as well as his thoughtful advices really helped me move forward in my
PhD journey. I collaborated with Ge on various projects related or unrelated to this thesis in recent
years. His energy, craziness, curiosity, and ideas are an endless source of inspiration to all of us.
CCRMA as I know it would not be the same without Ge. He’s also a very good friend. Matt’s
feedback has been priceless both for this thesis and also for the various papers that we co-authored.
His sense of detail and his rigor helped me strengthen my work.

I want to thank Yann Orlarey who’s been my mentor and my “spiritual father” for the past eight
years. Yann has been a constant source of inspiration for me since we met. His kindness, ideas, and
awareness of ongoing research and technologies in our field (and beyond) keep inspiring me. Thanks
Yann!

Thanks to my parents, Gilles and Michèle Michon, to my sister Ninon Michon (Doucette), to
my grandmother Marie Michon, to my uncle, aunt, and cousin Serge, Denise, and Sophie Ferreri
for their love and unswerving support, even though I’m not sure if they fully understand what I’m
doing.

I would probably not being dedicating my life to music technology if I didn’t meet Laurent
Pottier. Laurent was my former advisor and instructor when I did my bachelors and my masters at
Saint-Etienne University. He transmitted me his passion for our field and introduced me to John
Chowning who helped me becoming a visiting researcher at CCRMA.

I collaborated with Sara Martin to make mesh2faust. This was such a fun experience and this
work would not have been possible without her mathematical and physical modeling skills.

My dear friend John Granzow and I co-taught most of the workshops that served as the evaluation

v

vi

of the various frameworks presented in this thesis. His work has always been a great source of
inspiration for me.

Stéphane Letz provided me with invaluable technical help for the various tools presented in this
thesis. He’s just so good! GRAME and the Faust community are so lucky to have him. . .

Thanks to Sasha Leitman for making the MaxLab such a productive and cool environment. She
helped me a lot in the first years of my PhD as I got interested in the NIME field and musical
interaction design in general. I really miss our chats and her Bloody Marys!

Thanks to Nette Worthey for being the “CCRMA mum.” We’re all so grateful for her investment
in our community and her kindness.

CCRMA and the Stanford Music Department are the most incredible and inspiring places I was
given to work at. This is partly thanks to their staff and faculty. In particular, I’d like to thank
Fernando Lopez-Lezcano, Jonathan Abel, Jonathan Berger, Takako Fujioka, Chris Jette, Jay Kadis,
Dave Kerr, Carr Wilkerson, Debbie Barney, Velda Williams, Mario Champagne, Carlos Sanchez,
John Chowning, and Jaroslaw Kapuscinski for their help and support throughout my stay here.

My friends at Stanford played and invaluable role in this work. People here are both so talented
and down to earth. In particular, I’d like to thank Elliot Canfield-Dafilou, Spencer Salazar, Nolan
Lem, Madeline Huberth, Tim O’Brien, Constantin Basica, Alex Chechile, François Germain, Emily
Graber, Nick Gang, Ethan Geller, Woodrow Herman, Kurt Werner, Chet Gnegy, Myles Borins,
Pablo Castellanos Macin, Priyanka Shekar, Eoin Callery, Rahul Agnihotri, Jack Atherton, Hongchan
Choi, Esteban Maestre, Ed Berdahl, Luke Dahl, Rob Hamilton, Jay Dunlap, Orchisama Das, Mark
Rau, Julie Herndon, Jorge Herrera, Sarah McCarthy, Kara Riopelle, Charlie Sdraulig, Kitty Shi,
Jeremy Hsu, Alex Colavin, Dan Schlessinger, Victoria Grace, Blair Kaneshiro, Aury Washburn,
Lauri Savioja, Lonce Wyse, Iran Roman, Séverine Ballon, and Victoria Chang.

My friends back home always supported me throughout this adventure and always made me feel
like I never left. Thanks to Léo and Flavie Brossy, Clément Terrade, Clément Paulet, Julien Sthème
de Jubécourt, Ludovic Chaux, Anthony Paillet, Luisa Kabala, Marine Staron, Angie Harry, and
Dimitri Bouche.

Thanks to Stefania Serafin, Juraj Kojs, Dan Overholt, and Cumuhr Erkut for giving me the
opportunity to teach workshops in their respective institutions. Thanks also to the all the workshop
participants who served as my guinea pigs! I owe a lot to Stefania for proof-reading this thesis and
giving me invaluable feedbacks.

Other people in our field helped me put this work together and have been a source of inspiration
since I became interested in music technology. In particular, I’d like to thank some of the members of
the faculty and staff at the National University of Ireland in Maynooth (NUIM) for being my brilliant
instructors during my year there: Victor Lazzarini, Joe Timoney, and Mathieu Hodgkinson. Thanks
to my “Faust colleagues” too: Dominique Fober, Albert Graef, Emilio Gallego Arias, Pierre-Amaury
Grumiaux, and Pierre Jouvelot.

vii

Thanks to Pat Scandalis and Nick Porcaro at moForte for our collaborations, for giving my access
to their network, and for helping me in various ways during the course of my PhD.

Thanks to Professor Doug James for accepting to be the chair of my oral defense committee!
Thanks to Stanford University for offering me so many opportunities and for being such an

incredible place.
Thanks to GRAME in Lyon for hosting me multiple times in the frame of scientific residencies

and for funding the development of Faust. I’m so proud to be from a country where artistic creation
and scientific research are supported by the state.

Finally, thanks to everyone I forgot!

Contents

Abstract iv

Acknowledgments v

Introduction 1
Overview . 1
Outline . 2

1 Background 6
1.1 Physical Interfaces and Virtual Instruments: Remutualizing the Instrument 6

1.1.1 The Rise of Musical Interfaces . 6
1.1.2 Keyboard-Based Interfaces . 9
1.1.3 Wind Instrument Controllers . 10
1.1.4 String Instrument Controllers . 12
1.1.5 Percussion Instrument Controllers . 14
1.1.6 Other Controllers . 15
1.1.7 Haptic Feedback . 16

1.2 Augmented and Acoustically Driven Hybrid Instruments: Thinking DMIs As a Whole 17
1.2.1 Augmented Instruments . 17
1.2.2 Acoustically Driven Hybrid Instruments: Mixing Physical and Virtual Elements 18

1.3 Mobile Devices as Musical Instruments . 21
1.3.1 Towards Smart-Phones: Tablets and Tactile Interfaces 21
1.3.2 Smart-Phone-Based Musical Instruments . 22
1.3.3 Larger Screen Mobile Devices . 24
1.3.4 Touchscreen and Skill Transfer . 25
1.3.5 Touchscreen and Tangibility . 27
1.3.6 Limitations . 27

1.4 Augmenting Mobile Devices . 29
1.4.1 Passive Augmentations . 29

viii

CONTENTS ix

1.4.2 Active Augmentations . 30
1.5 Physical Modeling . 31

1.5.1 Digital Waveguides and Modal Synthesis . 32
1.5.2 Physical Modeling Environments . 32
1.5.3 Faust and Physical Modeling . 33

1.6 3D Printing, Acoustics, and Lutherie . 34
1.6.1 Printing Musical Instruments . 34
1.6.2 Modifying/Augmenting Existing Objects and Musical Instruments 36
1.6.3 Other Uses . 37

2 Genesis 38
2.1 Towards the BladeAxe . 38

2.1.1 The Féraillophone . 38
2.1.2 The HybridScreen . 40
2.1.3 The BlackBox . 40
2.1.4 The Chanforgnophone . 41
2.1.5 Augmented iPads . 42

2.2 The BladeAxe1: a Hybrid Guitar Physical Model Controller 44
2.2.1 Plucking System . 44
2.2.2 Physical Model . 48
2.2.3 Neck . 48

2.3 The BladeAxe2: Augmenting the iPad . 53
2.3.1 Towards the BladeAxe2 . 54
2.3.2 Final Version . 56
2.3.3 Control . 58
2.3.4 Physical Model . 59
2.3.5 The PlateAxe . 60
2.3.6 Discussion . 61

3 MobileFaust: Facilitating Musical Apps Design and Skill Transfer 63
3.1 Early Tools: faust2android and faust2ios . 64

3.1.1 First Faust App Generator: faust2ios . 64
3.1.2 Android and Real Time Signal Processing in the Early 2010s 64
3.1.3 Real-time Audio With faust2android . 66
3.1.4 Generating Code . 67
3.1.5 Simple User Interface . 68
3.1.6 Using Built-In Sensors . 68
3.1.7 Keyboard and Multitouch Interface . 69

CONTENTS x

3.1.8 OSC and MIDI Support . 71
3.1.9 Audio IO Configuration . 71
3.1.10 Easy App Generation . 71

3.2 Towards a Generic System: faust2api . 72
3.2.1 Overview . 72
3.2.2 Implementation . 75
3.2.3 Audio Latency . 77
3.2.4 Future Directions . 78

3.3 faust2smartkeyb . 79
3.3.1 Apps Generation and General Implementation 79
3.3.2 Architecture of a Simple faust2smartkeyb Program 80
3.3.3 Preparing a Faust Program for Continuous Pitch Control 82
3.3.4 Configuring Continuous Pitch Control . 84
3.3.5 Using Specific Scales . 86
3.3.6 Handling Polyphony and Monophony . 87
3.3.7 Other Modes . 87

3.4 Skill Transfer and Screen Interface: faust2smartkeyb Apps Examples 88
3.4.1 Plucked Strings Instruments: the Guitar . 88
3.4.2 Bowed Strings Instruments: the Violin . 92
3.4.3 Percussion Instruments: Polyphonic Keyboard and Independent Instruments

Paradigms . 95
3.4.4 Wind Instruments: Key Combinations and Continuous Control 98

4 Passively Augmenting Mobile Devices 101
4.1 Mobile 3D . 101
4.2 Leveraging Built-In Sensors and Elements . 104

4.2.1 Microphone . 104
4.2.2 Speaker . 106
4.2.3 Motion Sensors . 108
4.2.4 Other Sensors . 109

4.3 Holding Mobile Devices . 109
4.3.1 Wind Instrument Paradigm . 110
4.3.2 Holding the Device With One Hand . 110
4.3.3 Other Holding Options . 111

4.4 More Examples and Evaluation . 111

CONTENTS xi

5 Actively Augmenting Mobile Devices With Sensors 117
5.1 Nuance: Adding Force Detection to the iPad . 118

5.1.1 Hardware . 119
5.1.2 Software . 121
5.1.3 Examples . 123
5.1.4 Evaluation/Discussion . 123

5.2 Transmitting Sensor Data to Mobile Devices . 125
5.2.1 Digital Transmission . 125
5.2.2 Analog Transmission . 126

5.3 Active Sensors Augmentation Framework . 127
5.4 Examples and Evaluation: CCRMA Mobile Synth Summer Workshop 129

5.4.1 Bouncy-Phone by Casey Kim . 129
5.4.2 Something Else by Edmond Howser . 130
5.4.3 Mobile Hang by Marit Brademann . 130

6 Developing the Hybrid Mobile Instrument 133
6.1 Hybrid Instrument Framework Overview . 134

6.1.1 From Physical to Virtual . 134
6.1.2 From Virtual to Physical . 134
6.1.3 Connecting Virtual and Physical Elements . 135
6.1.4 Adapting This Framework to Mobile Devices 135

6.2 Faust Physical Modeling Library . 137
6.2.1 Bidirectional Block-Diagram Algebra . 137
6.2.2 Assembling High Level Parts: Violin Example 140

6.3 mesh2faust: a Faust Modal Physical Model Generator 142
6.3.1 Theory: FEM . 142
6.3.2 Faust Modal Physical Model . 143
6.3.3 mesh2faust . 144
6.3.4 Complete Open Source Solution to Finite Element Analysis 146
6.3.5 Example: Marimba Physical Model Using FPML and mesh2faust 148

6.4 Discussion and Future Directions . 150

Conclusion 152
Summary of Contributions . 153

Chapter 1 Contributions . 153
Chapter 2 Contributions . 153
Chapter 3 Contributions . 153
Chapter 4 Contributions . 153

CONTENTS xii

Chapter 5 Contributions . 154
Chapter 6 Contributions . 154

Future Work . 154

Appendices 156

A Faust-STK 157
A.1 Waveguide Models . 158

A.1.1 Wind Instruments . 158
A.1.2 String Instruments . 160
A.1.3 Percussion Instruments . 160

A.2 Using Nonlinear Passive Allpass Filter With Waveguide Models 161
A.3 Modal Models . 162
A.4 Voice Synthesis . 162
A.5 Keyboards . 162
A.6 Using a Faust-STK Model With Gesture-Following Data 164

B Bell Modeling Using mesh2faust 166

C FPML Functions Listing 170

D Extending Faust’s Block-Diagram Algebra Towards Multidimensionality 173
D.1 Conventions . 174
D.2 Horizontal Composition . 175
D.3 Vertical Composition . 177
D.4 Parallel Composition . 178
D.5 Route Primitive . 179
D.6 Rotation . 180
D.7 Examples . 181

D.7.1 General Case: Feedback . 181
D.7.2 Physical Modeling . 181
D.7.3 Transformer-Normalized Digital Waveguide Oscillator 182

E Hybrid Woodwind Instrument and Active Control 184
E.1 General Concept . 184
E.2 First Model and Experiments . 185

E.2.1 3D Printed Mouthpiece and Feedback System 185
E.2.2 Physical Model . 187
E.2.3 First Experiment . 188

E.3 Square Wave Experiments . 188

CONTENTS xiii

E.4 Limited “Zero-Latency” System . 189
E.5 Additional Experiments and Future Directions . 191

E.5.1 Further Reducing Latency . 191
E.5.2 Improving the Mouthpiece Feedback System 191

Bibliography 193

List of Tables

3.1 Building Blocks of a faust2android App. 66
3.2 Preferred Buffer Sizes and Sampling Rates for Various Android Devices. 71
3.3 Overview of the API Functions. 75
3.4 Audio Latency for Different iOS Devices Using faust2api. 78
3.5 Audio latency for different Android devices using faust2api. 78
3.6 Selected faust2smartkeyb Options. 79
3.7 SmartKeyboard Standard Parameters Overview. 82
3.8 faust2smartkeyb Keys Overview. 83
3.9 SmartKeyboard Scales Configurable With the Keyboard N - Scale Key. . . . 86
3.10 Different Monophonic Modes Configured Using the Mono Mode Key in SmartKey-

board Interfaces. 87

6.1 Faust-STK Models and Their Corresponding Function Re-Implementations in the
Faust Physical Modeling Library. 141

B.1 Comparison Between the Theoretical “Ideal” Mode Ratios to Prime With the Ones
Computed by mesh2faust for the Bell Mesh Presented in Figure B.2. 169

C.1 Faust Physical Modeling Library Functions (1). 170
C.2 Faust Physical Modeling Library Functions (2). 171
C.3 Faust Physical Modeling Library Functions (3). 172

xiv

List of Figures

1 Overview of the Hybrid Mobile Instrument. 5

2.1 The Féraillophone, Its Companion Interface, and Overview of the Implementation
of the System. 39

2.2 Overview of the HybridScreen. 40
2.3 The BlackBox Installation in the CCRMA Lounge and Detailed View of the System

Inside the Cube. 41
2.4 Overview of the Chanforgnophone. 42
2.5 Portable Augmented iPad. 43
2.6 iPad Augmented With a Texture Layer on Its Touchscreen. 43
2.7 The Plucking System of the BladeAxe1. 45
2.8 Frequency Responses of One of the Blades When Plucked at Different Locations With

a Pick Where 0 Is the Bottom of the Blade (Towards the Bridge) and 1/2 the Middle. 46
2.9 Frequency Responses of a Virtual String When Excited by the Signals From Figure 2.8. 47
2.10 Overview of the Different Components of the BladeAxe1. 49
2.11 First Neck Prototype for the BladeAxe1 Based on a Soft Pot. 51
2.12 BladeAxe1 Neck Based on Silicon Buttons. 52
2.13 First Version of the BladeAxe1 Laser Cut Acrylic Buttons. 53
2.14 Laser Cut Acrylic Buttons as They Appear in the Final Version of the BladeAxe1

Neck. 53
2.15 Top View of the BladeAxe1. 54
2.16 Intermediate Version of the BladeAxe2 Using an iPad. 55
2.17 Plucking System of the Intermediate Version of the BladeAxe2 Presented in Fig-

ure 2.16. 56
2.18 Final Version of the BladeAxe2. 57
2.19 Textured Plate of the BladeAxe2. 57
2.20 User Interface of the iPad App of the BladeAxe2. 59
2.21 Overview of the Implementation of the BladeAxe2. 60

xv

LIST OF FIGURES xvi

2.22 The PlateAxe. 61

3.1 Screen-shot of sfCapture, an App Made with faust2ios. 65
3.2 faust2android Overview. 67
3.3 Example of Interface Generated by faust2android Containing Groups, Sliders,

Knobs and Checkboxes. 68
3.4 Accelerometer Configuration Panel of an Application Generated by faust2android. 69
3.5 Example of a MultiKeyboard Interface in an faust2android application. 70
3.6 Overview of DSP Engines Generated with faust2api. 77
3.7 Overview of faust2smartkeyb. 81
3.8 Simple SmartKeyboard Interface. 84
3.9 SmartKeyboard Pitch Rounding Pseudo Code Algorithm. 85
3.10 Screen-shot of the Interface of the App Generated From the Code Presented in List-

ing 3.3. 92
3.11 Screen-shot of the Interface of the App Generated From the Code Presented in List-

ing 3.4. 94
3.12 Fingers Mapping of the Interface of the App Generated From the Code Presented in

Listing 3.7. 99

4.1 CAD Model of a Generic Passive Amplifier for the Built-In Speakers of a Mobile Device.102
4.2 CAD Model of a Simple iPhone 5 Case Made From 3D-Printed Holders and a Laser-

Cut Plastic Plate. 103
4.3 iPhone 5 Augmented With a Horn Used as Passive Amplifier on Its Built-In Speaker

(Instrument by Erin Meadows). 104
4.4 Mouthpiece for Mobile Device Built-In Mic. 105
4.5 Frequency-Based Blow Sensor for Mobile Device Built-In Microphone. 106
4.6 Hand Resonator for Mobile Device Built-In Speaker. 107
4.7 Mouth Resonator for Mobile Device Built-In Speaker. 108
4.8 Mobile-Device-Based Top Creating a “Leslie” Effect When Spun. 109
4.9 Smart-Phone Augmented to be Held as a Wind Instrument. 110
4.10 Thumb-Held Mobile-Device-Based Musical Instrument (by Erin Meadows). 111
4.11 Single-Hand-Held Musical Instrument Based Using a Laser-Cut Plastic Handle. . . . 112
4.12 Rolling Mobile Phone With Phasing Effect (Instrument by Revital Hollander). . . . 113
4.13 Mobile Device Mounted on a Bike Wheel (Instrument by Patricia Robinson). 113
4.14 Other Instruments from the 2016 Composed Instrument Workshop. 114
4.15 Instruments From the 2017 Copenhagen Augmented Smart-Phone Workshop (1). . . 115
4.16 Instruments From the 2017 Copenhagen Augmented Smart-Phone Workshop (2). . . 116

LIST OF FIGURES xvii

5.1 Global View of Nuance. 119
5.2 Top View of Nuance Without the iPad. 120
5.3 Circuit Diagram of One of the Simple Sine Oscillators Used in Nuance. 121
5.4 Overview of Nuance. 122
5.5 Screenshot of One of the Percussion Apps Made With faust2smartkeyb and Com-

patible With Nuance. 124
5.6 Selected Real-Time Sensor Data Transmission Techniques for Active Sensor Mobile

Device Augmentations. 127
5.7 Bouncy-Phone by Casey Kim. 130
5.8 Something Else by Edmond Howser. 131
5.9 Mobile Hang by Marit Brademann. 132

6.1 Bidirectional Connection Between Virtual and Physical Elements of a Hybrid Instru-
ment. 136

6.2 “Typical” Acoustically Driven Mobile Hybrid Instrument Model. 137
6.3 Bidirectional Construction in Faust Using the Tilde Diagram Composition Operation.138
6.4 Bidirectional Construction in Faust Using the chain Primitive. 139
6.5 lTermination(A,B) and rTermination(B,C) in the Faust Physical Modeling

Library. 139
6.6 Block Diagram of a Faust Modal Model Implementing Three Modes. 145
6.7 Overview of the mesh2faust Implementation. 147
6.8 Open Source Framework to Make Faust Modal Physical Models From Scratch. . . . 148
6.9 Marimba Bar Model – Steps From a 2D Drawing to a Faust Modal Model. 149

A.1 clarinet.dsp Algorithm Drawn by Faust Using faust2svg. 159
A.2 flute.dsp Algorithm Drawn by Faust Using faust2svg. 159
A.3 brass.dsp Algorithm Drawn by Faust Using faust2svg. 160
A.4 Modified Version of clarinet.dsp That Uses a Nonlinear Allpass Filter in Its

Feedback Loop. 161
A.5 modalBar.dsp Algorithm Drawn by Faust Using faust2svg. 162
A.6 Commuted Piano Algorithm Drawn by Faust Using faust2svg. 163
A.7 Pure Data Sub-Patch Used to Send the Gesture Data for Muiñeira in the Faust

Generated Plug-In. 165

B.1 Church Bell Cross Section and Corresponding CAD Model Modeled After Rossing’s
Elliptical Arc Approach. 167

B.2 Mesh Generated in MeshLab After Quadric Edge Collapse Decimation and Laplacian
Smoothing. 167

LIST OF FIGURES xviii

B.3 First Fifty Modes Computed by MTF for the Bell Mesh Presented in Table B.1 For
an Excitation Position Matching the Strike Position of the Clapper Inside the Bell. . 168

D.1 Faust-Generated Block Diagram of a Simple Physical Modeling Block Assembled
Using FPML. 173

D.2 Generic Extended Diagram Block. 174
D.3 The + Primitive. 175
D.4 Horizontal Composition With Implicit Merge: OE(A) = 2× IW (B). 176
D.5 Vertical Composition A||B. 177
D.6 Parallel Composition A,B. 178
D.7 route("io.."), route("ioi.") and route(".i.."). 179
D.8 route("ioio"). 180
D.9 route("..o."), route("i.o."), route("i..."). 180
D.10 <*<*+, <*+, +, and +*>. 180

E.1 3D Model of Our First Mouthpiece Feedback System. 186
E.2 3D Printed Mouthpiece Feedback System. 186
E.3 Saxophone Reed With a Piezo Disc Glued on It. 187
E.4 Block Diagram of the Faust Physical Model as Drawn by faust -svg Implementing

the Virtual Portion of Our Hybrid Woodwind Instrument. 187
E.5 Spectrogram of the Signal Measured on the Reed When “Reflecting” a Square Wave

With Frequency Evolving From 665Hz to 1kHz. 189
E.6 Spectrogram of the Signal Measured on the Reed When “Reflecting” a Square Wave

With Constant Frequency (670Hz) and Increasing Amplitude. 190
E.7 Block Diagram of the Faust Physical Model as Drawn by faust -svg Implementing

the “Zero-Latency” Bore Model. 190
E.8 Spectrogram of the Signal Measured on the Reed When Increasing the Length of the

Virtual Bore of Our “Zero-Latency” System From 32cm to 132cm. 191
E.9 Future Mouthpiece Feedback System. 192

Introduction

Overview

Unlike most acoustic musical instruments where control and sound generation and diffusion happen
on the same entity, Digital Musical Instruments (DMIs) are often not standalone and made out
of several units. While the idea of abstracting the controller from the sound generator was first
introduced by early organs thousands of years ago, this paradigm became one of the defining features
of DMIs and was generalized by the use of standards such as MIDI. This modularity gave birth to a
new form of “high level lutherie”1 that allowed the performer to become the designer of his/her own
instruments.

While the “virtualization” and the dissociation/“de-mutualization” [42] of the different constitut-
ing elements of musical instruments offered infinite new possibilities, it also impacted their overall
coherence. In particular, the ability to control “any sound” with “any interface,” might result in some
cases in a “loss of intimacy between human player and instrument [42].” In the commercial world,
where a large part of the interfaces target pitch control, this problem has been partially solved by
limiting mapping strategies to the ones induced by keyboard interfaces (i.e., note on/off, pitch, pitch
bend, etc.). While this type of paradigm works well in some cases, it might be more limiting when
extended continuous control is required such as with “virtual wind instruments.” The modularity
of DMIs, combined with the technologies that they imply, also impact their “standalone aspect,”
making them less portable and sometimes preventing the performer to be “completely one” with his
instrument.

In this thesis, we aim at creating mutualized DMIs by bringing more physicality to digital
lutherie [84]. We provide a framework where musical instrument design can be approached in a
two-dimensional way, reconciling the haptic, the physical, and the virtual. Instrument parts can
either be physical/acoustical or virtual/digital and substituted with one another. Recent progress
in musical instrument physical modeling and digital fabrication (with 3D printing in particular)
facilitates this type of approach, opening the way to a new kind of “hybrid lutherie.”

1In this thesis, “lutherie” will refer to the design and making of musical instrument in general.

1

INTRODUCTION 2

Mobile devices are at the heart of our framework. By providing power through their battery, built-
in sensors (i.e., touchscreen, motion sensors, etc.), real-time DSP2 capabilities, etc., they constitute
a promising platform to implement the virtual/digital portion of our hybrid instruments.

Leveraging performers skills is a crucial factor in making successful musical instruments [41].
Thus, the idea of implementing skills transfer when designing mobile hybrid instruments will be
explored, in particular in the frame of touchscreen interfaces.

We hope that centering DMIs design on physically-informed virtual/digital and physical/acous-
tical elements will facilitate the design of mutualized DMIs, the use of mobile devices as their “core”
allowing them to be easily reproduced/deployed and completely standalone.

Outline

Chapter 1 – Background

Chapter 1 provides a review of the literature of the various topics relevant to this dissertation.
We first demonstrate how physical musical interfaces have been used to control “virtual acoustic
instruments”3 and to implement skill transfer for various families of instruments (e.g., wind, string,
percussion, etc.). We show that making “mutualized” DMIs preserving the overall coherence between
the controller and the sound synthesis unit is often a complicated task. Various techniques used to
solve this issue such as haptic feedback are briefly reviewed.

Next we give an overview of two special kinds of DMIs: augmented and acoustically driven hybrid
instruments. Augmented instruments are based on existing acoustic instruments that are enhanced
with digital elements to add new affordances or to modify their sound. Acoustically driven hybrid
instruments use physical/acoustical elements to drive virtual ones.

A review of the field of mobile music is then provided. A strong emphasis is given to the question
of skill transfer on mobile devices and how it can be used as a way to accelerate the learning process
of new DMIs.

Next, various types of mobile device augmentations towards musical instrument design are pre-
sented. We demonstrate that built-in elements on smart-phones and tablets offer already a wide
range of features and that small, non-invasive augmentations are often enough to turn mobile devices
into high quality musical instruments.

We then give a brief overview of the field of physical modeling of musical instruments. We focus
on computationally cheap techniques that can run on mobile devices.

Finally, we show how digital fabrication, with 3D printing in particular, has been used in lutherie
to make existing and novel acoustic or electronic musical instruments.

2Digital Signal Processing
3In this thesis, we call “virtual acoustic instruments” any synthesizer designed to reproduce the sound of existing

acoustic instruments. This is not limited to specific techniques such as physical modeling.

INTRODUCTION 3

Chapter 2 – Genesis

Chapter 2 presents a series of early projects/instruments of our own that led to the work presented
in this thesis. We start first with the Féraillophone, the HybridScreen, the BlackBox, and
the Chanforgnophone. All these instruments are based on the idea of using acoustic excitations
to drive physical models. Next, a series of instruments based on augmented iPads is presented.
Finally, various versions of the BladeAxe – a guitar physical model controller – are reviewed. We
emphasize the iterative design process that was involved when creating these instruments. The final
version of the BladeAxe presented in the last section of this chapter served as the basis for the
framework introduced in this dissertation.

Chapter 3 – MobileFaust: Facilitating Musical Apps Design and Skill
Transfer

Chapter 3 introduces a series of tools based on the Faust programming language4 [141] to facilitate
the design of musical mobile apps serving as the “glue” for the rest of our framework.

First, we present two early systems that inspired the other tools presented in this chapter:
faust2android and faust2ios. They allow for the conversion of Faust code to Android and
iOS apps respectively. The user interface (UI) of the generated apps is based on the standard UI
description provided in the Faust code.

Next, we introduce faust2api, a tool to generate DSP engines from Faust code for a wide
range of platforms including Android and iOS. The high level APIs5 produced by this system allow
for the interaction with the DSP engine in a very simple way. It features OSC and MIDI support,
polyphony handling, built-in sensors mapping, etc.

faust2api serves as the basis for faust2smartkeyb which is introduced in the following
section. Like faust2android and faust2ios, faust2smartkeyb can be used to generate apps
for Android and iOS from Faust code. The standard Faust UI is replaced by a SmartKeyboard

interface that can be configured from the Faust code. SmartKeyboard offers a new approach to
touchscreen musical interface design based on a keyboard matrix.

Finally, a study around the use of faust2smartkeyb to make mobile-device-based musical
instruments focusing on skill transfer is presented. Various instrument types and paradigms are
covered (e.g., plucked strings, bowed strings, percussion, wind instruments, etc.).

Chapter 4 – Passively Augmenting Mobile Devices

Chapter 4 focuses on the idea of passively augmenting smart-phones and tablets. This type of device
hosts a wide range elements (e.g., sensors, microphone, speaker, etc.) that can be easily enhanced or

4http://faust.grame.fr/ – All URLs presented in this thesis were verified on Feb. 6, 2018.
5Application Programming Interface

http://faust.grame.fr/

INTRODUCTION 4

modified using digitally fabricated passive elements. First, we introduce Mobile3D, an OpenScad
library to facilitate the design of this type of augmentations. We then give an exhaustive overview
of the taxonomy of the various types of passive augmentations that can be implemented on mobile
devices through a series of case studies and we demonstrate how they leverage existing components
of the device. Finally, we evaluate our framework and propose future directions for this type of
research.

Chapter 5 – Actively Augmenting Mobile Devices With Sensors

Chapter 5 provides a framework and a method to make active mobile device augmentations. Active
sensor augmentations involve the use of electronic elements and provide more flexibility to musical
instrument designers than passive ones. On the other hand, they are usually more invasive and their
design is more complex.

First, we present Nuance, an iPad-based instrument where a set of sensors is used to add force
sensitivity to the touchscreen of the device. It can be seen as a first step towards the framework
presented in the following sections. Next, we introduce different strategies to transmit sensor data to
mobile devices. We then use the conclusions from this study to build our active sensors augmentation
framework. Finally, we evaluate this framework through a series of example instruments created by
students in the frame of a workshop.

Chapter 6 – Developing the Hybrid Mobile Instrument

Chapter 6 introduces and develops the concept of “hybrid mobile instrument.” Hybrid instrument
design mutualizes physical and “physically-informed” virtual elements, taking advantage of recent
progress in physical modeling and digital fabrication (see §1). This design ethos treats each compo-
nent of the instrument in a two-dimensional way, allowing physical elements to be substituted with
virtual ones and vice versa (as long as it is physically possible).

First, we give an overview of our framework to design musical instruments combining digitally
fabricated physical elements and virtual elements. Challenges and technical difficulties presented
by specific cases are discussed and we try to link these new methods to the tools presented in the
previous sections.

We then introduce the Faust Physical Modeling Library (FPML): a tool to easily design physical
models of musical instruments from scratch using Faust. Various case studies of models implemented
using this system are provided.

Finally, we present mesh2faust, a tool to generate modal physical models from their graphical
representation. We demonstrate how it can be used in combination the Faust Physical Modeling
Library to create custom models that can be easily converted to physical objects using digital
fabrication.

INTRODUCTION 5

The concept of hybrid mobile instrument introduced in this thesis is summarized in Figure 1
where the various tools implemented as part of this work are underlined.

faust2smartkeyb

AudioTouchscreenSmartKeyboard

Faust Physical Modeling Library
mesh2faustPhysical Model

Built-In Sensors

MIDI

CAD ModelDigital FabricationAcoustic Element
MicrocontrollerSensors

Hybrid Instrument

Ergonomic/Motion/Passive Haptic FeedbackAugmentations

Passive Augmentation

Active Augmentation

Mobile Device
Augmentation

Mobile 3D

Figure 1: Overview of the Hybrid Mobile Instrument.

Chapter 1

Background

“Digital lutherie is in many respects very similar to music creation. It involves a great
deal of different know-how and many technical and technological issues. At the same
time, like in music, there are no inviolable laws. That is to say that digital lutherie
should not be considered as a science nor an engineering technology, but as a sort of
craftsmanship that sometimes may produce a work of art, no less than music.” (Sergi
Jordà [84])

1.1 Physical Interfaces and Virtual Instruments: Remutualiz-

ing the Instrument

1.1.1 The Rise of Musical Interfaces

The concept of musical controller is not new and was perhaps invented when the first organs were
made centuries ago. However, the rise of analog synthesizers in the middle of the twentieth century,
followed a few decades later by digital synthesizers almost systematized the dissociation of the
control-interface and sound-generation in musical instrument design.

“The computer, as a design medium, is profoundly under-constrained – a virtual space
without no physical rules [198].”

This gave birth to a new family of musical instruments known as “Digital Musical Instruments”
(DMIs).

Marc Battier defines DMIs from a “human computer interaction (HCI) standpoint” as

“Instruments that include a separate gestural interface (or gestural controller unit) from
a sound generation unit [15].”

6

CHAPTER 1. BACKGROUND 7

Thus, this feature that originally resulted from logical engineering decisions encouraged by the use
of flexible new technologies, became one of the defining component of DMIs. This characteristic has
been extensively commented upon and studied in the NIME1 literature. Thor Magnusson extends
Battier’s definition by highlighting the arbitrary aspect of the interface in respect to the sound
generation unit in DMIs:

“The tangible user interfaces that apparently constitute many digital musical instruments
are but arbitrary peripherals of the instruments’ core – that is, a core that is essentially
a symbolic system of computational design [109].”

This feature created new problematics in musical instrument design such as that of “adequate
control:”

“A challenge is how to make controllability and interactivity central design principles in
sound modeling. It is widely believed that the main missing element in existing synthesis
techniques is adequate control.” (Gerhard Widmer et al. [203])

Other consequences of the “separation of the DMI into two independent units” are pointed out
by Marcello Wanderley:

“This separation is most of the time impossible in the case of acoustic instruments, where
the gestural interface is also part of the sound generation unit. [. . .] Clearly, this sep-
aration of the DMI into two independent units is potentially capable of extrapolating
the functionalities of a conventional musical instrument, the latter tied to physical con-
straints. On the other hand, basic interaction characteristics of existing instruments may
be lost and/or difficult to reproduce, such as tactile/force feedback [195].”

Perry Cook provides an exhaustive overview of the risks associated with “abstracting the con-
troller from the synthesizer” [42], which might sometimes result in a “loss of intimacy” between
performer and instrument. More specifically, he associates the flaws of “demutualized instruments”
to:

• the lack of haptic feedback, which has been extensively studied [144, 195, 99], especially in the
framework of the control of physical models of musical instruments [17, 99] (see §1.1.7),

• the lack of “fidelity in the connections from the controller to the generator,”

• the fact that “no meaningful physics goes on in the controller.”

Ge Wang reinforces Perry Cook’s view by drawing parallels with the principles of form and
function used in architecture:

1New Interfaces for Musical Expression

CHAPTER 1. BACKGROUND 8

“With acoustic instruments, function suggests from. With computer-based instruments,
form is decoupled from function [198].”

Prior to the “digital sound synthesis era,” the variety of interfaces to control sound synthesis was
rather limited. Piano-keyboard-like controllers were the preferred interface to control pitch. This
characteristic is embodied by the differences between Buchla (no piano keyboard) and Moog (piano
keyboard is used to control pitch) synthesizers from that period [145, 148]. This paradigm remains
a standard nowadays in commercial DMIs and is tightly related to the question of skill transfer.
However, the lack of continuous control on standard piano keyboards limited its use as a generic
interface for the control of pitch. Thus, as early as in the 1970s, synthesizers such as the Minimoog
allowed to bend the pitch of a designated key on the keyboard using a pitch wheel. Similarly, early
commercial digital synthesizers such as the Yamaha DX7 [206] allowed for the continuous control of
the parameters using a breath controller.

In parallel to these changes and as sound synthesis techniques grew more sophisticated and
computers more powerful, the ability to synthesize the sound of existing acoustic instruments became
possible. To control such sound generators that we’ll call “virtual acoustic instruments,”2 a wide
range of interfaces were created since the end of the 1970s. An interesting characteristic of this type
of controller is that their overall design is often influenced by the synthesizer they’re controlling
[196], potentially loosing their generic nature [109].

This paradigm is pushed even further in the case of physical models of musical instruments (see
§1.5) as they implement virtual objects that are tight by physical constraints. In this respect, DMIs
using physical modeling are closer to acoustic musical instruments than DMIs based on other sound
synthesis techniques.

“Computer interfaces can dissociate gesture from result to varying degrees by the way that
software intermediates the relationship between gesture and resulting sound. (A one-to-
one correspondence such as a mallet striking a marimba is an example of a simple gesture-
result relationship, while a finger pushing the play button on a CD player exemplifies the
opposite extreme in which a simple neutral gesture produces a complex musical result.)
Jordà [84] evaluates this relationship as the ‘efficiency’ of the interface, defined as the
ratio of ‘musical output complexity’ to ‘control input complexity,’ but acknowledges that
these are ‘quite fuzzy terms,’ and that while computer-mediated controllers can provide
more ‘efficiency’ than most acoustic instruments, they often lack the ‘expressiveness’
(flexibility, diversity of micro-control, etc.) of traditional instruments.” (Christopher
Dobrian et al. [52])

In the rest of this section, we demonstrate how various commercial and non-commercial DMIs
implementing virtual acoustic instruments attempt to re-mutualize their interface and their sound

2We call virtual acoustic instrument any sound generator reproducing the sound of existing acoustic instruments
(synthesized or sampled) or implementing physical models of completely novel instruments.

CHAPTER 1. BACKGROUND 9

generation unit. We’ll show that this type of sound generator tends to break the generic aspect of
musical controllers by forcing them to implement specific gestures to control specific sounds, reducing
their efficiency [52]. The importance of skill transfer in the design of such controllers is highlighted,
especially in the case of commercial interfaces that tend to be centered on this feature. We also
study the special case of interfaces implementing haptic feedback. This section focuses on DMIs
based on the interface/synthesizer paradigm. Instruments based on a more hybrid/unified approach
will be presented in §1.2. Only representative instruments are presented here: this section is not
meant to be exhaustive.

1.1.2 Keyboard-Based Interfaces

Keyboard controllers can probably be considered as the most widely used type of musical interface.
They come in various formats and are often used to implement specific types of pitch mappings (e.g.,
isomorphic [112], chromatic, etc.), enabling skill transfer.

A special category comprises chromatic piano keyboards, that are mastered by countless musi-
cians, and can be found on a large range of commercial synthesizers from any period. They continue
to be the most standard interface for the control of pitch.

In this section, we focus on all the types of keyboards that are not related to a specific acoustic
musical instrument. These other special cases (e.g., guitar necks, violin necks, etc.) will be treated
in the following sections.

Commercial Interfaces

There exists dozens of commercial controllers implementing standard chromatic piano keyboards
that will not be presented in this section. Instead, we’ll focus on interfaces providing special features
transcending the standard use of this kind of controller.

While piano keyboards offer many advantages (e.g., speed of playing, polyphony, universality,
etc.), they are limited by their lack of continuous control. This problem is partially solved on most
commercial keyboards by rotary potentiometers also called “wheels,” placed on the left side of the
keyboard. The most common parameter controlled by wheels is pitch through the “pitch bend
wheel,” but other parameters such as “brightness” or “portamento” are common as well.

More innovative (and controllable) solutions were developed early on by various musical in-
strument manufacturers. Yamaha added the possibility to plug a breath controller to some of its
synthesizers as early as in the first version of the DX7 [206]. This feature provided a more natural
way to control the sound of wind instrument synthesizers. It remained available on later products of
this brand such as the VL1 [205] that was the first commercial product to make use of the waveguide
physical modeling technique (see §1.5). The VL1 implemented a wide range of existing and novel
acoustic instruments, and offered extended expressive capabilities [159].

CHAPTER 1. BACKGROUND 10

The ROLI SeaBoard [94, 157] is a more recent musical controller taking an interesting approach
to improve piano keyboard interfaces by making it possible to slide between keys and continuously
control the gain of generated sounds. The SeaBoard proved to be well suited to control physical
models of musical instruments such as the one of the SWAM engine,3 one of their commercial
partners. There are many videos demonstrating this on the ROLI website.4

The Haken Audio Continuum Fingerboard5 is similar to the Seaboard in many respects as it
allows for the continuous control of the pitch and the gain of the sounds it generates. Another musical
controller taking a similar approach is the LinnStrument,6 which also permits to continuously control
the pitch and the velocity parameters of sound synthesizers through a silicone-three-dimensional
interface implementing a configurable pitch matrix.

Finally, various “less common” controllers implement other types of chromatic keyboards such
as the WholeTone Revolution7 or the C Thru Music Keyboard Series.8 Both of them are based on
isomorphic keyboards [112], targeting skill transfer for accordion players or other types of existing
traditional instruments.

Non-Commercial/Academic Interfaces

There are dozens of examples of keyboards implementing custom pitch mappings in the NIME
community. Steven Maupin gives a good overview [112] of this type of instruments.

Despite the various examples presented in the previous section, piano keyboard-based interfaces
remain relatively “standard,” and there are only a few examples of custom non-commercial piano
keyboard-based interfaces. Christian Heinrichs “augmented” a MIDI piano keyboard with capacitive
touch sensors to detect the X/Y position of fingers on each key [72]. This type of interface is
relatively close to the SeaBoard and the Continuum Fingerboard presented in the previous section
in that respect. However, its mechanical keys provide more haptic feedback to the performer than
its commercial counterparts, which also makes slides between keys harder to execute.

1.1.3 Wind Instrument Controllers

Wind instrument controllers target a totally different set of skills and gestures, and offer different
affordances than keyboard-based interfaces such as the ones presented in the previous section. While
on most keyboards, a key is associated to a pitch (or a combination of pitches) and sometimes a
voice, pitch selection is made through a combination of keys on wind instruments, making them
consequently monophonic in many cases. On the other hand, the complex type of continuous in-
teraction happening between the performer and the mouthpiece makes them very expressive. This

3https://www.samplemodeling.com/
4https://roli.com/
5http://www.hakenaudio.com/Continuum/hakenaudioovervg.html
6http://www.rogerlinndesign.com/linnstrument.html
7http://wholetone.jp/
8http://c-thru-music.com/cgi/index.cgi

https://www.samplemodeling.com/
https://roli.com/
http://www.hakenaudio.com/Continuum/hakenaudioovervg.html
http://www.rogerlinndesign.com/linnstrument.html
http://wholetone.jp/
http://c-thru-music.com/cgi/index.cgi

CHAPTER 1. BACKGROUND 11

section gives an overview of the different kinds of wind instrument controllers and how they leverage
specific sets of skills.

Commercial Interfaces

Commercial wind instrument controllers might be the class of interface embodying the best the
concept of skill transfer for the control of sound synthesizers. They allow wind instrument performers
to use their skills to control virtual musical instruments. Most of them host various continuous
sensors such as a built-in breath controller, valves, etc.

The first “electronic wind instrument” was the Lyricon [8, 75]. It combined a soprano saxophone-
like interface with an analog synthesizer. It greatly influenced the design of the MIDI controllers
of the Yamaha WX series [202] that implemented saxophone, clarinet, and flute fingerings. Akai
created several series of equivalent controllers: the EWI,9 that was similar to controllers of the WX
series, and the EVI,10 that was designed to facilitate skill transfer for “valve instrument” performers
(e.g., trumpet, trombone, etc.).

Roland takes a slightly different approach with the Aerophone AE-10 [156]. While this instrument
implements saxophone fingerings in a similar way than Yamaha WX controllers, it also host an
embedded synthesizer, a battery, and a built-in speaker, making it completely standalone and much
closer to acoustic musical instruments in that respect.

Several design features common to all the controllers of this family are worth being highlighted.
First, while these controllers implement fingerings close to that of existing “traditional” acoustic
instruments, they often aren’t an exact translation of their acoustic counterpart, mostly to provide
more flexibility and make them more generic. That’s how flute, saxophone, and clarinet fingerings
can all be used with the controllers from Yamaha WX series. By doing so, they allow performers
to reuse a big part of their skills, but also force them to go through a (re)learning phase, necessary
to fully master these controllers. In that case, a big part of the work of the controller designer is to
make sure that this step will be as short and as seamless as possible.

“Copying an instrument is dumb, leveraging expert technique is smart.” (Perry Cook
[41])

Beyond skill transfer, this type of controller also completely influences the way the performer
engages with the sound generator and the type of gestures implied in its control. Additionally, it is
interesting to note how the general form factor of such interfaces is influenced by their “traditional”
acoustical counterparts.

Wind instrument musical controllers are designed to leverage a different set of expressive features
than the piano keyboard controllers presented in §1.1.2. While they often provide more “natural”

9Electronic Wind Instrument
10Electronic Valve Instrument

CHAPTER 1. BACKGROUND 12

continuous controllers to the performer, they can’t control polyphonic sound synthesizers. Thus,
despite their versatility, their design is strongly influenced by the type of “virtual acoustic instrument”
they are controlling.

Non-Commercial/Academic Interfaces

From an organological and human-interaction standpoint, most non-commercial wind instrument
controllers are quite similar to their commercial counterparts and reuse the same principles [40, 41,
131]. A good example of such interface is Garry Scavone’s PIPE [163]. It is similar in many respects
to controllers from the Yamaha WX series presented in the previous section. Various examples of
“augmented” wind instruments take an innovative approach to wind instrument controller design
and are presented in §1.2.

1.1.4 String Instrument Controllers

Designing controllers for string instruments presents different challenges than for other types of
musical interfaces such as the one presented in the previous sections. For example, string instruments
offer a more direct way to interact with parts responsible for the production of sounds than keyboard
based instruments. While strings can be driven by external tools such as a bow, they can also be
plucked by fingers, allowing the performer to directly interact with them. The feel of a string on a
finger as well as the types of affordances that it offers is hard to recreate with musical controllers.
This section gives an overview of the different types of string instrument controllers available on the
market and made in the non-commercial/academic community.

Commercial Interfaces

Commercial string instrument controllers take a similar approach than wind instrument interfaces
(see §1.1.3) by being centered on skill transfer. The guitar is the only instrument represented in this
category (probably due to its extensive use in pop music). The product that embodies this paradigm
the best is perhaps the SynthAxe [74]. This MIDI interface offers the same control capabilities than
a guitar and preserves its form factor by providing a neck and physical strings for strumming, pitch
selection, vibrato, etc. It also has various continuous controllers such as a whammy bar and pressure
sensitive buttons that can be assigned to different parameters. Only a few SynthAxes were made in
the 1980s and they are not produced anymore.

Starr Labs’ Ztar series11 [180] takes a very similar approach by providing an interface based
on physical strings for strumming and a neck with buttons for controlling the pitch. The same
company also makes various MIDI “ZBoards” implementing guitar necks as keyboards – another

11https://www.starrlabs.com/

https://www.starrlabs.com/

CHAPTER 1. BACKGROUND 13

good example of interface oriented towards skill transfer. Similarly, moForte and Wizdom Music’s
GeoShred12 implements the pitch mapping of a guitar neck on an iPad touchscreen.

The JamStick13 is a cheaper MIDI guitar interface whose main focus is on teaching by connecting
it to a dedicated smart-phone app. It is also based on physical strings. It is interesting to highlight
the fact that this feature can be found on all the controllers of this category. Sometimes, the design
of interfaces can be so influenced by “traditional” instruments that they might become based on
elements primarily designed to generate sound, even though they are not used for that purpose in
this case. An interesting alternative to this is presented at the end of this section where acoustic
musical instruments are used as controllers.

Non-Commercial/Academic Interfaces

Unlike their commercial counterparts, non-commercial string instrument interfaces implement var-
ious types of string instruments. The category that might be best represented in this family are
bowed string instruments. Charles Nichols’ vBow [138, 139] was specifically designed to control
violin physical models through an interface providing the same affordances and having the same
form factor than an acoustic violin. An interesting feature of the vBow is that it provides haptic
feedback to the performer. This concept is further developed in §1.1.7. Nichols also presents an
extended study on the control of bowed string instruments [139].

Dan Trueman’s BoSSA [187] takes an interesting approach by being both a controller and a
sound diffuser, making it much closer to an acoustic instrument that most DMIs. It pushes further
this paradigm by using a speaker array to radiate sound in a similar way as acoustic instruments.
While the position of the various sensors on the instrument allows it to be controlled like a violin
or a cello, it is slightly different than the one on its traditional counterpart. According to Trueman,
this doesn’t seem to affect the performer’s ability to transfer his playing skills.

On the same topic, Stefania Serafin extensively studied the control of bowed string physical
models [167, 169], in particular through the use of a graphical tablet [168]. In that case, the performer
is able to conceptually use the same kind of gestures as with a bow to control the instrument. This
can also be considered as a form of skill transfer, even though the interface is completely different
from the original instrument. The use of graphical tablets to control sound synthesizers has been
extensively studied (see §1.3.1) [48, 210].

While there exists various guitar controllers in the commercial world, this category is not well
represented in the non-commercial one. Christian Heinrichs’ Hybrid Keyboard-Guitar Interface
has already been presented in §1.1.2 and was specifically designed for the control of guitar virtual
instruments, even though its use can be easily extrapolated. Matti Karjalainen et al.’s Virtual Air
Guitar [86] explores the use of a custom hand-held devices to control guitar physical models by

12http://www.moforte.com/
13https://jamstik.com/

http://www.moforte.com/
https://jamstik.com/

CHAPTER 1. BACKGROUND 14

capturing the performer’s movements.

1.1.5 Percussion Instrument Controllers

By definition, percussion instrument controllers are intrinsically linked to the type of virtual musical
instrument they’re controlling, and thus a good example of “mutualized” DMIs. They’re designed
to acquire strike, tap, etc. gestures – which in the “real/physical world” always result in percussive
sounds. Even more than that, the shape and format of this type of controllers – at least in the
commercial world – are so close to their acoustic counterparts that they naturally suggest a specific
set of gestures to the performer to interact with them [136].

Commercial Interfaces

Electronic drum sets (e.g., Roland’s VDrums Series,14 Yamaha’s DTX series,15 etc.) are probably
the type of controllers representing the best this family of interfaces, both because of their popularity
and their plurality (there exists dozens of models on the market). Most of them conserve the form
factor of acoustic drum sets, allowing for a comprehensive transfer of skills. They represent a generic
interface to control any virtual drum set, and are somewhat limited to that. By detecting the position
of the strikes, they help re-mutualize the interface and the sound synthesis process. In other words,
their limited range of applications makes them much more coherent from a physical and gestural
standpoint.

Similarly to keyboard synthesizers, electronic drum sets are “traditionally” sold with their own
sound synthesizers, making them more standalone than most of the controllers presented in §1.1.3
and §1.1.4. Finally, the strong decoupling between the excitation (i.e., strike, tap, etc.) and the
resulting sound allows for the implementation of very effective passive haptic feedback (see §1.1.7).

A more generic type of percussion instrument controller are percussion pads. Less invasive than
electronic drum sets, they can capture a wide range of gestures (e.g., strike, tap, etc.) and are
very versatile. Unlike electronic drum sets, their form factor greatly differs from any traditional
acoustic instrument. Most major electronic musical instrument manufacturers make various kinds
of drum pads (e.g., Roland’s SPD Series,16 Yamaha’s DTX-MULTI series17). Some companies take
a more innovative approach to this by making more “high end” products such as the Jambé,18 a
percussion pad utilizing a proprietary format to transmit control data to iOS devices at a very high
rate, necessary to capture fast drumming gestures (e.g., roll, etc.).

“Acoustically driven hybrid” and “augmented” percussion interfaces are relatively well represented
in the commercial world (e.g., ATV aFrame, Korg WaveDrum, etc.) and will be presented in §1.2.

14https://www.roland.com/global/categories/drums_percussion/v-drums_kits/
15https://usa.yamaha.com/products/musical_instruments/drums/el_drums/drum_kits
16https://www.roland.com/global/categories/drums_percussion/percussion/
17https://usa.yamaha.com/products/musical_instruments/drums/el_drums/drum_kits
18http://getjambe.com/

https://www.roland.com/global/categories/drums_percussion/v-drums_kits/
https://usa.yamaha.com/products/musical_instruments/drums/el_drums/drum_kits
https://www.roland.com/global/categories/drums_percussion/percussion/
https://usa.yamaha.com/products/musical_instruments/drums/el_drums/drum_kits
http://getjambe.com/

CHAPTER 1. BACKGROUND 15

Non-Commercial/Academic Interfaces

Non-commercial percussion interfaces are often either more specific (linked to an acoustic instru-
ment in particular and its related set of gestures) or provide more innovative approaches to motion
capture than their commercial counterparts. Max Mathews’ Radio Baton [27] might be the most
representative controller of this second category by allowing the detection of the position and veloc-
ity of strikes, as well as the distance of the sticks (“batons”) from the interface. Mike Collicutt et al.
[39] provide an overview of this type of interfaces.

On the other hand, a wide range of less generic percussion instrument controllers directly asso-
ciated to specific acoustic musical instruments were developed in the NIME community. Similarly
to their commercial counterparts, this type of interface is more focused on skill transfer than the
ones presented at the beginning of this section. Good examples of such controllers are Ajay Ka-
pur’s Electronic Tabla [85] or Diana Young’s AoBachi [208], a controller for Japanese percussion
instruments.

The special case of “acoustically driven hybrid” and “augmented” non-commercial percussion
controllers will be treated in §1.2.

1.1.6 Other Controllers

There exists dozens of other musical controllers – both commercial and non-commercial – that are
either more generic and not associated to a specific family of musical instruments, or that present
a unique interface involving its own set of skills. While such controllers are not presented here
because they are beyond the scope of this section, some specific cases are worth being investigated.
In particular, controllers that are not directly related to a specific acoustic instrument but that rely
on the combination of multiple sets of skills are presented.

The Artiphon INSTRUMENT 119 combines multiple interfaces and sensors, allowing for the use
of various sets of musical skills at once. It hosts a strumming interface and a continuous-pressure-
sensitive pitch matrix – not unlike the one on the LinnStrument (see §1.1.2) – and can be used as a
guitar, violin, cello, keyboard, etc. controller. It is wireless, battery powered, and also has built-in
speakers, making it an almost completely standalone instrument (sound synthesis must be done on a
third-party device such as a smart-phone). The generic and standalone aspect of the INSTRUMENT
1, as well as its design oriented on skill transfer, make it especially relevant in the framework of this
dissertation.

Another interface combining various sets of instrumental skills in a unique and novel way is the
Karlax.20 While it borrows the form factor and the fingerings of some wind instruments, it allows
the performer to carry out more gestures (e.g., it can be twisted, etc.) and doesn’t have a breath

19https://artiphon.com/
20http://www.karlax.com/

https://artiphon.com/
http://www.karlax.com/

CHAPTER 1. BACKGROUND 16

controller. As a generic interface, it was not designed to control a specific set of virtual acoustic
instrument.

1.1.7 Haptic Feedback

The lack of haptic/force feedback in interfaces used to control virtual musical instrument is a known
issue whose impact on the ability to perform has been extensively studied [144]. By increasing
the tangibility of virtual instruments, the goal of this type of system is to allow the performer to
experience similar sensations as with acoustic musical instruments.

Perry Cook demonstrates that interfaces offering haptic feedback tend to reinforce the intimacy
between human player and instrument (see §1.1.1), implementing “mutualized” DMIs [42]. Indeed,
by linking virtual elements to tangible features, they induce an advanced level of cohesion between
the different elements constituting the DMI.

While haptic feedback can be as simple as transducing the sound of a virtual instrument to an
interface – implementing “vibrotactile feedback” [36, 110, 26] – more advanced techniques can also be
used. In particular, the paradigm presented above is pushed even further when haptic interfaces are
designed to work with physical models of musical instruments [17, 21]. In that case, the controller can
become the “real/physical world” physical extension of the virtual instrument, facilitating the design
of mutualized DMIs. Pioneering works in this field were done by Claude Cadoz et al. [99] through
their Transducteur Gestuel Rétroactif (TGR) [33] and the Cordis-Anima environment [34]. This tool
allows for the implementation virtual physical structures using masses and springs. Connections to
the physical world can be made at different locations in such structures through a TGR interface.
The energy present at each location is transmitted to the controller and converted to a mechanical
force using electric motors, providing seamless bidirectional connections between the virtual and the
physical elements of the instrument. The high level of modularity of the TGR allows it to be used
to implement a wide range of gestures. For example, Stephen Sinclair et al. used it to make a bow
controller [172].

Various other projects investigated the use of haptic feedback in interfaces for the control of
physical models. David Howard et al. [77, 78] take a similar approach than Cadoz et al. with their
Cymatic environment [154]. Edgar Berdahl tried to generalize the principles used in the TGRs to
make them more accessible and to control other types of physical models. Thus, his environment
Synth-A-Modeler [18] enables to implement physical models of musical instruments by combining
several modeling techniques through a graphical interface. The performer can interact with the
virtual portion of the instrument using FireFaders [19].

Other haptic controllers closer to the one presented earlier in this chapter are specifically designed
to interact with existing virtual acoustic instruments. Charles Nichols’ vBow [138, 139] is a good
example of such controller and was made to control a waveguide physical model of a violin. Haptic
feedback is provided to the performer through a motorized bow directly mounted on the body of

CHAPTER 1. BACKGROUND 17

the interface.
An interesting feature of the approach taken by Cadoz and colleagues is that it doesn’t target

the implementation of existing acoustic musical instrument. Instead, it provides a modular physical
and virtual environment to design completely novel mutualized instruments.

1.2 Augmented and Acoustically Driven Hybrid Instruments:

Thinking DMIs As a Whole

Most of the instruments presented in the previous section are based on the combination of a con-
troller and a synthesizer. Even though in some cases they might be part of the same entity, they
remain physically and conceptually separated. Instruments presented in this section are special
kinds of DMIs combining acoustical and virtual elements to make sound. By doing so, they blur
the interface/synthesizer boundary, making them more mutualized and unified as a whole, partly
solving the issue presented in §1.1.

A simple case of such instruments are “augmented instruments.” They are based on existing
acoustic instruments that are augmented using sensors and some digital effect/synthesizer. This
type of instrument is presented in §1.2.1. “Acoustically driven hybrid instruments” use both physical
and virtual elements and are not based on existing instruments. They are presented in §1.2.2.

1.2.1 Augmented Instruments

“The current research field on augmented instruments is motivated by the assumption
that the combination of traditional acoustic instruments with today’s sound technology
yields a high potential for the development of tomorrow’s musical instruments.” (Otso
Lähdeoja [105])

Augmentations can take several forms. They participate in the sound production of the instru-
ment using acoustic, electronic, or digital/virtual elements that can be mounted on the instrument
or be independent from it (e.g., a computer). In the case of electronic and digital augmentations,
sensors are usually placed on the body of the instrument to control the parameters of the augmen-
tations. The choice of the type of sensors and their placement is usually a key factor in a successful
augmented instrument. One of the main challenges pointed out by Lähdeoja when designing such
instruments is that gestures are usually already completely saturated in acoustic instruments. Thus,
the control of augmentations must seamlessly integrate to existing sets of gestures associated with
a specific instrument.

The Rickenbacker Electro A-22 “frying pan” electric guitar [179] that was released in 1931 might
be considered as one the first examples of electronic augmentation of an acoustic instrument. The
body of the instrument is replaced by an amplifier and the acoustic elements of the instrument

CHAPTER 1. BACKGROUND 18

(i.e., strings) are interfaced with the electronic ones through electromagnetic pickups. For the same
reason, electric guitars can also be considered as “acoustically driven hybrid instruments” (see §1.2.2).

Disklaviers can be considered as a form of augmented/hybrid instrument by having the same
characteristics than a traditional acoustic piano and offering the possibility to be digitally controlled.
They offer a wide range of options to design completely novel musical instruments such as David
Jaffe’s Radio-Drum-Drive Disklavier [81] where a Radio-Baton [27] is used to control the piano
keyboard. This concept was expanded to entire orchestras by Troy Rogers et al. [107].

Dozens of augmented instruments have been developed in the NIME community during the past
thirty years. Many of them are presented in Eduardo Miranda’s book on “New Digital Musical
Instruments” [131]. The violin is particularly well represented in this category with the Augmented
Violin [22], the Hyperbow [207], and the Overtone Violin [143]. Max Mathews’ Electronic Violin
[111] can probably be put in this category as well.

Similar projects involve making “meta-trumpets” [80, 90] or a “meta-saxophone” [31], comparable
in many respects to Softwind’s Synthophone.21

1.2.2 Acoustically Driven Hybrid Instruments: Mixing Physical and Vir-
tual Elements

Instead of being based on existing acoustic instruments, acoustically driven hybrid instruments use
acoustic elements (e.g., membrane, solid surface, strings, etc.) to drive virtual (i.e., electronic,
digital, etc.) ones. Virtual elements are implemented using physical modeling techniques. Their
goal is to play to the strengths of physical elements (e.g., imperfection, tangibility, randomness,
etc.) and combine them with the infinite possibilities of the virtual/digital world. Some of these
instruments involve an analysis step to interface a physical element to a virtual one, while some of
them directly use the acoustic signal generated by a physical element to drive virtual parts.

In this section, we give an overview of the different kinds of existing acoustically driven hybrid
instruments. We demonstrate how they are usually more physically coherent than other types of
DMIs and how this potentially makes them more expressive.

Using Acoustic Signals to Control Sound Synthesis

Audio signals contain a wide range of information that can be used to extract various types of
parameters [46] such as the position of a strike/pluck and its velocity, etc. This idea has been
extensively exploited by Tod Machover et al. in their series of “hyperinstruments” [106]. About ten
years later, Caroline Traube worked on a new technique to estimate the position of a pluck on a
string by analyzing the spectrum of its sound [186]. Pluck position information was used to control
sound synthesis parameters.

21http://www.softwind.com/synthophone.html

http://www.softwind.com/synthophone.html

CHAPTER 1. BACKGROUND 19

Around the same period, a series of projects where acoustic instruments are used as musical
controllers were conducted. Cornelius Poepel used an electric viola to control the parameters of a
synthesizer [149]. Camille Goudeseune conducted a similar project, but applied to the violin [66].
Adam Tindale did the same thing for a drum that was used as a drum synthesizer controller [185].

Such systems solve many problems of more “traditional” controllers by providing an interface
identical to the one that performers are used to, greatly facilitating skill transfer.

A wide range of commercial products based on this principle are available and can be used as a
way to control sound synthesizers. The electric guitar is particularly well suited for such use as its
“natural” sound is very quiet and doesn’t interfere with the synthesized one. The Fishman TriplePlay
Series22 is a good example of this type of product and can be mounted directly near the bridge of
the electric guitar to use this instrument as MIDI controller. Similarly, Roland’s RT-30 Series23 are
“acoustic drum triggers” that can be mounted directly onto acoustic drums to trigger virtual ones.
The idea in that case is to combine acoustic and virtual drum sounds. Roland’s VDrums (see §1.1.5)
use a similar approach but are based on drum membranes design to be as quiet as possible when
they are struck.

Mogees24 is an interesting special case allowing for the use of any surface as a controller by
extracting features from the sound generated on those surfaces. It leverages years of research done
at IRCAM25 in this field [23].

Driving Virtual Elements With Acoustical Ones

The idea of driving virtual physical models with acoustical elements has been exploited by a few
projects and commercial products. While physical modeling techniques are getting more advanced
(see §1.5) and can be used to implement virtual versions of most musical instrument parts, controlling
them in a natural expressive way is often challenging. They might also miss some key physical
features that just can’t be implemented in the virtual/digital world (e.g., sound radiation, etc.).

An early example of a acoustically driven hybrid instrument is the Korg Wavedrum.26 Sounds
happening on a “real” drum membrane are captured using contact microphones and used to drive
a wide range of percussion instrument physical models. Since each sound excitation created on the
membrane is different, generated sounds are very natural and realistic. A similar product is ATV’s
aFrame27 that uses a polycarbonate surface to capture sound excitations to send them to a built-in
sound synthesizer.

This technique has been extensively investigated by Roberto Aimi in his PhD thesis on hybrid
percussions [6] and used in many other projects and products. For example, Miller Puckette mounted

22https://www.fishman.com/products/series/tripleplay/
23https://www.roland.com/global/products/rt-30h/
24http://www.mogees.co.uk/
25Institut de Recherche et Coordination Acoustique/Musique, Paris (France)
26http://www.korg.com/us/products/drums/wavedrum_global_edition/
27http://www.aframe.jp/

https://www.fishman.com/products/series/tripleplay/
https://www.roland.com/global/products/rt-30h/
http://www.mogees.co.uk/
http://www.korg.com/us/products/drums/wavedrum_global_edition/
http://www.aframe.jp/

CHAPTER 1. BACKGROUND 20

a contact microphone on the membrane of a snare drum [152] and used its signal to drive a physical
model [151]. Beep Street’s Impaktor28 takes a similar approach by allowing any surface to be turned
into a percussion instrument. It comes with a contact microphone that can be connected to an iOS
device running the Impaktor app. Captured sounds are directly fed into a wide range of percussion
instrument physical models to drive them. It is comparable to the Mogees presented earlier in this
section in many respects.

Ali Momeni made Caress [133], a musical interface leveraging this principle as well. Finger
pads with different textures can be touched to create various kind of sound excitations. Similarly,
Maarten van Walstijn et al. [190] used the acoustic signal generated on a conga membrane to drive
a percussion instrument physical model.

The same approach has been used with plucked string instruments where sound excitations are
captured and used to drive virtual strings. Daniel Schlessinger’s Kalichord [165] uses piezo films to
“materialize” virtual strings. The sound of plucks is captured and fed into a simple string physical
model (i.e., Karplus-Strong [89]). As for percussion instruments, the expressivity embedded in the
acoustic excitation is transmitted to the digital portion of the system. Edgar Berdahl designed a
similar instrument using a real electric guitar with damped strings that are used to capture pluck
sounds through the built-in pickup. Pluck sounds are then fed to a string physical model to drive it
[20]. The BladeAxe presented in §2.2 and §2.3 also leverages this principle. Sandor Mehes et al.
nonlinearly coupled a physical string to a plate physical model, allowing performers to create very
expressive sounds with unpredictable behaviors [113].

Other instruments such as the ones of Line 6’s Variax Series29 place the “real/virtual boundary”
in a different location by having acoustical strings and a virtual body/resonator. In the case of the
Variax, this allows the performer to play a wide range of guitars from a single one. This works
especially well since guitar bodies are linear time invariant (LTI) systems that can be easily modeled
using a modal physical model (see §1.5 and §6.2). Roland offers a similar product called the V-
Guitar30 where the sound of the strings is processed to apply the acoustical properties of various
guitar bodies to it. Amit Zoran’s Chameleon Guitar [213] is a pioneer in this field and also allows
the performer to change the “physical” material of the front plate of the soundboard. Other types of
instruments have been made using the same technique such as Friedrich Türckheim’s Semi-Virtual
Violin [188].

All the instruments presented so far in this section are based on one set of virtual and one set
of physical elements connected together in a unidirectional way. However, many other types of
instruments such as woodwinds need their elements to be connected a bidirectional way (e.g., a
clarinet mouthpiece will transmit energy to the tube, but the opposite is true as well, etc.). Some
instruments such as Alice Eldridge et al.’s Self-Resonating Feedback Cello [53] explored this idea.

28http://www.beepstreet.com/ios/impaktor/
29http://line6.com/variax-modeling-guitars/
30http://www.rolandus.com/go/v-guitar/

http://www.beepstreet.com/ios/impaktor/
http://line6.com/variax-modeling-guitars/
http://www.rolandus.com/go/v-guitar/

CHAPTER 1. BACKGROUND 21

Similarly various experiments on the active control of some types of musical instruments have been
conducted and are presented in more details in §E.

By using acoustical elements as an interface, instruments presented in this section implement a
form of “passive haptic feedback,” (i.e., the performer physically feels these elements while actuating
them, even though they are not transmitting information from the virtual simulation via active
force feedback). Moreover, they force the instrument maker to “co-design synthesis algorithms and
controllers” reinforcing “the sense of intimacy, connectedness, and embodiment for the player and
audience” [42].

1.3 Mobile Devices as Musical Instruments

Mobile devices (smart-phones, tablets, etc.) offer a generic platform for the design of digital musical
instruments. As stand alone devices they present a promising platform for the creation of versatile
instrumented for live music performance [16]. Within a single entity, sounds can be generated and
controlled, facilitating the implementation of mutualized DMIs (see §1.1 and §1.2), and allowing for
the creation of instruments much closer to “traditional” acoustic instruments this respect.

With mobile devices, hardware is generic and more or less the same from one device to another,
regardless of the brand and operating system (e.g., iOS, Android, etc.), and it is the programmer’s
work to design apps to “make it more specific.” In the case of mobile-device-based DMIs, the
programmer truly becomes a “digital luthier” [84] able to create completely standalone instruments.

This section gives a brief overview of the field of “mobile music.” Early works on using tablets
as musical controllers are presented as well as more recent instruments. The research on human
computer interaction done on this topic and the limitations of this type of system are also studied.

1.3.1 Towards Smart-Phones: Tablets and Tactile Interfaces

One of the main constituting element shared by all smart-phones and tablets is the touchscreen.
Most interactions between the user and the software on such devices happen through this interface.
While they only became “a standard” when Apple introduced the iPhone in 2007 (see §1.3.2), they
were used on a wide range of devices before that [32]. The fact that they offer a generic hardware
platform that can be configured for various applications exclusively through software was probably
one of the keys of their success.

By offering multi-axis continuous controls, touch interfaces have always been an attractive plat-
form for implementing musical controllers. Even though they rely on very different types of technolo-
gies, tablets controlled through an electronic pencil offer a similar interaction paradigm as touch-
screens. The earliest example of this is Iannis Xenakis’ UPIC (1977) [103], a custom device where a
tablet equipped with an electronic pencil is used to control music synthesis. A similar approach is

CHAPTER 1. BACKGROUND 22

used by more generic systems such as Wacom Tablets,31 that have been extensively used as musical
controllers [9, 210, 48]. The technology behind this type of system offers a relatively low latency
compared to touchscreens using capacitive touch sensing such as the one presented later in this
section (see §1.3.6). Electronic pencils offer a higher level of precision that fingers on a touchscreen
and they’re a simple solution to compensate for the lack of haptic feedback (see §1.3.5).

The tablet/pencil paradigm was exported to Personal Digital Assistants (PDA) that became
quite popular in the 1990s and early 2000s. As touch sensing technologies improved, many PDAs
abandoned electronic pencils, allowing users to interact with the screen directly with their fingers.
The computer music community explored the potential of such devices [64], and a great part of the
theory behind the design of touchscreen-based musical interfaces dates back from this period [65].

In the second half of the 2000s, a wide range of large multi-touch tablet music controllers sprung
up and offered new paradigms to program and control digital musical synthesizers. The most “fa-
mous” of them is probably the Reactable32 [83] where tangible objects can be placed on a screen to
build sound synthesizers and control them. This idea was exploited by other controllers presented in
§1.3.5. An iPad version of this system also exists. A very similar approach is taken by Auraglyph,33

[161] an iPad app allowing the user to “hand sketch” digital synthesizers. Finally, the Lemur [96]
was a versatile programmable multi-touch musical controller that now exists as an iPad app.34 It is
interesting to note that this trend is common to almost all the devices of this category [49].

With all these systems came the idea of abstracting existing instrumental gestures to transfer
them to this type of interface. In other words, how can a touchscreen be used to facilitate skill
transfer for specific types of musical instruments? This concept is well summarized by Günter
Geiger:

“One of the challenges when designing musical interfaces for the touch screen is to come
up with a set of interaction principles, that can be regarded as fundamental, studied and
practiced as such in order to lead to a higher level of control of the instrument (or, more
general, the interface) [65].”

This idea is further studied and extended in §1.3.2 and §3.4.

1.3.2 Smart-Phone-Based Musical Instruments

The idea of using smart-phones as musical instruments emerged at the end of the first half of the
2000s [63]. Beside Günter Geiger’s version of PureData35 for Pocket PC briefly presented in §1.3.1,
Atau Tanaka also studied the use of PDA as musical instruments [183]. He also explored the idea of

31http://www.wacom.com/
32http://reactable.com/
33https://ccrma.stanford.edu/~spencer/auraglyph/
34https://liine.net/en/products/lemur/
35https://puredata.info/

http://www.wacom.com/
http://reactable.com/
https://ccrma.stanford.edu/~spencer/auraglyph/
https://liine.net/en/products/lemur/
https://puredata.info/

CHAPTER 1. BACKGROUND 23

augmenting these devices with external sensors (see §5) which makes his work particularly relevant
here.

Greg Schiemer et al.’s Pocket Gamelan [164] can probably be considered as the first smart-phone-
based musical instrument. It featured real-time sound synthesis and playback as well as network
capabilities through blutooth on a Nokia phone. The idea of passively augmenting the phone (see
§4) was also explored by placing the device in a bag attached to a string used to spin the instrument
during the performance.

In 2007, Apple released its first iPhone which completely revolutionized and redefined the emerg-
ing field of mobile music by providing an easily programmable platform with a multi-point touch-
screen and an extended amount of memory. Pioneering work in using the iPhone as a musical
instrument was carried out at CCRMA (Stanford University) and Smule36 by Ge Wang. One of the
most representative instrument from this period is probably Ocarina [197].37 It embodies most of the
concepts that we try to convey here by providing a standalone, physically coherent DMI, leveraging
in a powerful way the various elements available on the mobile device while enabling skill transfer.
For instance, the “four holes” interface to select pitch is perfectly adapted to the iPhone’s touch-
screen which is limited to five simultaneous touch points. A breath sensor is implemented using the
built-in microphone and sound is synthesized and played back through the built-in speaker. From
a design standpoint, this instrument is as easy and convenient to play as its acoustic counterpart, a
rare quality for this type of DMIs. The performer just has to take his smart-phone and play without
having to power or plug anything. Additionally, performances can be shared to the rest of the world
providing unique social capabilities.

The paradigm initiated by the iPhone where smart-phones use a multi-point touchscreen as their
main interface, host sensors such as an accelerometer, a gyroscope, a GPS, etc. quickly became a
standard. The use of this new class of devices as musical instruments was extensively studied in the
following years, both in terms of leveraging built-in sensors for musical expression [56, 58, 57, 184]
and turning the touchscreen into a versatile music controller (see §1.3.4).

As part of this enthusiasm for mobile music, mobile phone orchestras sprung up in the second
half of the 2000s. The Stanford Mobile Phone Orchestra (MoPhO)38 [199] was one of the pioneers.
As a one quarter class, students had to design their own instruments (apps) and write a musical
piece for them, tightly following Norbert Schnell’s idea of composed instrument [166]. The format of
MoPhO instruments, performances, and pieces was not limited, and mobile devices could be treated
as completely standalone musical instruments or as “a whole,” using their network capabilities [30].
This last paradigm [76] is pushed further by specific ensembles where the mobile phone orchestra
is treated as a singular entity. For example, Sébastien Piquemal et al. [44] use mobile devices to
spatialize the sound of their pieces and provide the members of the audience (which in this case

36https://www.smule.com/
37https://www.smule.com/ocarina/original/
38http://mopho.stanford.edu/

https://www.smule.com/
https://www.smule.com/ocarina/original/
http://mopho.stanford.edu/

CHAPTER 1. BACKGROUND 24

are also the performers) with a simple interface. Their instruments are implemented as a web app,
facilitating their distribution. Other performances/ensembles try to integrate smart-phone-based
instruments to “traditional” orchestras. In his Geek Bagatelles,39 Bernard Cavanna treats smart-
phones as standlone musical instruments, just as any other instrument in the orchestra. Similarly,
Xavier Garcia wrote a series of pieces40 where smart-phone-based instruments are used concurrently
with traditional ones. All the apps used for these two last projects were developed using the tools
presented in §3.1.

Since the release of the iPhone in 2007 and the consequent “standardization” of smart-phones,
this type of device didn’t know any significant evolution. Their computational power significantly
increased, allowing us to run complex synthesis algorithms in real-time. Similarly, the overall quality
of the various sensors and technologies used on mobile devices improved, enabling a more precise
control as well as reduced latency. The latest generations of high-end devices also allow for the
measurement of the pressure applied by a specific finger on the touchscreen. This feature is very
useful to create natural behaviors as it allows for the implementation of interactions happening on
acoustic instruments. It has been exploited by various musical apps such Roli’s Noise.41 A solution
for larger screen devices lacking pressure sensitivity is presented in §5.1.

While other manufacturers (e.g., Samsung, Google, etc.) and operating systems (e.g., Android,
Windows, etc.) shortly started competing with Apple and its iOS42 after 2007, it remained for a
very long time the only viable option for mobile music (see §3.1.2). As such, most of the examples
presented here were designed to work on iOS only.

Nowadays, a wide range of commercial apps turning smart-phones into musical instruments are
available. For example, GarageBand for iOS43 offers a wide range of touchscreen interfaces targeting
performer skill transfer that are briefly presented in more details in §1.3.4.

1.3.3 Larger Screen Mobile Devices

While graphical tablets and large tactile interfaces and PDAs existed for decades (see §1.3.1), Apple
released the iPad in 2010. It can be considered as the first commercially successful device of this
type and it completely redefined (or even defined) their “standards,” the same way as the iPhone did
three years earlier for smart-phones. While the iPad (and what we now call “tablets” nowadays in
general) has almost the same features as a smart-phone (e.g., touchscreen, built-in sensors, etc.), its
large screen allowed for different affordances, particularly useful to implement musical interactions
leveraging performer skill transfer (see §1.3.4).

As for the iPhone, pioneering work in exploring the potential of the iPad as a musical instrument

39http://www.grame.fr/prod/geek-bagatelles/
40http://www.grame.fr/prod/smartfaust/
41https://roli.com/products/software/noise/
42Apple’s operating system for the iPhone and the iPad.
43https://www.apple.com/ios/garageband/

http://www.grame.fr/prod/geek-bagatelles/
http://www.grame.fr/prod/smartfaust/
https://roli.com/products/software/noise/
https://www.apple.com/ios/garageband/

CHAPTER 1. BACKGROUND 25

was carried out by Ge Wang et al. at CCRMA and Smule. Magic Fiddle [200] is one of the first
apps for the iPad that targeted live music performance for this type of device. The screen interface
implemented a violin neck, allowing for performer skill transfer (see §1.3.4), as well as various social
and learning features.

iPads are, at the time of writing, widely used on stage as musical instruments. However, they are
mostly used to replace laptops as sound synthesizers and to carry out basic interactions on the touch
screen, the main musical interface being external (e.g., MIDI drum pads, keyboard, etc.). There
exists dozens of apps based on this paradigm, and most electronic musical instrument manufacturers
(e.g., Korg, Yamaha, Roland, etc.) now make this type of products. As such, the iPad provides a
framework allowing us to build systems at a reduced cost that can compete with “traditional” digital
synthesizers and workstations that have been dominating the market since the mid 1980s.

While the iPad/MIDI keyboard couple can be considered as a standard nowadays, only a few
apps are based on the same paradigm as Magic Fiddle and turn the iPad into a completely standalone
instrument, free from any external device. The design of the interface of this type of app is crucial
to its success as an “accepted” musical instrument and must leverage existing skills for performers
to be able to quickly master them. In the following section, the interfaces of such apps and the role
they play facilitating skill transfer are studied.

1.3.4 Touchscreen and Skill Transfer

With the rise of mobile devices with larger multi-touch screens (see §1.3.3) in recent years, the appeal
of making apps turning the iPad into a standalone musical instrument became much greater. Beside
Smule’s Ocarina presented in §1.3.2, there are very few other examples of such apps for smaller
screen devices such as the iPhone. Thus, most of the apps presented in this section were designed
to only work on the iPad.

In order for standalone iPad-based instruments to be successful, both from a musical and a com-
mercial standpoint, they must be easily approachable by musicians. This implies the implementation
of interfaces leveraging both the capabilities of multi-point touchscreens and existing musical skills
sets. As described in §1.3 and by Günter Geiger in [65], it then all becomes a matter of abstracting
the gestures linked to a specific instrument and conceptually reproduce them on a touchscreen.

Through his company Wizdom Music,44 Jordan Rudess has been one of the pioneer in devel-
oping iPad apps usable on stage for live performance. He created a wide range of very innovative
interfaces specifically designed for multi-point touchscreens and leveraging the various capabilities of
the iPad. While many of them are meant to be controlled with a MIDI keyboard (e.g., Jordanotron,
SampleWiz, etc.), some are designed to be more standalone such as Geo Synthesizer.

The interface of Geo Synthesizer served as the model for the app that probably embodies best the

44http://www.wizdommusic.com/

http://www.wizdommusic.com/

CHAPTER 1. BACKGROUND 26

idea of turning the iPad into a self-contained instrument on the market: GeoShred.45 It is the fruit
of a collaboration between Wizdom Music and moForte.46 Its primary goal is to turn the iPad into
an electric guitar physical model controller/instrument. GeoShred offers an interface implementing
a customizable isomorphic keyboard configured by default as a guitar neck. In other words, an
arbitrary number of chromatic keyboards with an arbitrary number of keys are put in parallel of
each other. Each keyboard row materializes a string, is mono, and implements “voice stealing,”
which means that priority is always given to the last finger to touch the “string.” By default,
keyboard strings are placed one fourth apart of each other, the same way as strings on a guitar.
Notes are triggered when a new key is pressed. Slides and vibrato can be carried out. Features
only implementable on a virtual system are also available such as the ability to automatically switch
octaves when triads are performed successively. The GeoShred interface also emphasizes visual
feedback, which is a common technique to compensate for the lack of haptic feedback on touchscreens
(see §1.3.5).

GeoShred’s interface is half way between a keyboard (since notes can be triggered when they
are touched) and a guitar neck for the mapping of pitches and the general behavior of the system
(more details about this type of mapping are given in §3.4.1). A large number of professional and
renowned performers (i.e., Jordan Rudess himself) learned to master this instrument and reached a
level of virtuosity comparable to that achievable on a traditional acoustic instrument.

While GeoShred is currently one of the only apps on the market treating the iPad as a completely
standalone instrument, other apps use the multi-touch screen in innovative ways to implement
various kinds of skill transfer. Apple’s GarageBand for iOS47 is one of them and provides a wide
range of “smart” interfaces for various families of musical instruments (e.g., guitars, bass guitars,
drums, pianos, string ensembles, etc.). Most of them try to copy/implement the pitch mapping
and affordances (e.g., physical behavior of a string, ability to slide and carry out vibrato, etc.) of
their real/physical world counterparts, in a similar way as Magic Fiddle does (see §1.3.3). Various
modes can be used to quantize the pitch or limit the system to specific musical scales. More standard
interfaces such as a configurable piano keyboard are also available. ThumbJam48 is another example
of such app and has similar goals as GarageBand.

Since the work done on graphic tablets, the study and the implementation of multi-touch screen
interfaces leveraging instrumental skill transfer has been somewhat left out (see §1.3.1). A few sys-
tems such as TouchOsc49 allow us to easily design iOS-based custom musical controllers, potentially
allowing for the implementation of some forms of skill transfer. Olivier Perrotin et al. worked on a
common problem when controlling pitch with touch interfaces: the ability to accurately select a pitch
while being able to continuously control it (e.g., glissandos, vibrato, etc.) [147]. Similar techniques

45http://www.wizdommusic.com/products/geoshred.html
46http://www.moforte.com/
47https://www.apple.com/ios/garageband/
48http://thumbjam.com/
49https://hexler.net/software/touchosc/

http://www.wizdommusic.com/products/geoshred.html
http://www.moforte.com/
https://www.apple.com/ios/garageband/
http://thumbjam.com/
https://hexler.net/software/touchosc/

CHAPTER 1. BACKGROUND 27

are used in commercial apps such as GeoShred, GarageBand, etc. We introduce a slightly different
method addressing this problem in §3.3.4.

1.3.5 Touchscreen and Tangibility

One of the main limitations of touchscreens are their lack of haptic feedback. While this might be
compensated by the use of realistic and sometimes “exaggerated” graphical feedbacks, this remains
a significant problem in the framework of digital musical instruments design where this type of
features play a crucial role [140]. A wide range of solutions to this have been suggested and are
briefly presented in this section.

Various types of active solutions have been proposed such as the use of mechanical and electro-
tactile feedback. Bruce Banter created a touchscreen equipped with actuators capable of generating
vibrations, pulses, textures, etc. in response to user interactions [12]. Similarly, Ecran Altinsoy et
al. added electrotactile feedback to a touchscreen, allowing for the creation of virtual tangible zones
with different textures [7]. None of these two technologies have been used for musical applications
though.

As demonstrated in §1.3.1, electronic pencils are a simple way to make the interaction with a
touchscreen more tangible. This idea is pushed further by Müller et al. who created a system
providing mechanical feedback through a motorized stylus [137]. This interface was specifically
designed for musical applications and it allowed for the simulation a wide range of textures as well.

Other solutions to the lack of haptic feedback on touchscreens involve the use of tangible objects
that can be placed directly onto the screen, which can also be seen as a form of augmentation (see
§1.4.1). Completely passive solutions have been proposed by Sven Kratz et al. [93] as well as others
[38, 101] where virtual objects can be materialized using physical ones. Basic interactions are possible
and elements can be rotated, stretched, moved, etc. Information is transmitted to the screen using
passive mechanical elements interacting with the capacitive touch sensing. This principle has been
adapted to musical interface design by Edward Rutter [160] who created a collection of physical
sliders, knobs, etc. directly usable on the iPad screen. Other projects involve the use of active
systems to transmit data to the screen by electronically interfering with capacitive touch sensing
using frequency modulation [209].

A different approach to solve this problem partly inspired by some ideas presented in [65] is
introduced in §2.1.5. A thin “texturized” polycarbonate sheet is placed on the screen of the device,
both to make it more tangible and to capture sounds happening on it through a set of contact
microphones.

1.3.6 Limitations

Despite their countless qualities as a platform to make digital musical instruments, mobile devices
were never designed to be used as such. While they can be easily turned into tools to carry out

CHAPTER 1. BACKGROUND 28

specific tasks through their apps, their hardware remains very general and generic, and most mobile
device-based DMIs can hardly compete with their real/physical world counterparts. §1.4, §4, and
§5 all address this issue.

Beside the lack of haptic feedback of the touchscreen studied in §1.3.5, mobile devices have many
other limitations. They are briefly reviewed here.

Other limitations of touchscreens are related to their use of capacitive touch sensing. This
technology made tremendous progress during the past ten years, mostly because it is now used
on almost all smart-phones. However, it remains relatively slow with a “typical” latency of about
35ms (see §3.2.3), often lacks the ability to sense pressure (see §1.3.2), and limits the number of
simultaneous touch-points on some devices (e.g., five for the iPhones vs. ten for the iPad).

While mobile devices can be used to implement skill transfer by abstracting gestures associated
with existing instruments (see §1.3.4), this often implies to hold them in a specific way. Smart-phones
were primarily designed to be held in one hand – as a telephone – but Smule’s Ocarina suggests the
user to hold it with two hands, like a wind instrument. Since mobile devices don’t have handles, the
performer must always have at least one finger on the touchscreen to prevent it form falling, which
is not very comfortable. Similarly, Magic Fiddle suggests to hold the iPad like a violin by placing
it on the shoulder of the performer, which is not very practical. Various solutions to those purely
ergonomic issues are proposed in §4.3.

Despite the fact that they are a key component of smart-phones “standaloneness,” their built-in
speakers are often weak and not good. While this limitation mostly comes from the size of the
devices, there exists passive and active solutions that will be presented in §4.2.2 and §5, respectively.

The quality of real-time audio support greatly varies from one platform to another (i.e., iOS vs.
Android), and has a significant impact on the performances of these systems, their deployability,
and their audio latency. More details about these issues are provided in §3.2.

Similarly, mobile devices are usually less powerful than desktop computers (although the latest
generations of high-end iPads tend to compete with most laptops). This might be a problem when
designing DMIs using complex physical models such as the ones presented in §6 or when dealing
with polyphonic instruments.

Finally, the lack of openness of some platforms can often be a problem for the deployment of
some DMIs and the implementation of complex augmentations. For example, iOS apps can only
be installed through Apple’s App Store, and the requirements for apps to be available on this
platform are high and often limiting. Similarly, connecting external devices to iPhones and iPads
can be complicated since only MIDI devices are recognized and accepted on this platform. Various
solutions to this problem are presented in §5.2. Android doesn’t suffer from this problem and remains
relatively open.

CHAPTER 1. BACKGROUND 29

1.4 Augmenting Mobile Devices

The versatility of mobile devices is probably their main strength. They are generic hardware plat-
forms that can be made specific through their software (apps) to carry out a wide range of tasks.
On the other hand, mobile devices were not designed to do “everything” and their genericity is not
always adapted to specific applications. §1.3 gives a good overview of this type of limitations.

One way to solve this problem is to use various kinds of elements that can be directly connected
to mobile devices (e.g., MIDI controllers in the musical instrument world, etc.) to expand their
affordances and functionalities. The main limitation of this type of solution is that it tends to make
mobile devices less standalone. While this might not be an issue in some cases (e.g., keyboard-based
instruments), it can be quite limiting for other types of instruments involving extended movements
and gestures.

The main way to solve this problem is to make the external element part of the mobile device
by turning it into a prosthetic that can be mounted on the smart-phone or the tablet itself. Various
kinds of such augmentations, that can be both passive or active, have been designed and target a
wide range of applications ranging from credit card readers to musical instruments. This paradigm
was pushed further by the Ara,50 a smart-phone series commercialized by Google and specifically
designed to be modular and augmented.

This section gives an overview of the different types of augmentations of mobile devices towards
musical instrument design through a series of examples.

1.4.1 Passive Augmentations

Many mobile device augmentations are completely passive and don’t require to be connected to the
device (as we’ll see in §1.4.2, this can be sometimes technically challenging). Their goal is then to
leverage existing components (e.g., built-in speakers, sensors, etc.) to improve their capabilities for
specific applications. A popular example of this type of augmentation is the Google Cardboard,51

where a cardboard box equipped with simple lenses is used to turn a smart-phone into a Virtual
Reality (VR) headset.

In the world of audio, the most “famous” type of passive augmentations are probably passive
amplifiers (e.g., Etsy amplifiers,52 etc.). They plug directly to the built-in speaker of the mobile
device to further amplify its sound using purely acoustic components. Thus, from an aesthetics and
conceptual standpoint, they are very close to the instruments presented in §6.

Other types of passive augmentations leverage built-in sensors (see §4) by facilitating specific
gestures. The AAUG Motion Synth Controller,53 which allows the performer to hold the iPhone

50https://atap.google.com/ara/
51https://vr.google.com/cardboard/
52https://www.etsy.com/market/iphone_amplifier/
53http://www.auug.com/

https://atap.google.com/ara/
https://vr.google.com/cardboard/
https://www.etsy.com/market/iphone_amplifier/
http://www.auug.com/

CHAPTER 1. BACKGROUND 30

with one hand is a good example of this type of augmentation. Performers can comfortably interact
with the touchscreen while being able to use the built-in motions sensors.

Some projects focus on using/hacking built-in elements of mobile devices to implement passive
or “semi-passive” external sensors. For example, in their Acoustruments project, Gierad Laput et
al. [95] use the built-in microphone and speaker of smart-phones to implement passive, acoustically-
driven controls for handheld devices. A broadband signal produced by the speaker is driven to the
microphone using a tube whose topology can be modified by the user. Variations in the spectrum of
the generated sound are tracked and high level parameters are extracted from them. Similarly, the
passive tangible touchscreen objects [65, 93, 101] presented in §1.3.5 are also part of this category.

An important limitation of mobile device augmentations is their device specificity. For example,
an iPhone 5 augmentation will not work with and iPhone 6 augmentation. A solution to this problem
involving the use of digital fabrication and parametric CAD models is proposed in §4.1.

1.4.2 Active Augmentations

While passive augmentations are lightweight and usually perfectly integrate to mobile devices, they
are limited in their scope and applications as they entirely rely on active elements already present
on the device. On the other hand, active augmentations are more versatile, but are more technically
challenging and hard to design. Indeed, since they rely on electronic components, they need to
be powered. While mobile devices are capable of powering external elements through their USB,
lightning, etc. port, it is often limited to a low amperage, requiring sometimes the use of an external
power supply such as a battery or a power adapter. This type of elements might have an impact
on the ergonomics and overall design of the augmentation. Transmitting data to the mobile device
can also be problematic as plug types greatly vary from one device to another (e.g., USB, lightning,
etc.). Similarly, even though they are getting better, wireless solutions often remain unadapted to
musical applications because of latency (see §5.2). Additionally, some platforms such as iOS limit
the types of elements that can be connected to mobile devices. A survey of the different techniques
to transmit data to smart-phones and tablets is provided in §5.2.

Active augmentations can be as simple as plugging speakers to the jack output of mobile devices.
This idea has been extended and used in an innovative way by some mobile phone orchestras such
as MoPhO (see §1.3.2) where external battery-powered speakers are mounted on the hands of the
performer using gloves. This solution is obviously more efficient than the use of passive amplifiers
(see 1.4.1) and doesn’t affect the standalone aspect of the device.

A popular type of augmentation in the audio world are external audio interfaces that can be
mounted directly onto the device. For example, Alesis’ iO Dock54 turns the iPad into a simple audio
work station. Similarly, the Sonoma Guitar Jack55 simplifies the connection of an electric guitar to

54http://www.alesis.com/products/view/io-dock/
55https://www.sonomawireworks.com/guitarjackmodel2/

http://www.alesis.com/products/view/io-dock/
https://www.sonomawireworks.com/guitarjackmodel2/

CHAPTER 1. BACKGROUND 31

an iPhone, etc.
Other products use the iPad and the iPhone at the heart of electronic musical instruments as

a sound synthesizer or audio effect processor. Akai’s SynthStation4956 augments the iPad with
a MIDI keyboard and a wide range of controllers (e.g., knobs, sliders, etc.). DigiTech’s iPB-10
Programmable Pedalboard57 is an iPad-based guitar pedal effect board. Akai’s MPC Fly 3058 is an
iPad sleeve turning it into a drum pad and a sampler. There are many more examples of this type
of augmentations on the market.

The gTar59 represents a specific case in this world of augmented smart-phone-based musical
instruments as it targets education. It is a full-size guitar controller where frets on the neck are
implemented with buttons. Its general design borrows a lot from the Starr Labs Ztar presented in
§1.1.4. An iPhone can be docked to the instrument to synthesize sound and to run a wide range of
programs to learn how to play guitar.

Another good example of augmented iPhone-based musical instrument is the early prototype
of the Artiphon INSTRUMENT 1 briefly presented is §1.1.5 where the mobile device was literally
placed at the heart of the instrument.

Overall, most of the products presented in this section date back to the early 2010s. They are
all discontinued and haven’t been replaced by new ones. Despite the appeal of using mobile devices
as the basis for the implementation of a wide range of DMIs, their quick evolution, both in terms
of technology and shape, became a significant limitation for the manufacturers of such instruments.
Relying on a specific device appeared to be very risky as their manufacturers (e.g., Apple) constantly
change their design and shape, making most augmentations obsolete only after a few months.

All commercial products presented in this section use mobile devices to carry out sound synthesis
or processing tasks, however, they completely discard the various sensors already present on the
device (e.g., touchscreen, motion sensors, etc.). Inversely, the instruments presented in this thesis
in general, are committed to start from the mobile device, leverage its existing elements, and finally
design augmentations for missing affordances.

1.5 Physical Modeling

In this section, we give a brief overview of waveguide [177] and modal synthesis, and we show how
they can be used to efficiently and easily implement a wide range of musical instrument parts. We
also highlight the link between the virtual/digital and the physical/acoustical world from the musical
instrument maker/designer perspective, enabled by the combination of physical modeling and digital
fabrication. Finally, we show how the Faust programming language has been used to implement

56http://www.akaipro.com/product/synthstation49/
57http://digitech.com/en/products/ipb-10-programmable-pedalboard/
58http://www.akaipro.com/mpc-fly-30/
59https://www.kickstarter.com/projects/incident/gtar/

http://www.akaipro.com/product/synthstation49/
http://digitech.com/en/products/ipb-10-programmable-pedalboard/
http://www.akaipro.com/mpc-fly-30/
https://www.kickstarter.com/projects/incident/gtar/

CHAPTER 1. BACKGROUND 32

physical models of musical instruments in the past.

1.5.1 Digital Waveguides and Modal Synthesis

Smith et al. extended the Karplus-Strong algorithm [82] and generalized it to other types of in-
struments through digital waveguide models [173, 88, 194]. Such models are “built out of digital
delay-lines and filters (and nonlinear elements), and they can be understood as propagating and
filtering sampled traveling-wave solutions to the wave equation (partial differential equation), such
as for air, strings, rods, and the like” [177].

The main advantages of digital waveguide models are their simplicity and efficiency while still
sounding adequately real. They allow for the accurate modeling of a wide range of instruments (string
and wind instruments, tonal percussions, etc.) just with a single filtered delay loop. Efficiency was
a key factor in the success of waveguide physical modeling at a period when CPUs were not as
powerful as nowadays. This technique was used in many commercial synthesizers in the 1990s such
as the Yamaha VL1 (see §1.1.2) as well as by various composers [37, 92].

While any instrument part implementing a quasi harmonic series (e.g., a linear string, tube,
etc.) can be modeled with a single digital waveguide, this technique is not suitable for strongly
non-harmonic systems.

Modal synthesis [5] consists of implementing each mode of a linear system as an exponentially
decaying sine wave. Each mode can then be configured with its frequency, gain, and resonance
duration (T60). Since each partial is implemented with an independent sine wave generator (see
§6.3.2), this technique is more computationally expensive than waveguide modeling for systems with
many modes. The parameters of a modal synthesizer (essentially a list of frequencies, gains, and
T60s) can be calculated from the impulse response of a physical object [87] or by using the Finite
Element Method (FEM) on a volumetric mesh (see §6.3.1) [29]. This technique strengthens the link
between physical elements and their virtual counterparts as it allows for the design of an instrument
part on a computer using a CAD software, and turn it into a physical model that could also be
materialized using digital fabrication (see §1.6). This concept is further developed in §6.

Other methods such as finite-difference schemes [24] can be used to implement physical models
of musical instruments and provide more flexibility and accuracy in some cases. However, most of
them are computationally more expensive than waveguide models and modal synthesis. An overview
of these techniques is provided in [177]. Since this thesis is targeting the use of physical models on
mobile platforms with a limited computational power, we’re focusing on CPU-efficient techniques.

1.5.2 Physical Modeling Environments

Designing physical models of musical instruments from scratch can be hard and requires a deep
knowledge of the different techniques used for this purpose. On the other hand, working with a
high-level digital representation of physical objects (e.g., instrument body, strings, membranes, etc.)

CHAPTER 1. BACKGROUND 33

to assemble them into existing or new instruments is very appealing. There exists a few environments
to carry out this type of tasks. They are briefly presented in this section.

Modalys [54, 35] has been developed for years by IRCAM60 and probably represents best this
type of environments. It uses different physical modeling techniques such as modal synthesis and
digital waveguides to implement various musical instrument parts or vibrating objects that can be
assembled together through a high-level programming language based on Common Lisp.61 Modalys
inherited from an older environment called Mosaic [134] and benefits from decades of research done
at IRCAM on these topics.

CORDIS-ANIMA [34] allows for the implementation of mass/spring physical models [60] using
a graphical user interface.

Edgar Berdahl’s Synth-A-Modeler [18] adopts a higher level approach by providing a graphical
user interface to assemble musical instrument parts. It is based on a set of functions implemented
in the Faust programming language (see §1.5.3) and focuses on hardware integration for haptic
feedback (see §1.1.7). There are some similarities between Synth-A-Modeler and the Faust Physical
Modeling Library presented in §6.2.

Other environments target specific classes of musical instruments. Digital Guitar Workshop
[10] is a tool to help guitar luthier design new instruments by modeling their acoustical behavior.
Harrison et al. [71] created a toolkit incorporated to the Sound Loom interface of the Composers
Desktop Project62 to model brass instruments using finite-difference schemes [24].

1.5.3 Faust and Physical Modeling

The Faust programming language has been used extensively to implement waveguide and modal
physical models of musical instruments. The Faust-STK [125] presented in §A is a collection of
physical models implemented in Faust and based on some of the algorithms of the “original” STK
[43]. Additionally, Julius Smith describes how to implement a virtual electric guitar and its related
effects in [176].

The implementation of such models in Faust is eased by the wide range of functions available
in the Faust DSP libraries [123] and by the block-diagram/signal-oriented syntax of the language.

In §6, we introduce a series of tools to facilitate and generalize the design of physical models
of musical instruments in Faust. The goal of some of these tools is to blur the physical/virtual
boundary towards the design of hybrid mobile instruments.

60Institut de Recherche et Coordination Acoustique/Musique: https://www.ircam.fr/
61https://common-lisp.net/
62http://www.composersdesktop.com/

https://www.ircam.fr/
https://common-lisp.net/
http://www.composersdesktop.com/

CHAPTER 1. BACKGROUND 34

1.6 3D Printing, Acoustics, and Lutherie

Digital fabrication has been used to make musical instruments for decades and is now an established
process part of many luthier’s toolkit. For example, CNC63 machines are widely used by electric
guitar makers to “sculpt” guitar bodies using 3D models.

A special case in the wide range of digital fabrication techniques is 3D printing. While 3D printers
have been used since the 1980s [25], they only became a popular technique in recent years. This,
combined with the significant decrease of the price of printers (typically under $3000), triggered a
“3D printing mania” in the early 2010s. In a speech on February 12, 2013, former president Barack
Obama said:

“A once-shuttered warehouse is now a state-of-the art lab where new workers are mas-
tering the 3D printing that has the potential to revolutionize the way we make almost
everything [69].”

Both the acoustic and the digital musical instrument making communities were affected by this,
and 3D printing has been used extensively in the past five years to make novel, traditional, acoustic,
digital, etc. musical instruments [102, 68]. Nowadays, even though media attention significantly
decreased [130], 3D printers are part of many workshops and are fully integrated to the tool-chain
used by musical instrument makers.

While high-end 3D printers can be used to make full size traditional acoustic musical instruments
(usually drawing media’s attention), cheaper printers are often utilized to augment or modify existing
instruments or make new ones from random objects. Fast prototyping and iterative design are at
the heart of this new approach to lutherie and musical instrument making.

1.6.1 Printing Musical Instruments

Despite some technical limitations, 3D printers have been used to print musical instruments parts
or complete instruments for several years. 3D printing techniques significantly evolved during the
last decade, allowing for the printing of a wide range of materials with a high level of precision. It is
now even possible to print wood grain and change the physical properties of a material in different
locations [45]. However, these features are only available on high-end printers, at a prohibitive
cost for most musical instrument designers/makers. Additionally, lutherie and traditional acoustic
musical instrument making require extremely advanced technical skills and a high level of intuition
that can only be acquired after years of practice and apprenticeship [84]. Such skills are currently
hard to translate to digital fabrication.

“We should not forget that 3D printing technologies, or any other novel fabrication tech-
nologies, cannot compete with the traditional ones in the process of fabricating traditional

63Computer Numerical Control

CHAPTER 1. BACKGROUND 35

instruments. However, the new technologies have the potential to change instrument de-
sign, and to open a door for new acoustic experiments and musical possibilities. As
such, digital instruments, acoustic ‘traditional’ instruments, and acoustic ‘experimental’
instruments can coexist, and can perhaps merge into hybrid instruments, integrating
different qualities and different fabrication technologies [211].”

Despite these limitations, 3D printing has been used to make successful instruments and is an
ideal tool to prototype novel musical instruments. This section gives a non-exhaustive overview of
these digitally-fabricated instruments.

String instruments are particularly well represented in this world. It is now a common fabrication
technique for the making of electric guitar bodies since those have little impact on the quality of
the generated sound. Some guitar makers [142] such as Olaf Diegel64 specialized in this type of
instruments. A similar approach is taken by Laurent Bernadac who makes and sells a 3D printed
electric violin: the 3DVarius.65

More “adventurous” projects aim at acoustic string instruments. Scott Summit’s acoustic guitar
is a famous example of such instrument [191]. The associated patent [181] gives plethora of technical
details on its making and design. As the founder of one of the first 3D prosthesis company, Summit
had access to very high-end printers normally used for medical applications, allowing him to print
the body of his guitar as a single part with a high level of precision.

The Hovalin66 is an “open source violin,” 3D printable on low-end printers. Since the bed of such
printers is relatively small, the instrument has to be printed in several sections that can be glued
together. Similarly, ukulele are popular 3D printable instruments,6768 probably because of their size
and also the fact that the quality of their making usually matters less than for other types of string
instruments.

A wide range of existing and novel wind instruments have been 3D printed in the last decade.
Amit Zoran made a full transverse flute [211] where he printed each part of the instrument indepen-
dently on a high-end printer and assembled it by hand. He gives interesting insights on the acoustic
simulation of 3D models of musical instruments prior to printing that are reused in §6.

3D printing has been used to explore unusual temperament on traditional wind instruments. For
example, Nicholas Bailey et al. made a microtonal clarinet [11]. Similarly, Terumi Narushima et al.
made a set of microtonal flutes and also prototyped a wide range of new designs for this instrument
such as a double helix flute [47].

Other projects around wind instruments are open source and can be be printed on low-end

64http://www.oddguitars.com/
65https://www.3d-varius.com/
66http://www.hovalabs.com/hova-instruments/hovalin/
67https://3dprint.com/63412/3d-printed-electric-ukulele/
68http://www.3ders.org/articles/20130221-3d-printing-musical-instrument-ukulele.html

http://www.oddguitars.com/
https://www.3d-varius.com/
http://www.hovalabs.com/hova-instruments/hovalin/
https://3dprint.com/63412/3d-printed-electric-ukulele/
http://www.3ders.org/articles/20130221-3d-printing-musical-instrument-ukulele.html

CHAPTER 1. BACKGROUND 36

printers such as Aito Esteve Alvarado’s baroque recorder”69 or Dan Olson’s trumpet.70

Finally, a few instrument makers designed completely novel instruments that would be hard to
make without the use of 3D printing. Eric Goldemberg and Veronica Zalcberg created a wide range
of such instruments as part of their Monad Studio project.71

1.6.2 Modifying/Augmenting Existing Objects and Musical Instruments

One of the main power of 3D printing lies in the ability to fast-prototype elements that were either
hard or impossible to make in a small workshop in the past. As a result, the idea of making small
augmentations to extend existing musical instruments or make new ones from random objects rose
up. This idea is investigated and theorized by John Granzow in his PhD thesis [68].

“The scrap yard becomes like the archeological dig, prone to what we might playfully
call the Martian perspective, a forestalled recognition of things and their functions, as if
we, or these things come from another world. Whether the vision is Martian or future-
archeoacoustical, the exercise remains the same: To resist preconceptions and allow the
object to float into imaginaries of altered function. Part of this process is a mental
sketching around the object, projecting alternative assemblies upon it. This mental
sketching now transitions quickly to physical form when the observer has access to CAD
and additive manufacturing toolchains [68].”

This concept gave birth to a wide range of new musical instruments such as Granzow’s Javalele,
a string instrument made from a portafilter found in a scrap yard and resembling a small banjo.

Other people explored this idea such as Matt Pearson who made a wide range of musical instru-
ments based on gourds augmented through 3D printing.72 Strassel Guitar73 makes electric guitars
with modular 3D printed pickups that can be used to change the sound of the instrument. A similar
concept is exploited by Amit Zoran with his Chameleon Guitar [213], where the 3D printed front
plate of a guitar sound board can be changed to obtain different sounds. Through this type of
instrument, Zoran [212] partially introduced the idea of hybrid instrument presented in §6.

CAD modeling allows for the creation of parametric models that can be modified using high level
parameters. This potential has been exploited to allow amateur musical instrument makers to print
custom versions of instrument parts. For example, Austin Peppel developed a toolkit allowing the
user to change the properties of a violin bow through a parametric CAD model,74 facilitating the
making of a wide range of bows for various uses and applications. Similarly, Morton Underwood
developed a framework to design 3D printable musical instrument mouthpieces.75 This idea had

69https://3dprint.com/88386/3d-printed-baroque-recorder/
70https://3dprint.com/41360/3d-printed-trumpet-project/
71http://www.monadstudio.com/
72http://www.mattpearsonworkshop.com/
73http://www.strassellguitars.com/
74http://www.austinpeppel.com/3D-Printable-Customizable-Musicians-Bow/
75http://www.mortonunderwood.co.uk/production/3d-printed-mouthpieces/

https://3dprint.com/88386/3d-printed-baroque-recorder/
https://3dprint.com/41360/3d-printed-trumpet-project/
http://www.monadstudio.com/
http://www.mattpearsonworkshop.com/
http://www.strassellguitars.com/
http://www.austinpeppel.com/3D-Printable-Customizable-Musicians-Bow/
http://www.mortonunderwood.co.uk/production/3d-printed-mouthpieces/

CHAPTER 1. BACKGROUND 37

been extended by John Granzow et al. as well [98].

1.6.3 Other Uses

3D printing has been used for other types of projects in the world of musical instruments design
and audio in general. In acoustics, it is used by architects to print miniature models of concert
halls. That’s the case of the Walt Disney Concert Hall that was designed in partnership with
famous acoustician Yasuhisa Toyota. As a privileged tool for designers, it makes it possible to
explore different shapes for speakers such as the Dardanus or passive amplifiers76 similar to the
ones presented in §1.4.1. Similarly, a few companies such as Normal77 make 3D printed customized
earphones adapted to sepecific ears.

There also exists more experimental projects such as Stephen Barrass’ digital fabrication of
acoustic sonifications where dataforms with acoustic properties that provide useful information are
created [13].

With 3D printing and physical modeling (see 1.5), the boundary between the physical/acoustical
and the virtual/digital worlds becomes more blurry, making it possible to approach musical instru-
ment design in a multidimensional way where instrument parts can be either physical or virtual (with
some limitations). §6 develops this concept and provides various tools to create such instruments.

76http://3dprintingindustry.com/
77http://newnrml.com/

http://3dprintingindustry.com/
http://newnrml.com/

Chapter 2

Genesis

The concepts and ideas presented in this dissertation partly originated from the various work pre-
sented in §1, but also from the design of a series of musical instruments and art installations that
we developed in the course of the past five years. While some of them just leverage the idea of hy-
brid instrument developed in §6, others combine it with the concept of mobile device augmentation
introduced in §4 and §5.

This chapter gives an overview of these instruments and installations in a chronological order
and links them to the following chapters of this dissertation.

2.1 Towards the BladeAxe

2.1.1 The Féraillophone

The Féraillophone is the first instrument that we made that used physical/acoustical elements
to drive virtual/digital ones. It is based on a compact disc and a laser disc (see Figure 2.1) that can
both be used as exciters to drive the virtual portion of the instrument. Contact microphones placed
on the two discs pick up sound excitations that are then digitized, and fed directly into a series
of physical models to excite them. This technique is borrowed from some instruments presented
in §1.2.2 such as the Korg Wavedrum. By combining the randomness of “real-world” excitations
to the infinite possibilities of physically-informed virtual elements, very expressive sounds can be
produced. Models range from a simple Karplus-Strong [89] to a more advanced non-linear feedback
delay network similar to the one described in [178] and capable of generating various types of
percussion sounds (e.g., gongs, cymbals, etc.). A companion interface can be used to control some
of the parameters of the models.

The Féraillophone has been used in various performances including in Study for Féraillophone,
a musical piece specifically written for this instrument. More technical details about this piece and

38

CHAPTER 2. GENESIS 39

CD with Contact Mic Laser Disc with Contact Mic Buttons Distance Sensor

Férraillophone (Piezos) ADC
Audio OutDistance SensorButtons ArduinoInterface Physical Model(Faust)PD Patch

Féraillophone Control Interface

Figure 2.1: The Féraillophone, Its Companion Interface, and Overview of the Implementation of
the System.

CHAPTER 2. GENESIS 40

the design and implementation of this instrument are available on the corresponding webpage.1

2.1.2 The HybridScreen

The HybridScreen uses the same principles as the Féraillophone presented in §2.1.1. It is based
on a screen with a transparent acrylic sheet mounted on it (see Figure 2.2). Textures were manually
engraved on the acrylic using various tools (dremel, sand paper, etc.). Each texture generates a
different sound or rhythmic pattern. A contact microphone glued to the acrylic sheet picks up the
sounds happening on it. They are then digitized and used to drive a series of simple modal physical
models [5] from the Faust-STK, [125] ranging from Tibetan bowls to metal bars, etc. The screen
provides visual feedback to the performer by displaying a 3D sphere whose color and size change in
function of the amplitude and the spectrum of the generated sound. A distance sensor can be used
to control some of the parameters of the models (e.g., duration of the resonance, pitch, etc.).

Contact Mic
Audio Out

Distance Sensor Tapping SurfaceArduino ADC
Physical ModelGEM ScreenPD Patch

DistanceSensor

Figure 2.2: Overview of the HybridScreen.

More technical details about the HybridScreen as well as videos of performances using this
instrument can be found on the corresponding webpage.2

2.1.3 The BlackBox

The BlackBox [117] is a sound installation leveraging the same principles as the Féraillophone

and the HybridScreen presented in §2.1.1 and §2.1.2, respectively. A cube hung from a geodesic
dome (see Figure 2.3) is used as a multi-modal interface to control various physical models. Sounds
happening on the faces of the cube are picked-up, digitized, and used to drive the physical models
that are similar to the ones used by the Féraillophone (see §2.1.1). Resulting sounds are played

1https://ccrma.stanford.edu/~rmichon/feraille/
2https://ccrma.stanford.edu/~rmichon/hybridScreen/

https://ccrma.stanford.edu/~rmichon/feraille/
https://ccrma.stanford.edu/~rmichon/hybridScreen/

CHAPTER 2. GENESIS 41

on a 4.1 sound system mounted inside the dome. Each face of the cube provides a different rhythmic
pattern to play with. A built-in accelerometer is used to control some of the parameters of the
physical models (e.g., duration of the resonance, pitch, etc.). Visual feedback is provided through a
set of RGB LEDs placed inside the cube.

Contact MicPower + Signal to SpeakersArduino + BeagleBoard + Accelerometer

Figure 2.3: The BlackBox Installation in the CCRMA Lounge and Detailed View of the System
Inside the Cube.

Additional technical details and demo videos can be found on the corresponding project web-
page.3

2.1.4 The Chanforgnophone

The Chanforgnophone (see Figure 2.4) is a musical instrument based on a large steel cube with
strings mounted on its faces. A set of contact microphones pick up the sounds happening on the
instrument at different locations and feed them into a physical model. The model is a 3D mesh
implementing a cube whose dimension is the same as the one of its real-world counterpart. The
physical cube can be driven with a large transducer to create complex (and very unstable) feedback
behaviors. A set of springs mounted inside the cube can be used to process the sound. Finally, an
array of distance sensors can be used to control various parameters of the system.

The main idea is to have a hybrid instrument where physical elements all have a virtual equivalent.
Connections between physical and virtual parts are made through contact microphones whose signals
are digitized and are used to drive virtual elements. Inversely, virtual elements are connected to
physical ones using transducers. Physical connection positions are respected both for virtual and
physical elements. This concept is extended and generalized in §6.

3https://ccrma.stanford.edu/~rmichon/blackbox/

https://ccrma.stanford.edu/~rmichon/blackbox/

CHAPTER 2. GENESIS 42

Strings

Spring/Transducer CoupleDistanceSensors
Computer

Figure 2.4: Overview of the Chanforgnophone.

More technical details about the Chanforgnophone as well as the description of Bruits pour
Chanforgnophone, a musical piece written for this instrument can be found on the corresponding
project webpage.4

2.1.5 Augmented iPads

After experimenting with the idea of driving physical models with real-world acoustic excitations
(see §2.1.1, §2.1.2, §2.1.3, and §2.1.4), we started trying to integrate this concept to mobile device-
based instruments. One of our goal was to make these instruments standalone and compact. As
part of this project, we designed a series of prototypes that are briefly presented in this section.

The first one (see Figure 2.5) uses 3D printed plates hosting various textures, rhythmic patterns,
etc., to drive a wide range of physical models. Each plate was designed like a “playground” for the
performer’s fingers. Plates are mounted on a custom iPad cover in order to be placed on the back
of the device. Small contact microphones on the plates capture sounds happening on them and can
be connected to the iPad through the headphone jack. The performer holds the instrument with
his two hands and can use the build-in accelerometer and his thumbs on the touchscreen to control
some of the parameters of the model.

Our second prototype (see Figure 2.6) uses a transparent polycarbonate film placed on the
touchscreen of the iPad to add tangible textures to it. The layer is thin enough to not impact the
quality of the capacitive touch sensing and was designed to be as seamless as possible. A small
contact microphone placed on the frame holding this layer on the screen picks up sounds and feed
them into various physical models. The touchscreen can be used to change some of the properties

4https://ccrma.stanford.edu/~rmichon/chanforgnophone/

https://ccrma.stanford.edu/~rmichon/chanforgnophone/

CHAPTER 2. GENESIS 43

Thumb Sliders

Physical ModelParameters

3D Printed “Scratching”Surfaces
Figure 2.5: Portable Augmented iPad.

of the model. The main idea behind this instrument is to allow the performer to trigger the sound
and control some of its parameters with a single gesture.

Sleeve

Contact MicsJack In/Out

FrameTextured Layers

Figure 2.6: iPad Augmented With a Texture Layer on Its Touchscreen.

The apps of both instruments were made from scratch and programmed in C++ and Objective-C
for the interface, the audio engine, etc., and in Faust for the DSP portion. §3.3 introduces a tool
to facilitate the design of this type of app.

Similarly, the hardware portion of these instruments (i.e., the 3D printed textured plates, the
iPad case, etc.) were made from scratch in SolidWorks.5 A framework facilitating the design of
mobile device augmentations is presented in §4.1.

5http://www.solidworks.com/

http://www.solidworks.com/

CHAPTER 2. GENESIS 44

2.2 The BladeAxe1: a Hybrid Guitar Physical Model Con-

troller

After the various experiments presented in §2.1.1, §2.1.2, §2.1.3, §2.1.5, and §2.1.4, we tried to design
a guitar physical model controller where virtual strings are controlled by “real-world” acoustical
excitations. Our primary goal was to create a “physically coherent” instrument, following the ideas
and principles presented in §1.1 and §1.2. During this iterative process, we went through several
versions of the system where various neck designs were prototyped, multiple techniques and materials
were tried to capture plucking gestures, etc.

This section is based on a paper6 that we published at the 2014 International Computer Music
Conference7 on A Hybrid Guitar Physical Model Controller: The BladeAxe [128]. It gives an
overview of the design of the first version of the BladeAxe: the BladeAxe1.

2.2.1 Plucking System

Hardware

The plucking system of the BladeAxe1 is based on six independent piezoelectric films: one for each
string. We chose to use SEN-091968 because of their reasonable cost (about three dollars each), their
simplicity, and also because they are very common on the market and thus easy to replace.

Each piezo is glued to the middle of separate polycarbonate sheets (see Figure 2.7). The height
and the thickness of these sheets is chosen to approximate the elasticity of a guitar string. Each sheet
is placed in parallel and is 3/8” apart from its neighbors (corresponding to the distance between the
strings on a “standard” guitar).

Piezoelectric films are very sensitive to electromagnetic fields like the one created by the human
body. Thus, they were shielded with grounded copper tape to prevent disturbances in their signal.
Two additional bands of copper tape are used on each side of the piezoelectric film as capacitive
touch sensors to detect if the skin of the performer is touching the piece of polycarbonate. This
system is used to damp the virtual strings when they are not plucked and to detect the plucking
position of the player (§2.2.2 provides more details on the way this system works).

Each piezo is connected to an independent preamplifier that also takes care of canceling DC
(when a constant pressure is applied to a piezoelectric system, it creates a continuous current).
Also, each preamplifier contains a lowpass filter with cut-off frequency at 10 kHz. Piezoelectric films
have a very strong resonance peak at around 16kHz9 and it is crucial to eliminate this part of the
spectrum of the signal before feeding it into a waveguide.

6Some sections and figures of this paper were copied verbartim here.
7http://icmc14-smc14.eu/
8http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/ForceFlex/LDT_Series.pdf
9http://en.wikipedia.org/wiki/File:Piezoelectric_sensor_frequency_response.svg

http://icmc14-smc14.eu/
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/ForceFlex/LDT_Series.pdf
http://en.wikipedia.org/wiki/File:Piezoelectric_sensor_frequency_response.svg

CHAPTER 2. GENESIS 45

Figure 2.7: The Plucking System of the BladeAxe1.

Finally, the output of each preamplifier is independently digitized and sent to the laptop to be
fed into the physical model. The sampling rate of the system is 32KHz (the analog signals of the
piezos are bandlimited to 10KHz by the preamp’s lowpass filters).

The plucking latency is fully determined by the Analog to Digital Converter (ADC) latency which
is about ten milliseconds on the BladeAxe1. This is fine for most cases but it could be improved
by using a better ADC.

Pluck Sound Analysis

The nature of the impulses created by the finger when plucking one of the polycarbonate sheets can
vary a lot as a function of the pluck type. This is what makes the sound of the BladeAxe1 so
natural. For example, the impulse will be different if the pluck is carried out with a nail, the skin of
the finger, a bow, etc., just like on a “traditional” guitar.

The excitation signal also naturally embeds the pluck position along the edge of the blade: for
example, Figure 2.8 shows more energy below 1KHz and less energy above 4KHz when one of the
blade is plucked at the middle rather than at one end. The pluck position uniformly affects the
spectra of the virtual strings (see §2.2.2), for example the relative amplitude of the fundamental
(typically below 1KHz) versus the higher harmonics, as shown in Figure 2.9: the virtual strings
sound like they are plucked at different positions.

As the two sides of the polycarbonate sheet sound the same, the capacitive touch sensors are
used to determine if the impulse was created closer to the bridge or to the nut. A digital filter is
applied to the impulse as a function of this parameter (more details on this point are provided in

CHAPTER 2. GENESIS 46

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency, Hz

P
o
w

e
r,
 d

B

1/2

1/4

0

Figure 2.8: Frequency Responses of One of the Blades When Plucked at Different Locations With a
Pick Where 0 Is the Bottom of the Blade (Towards the Bridge) and 1/2 the Middle.

CHAPTER 2. GENESIS 47

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−60

−40

−20

0

Frequency, Hz

P
o
w

e
r,
 d

B

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−60

−40

−20

0

Position: 1/2

Position: 1/4

Frequency, Hz

P
o
w

e
r,
 d

B

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−60

−40

−20

0

Frequency, Hz

P
o
w

e
r,
 d

B

Position: 0

Figure 2.9: Frequency Responses of a Virtual String When Excited by the Signals From Figure 2.8.

CHAPTER 2. GENESIS 48

§2.2.2).

2.2.2 Physical Model

The guitar physical model of the BladeAxe1 is based on Free Axe [176]. It has six parallel virtual
strings connected to a series of effects such as an amplifier and a speaker model, a distortion,
a chorus, a flanger, etc. The model is implemented in Faust and is running on a laptop as a
standalone ALSA10 application.

The Arduino Due retrieving the data of the different BladeAxe1 controllers placed on the
neck and on the plucking system (capacitive touch sensors) runs a custom firmware that sends
serial OSC11 messages to the physical model software. Serial USB is extremely fast so the different
BladeAxe1 controllers have almost no latency. Also, the use of OSC with serial makes the system
very portable and “plug and play”.

The digitized signals of the piezoelectric preamps are first lowpass filtered at 10KHz to make
sure that the preamp analog lowpass filters removed the peak around 16KHz. Next, a noise gate lets
the signal drive the virtual string only if it reaches a certain level. Indeed, our preamplifiers tend
to generate a little bit of noise (less than -55dB). This system prevents the noise from making the
virtual string vibrate if it’s not plucked.

After this step, the signal goes through a pick position filter (a simple feed-forward comb filter)
[82]. The coefficients of this filter are computed as a function of the pluck position detected by the
capacitive touch sensors on the polycarbonate sheets.

Finally, the signal is fed into the virtual string whose different parameters are controlled by the
neck. An overview of this process can be seen in Figure 2.10.

2.2.3 Neck

Designing a neck for the BladeAxe1 offering a level of control similar to that of a real guitar
fretboard proved more complicated than we expected, and we constructed several prototypes before
finding a satisfactory solution.

Guitar Neck Taxonomy

On a real guitar, the neck enables changing the length of the strings in order to modify the frequencies
of their fundamental modes of vibration—in other words, their pitch. For that, the guitarist can
press the strings against different frets, shifting the position of “the nut termination” of the string.

A standard guitar neck contains twenty-four frets placed one semitone apart from each other
covering two octaves on each string. Frets are not equidistant, but rather get closer as we go up

10Advanced Linux Sound Architecture
11Open Sound Control

CHAPTER 2. GENESIS 49

V
a
ri

ou
s

C
on

tr
o
ll
er

s:
 S

w
it
ch

es
 a

n
d
 P

ot
s

T
o
u
ch

 S
en

so
rs

 f
or

H

ar
m

o
n
ic

s
(x

84
)

D
ig

it
al

 M
u
lt
ip

le
x
er

s

A
rd

u
in

o
D

u
e

P
re

ss
u
re

 S
en

so
r

B
u
tt

o
n
s

V
o
lt
ag

e
D

iv
id

er

S
tr

in
g

P
it
ch

 C
o
n
tr

ol
 (

x
6)

1
 A

n
al

o
g

S
ig

n
al

6
 A

n
al

og
 S

ig
n
al

s

N
ec

k

B
o
tt

o
m

 T
o
u
ch

 S
en

so
rs

T
op

 T
ou

ch
 S

en
so

rs

P
ie

zo
D

C
 B

lo
ck

P
re

am
p
s

L
o
w

p
as

s

P
ol

y
ca

rb
o
n
at

e
P

lu
ck

er
(x

6)

U
S
B

 H
u
b

M
u
lt
ic

h
an

n
el

 A
D

C

6
 A

n
al

og
 A

u
d
io

 C
h
an

n
el

s

L
ow

p
as

s
(1

0K
H

z)
N

oi
se

 G
at

e
P

ic
k
 P

os
it
io

n
 F

il
te

r
(F

ee
d
 F

or
w

ar
d
 C

om
b
)

E
x
te

n
d
ed

K
ar

p
lu

s
S
tr

o
n
g

E
ff
ec

ts
O

u
tp

u
t

6
S
ig

n
al

s
fr

om
P

ie
zo

 P
re

a
m

p
s

P
lu

ck
 P

o
si

ti
o
n

(U
p
p
er

 o
r

D
ow

n
 S

id
e)

N
ec

k
 a

n
d
 D

am
p
in

g
C

o
n
tr

o
l

O
th

er
P

a
ra

m
s

V
ir

tu
a
l
G

u
it
ar

 S
tr

in
gs

 (
x
6
)

O
S
C

 S
er

ia
l

U
S
B

F
au

st
 P

h
y
si

ca
l
M

o
d
el

 R
u
n
n
in

g
 o

n
 a

 L
ap

to
p

O
S
C

 S
er

ia
l
&

 A
u
d
io

 T
h
ro

u
gh

 U
S
B

Figure 2.10: Overview of the Different Components of the BladeAxe1.

CHAPTER 2. GENESIS 50

the neck. This feature has two important consequences on the technique used by a guitarist. First,
one has to remember intuitively that frets are not equally spaced. But more importantly, it is much
easier to play chords near the bottom of the neck where the fret-spacing is larger.

These are the main parameters that we tried to take into account to design the BladeAxe1

neck. More information on the physics and design of guitar necks can be found in [59].

Guitar Neck Features

Let’s try to establish a non-exhaustive list of the general features offered by a standard guitar neck:

• In the absence of bending, the pitch of each string is changed by semitones.

• The pitch of a string can be bent up by two semitones or more by sliding the string along a
fret with the finger stopping the string. This technique can be used also to add vibrato.

• The amount of pressure applied to a string by a finger enables the player to switch between two
modes of vibration: if the string is just touched but not pressed against a fret, the fundamental
will be canceled and only the harmonics will be heard. If the string is pressed against the fret,
the termination of the string becomes stiffer and the fundamental can be heard.

While designing our different neck prototypes, we tried to find the best solutions to implement
these features. Dozens of technologies usable to create a controller that would meet our needs and
expectations to design a good guitar virtual neck are available on the market. Their quality and
price can vary a lot. Our goal was to build a precise controller that would provide sensations close
to those offered by a traditional guitar neck and keep it cost effective.

Ideally, a guitar neck based on a technology similar to the one of the LinnStrument (see §1.1.2)
would have been excellent. Unfortunately, this system greatly exceeds our budget, due in part to
the fact that a customized version of it would be required.

Soft Pot Based Prototype

Our first prototype (see Figure 2.11) was inspired by the technique used in the GXtar [91], where a
soft pot is used to detect the position of the finger on the neck. The main advantage of using soft
pots is that they provide a continuous control. Unfortunately, they are not precise enough to create
a good vibrato. They also present many other handicaps:

• Large soft pots (500mm) can sometime have unpredictable behaviors which makes them almost
impossible to use in a concert context.

• Commercial large soft pots are too wide to be placed in parallel to make a six-string virtual
guitar neck and “handmade” soft pots are hard to make.

• Commercial large soft pots are relatively expensive sensors (about $30 per unit).

CHAPTER 2. GENESIS 51

Figure 2.11: First Neck Prototype for the BladeAxe1 Based on a Soft Pot.

Simple Buttons Based Prototypes

Most commercial guitar MIDI controllers have button based necks (see §1.1.4). Buttons have many
advantages: they are very cheap, reliable and they provide haptic feedback to the performer when
they are engaged which is a very important feature. Indeed, we found out that it is very hard
to know if the pitch of the string is changed properly without getting a physical feedback which
discouraged us from building a neck based on capacitive touch sensors.

We considered using pressure sensitive buttons (that are much more expensive than discrete
buttons) but we realized that these wouldn’t improve the control a lot. Yet, we wanted the performer
to be able to bend the pitch of the strings and add vibrato. Therefore, we added a pressure sensor
placed between two silicon sheets at the bottom of the neck (see Figure 2.15) to detect the amount
of force applied by the player to the buttons when pressing them.

The pressure sensor can also be used to control other parameters like an audio effect or to add
artificial vibrato to the strings (in this case, we control the amplitude of the vibrato by pushing
harder on the neck).

Our button system is based on six parallel rows of fourteen push buttons. We decided that
fourteen semitones per strings (7/6 octave) were enough to play a big part of the electric guitar
repertoire. Unlike on a real neck, buttons are equally spaced. Indeed this enabled us to greatly
simplify the design (we didn’t have to use a custom PCB) and we thought that guitar players should
be able to adapt to a “linear” neck. Moreover, most commercial MIDI guitars have equally spaced
buttons.

On the electronic side, each row of buttons representing a string acts as a voltage divider. Each
button outputs a different voltage that is measured on one of the analog inputs of the Arduino (see
Figure 2.10). Priority is given to the lowest buttons in order to enable the player to do “hammer-ons”

CHAPTER 2. GENESIS 52

or to play bar-chords.
We spent a lot of time trying different kinds of buttons. Our first design was based on a silicon

sheet that we placed over the electronic push buttons (see Figure 2.12 for the silicon buttons and
Figure 2.14 for the electronic buttons board). The texture of silicon was very nice because it felt a
little bit like skin. However, this solution presented many drawbacks. For example pushing very hard
on a button could sometimes trigger neighboring buttons because of mechanical coupling. Another
big issue with this design was that it was very hard to do slides. Finally, our silicon buttons were a
little bit too sensitive and it was hard in the case of some chords to know if a finger was touching
the string or not.

Figure 2.12: BladeAxe1 Neck Based on Silicon Buttons.

Despite the fact that we really liked the idea of having silicon buttons, we decided to adopt a
more robust and durable solution based on laser-cut acrylic buttons. These worked in a way similar
to the silicon one by placing them above the electronic push-buttons board in order to reuse it (see
Figure 2.13). While these acrylic buttons worked much better it was still relatively hard to slide
between them because of their square shape. We also found that it was difficult to distinguish them
because they all had the same color. This is what led us to the final version of the BladeAxe neck.

Final Version

The final version of the BladeAxe1 neck is very similar to the one described in the last paragraph
of the previous section. Buttons have a round shape in order to allow players to slide their fingers
along “virtual strings”. Each fret has a different color to easily distinguish it. Of course, the pressure
sensor is still present at the bottom of the neck and can be used to add more expressivity to the
play.

Very thin capacitive touch sensors were added at the top of each button in order to detect if the

CHAPTER 2. GENESIS 53

Figure 2.13: First Version of the BladeAxe1 Laser Cut Acrylic Buttons.

performer is touching the button without pressing it. In this case, the physical model switches to a
“harmonic mode”, just like on a “real” guitar when a string is touched but not pushed against a fret.

This final version of the neck uses seven analog inputs on the Arduino Due: six for the strings
and one for the pressure sensor.

Figure 2.14: Laser Cut Acrylic Buttons as They Appear in the Final Version of the BladeAxe1
Neck.

2.3 The BladeAxe2: Augmenting the iPad

While the BladeAxe1 presented in §2.2 was perfectly usable, we were not fully satisfied with
it. First, we didn’t like the fact that it had to be connected to a laptop through a six audio
channels interface in order to work, impacting its overall coherence (see §1.1) and “standaloneness.”

CHAPTER 2. GENESIS 54

Figure 2.15: Top View of the BladeAxe1.

Additionally, even though our latest neck design (§2.2.3) was quite playable, it didn’t compete with
a traditional guitar neck.

In this section, we present the BladeAxe2 where these problems were partially solved by using
an iPad both as a controller and to implement the virtual part of the instrument. After presenting
an intermediate version of the BladeAxe, we’ll describe our final design. We will also introduce a
similar instrument: the PlateAxe.

This section is based on a paper12 that we published at NIME-1613 on Augmenting the iPad: the
BladeAxe [127].

2.3.1 Towards the BladeAxe2

On our way to the BladeAxe2, we made an intermediate version using the iPad and borrowing a
lot of elements to the BladeAxe1. This instrument is presented in this subsection.

As we wanted to keep the same plucking system as the BladeAxe1, we used the iPad as the neck
of the guitar (see Figure 2.16). This implied major design modifications and also a totally different
approach to the way this instrument was controlled. Indeed, while the various necks presented in
§2.2 prioritized guitar playing skill transfer, this new version of the BladeAxe cannot be controlled
in the same way as a traditional guitar because of the shape of the touchscreen. We also mounted an
acrylic plate with laser engraved textures to the front face of the BladeAxe, with its own attached
piezo disc, allowing the performer to drive the virtual strings through a variety of interactions.
Each texture creates a different sound excitation and implies a specific gesture: rubbing, scratching,

12Some sections and figures of this paper were copied verbatim here.
13http://nime2016.org/

http://nime2016.org/

CHAPTER 2. GENESIS 55

tapping, etc. (see Figure 2.19).
We wanted this instrument to be fully standalone and self-powered. Running the guitar physical

model on the iPad forced us to do a series of optimizations detailed in the next section.
The most technically challenging problem that we had to solve with this instrument was to

find a way to send the seven independent audio channels of the plucking system (the six blades
plus the textured plate) to the iPad. We could have used a custom ADC just like we did for the
BladeAxe1, but this would have required the use of an external power supply such as a battery,
greatly complicating the design of the instrument. Thus, in order to use the built-in stereo ADC of
the iPad, we had to find a way to differentiate the six blades; we used the capacitive touch sensors
of the plucking system (see §2.2.1) to detect which blade was plucked to route the excitation to the
corresponding virtual string (see Figure 2.17). While this system worked fine if the performer was
playing slow, it was hard to control in the frame of a piece involving fast playing.

Another challenge was to find a way to connect the Arduino retrieving the touch sensing data
from the plucking system to the iPad. Indeed, iOS devices let other devices connect to them only if
they are approved by Apple. There are a couple of exceptions to that including MIDI controllers. We
used Dimitri Diakopoulos’ work [51] as a basis to replace the serial USB driver of the Arduino with
a MIDI USB driver making it usable with the iPad. Indeed, while a series of microcontrollers such
as the Teensy14 (see §5.2) now provide built-in MIDI support, they didn’t exist when this version
of the BladeAxe was built. A proximity sensor was also embedded in the body of the BladeAxe

(see Figure 2.16) to control some of the effects applied to the model such as a wah pedal.

Microcontrollers iPadProximity Sensor

Plucking SystemTapping Surface
Figure 2.16: Intermediate Version of the BladeAxe2 Using an iPad.

14https://www.pjrc.com/teensy/

https://www.pjrc.com/teensy/

CHAPTER 2. GENESIS 56

Piezos

Arduino + Electronics

Copper Tape for CapacitiveTouch Sensing
Figure 2.17: Plucking System of the Intermediate Version of the BladeAxe2 Presented in Fig-
ure 2.16.

2.3.2 Final Version

The final version of the BladeAxe2 can be seen as a simplified version of the instrument presented
in the previous section. The way the performer interacts with it was totally rethought and the
number of blades was reduced from six to two (see Figure 2.18) allowing us to use a simple USB
stereo ADC/DAC. We didn’t use the built-in ADC/DAC of the iPad since it only has a mono input.
The redesigned tapping/scratching surface hides the ADC/DAC. A switch mounted on the front face
of the instrument makes it possible to route the signal from the two blades of the plucking system
or from the tapping surface to any of the two input channels of the ADC. The USB ADC/DAC is
directly connected to the iPad through the lightning connector since there is no microcontroller in
this version of the BladeAxe2. The chestnut wood body of the instrument was CNC machined
and laser engraved (see Figure 2.18). The built-in iPad sleeve is mounted on a rotating axis in order
for the performer to be able to adjust its inclination. It is fully powered by an iPad Air 2 and can
be used for more than eight hours without charging the battery. The DAC’s single stereo 1/4” jack
output with adjusted impedance makes it compatible with any guitar amp, pedal, etc.

Several pieces specifically composed for this instrument can be listened to on the BladeAxe

webpage15.

15https://ccrma.stanford.edu/~rmichon/bladeaxe/

https://ccrma.stanford.edu/~rmichon/bladeaxe/

CHAPTER 2. GENESIS 57

iPadRotation Axis
Plucking System (2 “Blades”)

Tapping SurfaceADC Input Switch
Figure 2.18: Final Version of the BladeAxe2.

Figure 2.19: Textured Plate of the BladeAxe2.

CHAPTER 2. GENESIS 58

2.3.3 Control

While the overall shape of the final BladeAxe2 is quite similar to its previous version presented in
§2.3.1, the way it is controlled/performed is very different, mainly because of two versus six blades.
Indeed, since we were using an iPad as the neck to control parameters such as the pitch of the strings,
we thought that the paradigm where strings can be driven independently from the plucking system
became obsolete. Instead, the performer is now able to drive any string with a single blade. Pitch is
controlled using a chromatic keyboard interface on the screen of the iPad (see Figure 2.20). If one
key is pressed, only one virtual string is used. If several keys are touched, several virtual strings are
allocated and the excitation from the single blade is routed to these strings.

The BladeAxe2 guitar physical model gives access to a pool of ten virtual strings. When the
performer presses a key on the screen of the iPad, an available string is allocated and its input is
activated. If a glissando is performed or if the performer plays an interval smaller than a major
third, the same string is used, otherwise, a new string is selected. If several keys are pressed at the
same time, then the excitation from the blade is sent to all the activated strings.

The chromatic keyboard of the BladeAxe2 covers four octaves and is arranged as “an S” (see
Figure 2.20) to facilitate slides across several octaves. Thus the lowest key is the one on the top
right corner of the interface and the highest one is in the bottom right corner. While this keyboard
allows vibrato and sliding between keys, it also “rounds” the pitch of a note when the finger of the
performer is not moving (see §3.3.4). This is very important to make sure that the instrument is
not out of tune. The different keys of the keyboard can be highlighted and locked in a specific scale
by using the scale selector at the bottom right area of the screen.

The second blade can be used to strum a set of six virtual strings. When an excitation is created,
it is progressively sent to the strings with different short delays corresponding to the amount time
it would take for the exciter (finger, pick, etc.) to go from one string to another. The duration
of this “inter-string-delay” is calculated according to the excitation’s Random Mean Square (RMS)
amplitude: the louder the excitation, the faster the strum. Chords can be selected on a table located
at the bottom of the interface (see Figure 2.20) by choosing their root and their type.

Some parameters related to the expressivity of the physical model such as the decay time (T60),
brightness, detuning, and material of the strings can be controlled using the “movable dots” located
on the right side of the screen. A button located on the bottom of the screen can be used to
damp the strings. Finally, each parameter of the physical model can be accessed independently in a
parameters menu that can also be used to save presets. More details about the different parameters
of the physical models of the BladeAxe2 are given in the next section.

Many of the features of the BladeAxe2 iPad interface inspired the SmartKeyboard system
presented in §3.3.

CHAPTER 2. GENESIS 59

Polyphonic 4Octaves Keyboard
Continuous ParameterControllers
Scale Selector
Chord Table

Figure 2.20: User Interface of the iPad App of the BladeAxe2.

2.3.4 Physical Model

The electric guitar physical model of the BladeAxe2 is similar to the one of the BladeAxe1

described in §2.2.2 and is fully implemented in Faust. It contains a set of ten virtual strings that
can be controlled from the iOS layer. They are connected to a series of effects that are directly taken
from the Faust libraries (guitar amp simulator, flanger, phaser, chorus, echo, reverb, distortion,
wah pedal, etc.). The virtual strings can be both excited with a signal coming from the plucking
system of the BladeAxe2 and with a synthesized excitation. The signal coming from the plucking
system is lowpass filtered in function of the pitch of the string (lower notes require a lower cutoff
frequency than higher notes). Each string waveguide implements a set of two coupled strings using
two parallel delay lines [176]. Their length can be offset to create harmonics. The amount of offset
can be controlled dynamically from the GUI by using the dots interface (see §2.3.3). The length
of the delay lines can also be modulated by a sine oscillator to create very expressive effects. The
frequency of the modulation and its amplitude can be controlled from the dots interface as well.

The pitch of the virtual strings can be changed using a “slide mode” or a “discontinuous mode”.
In slide mode, the frequency values are interpolated to create a smooth continuous change. The
discontinuous mode can be used to abruptly change the pitch of a string without creating a click.
To do that, two parallel delay lines are used. When the pitch of a string is changed, the length of
the second delay line is altered and a fast crossfade is carried out to switch from the first delay line
to the second one creating a very natural transition.

CHAPTER 2. GENESIS 60

The model and its associated effects were compiled as a C++ code using the vectorization option
of the Faust compiler. This is very important as this allows us to run all these elements in real-time
by utilizing the iPad Air 2’s multi-core processor.

Plucking SystemPolycarbonate Plate 1 Piezo FilmPolycarbonate Plate 2 Piezo FilmTapping Surface
SwitchChannel 1Channel 2Channel 3 ADC

BladeAxe

Virtual StringsEffects Chain

DAC

Chromatic Keyboard Chord Selector Dots Interface Parameters Menu
String Selector &Parameters FormatingUser Interface Delay DurationEstimationDelay Lines

Channel 1 & 2
USBSolo Strumming StrummingUSBiPad Audio Out

Figure 2.21: Overview of the Implementation of the BladeAxe2.

2.3.5 The PlateAxe

For our most recent instrument, we wanted to create an interface compatible with the iPad app of the
BladeAxe2 but having a different form factor. Thus the PlateAxe is intended to be a percussion
instrument providing the same kind of laser engraved tapping surfaces as the BladeAxe2 and a
small plucking interface where a circular polycarbonate disc with variable diameter can be used to
generate the sound (see Figure 2.22). A series of switches and knobs can be used to route the signals
of these elements to the different input channels of the BladeAxe2 app. Thanks to its non-uniform
diameter, the polycarbonate disc creates excitations with different spectra depending on where it is
plucked.

CHAPTER 2. GENESIS 61

Tapping Surfaces

Switches/Gain Control

Plucking System
Figure 2.22: The PlateAxe.

2.3.6 Discussion

Our first approach (see §2.2) consisted of creating an interface as close as possible from the one
provided by the original instrument. While we think that we partially achieved this goal with “the
right hand” and the plucking system, we struggled more with the neck. Finding a design offering the
same kind of interactions and sensations as an actual guitar neck prove to be hard. Also, by getting
too close to the original instrument, we realized that we lost part of its novelty and that it would
never be as good as its purely acoustical counterpart. With the iPad version of the BladeAxe, we
think that we found a good compromise between expressivity, skill transfer and novelty.

The ability to control several virtual strings with a single blade made this instrument very
intuitive to play. We believe that we could even remove the strumming blade and transfer its
functionality to the touchscreen interface, allowing us to strum and play independent notes with the
same blade.

While the textured plate (see Figure 2.19) significantly increases the expressive potential of the
BladeAxe, we think that it could be improved by expanding the diversity of sounds it can produce,
perhaps via 3D printing. Indeed, although the current textures all sound different, their spectral
content are nonetheless very similar. Varying the shape and the thickness of the plate could help
solve this issue.

CHAPTER 2. GENESIS 62

The iPad provides a level of stability and robustness competing with professional keyboard
synthesizers. After dozens of performances, the BladeAxe never crashed or ran out of power.
Even though the combined latency of the touchscreen and the DAC is about 35 ms (this value is
relatively constant), we find it not to be an issue especially after some practice.

Finally, one of the main limitations of using the iPad is sweat! Indeed, it often happens during
a frenzied performance that the fingers of the performer get clammy or even worse, that a drop of
sweat ends up on the touchscreen preventing it from working properly.

Chapter 3

MobileFaust: Facilitating Musical

Apps Design and Skill Transfer

“Digital lutherie is in many respects very similar to music creation. It involves a great
deal of different know-how and many technical and technological issues. At the same
time, like in music, there are no inviolable laws. That is to say that digital lutherie
should not be considered as a science nor an engineering technology, but as a sort of
craftsmanship that sometimes may produce a work of art, no less than music.” (Sergi
Jordà [84])

With that in mind, making musical apps for mobile devices involves the use and mastery of
various technologies, standards, programming languages, and techniques ranging from low level
C++ programming for real-time DSP to advanced interface design. This adds up to the variety of
the platforms (e.g., iOS, Android, etc.) and of their associated tools (e.g., Xcode, Android Studio,
etc.), standards, and languages (e.g., JAVA, C++, Objective-C, etc.).

While there exists a few tools to facilitate the design of musical apps such as libpd, [28] Mobile
CSOUND, [97] and more recently JUCE1 and SuperPowered,2 none of them provide a comprehensive
cross-platform environment for musical touchscreen interface design, high level DSP programming,
turnkey instrument physical model prototyping, built-in sensors handling and mapping, MIDI and
OSC compatibility, etc.

In this chapter, we introduce a series of tools around the Faust programming language facilitating
the creation of musical apps. The use of musical instrument physical models in this context and
in that of “hybrid mobile instruments” (see §6) is emphasized. Similarly, allowing for the design
of interfaces implementing skill transfer from existing musical instruments is one of our main focus

1https://www.juce.com/
2http://superpowered.com/

63

https://www.juce.com/
http://superpowered.com/

CHAPTER 3. MOBILEFAUST 64

here.
Some context around Faust and mobile development is given in the first section by presenting

two early command line tools to convert Faust code into fully working Android and iOS applica-
tions: faust2android and faust2ios. The user interface of apps generated using this system
corresponds to the standard UI specifications provided in the Faust code and is made out of sliders,
buttons, groups, etc. Next, faust2api, a tool to generate audio engines with Faust featuring
polyphony, built-in sensors mapping, MIDI and OSC support, etc. for a wide range of platforms
including Android and iOS is presented. Finally, faust2smartkeyb, an environment based on
faust2api allowing for the design of advanced musical apps focused on skills transfer for Android
and iOS is introduced. Various examples of apps leveraging different sets of existing skills are pre-
sented. All of them are based on physical models from the Faust Physical Modeling Library (see
§6.2) and compatible with some of the augmentations described in §4 and §5.

3.1 Early Tools: faust2android and faust2ios

faust2api (see §3.2) and faust2smartkeyb (see §3.3) constitute the core of our framework to
facilitate the development of musical mobile apps for live performance. Both of them were inspired
by earlier systems used to make mobile apps with Faust: faust2ios and faust2android. This
section gives of an overview of their features and implementation and demonstrates how they led to
our current system.

3.1.1 First Faust App Generator: faust2ios

Pushed by the interest around mobile music in the early 2010s (see §1.3), developers at GRAME
worked on a tool to convert Faust programs into ready-to-use iOS applications: faust2ios. As
for any other Faust “architecture,” the user interface of such apps is based on the UI description
provided in the Faust code, and is thus typically made out of sliders, knobs, buttons, groups, etc.

Figure 3.1 presents the screenshot of sfCapture,3 an app made with faust2ios as part of the
SmartFaust project4 (see §1.3.2).

3.1.2 Android and Real Time Signal Processing in the Early 2010s

At the time when faust2ios was implemented, Android had been left behind, mostly because of
audio latency issues and the complexity of the architecture of apps involving real-time DSP on this
platform (see §3.1.3). Google started addressing these problems in 2013 when Jelly Bean 4.25 was re-
leased. This convinced us to implement an equivalent of faust2ios on Android: faust2android

3https://itunes.apple.com/us/app/sfcapture/id799532659?mt=8
4http://www.grame.fr/prod/smartfaust/
5http://developer.android.com/about/versions/jelly-bean.html

https://itunes.apple.com/us/app/sfcapture/id799532659?mt=8
http://www.grame.fr/prod/smartfaust/
http://developer.android.com/about/versions/jelly-bean.html

CHAPTER 3. MOBILEFAUST 65

Figure 3.1: Screen-shot of sfCapture, an App Made with faust2ios.

[118]. 6

This tool is still functional and part of the Faust distribution. While its current version was
partly rewritten to be based on faust2api (see §3.1.7), the following sections present its old
implementation that was made “from scratch” in order to illustrate the evolution of this type of
early system towards faust2smartkeyb (see §3.3).

Audio Latency

Until recently, Android had always been infamous in the audio developer community for its very high
latency for audio playback and recording (larger than 300ms). However, with the release of Jelly
Bean 4.2, Google made a step toward latency reduction. Victor Lazzarini reported in a post from
December 20127 that he was able to achieve a “round-trip latency” of 100ms and a “touch-to-sound
latency” of 120ms. We obtained similar results at the time with faust2android on a Nexus 7
(105ms for the “round-trip latency” and 130ms for the “touch-to-sound latency”). In both cases,
these performances greatly surpassed the one of the previous versions of Android. These figures are
completely obsolete nowadays as this is shown in §3.2.3.

6Some sections and figures of this paper were copied verbatim here.
7http://audioprograming.wordpress.com/category/android/

http://audioprograming.wordpress.com/category/android/

CHAPTER 3. MOBILEFAUST 66

C or JAVA?

Android applications are mainly programmed in JAVA and the Android SDK provides an API for
real-time audio recording and playback. Thus, signal processing classes can be directly implemented
in JAVA which greatly simplifies the overall architecture of the app. Moreover, Faust2 can generate
JAVA code instead of C++.

Several tests where various Faust generated JAVA snippets code were “manually” embedded in
an Android app were carried out at the time on both a Samsung Galaxy S2 and a Google Nexus 7.
While results varied greatly between the two devices (for example, we were not able to record and
playback audio simultaneously in real-time on the Galaxy S2), they were very deceiving because of
the instability of the process and the audio latency that was greater than 200ms.

In his post from March 2012, Victor Lazzarini describes a technique to do Android audio
streaming with OpenSL ES8 and Android’s Native Development Toolkit (NDK).9 After several
tests, this technique proved to be far more stable than the “full JAVA” one and was used to build
faust2android.

3.1.3 Real-time Audio With faust2android

As mentioned in the previous section, the Android NDK makes possible the use of functions written
in C or C++ in a JAVA app by wrapping them as a shared library using SWIG10 that creates the
elements to interface these two programming languages.

In an app generated by faust2android, the different tasks are shared between C++ and JAVA
as presented in Table 3.1.

JAVA C++
- Android application - DSP (process one audio frame)
- dynamic user interface - information about the DSP parameters
- send the values of the different DSP and the user interface
parameters at every audio frame - audio resources management

Table 3.1: Building Blocks of a faust2android App.

Accessing and managing audio resources was carried out using Victor Lazzarini’s simple but
very useful API that makes available OpenSL ES on Android for real-time audio recording and
playback. As a result, Android apps generated by faust2android operate audio streaming and
signal processing natively which is far more efficient than if these tasks were done directly in JAVA.

8http://www.khronos.org/opensles/
9http://http://developer.android.com/tools/sdk/ndk/

10Simplified Wrapper and Interface Generator: http://www.swig.org/

http://www.khronos.org/opensles/
http://http://developer.android.com/tools/sdk/ndk/
http://www.swig.org/

CHAPTER 3. MOBILEFAUST 67

3.1.4 Generating Code

Unlike other Faust architectures, faust2android can’t generate a single file containing all the
elements needed by the C compiler to create an object. Indeed, as mentioned before, the generated
apps are based on JAVA, C++, etc. files which doesn’t make the task easier.

faust2android uses a simple bash script to carry out the different tasks that will turn a Faust

program into an Android application. It first calls the Faust compiler that generates C++ code.
This code is then embedded into an architecture file that interfaces it with a template Android app
whose content is dynamically changed according to the user interface specifications contained in the
C++ code produced by Faust.

Finally, the Android cross compiler is called by the script to generate the binary file of the
app. A simple option allows the user to load the app on the default Android device connected to
the computer that execute the script. Another option creates an Android Studio11 project in the
current directory if the user wishes to “manually” modify the content of the app.

An overview of the first version of the implementation of faust2android is given in Figure 3.2.

UI XMLJAVA AppC DSP Functions
Template App Faust CompilerC DSP File

SWIG C Compiler
opensl_io.c

Android App Source Files Android App
JAVA Compiler

UI XML JAVA App JAVA API to Call the Functionsof the Shared Library Shared LibraryAndroid App Source Files

Faust File
faust2android (Bash Script)

Figure 3.2: faust2android Overview.

11https://developer.android.com/studio/

https://developer.android.com/studio/

CHAPTER 3. MOBILEFAUST 68

3.1.5 Simple User Interface

Although the diversity of the standard user interface widgets provided with the Android SDK is
rather limited, it is currently used to build the different parameter controllers of an app generated
by faust2android. All the standard Faust UI elements are available: horizontal and vertical
groups, horizontal and vertical sliders, numerical entries, knobs, checkboxes, buttons, drop-down
menus, radio buttons, bargraphs, etc. Some examples are shown in Figure 3.3.

Figure 3.3: Example of Interface Generated by faust2android Containing Groups, Sliders, Knobs
and Checkboxes.

3.1.6 Using Built-In Sensors

The accelerometer can be used to control some elements of the user interface. Assignments are made
in the “Accelerometer Parameters” panel that can be opened by holding the label of a parameter for
more than one second (see Figure 3.4).

From here, the mapping of an accelerometer to a parameter can be configured precisely to create
complex linear and non-linear behaviors. For instance, the user can choose which axis will control
the parameter (x, y, or z), its motion orientation, and sensitivity. All these parameters can be
configured from the Faust code using metadata as well (see [119] for more details on this).

CHAPTER 3. MOBILEFAUST 69

Raw data from the accelerometers are passed directly to the Faust audio process. Filtering can
be carried out in Faust which is better suited for that kind of task than JAVA.

Finally, the accelerometer parameters window is only accessible if the app is unlocked by touching
the “lock” icon on the top right corner of the screen (see Figure 3.3). Apps can be locked to prevent
users from opening a configuration window or rotating the screen during a performance.

Figure 3.4: Accelerometer Configuration Panel of an Application Generated by faust2android.

3.1.7 Keyboard and Multitouch Interface

In 2015, a new version of faust2android leveraging some of the functionalities of faust2api
(see §3.2) was released [129].12 It introduced a series of new features that are presented in the
following sections.

Standard Faust UI elements are not particularly well adapted to live performance on a touch-
screen. Thus, faust2android allows for the assignment of more interactive interfaces to the Faust

process. Note that this topic is further investigated in §3.4 and that more advanced solutions to this
problem are available in faust2smartkeyb (see §3.3).

Three different metadata items can be added to the top-level group of a Faust program to make
it more controllable. The [style:keyboard] metadata item specifies that the freq, gain, and
gate parameters in the Faust code should be assigned to a piano keyboard that can be opened by
touching the “keyboard icon” in the top right corner of the app. Also, these three parameters will
be automatically removed from the main interface for controlling the other parameters.

The following example program illustrates a simple usage:

import("stdfaust.lib");

s = button("gate");

g = hslider("gain",0.1,0,1,0.001);

f = hslider("freq",100,20,10000,1);

12Multiple sections and figures of this paper were copied verbatim here.

CHAPTER 3. MOBILEFAUST 70

process = vgroup("[style:keyboard]",s*g*os.sawtooth(f));

This interface uses the polyphonic capabilities of faust2api and allows up to eight voices of
polyphony. Touching a key on the keyboard determines the reference pitch of the note but sliding
the finger across the X axis of the screen allows the user to continuously control it. The Y axis
determines the gain of the note. If a MIDI keyboard is plugged into the Android device, it will be
able to control the keyboard interface (see §3.1.8).

The [style:multi] metadata item will create a simple interface in which parameters are
represented by moveable dots on the screen. Each dot can have two parameters assigned to it,
corresponding to X and Y screen coordinates. This interface can also be opened by touching the
keyboard icon on the top right corner of the screen. Parameters are linked to the interface via
[multi:x] metadata where x is the ID of the parameter in the interface. For example, the Faust

program

import("stdfaust.lib");

freq = hslider("freq[multi:0]",440,50,2000,0.1);

process = hgroup("[style:multi]",os.osc(freq));

creates an app in which the frequency parameter of a sine oscillator is controlled by the X axis of
the dot in the multitouch interface. Parameters that have the accelerometer assigned to them (see
§3.1.6) will continue to be driven by the accelerometer in the interface.

Finally, the [style:multikeyboard] metadata combines the keyboard and multitouch in-
terface into one (see Figure 3.5).

Figure 3.5: Example of a MultiKeyboard Interface in an faust2android application.

CHAPTER 3. MOBILEFAUST 71

3.1.8 OSC and MIDI Support

OSC support is enabled by default for all the parameters of applications generated by faust2android.
The OSC address of a parameter corresponds to the path to this parameter in the Faust code. For
example, the OSC address of the freq parameter of the Faust code

freq = hslider("freq",440,50,2000,0.1);

process = hgroup("Main",os.osc(freq));

will be /Main/freq.
Similarly, MIDI support is also enabled by default in apps generated by faust2android

through faust2api (more details about this are provided in §3.2.1).

3.1.9 Audio IO Configuration

Android applications generated with faust2android automatically choose the best sampling rate
and buffer size as a function of the device that is running them (for Nexus13 devices only). Indeed,
it was explained during the Google I/O 2013 conference on High Performance Audio14 that Android
phones and tablets achieve better audio latency performance if they run with a specific buffer size
and sampling rate (see Table 3.2). Users may override these default values in the settings menu of
the app.

Device Sampling Rate Buffer Size
Nexus S 44100 880
Galaxy Nexus 44100 144
Nexus 4 44100 240
Nexus 7 44100 512
Nexus 10 44100 256
Others 44100 512

Table 3.2: Preferred Buffer Sizes and Sampling Rates for Various Android Devices.

3.1.10 Easy App Generation

While it is relatively simple to use faust2android, it requires the programmer to have an impor-
tant number of dependencies installed (Android SDK and NDK, etc.). However, FaustLive [50]
and the Faust Online Compiler [122] make the process of turning Faust code into an Android
application very simple. Indeed, when the user chooses to compile a Faust program as an Android
app, a QR code pointing to the generated app package is displayed that can be scanned by the
device where the user want the app to be installed.

13http://www.google.com/nexus/
14http://youtu.be/d3kfEeMZ65c/

http://www.google.com/nexus/
http://youtu.be/d3kfEeMZ65c/

CHAPTER 3. MOBILEFAUST 72

faust2android has been for a wide range of musical productions and projects such as Smart-
Faust, GeekBagatelles, SmartLand, etc. (see §1.3.2).

3.2 Towards a Generic System: faust2api

faust2api is a tool to generate ready-to-use DSP engines using Faust for a wide range of plat-
forms. While available features might vary slightly from one architecture to another, they are the
same on Android and iOS:

• polyphony and MIDI support,

• audio effects chains,

• built-in sensors support,

• low latency audio,

• etc.

In this section, we first give an overview of how faust2api works. Then, technical details on
the implementation of this system are provided. Finally, we evaluate it and present future directions
for this project.

3.2.1 Overview

Basics

At its highest level, faust2api is a command line program taking a Faust source file as its main
argument and generating a package containing a series of files implementing the DSP engine. Various
flags can be used to customize the API. The only required flag is the target platform:

faust2api -ios myCode.dsp

will generate a DSP engine for iOS and

faust2api -android myCode.dsp

will generate a DSP engine for Android.
The content of each package is quite different between these two platforms (see §3.2.2), but the

format of the API itself remains very similar (see Table 3.3. The iOS DSP engines generated with
faust2api consist of a large C++ object (DspFaust) accessible through a separate header file.
This object can be conveniently instantiated and used in any C++ or Objective-C code in an app
project. A typical “life cycle” for a DspFaust object can be

CHAPTER 3. MOBILEFAUST 73

DspFaust *dspFaust = new DspFaust(SR,blockSize);

dspFaust->start();

dspFaust->stop();

delete dspFaust;

start() launches the computation of the audio blocks and stop() stops (pauses) the compu-
tation. These two methods can be repeated as many times as needed. The constructor allows the
programmer to specify the sampling rate and the block size, and is used to instantiate the audio
engine. While the configuration of the audio engine is very limited at the API level (only these two
parameters can be configured through it), lots of flexibility is given to the programmer within the
Faust code. For example, if the Faust object doesn’t have any input, then no audio input will be
instantiated in the audio engine, etc.

The value of the different parameters of a Faust object can be easily modified once the DspFaust
object is created and is running. For example, the freq parameter of the simple Faust code

f = nentry("freq",440,50,1000,0.01);

process = osc(f);

can be modified simply by calling

dspFaust->setParamValue("freq",440);

Faust user-interface elements (nentry here) are ignored by faust2api and simply used as
a way to declare parameters controllable in the API. API packages generated by faust2api also
contain a markdown documentation providing information on how to use the API as well as a list
of all the parameters controllable with setParamValue().

The structure of the DSP engine package is quite different for Android since it contains both
C++ and JAVA files (see §3.2.2). Otherwise, the same steps can be used to work with the DspFaust
object.

MIDI Support

MIDI support can be easily added to a DspFaust object simply by providing the -midi flag when
calling faust2api. MIDI support works the same way on Android and iOS: all MIDI devices
connected to the mobile device before the app is launched can control the Faust object, and any
new device connected while the app is running will also be able to control it.

Standard Faust MIDI meta-data [67] can be used to assign MIDI CCs to specific parameters.
For example, the freq parameter of the previous code could be controlled by MIDI CC 52 simply
by writing

f = nentry("freq[midi: ctrl 52]",440,50,1000,0.01);

CHAPTER 3. MOBILEFAUST 74

Polyphony

Faust objects can be conveniently turned into polyphonic synthesizers simply by specifying the
maximum number of voices of polyphony when calling faust2api using the -nvoices flag. In
practice, only active voices are allocated and computed, so this number is just used as a safeguard.

As used for many years by the various tools for making Faust synthesizers, such as faust2pd
, compatibility with the -nvoices option requires the freq, gain and gate parameters to be
defined. faust2api automatically takes care of converting MIDI note numbers to frequency values
in Hz for freq, MIDI velocity to linear amplitude-gain for gain, and note-on (1) and note-off (0)
for gate:

f = nentry("freq",440,50,1000,0.01);

g = nentry("gain",1,0,1,0.01);

t = button("gate"); process = osc(f)*g*t;

Here, t could be used to trigger an envelope generator, for example. In such a case, the voice would
stop being computed only after t is set to 0 and the tail-off amplitude becomes smaller than -60dB
(configurable using macros in the application code).

A wide range of methods is accessible to work with voices. A “typical” life cycle for a MIDI note
can be

long voiceAddress = dspFaust->keyOn(note,velocity);

dspFaust->setVoiceParamValue("param",voiceAddress,paramValue);

dspFaust->keyOff(note);

setVoiceParamValue() can be used to change the value of a parameter for a specific voice.
Alternatively, voices can be allocated without specifying a note number and a velocity:

long voiceAddress = dspFaust->newVoice();

dspFaust->setVoiceParamValue("param",voiceAddress,paramValue);

dspFaust->deleteVoice(voiceAddress);

For example, this can be very convenient to associate voices to specific fingers on a touch-screen (see
§3.3.3).

When MIDI support is enabled in faust2api, MIDI events will automatically interact with
voices. Thus, if a MIDI keyboard is connected to the mobile device, it will be able to control the
Faust object without additional configuration steps.

Adding Audio Effects

In most cases, effects don’t need to be re-implemented for each voice of polyphony and can be placed
at the end of the DSP chain. faust2api allows us to provide a Faust object implementing the
effects chain to be connected to the output of the polyphonic synthesizer. This can be done simply

CHAPTER 3. MOBILEFAUST 75

by giving the -effect flag followed by a Faust effects chain file name (e.g., effect.dsp) when
calling faust2api:

faust2api -android -nvoices 12 -effect effect.dsp synth.dsp

The parameters of the effect automatically become available in the DspFaust object and can
be controlled using the setParamValue() method.

Working With Sensors

The built-in accelerometer and gyroscope of a mobile device can be easily assigned to any of the
parameters of a Faust object using the acc or gyr meta-data:

g = nentry("gain[acc: 0 0 -10 0 10]",1,0,1,0.01);

Complex mappings can be implemented using this system. This feature is not documented here,
but more information about it is available in [119]. This reference also provides a series of tutorials
on how to use faust2api.

Basic Elements Parameters Control
DspFaust: Constructor getParamsCount: Get number of params
~DspFaust: Destructor setParamValue: Set param value
start: Start audio processing getParamValue: Get param value
stop: Stop audio processing getParamAddress: Get param address
isRunning: True if processing is on getParamMin: Get param min value
getJSONUI: Get UI JSON description getParamMax: Get param max value
getJSONMeta: Get Metadata JSON getParamInit: Get param init value

getParamTooltip: Get param description
Polyphony
keyOn: Start a new note Other Functions
keyOff: Stop a note propagateMidi: Propagate raw MIDI
newVoice: Start a new voice messages
deleteVoice: Delete a voice propagateAcc: Propagate raw accel data
allNotesOff: Terminate all active voices setAccConverter: Set accel mapping
setVoiceParamValue: Set param propagateGyr: Propagate raw gyro data
value for a specific voice setGyrConverter: Set gyro mapping
getVoiceParamValue: Get param getCPULoad: Get CPU load
value for a specific voice

Table 3.3: Overview of the API Functions.

3.2.2 Implementation

faust2api takes advantage of the modularity on the Faust architecture system to generate its
custom DSP engines [100]. For example, turning a monophonic Faust synthesizer into a polyphonic

CHAPTER 3. MOBILEFAUST 76

one can be done in a simple generic way. Both on Android and iOS, faust2api generates a large
C++ file implementing all the features used by the high level API. On iOS, this API is accessed
through a C++ header file that can be conveniently included in any C++ or Objective-C code.
On Android, a JAVA interface allows us to interact with the native (C++) block. The DSP C++
code is the same for all platforms (see Figure 3.6) and is wrapped into an object implementing the
polyphonic synthesizer followed by the effects chain (assuming that the -nvoices and -poly2

options were used during compilation).
In this section, we provide more information on the architecture of DSP engines generated by

faust2api for Android and iOS.

iOS

The global architecture of API packages generated by faust2api is relatively simple on iOS since
C++ code can be used directly in Objective-C (which is one of the two languages used to make iOS
applications along with Swift). The Faust synthesizer object gets automatically connected to the
audio engine implemented using CoreAudio. As explained in the previous section, the sampling rate
and the buffer length are defined by the programmer when the DspFaust object is created. The
number of instantiated inputs and outputs is determined by the Faust code. By default, the system
deactivates gain correction on the input but this can be changed using a macro in the including
source code.

MIDI support is implemented using RtMidi, [162] which is automatically added to the API if
the -midi option was used for compilation. Alternatively, programmers might choose to use the
propagateMidi() method to send raw MIDI events to the DspFaust object in case they would
like to implement their own MIDI receiver.

The same approach can be used for built-in sensors using the propagate[Acc/Gyr]() meth-
ods.

Android

Android applications are primarily written in JAVA. However, despite the fact that the Faust

compiler can generate JAVA code, it is not a good choice for real-time audio signal processing.
Thus, DSP packages generated by faust2api contain elements implemented both in JAVA and
C++.

The native portion of the package (C++) implements the DSP elements as well as the audio
engine (see Figure 3.6) which is based on OpenSL ES.15 The audio engine is configured to have the
same behavior as on iOS. Native elements are wrapped into a shared library accessible in JAVA
through a JAVA Native Interface (JNI) using the Android Native Development Kit (NDK).16

15https://www.khronos.org/opensles/
16https://developer.android.com/ndk/index.html

https://www.khronos.org/opensles/
https://developer.android.com/ndk/index.html

CHAPTER 3. MOBILEFAUST 77

MIDI receivers can only be created in JAVA on Android (and only since Android API 23), thus
MIDI support is implemented in the JAVA portion. Like on iOS, the propagateMidi() method
can be used to implement custom MIDI receivers.

While raw sensor data can be retrieved in C++ on Android, we decided to implement a system
similar to the one used for MIDI, where raw sensor data are pushed from the JAVA layer to the
native one.

Faust Code
faust2api

iOS Faust API

Audio In/Out
Audio Engine (CoreAudio)
Faust DSP(Synth) Faust DSP(Effect)PolyphonySynth Object

MIDI Support(RTMidi → CoreMIDI) Built-In SensorsControl
MIDI Support(AndroidMidi)

Android Faust APIBuilt-In SensorsControl
JNI Interface

Audio In/Out
Audio Engine (OpenSL ES)
Faust DSP(Synth) Faust DSP(Effect)PolyphonySynth ObjectC++(Native Library)

C++
JAVA

iOS API
Android API

Figure 3.6: Overview of DSP Engines Generated with faust2api.

3.2.3 Audio Latency

We measured the “touch-to-sound” and the “round-trip” audio latency of apps based on faust2api
for various devices using the techniques described by Google on their website.17 The “touch-to-
sound” latency is the time it takes to generate a sound after a touch event was registered on the
touchscreen of the device. The “round-trip” latency is the time it takes to process an analog signal

17https://source.android.com/devices/audio/latency_measurements.html

https://source.android.com/devices/audio/latency_measurements.html

CHAPTER 3. MOBILEFAUST 78

recorded by the built-in microphone or acquired by the line input.
Table 3.5 shows that a “reasonable” latency can only be achieved with the latest version of

Android, which confirms the measurements made by Google.18 Unfortunately, such performances
can only be attained on a few supported device, and configured with a specific sampling rate and
buffer length.

Device Touch to Sound Round Trip
iPhone6 30 ms 13 ms
iPhone5 36 ms 13 ms
iPodTouch 36 ms 13 ms
iPadPro 28 ms 12 ms
iPadAir2 35 ms 13 ms
iPad2 45 ms 15 ms

Table 3.4: Audio Latency for Different iOS Devices Using faust2api.

Device Touch to Sound Round Trip OS
HTC Nexus 9 29 ms 15 ms 7.0
Huawei Nexus 6p 31 ms 17 ms 7.0
Asus Nexus 7 37 ms 48 ms 7.0
Samsung Gal. S5 37 ms 48 ms 5.0

Table 3.5: Audio latency for different Android devices using faust2api.

3.2.4 Future Directions

We believe that faust2api has reached a mature and stable state. However, many elements can
be improved. First, while basic MIDI support is provided, we haven’t tested it with complex MIDI
interfaces such as the one using the Multidimensional Polyphonic Expression (MPE) standard like
the LinnStrument or the ROLI Seaboard (see §1.1.2).

Currently, specific parameters of the various elements of the API (such as audio engine, MIDI
behavior, etc.) can only be configured using source-code macros. We would like to provide a more
systematic and in some cases dynamic way of controlling them.

Finally, we plan to add more targets to faust2api for various kinds of platforms to help design
elements such as audio plug-ins, standalone applications, and embedded systems.

18https://source.android.com/devices/audio/latency_measurements.html#measurements

https://source.android.com/devices/audio/latency_measurements.html#measurements

CHAPTER 3. MOBILEFAUST 79

3.3 faust2smartkeyb

In §3.1.7, we showed that user interfaces better adapted to musical applications (e.g., piano key-
boards, x/y controllers, etc.) can replace the standard UI of a Faust object in apps generated
by faust2android. However, they are far from providing a generic solution to capture musi-
cal gestures on a touchscreen and to allow for musical skill transfer. In this section, we introduce
faust2smartkeyb,19 a tool to generate Android and iOS apps using Faust where an extended
number of musical interfaces and behaviors can be designed and implemented directly from Faust

code. First, we describe the implementation of the system. Next, we demonstrate how to use it
to implement a wide range of behaviors and mappings. Finally, §3.4 presents a series of examples
where physical models from the Faust Physical Modeling Library (see §6.2) are turned into stan-
dalone instruments using faust2smartkeyb and implement various types of instrumental skills.
faust2smartkeyb is used as the main tool in our framework to implement the software portion
of our hybrid mobile instruments (see §6).

3.3.1 Apps Generation and General Implementation

faust2smartkeyb works the same way as most Faust targets/“architectures” [67] and can be
called using the faust2smartkeyb command-line tool:

faust2smartkeyb [options] faustFile.dsp

where faustFile.dsp is a Faust file declaring a SmartKeyboard interface (see §3.3.2) and
[options] is a set of options allowing us to configure general parameters of the generated app (see
Table 3.6).

Option Description
-android Generate an Android app
-ios Generate an iOS app
-effect Specify a Faust effect file
-install Install the app on the device (Android only)
-nvoices Specify the number of polyphony voices of the DSP engine
-reuse Reuse an existing app project (only update what was changed)
-source Generate the source code of the app

Table 3.6: Selected faust2smartkeyb Options.

The only required option is the app type (-android or -ios). Unless specified otherwise (e.g.,
using the -source option), faust2smartkeyb will compile the app directly in the terminal and
upload it on any Android device connected to the computer if the -install option is provided.

19faust2smartkeyb is now part of the Faust distribution. Additional information and documentation about this
tool can be found on this webpage: https://ccrma.stanford.edu/~rmichon/smartKeyboard/.

https://ccrma.stanford.edu/~rmichon/smartKeyboard/

CHAPTER 3. MOBILEFAUST 80

If -source is used, an Xcode20 or an Android Studio21 project is generated, depending on the
selected app type.

faust2smartkeyb is based on faust2api (see §3.2) and takes advantage of most of the fea-
tures of this system. It provides polyphony, MIDI, and OSC support and allows SmartKeyboard

interfaces to interact with the DSP portion of the app at a very high level (see Figure 3.7).
faust2smartkeyb inherits some of faust2api’s options. For example, an external audio

effect Faust file can be specified using -effect. This is very useful to save computation when
implementing a polyphonic synthesizer (see §3.2). Similarly, -nvoices can be used to override the
default maximum number of polyphony voices (twelve) of the DSP engine generated by faust2api.

The DSP engine generated by faust2api is transferred to a template Xcode or Android Studio
project (see Figure 3.7) and contains the SmartKeyboard declaration (see §3.3.2). The interface
of the app, which is implemented in JAVA on Android and in Objective-C on iOS, is built from
this declaration. While OSC support is built-in in the DSP engine and works both on iOS and
Android, MIDI support is only available on iOS thanks to Rt-MIDI (see §3.2). On Android, raw
MIDI messages are retrieved in the JAVA portion of the app and “pushed” to the DSP engine. MIDI
is only supported since Android-23 so faust2smartkeyb apps wont have MIDI support on older
Android versions.

3.3.2 Architecture of a Simple faust2smartkeyb Program

The SmartKeyboard interface can be declared in a Faust file using the SmartKeyboard{}

metadata:

declare interface "SmartKeyboard{

// configuration keys

}";

It is based on the idea that a wide range of touchscreen musical interface can be implemented as
a set of keyboards with different key numbers (like a table with columns and cells, essentially). Var-
ious interfaces ranging from drum pads, isomorphic keyboards, (x, y) controllers, wind instruments
fingerings, etc. can be implemented using this paradigm. The position of fingers in the interface
can be continuously tracked and transmitted to the DSP engine both as high level parameters for-
matted by the system (e.g., frequency, note on/off, gain, etc.) or low level parameters (e.g., (x, y)
position, key and keyboard ID, etc.). These parameters are declared in the Faust code using default
parameter names (see Table 3.7 for a summary).

By default, the screen interface is a polyphonic chromatic keyboard with thirteen keys whose
lowest key is a C5 (MIDI note number 60). A set of key/value pairs can be used to override the
default look and behavior of the interface (see Table 3.8). Code Listing 3.1 presents the Faust

20https://developer.apple.com/xcode/
21https://developer.android.com/studio/

https://developer.apple.com/xcode/
https://developer.android.com/studio/

CHAPTER 3. MOBILEFAUST 81

S
m

ar
tK

ey
b
o
ar

d
C

o
n
fi
g
u
ra

ti
on

α

D
S
P

P
a
ra

m
et

er
sβ

F
au

st
 D

S
P

γ

F
au

st
 S

y
n
th

f
a
u
s
t
2
a
p
i

T
em

p
la

te
 X

co
d
e

|
A

n
d
ro

id
 S

tu
d
io

 P
ro

je
ct

D
S
P

 E
n
g
in

e
B

a
se

d
on

β
an

d
γ

f
a
u
s
t
2
s
m
a
r
t
k
e
y
b

F
au

st
 E

ff
ec

t

C
o
m

p
il
at

io
n

P
ar

am
et

er
s

S
m

ar
tK

ey
b
oa

rd
 U

I
B

as
ed

 o
n
 α

P
ro

ce
ss

in
g

T
ou

ch
 E

v
en

ts

N
ew

/
D

el
et

e
V

oi
ce

(g
a
t
e

an
d
 f
r
e
q
)

S
en

d
in

g
 b
e
n
d
,

k
e
y
b
o
a
r
d
,
an

d
 k
e
y

S
en

d
in

g
(u

n
)n

u
m

b
er

ed
x

an
d
 y

F
or

m
a
ti
n
g

S
y
n
th

 P
ar

am
s

J
A

V
A

on
 A

n
d
ro

id
 /

 O
b
je

ct
iv

e-
C

 o
n
 i
O

S

S
en

so
r

D
at

a

R
aw

 M
ID

I
R

a
w

 O
S
C

F
au

st
 D

S
P

 E
n
g
in

e
(G

en
er

a
te

d
 W

it
h
 f
a
u
s
t
2
a
p
i
)

W
it
h
 B

u
il
t-

In
 M

ID
I

an
d
 O

S
C

S
u
p
p
o
rt

o
n

iO
S

A
n
d
ro

id
 O

n
ly

A
u
d
io

 I
n

A
u
d
io

 O
u
t

X
co

d
e

|
A

n
d
ro

id
 S

tu
d
io

 A
p
p
 P

ro
je

ct

C
om

p
il
a
ti
on

A
p
p

M
o
b
il
e

D
ev

ic
e

Figure 3.7: Overview of faust2smartkeyb.

CHAPTER 3. MOBILEFAUST 82

Parameter Name Description
freq Base frequency (if any) of the current note
bend Deviation from freq as a ratio (1 = no deviation)

for continuous pitch control
gate Note on (1) / Note off (0), typically changes with freq
key Current key ID
keyboard Current keyboard ID
kbMfingers Number of fingers on a specific keyboard M
kbMkNstatus Status of the current key N in keyboard M
kbMkNx Normalized (0-1) x position of a finger in key N in keyboard M
kbMkNy Normalized (0-1) y position of a finger in key N in keyboard M
x Normalized (0-1) x position of the finger in any key
y Normalized (0-1) y position of the finger in any key
xN Normalized (0-1) x position of finger N in a key
yN Normalized (0-1) y position of finger N in a key

Table 3.7: SmartKeyboard Standard Parameters Overview.

code of a simple app where two identical keyboards can be used to control a simple synthesizer
based on a band-limited sawtooth wave oscillator and a simple exponential envelope generator.
Since MIDI support is enabled by default in apps generated by faust2smartkeyb and that the
SmartKeyboard standard parameters are the same as the one used for MIDI in Faust, this app
is also controllable by any MIDI keyboard connected to the device running it. A screen-shot of the
interface of the app generated from Code Listing 3.1 can be seen in Figure 3.8.

declare interface "SmartKeyboard{

’Number of Keyboards’:’2’

}";

import("stdfaust.lib");

f = nentry("freq",200,40,2000,0.01);

g = nentry("gain",1,0,1,0.01);

t = button("gate");

envelope = t*g : si.smoo;

process = os.sawtooth(f)*envelope <: _,_;

Listing 3.1: Simple SmartKeyboard Faust App.

3.3.3 Preparing a Faust Program for Continuous Pitch Control

In faust2smartkeyb programs, pitch is handled using the freq and bend standard parameters
(see Table 3.7). The behavior of the formatting of these parameters can be configured using some
of the keys presented in Table 3.8.

CHAPTER 3. MOBILEFAUST 83

Key Description
Inter-Keyboard Slide Enables slide between keyboards
Keyboard N - Key M - Label Specify text in a specific key and keyboard
Keyboard N - Lowest Key MIDI key number of the lowest key on a specific

keyboard
Keyboard N - Number of Keys Number of keys of a specific keyboard
Keyboard N - Orientation Orientation (left to right or right to left) of a

specific keyboard
Keyboard N - Piano Keyboard Activate piano keyboard mode (black keys)

on a specific keyboard
Keyboard N - Root Position Position of the root on a specific keyboard
Keyboard N - Scale Specify the scale of a specific keyboard
Keyboard N - Send Freq Send freq and bend from a specific keyboard
Keyboard N - Send Key X Activates the kbMkNx standard parameter
Keyboard N - Send Key Y Activates the kbMkNy standard parameter
Keyboard N - Send Key Status Activates the kbMkNstatus standard parameter
Keyboard N - Send Numbered X Activates the xN standard parameter
Keyboard N - Send Numbered Y Activates the xY standard parameter
Keyboard N - Send X Activates the x standard parameter
Keyboard N - Send Y Activates the y standard parameter
Keyboard N - Show Labels Show key labels on a specific keyboard
Keyboard N - Static Mode Fix key appearance on a specific keyboard
Number of Keyboards Number of keyboards in the interface
Max Fingers Maximum number of fingers allowed in the interface
Max Keyboard Polyphony Maximum keyboards polyphony voices
Mono Mode Mode when keyboards are monophonic
Rounding Cycles Number of cycles of pitch rounding
Rounding Mode Pitch rounding mode
Rounding Smooth Smoothness of pitch rounding
Rounding Threshold Pitch rounding threshold
Rounding Update Speed Pitch rounding update speed
Send Current Key Activates the key standard parameter
Send Current Keyboard Activates the keyboard standard parameter
Send Fingers Count Activates the kbMfingers standard parameter
Send Sensors Send sensor values

Table 3.8: faust2smartkeyb Keys Overview.

CHAPTER 3. MOBILEFAUST 84

Figure 3.8: Simple SmartKeyboard Interface.

freq gives the “reference frequency” of a note and is tied to the gate parameter. Every time
gate goes from 0 to 1 (which correlates with a new note event), the value of freq is updated.
freq always corresponds to an integer MIDI pitch number which implies that its value is always
quantized to the nearest semitone.

Pitch can be continuously updated by using the bend standard parameter. bend is a ratio that
should be multiplied to freq. E.g.:

f = nentry("freq",200,40,2000,0.01);

bend = nentry("bend",1,0,10,0.01) : si.polySmooth(t,0.999,1);

freq = f*bend;

The state of polyphonic voices is conserved in memory until the app is ended. Thus, the value of
bend might jump from one value to another when a new voice is activated. polySmooth() is used
here to smooth the value of bend to prevent clicks, only after the voice started. This suppresses
any potential “sweep” that might occur if the value of bend changes abruptly at the beginning of a
note.

3.3.4 Configuring Continuous Pitch Control

The Rounding Mode configuration key has a significant impact on the behavior of freq, bend,
and gate.

CHAPTER 3. MOBILEFAUST 85

When Rounding Mode = 0, pitch is fully “quantized,” and the value of bend is always 1.
Additionally, a new note is triggered every time a finger slides to a new key, impacting the value of
freq and gate.

When Rounding Mode = 1, continuous pitch control is activated, and the value of bend is
constantly updated in function the position of the finger on the screen. New note events updating
the value of freq and gate are only triggered when fingers start touching the screen. While this
mode might be useful in some cases, it is hard to use when playing tonal music as any new note
might be “out of tune.”

When Rounding Mode = 2, “pitch rounding” is activated and the value of bend is rounded
to match the nearest quantized semitone when the finger is not moving on the screen. This allows
generated sounds to be “in tune” without preventing slides, vibratos, etc. While the design of such a
system has been previously studied, [147] we decided to implement our own algorithm for this (see
Figure 3.9). touchDiff is the distance on the screen between two touch events for a specific finger.
This value is smoothed (sTouchDiff) using a unity-dc-gain one pole lowpass filter in a separate
thread running at a rate defined by configuration key Rounding Update Speed. Rounding

Smooth corresponds to the pole of the lowpass filter used for smoothing (0.9 by default). A
separate thread is needed since the callback of touch events is only called when events are received.
If sTouchDiff is greater than Rounding Threshold during a certain number of cycles defined
by Rounding Cycles, then rounding is deactivated and the value of bend corresponds to the
exact position of the finger on the screen. If rounding is activated, the value of bend is rounded to
match the nearest pitch of the chromatic scale.

touchDiff
Rounding Thread

while(on){
sTouchDiff = smooth(touchDiff);
if(sTouchDiff >= roundingThresh &&

moveCount >= roundingCycles){
rounding = false;

}
else{
rounding = true;
moveCount = 0;

}
if(touchDiff >= 1) moveCount++;
sleep(roundingUpdateSpeed);

}

roundingUI Thread
if(rounding){
send quantized bend

}
else{
send raw bend

}

SmartKeyboard

Figure 3.9: SmartKeyboard Pitch Rounding Pseudo Code Algorithm.

CHAPTER 3. MOBILEFAUST 86

3.3.5 Using Specific Scales

A wide range of musical scales (see Table 3.9), all compatible with the system described in §3.3.4,
can be used with the SmartKeyboard interface and configured using the Keyboard N - Scale

key (see Table 3.8). When other scales than the chromatic scale are used, keys on the keyboard all
have the same color.

Scale ID Scale Name
0 Chromatic
1 Major
2 Minor
3 Harmonic Minor
4 Dorian
5 South-East Asian
6 Minor Pentatonic
7 Minor Blues
8 Japanese
9 Major Pentatonic
10 Major Blues
11 Mixolydian
12 Klezmer

Table 3.9: SmartKeyboard Scales Configurable With the Keyboard N - Scale Key.

Custom scales and temperaments can be implemented using the Keyboard N - Scale con-
figuration key. It allows us to specify a series of intervals to be repeated along the keyboard (not
necessarily at the octave). Intervals are provided as semitones and can have a decimal value. For
example, the chromatic scale can be implemented as:

Keyboard N - Scale = {1}

Similarly, the standard equal-tempered major scale can be specified as:

Keyboard N - Scale = {2,2,1,2,2,2,1}

A 5-limit just intoned major scale (rounded to the nearest 0.01 cents) could be:

Keyboard N - Scale = {2.0391,1.8243,1.1173,2.0391,2.0391,1.8243,1.1173}

Equal-tempered Bohlen-Pierce (dividing 3:1 into 13 equal intervals) would be:

Keyboard N - Scale = {146.304230835802}

Alternatively, custom scales and pitch mappings can be implemented directly from the Faust

code using some of the lower level standard parameters returned by the SmartKeyboard interface
(e.g., x, y, key, keyboard, etc.).

CHAPTER 3. MOBILEFAUST 87

3.3.6 Handling Polyphony and Monophony

By default, the DSP engine generated by faust2api has twelve polyphony voices. This parameter
can be overridden using the -nvoices option when executing the faust2smartkeyb command.
This system works independently from the monophonic/polyphonic configuration of the SmartKey-

board interface. Indeed, even when a keyboard is monophonic, a polyphonic synthesizer might still
be needed to leave time for the release of an envelope generator, for example.

The Max Keyboard Polyphony key defines the maximum number of voices of polyphony of a
SmartKeyboard interface. Polyphony is tied to fingers present on the screen, in other words, one
finger corresponds to one voice. If Max Keyboard Polyphony = 1, then the interface becomes
“monophonic.” The monophonic behavior of the system is configured using the Mono Mode key (see
Table 3.10). Each mode might be useful for a specific context. For example, Mode 3 might be great
to use keyboards in the interface as independent guitar strings, etc. More examples of this type of
use are provided in §3.4.

Monophonic Mode Description
0 Focus stays on the same finger even if other fingers touch the

interface.
1 Focus always goes to the latest finger to touch the interface (voice

stealing). When the focused finger leaves the interface, focus is
transfered to the closest finger.

2 Sames as 1, but the voice is terminated when the focused finger leaves
the interface.

3 Sames as 1, but focus is given to new fingers only if their pitch is
higher than the current note.

4 Sames as 2, but focus is given to new fingers only if their pitch is
lower than the current note.

Table 3.10: Different Monophonic Modes Configured Using the Mono Mode Key in SmartKey-
board Interfaces.

3.3.7 Other Modes

In some cases, both the monophonic and the polyphonic paradigms are not adapted. For example,
when implementing an instrument based on a physical model, it might be necessary to use a single
voice and constantly run it. This might be the case of a virtual wind instrument where notes are
“triggered” by some of the continuous parameters of the embouchure (see §3.4.4) and not by discrete
events such as the one created by a key. This type of system can be implemented by setting the
Max Keyboard Polyphony key to zero. In that case, the first available voice is triggered and
run until the app is killed. Adding new fingers on the screen will have no impact on that and the

CHAPTER 3. MOBILEFAUST 88

gate parameter won’t be sent to the DSP engine. freq will keep being sent unless the Keyboard
N - Send Freq is set to zero. Since this parameter is keyboard specific, some keyboards in the

interface might be used for pitch control while others might be used for other types of applications
(e.g., X/Y controller, etc.). Various examples of this type of use are presented in §3.4.

It might be useful in some cases to number the standard x and y parameters as a function of
the fingers present on the screen. This can be easily accomplished by setting the Keyboard N -

Count Fingers key to one. In that case, the first finger to touch the screen will send the x0 and
y0 standard parameters to the DSP engine, the second finger x1 and y1, and so on.

This section just gave an overview of some of the features of faust2smartkeyb. More details
about this tool can be found in its documentation 22 as well as in the corresponding online tutorials.23

3.4 Skill Transfer and Screen Interface: faust2smartkeyb

Apps Examples

Implementation of skill transfer is one of the primary goals of faust2smartkeyb. It is a crucial
factor in making a successful DMI as it can help accelerate its learning and make it quickly usable by
a large number of performers (see §1.1). A wide range of screen controllers mimicking the interface
of existing instruments can be implemented using the SmartKeyboard interface.

This section presents a few examples where traditional acoustic instruments served as models
and were turned into digital version running on mobile devices using physical models from the
Faust Physical Modeling Library (see §6.2) and faust2smartkeyb. We demonstrate that in
most cases, the implementation of such instruments can be approached in two different ways. The
first one consists of only specifying a single element of an instrument (e.g., one string of a guitar or
a violin, membrane of a drum, etc.) and then use the polyphonic features of faust2smartkeyb
to implement the ability of the instrument to generate several sounds simultaneously. In the other
approach, the instrument is modeled in its whole (e.g., four strings for a violin, six strings in a guitar,
etc.) and the mapping between the interface and the model is handled directly in the Faust code.

While the goal of this section is not to be exhaustive, it should provide enough material to
demonstrate how to implement most traditional musical instruments and more.

3.4.1 Plucked Strings Instruments: the Guitar

Piano Keyboard Paradigm

Plucked string instruments such as the guitar, the banjo, etc. are relatively close to struck string
instruments (e.g., the piano, etc.) as they are excited by punctual events (unlike bowed strings

22https://ccrma.stanford.edu/~rmichon/smartKeyboard/
23https://ccrma.stanford.edu/~rmichon/faustTutorials/

https://ccrma.stanford.edu/~rmichon/smartKeyboard/
https://ccrma.stanford.edu/~rmichon/faustTutorials/

CHAPTER 3. MOBILEFAUST 89

or wind instruments, where energy must be constantly introduced in the system for it to produce
any sound). For this reason, controlling these types of instrument with a “piano keyboard like”
interface makes a lot of sense as the performer expect sound to be heard when a key is pressed.
A good commercial example of such DMI is GeoShred (see §1.1.4), where a new pluck is triggered
every time a finger touches a virtual string on the touch screen (this behavior might slightly change
depending on the configuration of the interface).

Listing 3.2 presents a faust2smartkeyb code implementing an instrument working in a similar
way as GeoShred. Six parallel keyboards are used to represent six parallel strings. They are all
monophonic and implement “voice stealing” with priority to higher pitches which means that the
current note is terminated when a new finger touches the same keyboard only if the pitch of the
note to trigger is higher than the current one (like on a physical electric guitar string). Even though
keyboards are monophonic, the overall instrument is polyphonic and several strings can be excited
at the same time, taking advantage of the voice allocation system of faust2smartkeyb.

Keyboards are placed one fourth apart from each other, in a similar way as on a guitar neck, in
order to facilitate skills transfer for guitar players. Finally, slides and vibratos can be carried out on
the same string just by continuously moving the finger along the virtual keyboard.

declare interface "SmartKeyboard{

’Number of Keyboards’:’6’,’Max Keyboard Polyphony’:’1’,

’Mono Mode’:’3’,’Rounding Mode’:’2’,

’Keyboard 0 - Number of Keys’:’13’,

[...same for all other keyboards...]

’Keyboard 0 - Lowest Key’:’72’,’Keyboard 1 - Lowest Key’:’67’,

’Keyboard 2 - Lowest Key’:’62’,’Keyboard 3 - Lowest Key’:’57’,

’Keyboard 4 - Lowest Key’:’52’,’Keyboard 5 - Lowest Key’:’47’

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS

f = hslider("freq",300,50,2000,0.01);

bend = hslider("bend[midi:pitchwheel]",1,0,10,0.01) :

si.polySmooth(gate,0.999,1);

gain = hslider("gain",1,0,1,0.01);

s = hslider("sustain[midi:ctrl 64]",0,0,1,1); // for sustain pedal

t = button("gate");

// MODEL PARAMETERS

CHAPTER 3. MOBILEFAUST 90

gate = t+s : min(1);

freq = f*bend : max(60); // min freq is 60 Hz

stringLength = freq : pm.f2l;

pluckPosition = 0.8;

mute = gate : si.polySmooth(gate,0.999,1);

process = pm.elecGuitar(stringLength,pluckPosition,mute,gain,gate)

<: _,_;

Listing 3.2: faust2smartkeyb App Implementing an Electric Guitar With an Isomorphic
Keyboard.

The electric guitar string physical model is implemented in the Faust Physical Modeling Library
as elecGuitar(). The effect chain is declared in a separate file in order to use the -effect option
when using faust2smartkeyb and involves a distortion and a reverb:

process = par(i,2,ef.cubicnl(0.8,0)) : dm.zita_rev1;

The pitch of the virtual string is controlled by the combination of the freq and bend standard
parameters. Strings are progressively muted when the finger leaves the string. In other words, they
only resonate if the associated finger remains on the screen.

External Plucking Paradigm

Even though the paradigm presented previously works well with plucked string instruments, it differs
from that of a real guitar because of the lack of an independent interface for exciting the different
strings. Listing 3.3 presents a faust2smartkeyb app where virtual strings are excited through a
separate keyboard on the touch-screen. This keyboard could be easily substituted by an external
active controller (see §5).

The interface contains seven keyboards: six implementing the different strings of the guitar (and
tuned the same way as on this instrument: E, A, D, G, B, E) and one used as the interface to trigger
the virtual strings. Max Keyboard Polyphony is set to zero so that a single voice is computed
when the app is launched. Indeed, unlike the previous example, the six strings of the instrument
are all implemented in the same process, thus only one voice is necessary. The freq and bend

standard parameters of the first six keyboards are retrieved and used to control the pitch of the six
independent strings.

The seventh keyboard is configured to have six keys (one for each string). We want a specific
string to be excited when a finger touches the corresponding key. Since this system should react
both to touch and move events, both event types 1 and 4 are considered when formating the value
of kb6kstatus. As mentioned previously, this keyboard could (and probably should) be replaced
by an external active controller (see §5) and is only here as a proof of concept. Similarly, the pluck

CHAPTER 3. MOBILEFAUST 91

position is currently controlled using the y axis of the accelerometer but this parameter could also
be associated to a potential external active controller.

The acoustic guitar physical model used in this example is implemented in the Faust Physical
Modeling Library (see §6.2) as nylonGuitarModel(). Here, six models (one for each string) are
computed in parallel.

declare interface "SmartKeyboard{

’Number of Keyboards’:’7’,’Max Keyboard Polyphony’:’0’,

’Rounding Mode’:’2’,

’Keyboard 0 - Number of Keys’:’14’,

[...same for other keyboards 1, 2, 3, 4, and 5...]

’Keyboard 6 - Number of Keys’:’6’,

’Keyboard 0 - Lowest Key’:’52’,’Keyboard 1 - Lowest Key’:’57’,

’Keyboard 2 - Lowest Key’:’62’,’Keyboard 3 - Lowest Key’:’67’,

’Keyboard 4 - Lowest Key’:’71’,’Keyboard 5 - Lowest Key’:’76’,

’Keyboard 0 - Send Keyboard Freq’:’1’,

[...same for all other keybaords...],

’Keyboard 6 - Piano Keyboard’:’0’,

’Keyboard 6 - Send Key Status’:’1’,

’Keyboard 6 - Key 0 - Label’:’S0’,’Keyboard 6 - Key 1 - Label’:’S1’,

’Keyboard 6 - Key 2 - Label’:’S2’,’Keyboard 6 - Key 3 - Label’:’S3’,

’Keyboard 6 - Key 4 - Label’:’S4’,’Keyboard 6 - Key 5 - Label’:’S5’

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS

kbfreq(0) = hslider("kb0freq",164.8,20,10000,0.01);

kbbend(0) = hslider("kb0bend",1,0,10,0.01);

[...same for other keyboards until kb5...]

kb6kstatus(0) = hslider("kb6k0status",0,0,1,1) <: ==(1) | ==(4) : int;

kb6kstatus(1) = hslider("kb6k1status",0,0,1,1) <: ==(1) | ==(4) : int;

[...same for all other keys of kb6...]

// MODEL PARAMETERS

sl(i) = kbfreq(i)*kbbend(i) : pm.f2l : si.smoo; // strings length

pluckPosition =

hslider("pluckPosition[acc: 1 0 -10 0 10]",0.5,0,1,0.01) : si.smoo;

CHAPTER 3. MOBILEFAUST 92

// ASSEMBLING MODELS

nStrings = 6; // number of strings

guitar = par(i,nStrings,kb6kstatus(i) : ba.impulsify :

pm.nylonGuitarModel(sl(i),pluckPosition)) :> _;

process = guitar <: _,_;

Listing 3.3: faust2smartkeyb App Implementing an Acoustic Guitar With an Independent
Plucking Interface.

Figure 3.10: Screen-shot of the Interface of the App Generated From the Code Presented in List-
ing 3.3.

3.4.2 Bowed Strings Instruments: the Violin

Unlike plucked string instruments (see §3.4.1), bowed string instruments must be constantly excited
to generate sound. Thus, parameters linked to bowing (i.e., bow pressure, bow velocity, etc.) must
be continuously controlled. The faust2smartkeyb code presented in Listing 3.4 is a violin app
where each string is represented by one keyboard in the interface (in a similar way than the guitar
presented in §3.4.1). An independent interface can be used to control the bow pressure and velocity.
This interface is common to all strings that are activated when they are touched on the screen. Just
like for the acoustic guitar app presented in §3.4.1, this interface could be substituted by an external
one (see §5).

CHAPTER 3. MOBILEFAUST 93

The SmartKeyboard configuration declares 5 keyboards (4 strings and one control surface
for bowing). “String keyboards” are tuned like on a violin (G, D, A, E) and are configured to be
monophonic and implement “pitch stealing” when a higher pitch is selected (see §3.4.1). Bow velocity
is computed by measuring the displacement of the finger touching the 5th keyboard (bowVel). Bow
pressure just corresponds to the y position of the finger on this keyboard. Strings are activated when
at least one finger is touching the corresponding keyboard (as(i)).

The app doesn’t take advantage of the polyphony support of faust2smartkeyb and a single
voice is constantly ran after the app is launched (Max Keyboard Polyphony = 0). Four virtual
strings based on a simple violin string model (violinModel()) implemented in the Faust Physical
Modeling Library are declared in parallel and activated in function of events happening on the screen.

declare interface "SmartKeyboard{

’Number of Keyboards’:’5’,’Max Keyboard Polyphony’:’0’,

’Rounding Mode’:’2’,’Send Fingers Count’:’1’,

’Keyboard 0 - Number of Keys’:’19’,

[...same for next 3 keyboards...]

’Keyboard 4 - Number of Keys’:’1’,

’Keyboard 0 - Lowest Key’:’55’,’Keyboard 1 - Lowest Key’:’62’,

’Keyboard 2 - Lowest Key’:’69’,’Keyboard 3 - Lowest Key’:’76’,

’Keyboard 0 - Send Keyboard Freq’:’1’,

[...same for next 3 keyboards...]

’Keyboard 4 - Send Freq’:’0’,’Keyboard 4 - Send Key X’:’1’,

’Keyboard 4 - Send Key Y’:’1’,’Keyboard 4 - Static Mode’:’1’,

’Keyboard 4 - Key 0 - Label’:’Bow’

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS

kbfreq(0) = hslider("kb0freq",220,20,10000,0.01);

kbbend(0) = hslider("kb0bend",1,0,10,0.01);

[...same for the 3 next keyboards...]

kb4k0x = hslider("kb4k0x",0,0,1,1) : si.smoo;

kb4k0y = hslider("kb4k0y",0,0,1,1) : si.smoo;

kbfingers(0) = hslider("kb0fingers",0,0,10,1) : int;

[...same for the 3 next keyboards...]

// MODEL PARAMETERS

CHAPTER 3. MOBILEFAUST 94

// strings lengths

sl(i) = kbfreq(i)*kbbend(i) : pm.f2l : si.smoo;

// string active only if fingers are touching the keyboard

as(i) = kbfingers(i)>0;

bowPress = kb4k0y; // could also be controlled by an external controller

// finger displacement on screen

bowVel = kb4k0x-kb4k0x’ : abs : *(8000) : min(1) : si.smoo;

bowPos = 0.7; // could be controlled by an external controller

// ASSEMBLING MODELS

// essentially 4 parallel violin strings

model = par(i,4,pm.violinModel(sl(i),bowPress,bowVel*as(i),bowPos))

:> _;

process = model <: _,_;

Listing 3.4: faust2smartkeyb App Implementing a Violin With an Independent Interface for
Bowing.

Figure 3.11: Screen-shot of the Interface of the App Generated From the Code Presented in List-
ing 3.4.

Alternatively, the bowing interface could be removed and the bow velocity could be calculated
based on the displacement on the y axis of a finger on a keyboard, allowing one to excite the string

CHAPTER 3. MOBILEFAUST 95

and control its pitch with a single finger. However, concentrating so many parameters on a single
gesture tends to limit the affordances of the instrument. The code presented in Listing 3.4 could be
easily modified to implement this behavior.

3.4.3 Percussion Instruments: Polyphonic Keyboard and Independent
Instruments Paradigms

Just like plucked string instruments (see §3.4.1), percussion instruments can be implemented using
faust2smartkeyb either as polyphonic instruments or as a constantly running synthesizer imple-
menting multiple instruments in parallel. In the first case (see the djembes example below), a new
voice is allocated every time the instrument is stroke. A voice might implement several models and
choose one of them in function of the pad/key being touched. Another option is to use a single
scalable model whose properties will change every time a voice is started. In the second case (see
the bells example below), a single voice implementing several models in parallel is initiated when
the app is launched and models are excited in function of the pad/key touched in the interface. The
following subsections provide examples of these two paradigms.

Set of Djembes: Example of Polyphonic Keyboard Paradigm for Percussion Instru-
ments

The code presented in Listing 3.5 implements a SmartKeyboard app where three pads can be used
to play three djembes of different sizes. A single model whose fundamental frequency is adjusted
in function of the virtual pad being stroke is used. This app takes advantage of the polyphony
system of faust2smartkeyb and a new voice is instantiated every time a new strike happens on
the touchscreen.

The interface is made out of two polyphonic keyboards (one with two keys and one with one key).
The (x, y) position of the finger on the keys/pads are retrieved and used to compute the excitation
position (exPos) on the model. The fundamental frequency (rootFreq) of the model is selected in
function of the pad being touched. The djembe physical model used in this program is implemented
in the Faust Physical Modeling Library.

declare interface "SmartKeyboard{

’Number of Keyboards’:’2’,’Keyboard 0 - Number of Keys’:’2’,

’Keyboard 1 - Number of Keys’:’1’,’Keyboard 0 - Static Mode’:’1’,

’Keyboard 1 - Static Mode’:’1’,’Keyboard 0 - Send X’:’1’,

’Keyboard 0 - Send Y’:’1’,’Keyboard 1 - Send X’:’1’,

’Keyboard 1 - Send Y’:’1’,’Keyboard 0 - Piano Keyboard’:’0’,

’Keyboard 1 - Piano Keyboard’:’0’,’Keyboard 0 - Key 0 - Label’:’High’,

’Keyboard 0 - Key 1 - Label’:’Mid’,’Keyboard 1 - Key 0 - Label’:’Low’

CHAPTER 3. MOBILEFAUST 96

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS

gate = button("gate");

x = hslider("x",1,0,1,0.001);

y = hslider("y",1,0,1,0.001);

keyboard = hslider("keyboard",0,0,1,1) : int;

key = hslider("key",0,0,1,1) : int;

djembeInstrument = pm.djembe(rootFreq,exPos,strikeSharpness,gain,gate)

with{

bFreq = 60; // frequency of the lowest djembe

padID = 2-(keyboard*2+key); // retrieving pad ID (0-2)

rootFreq = bFreq*(padID+1); // djembe root freq

exPos = min((x*2-1 : abs),(y*2-1 : abs)); // excitation position

strikeSharpness = 0.5;

gain = 2;

};

process = djembeInstrument <: _,_;

Listing 3.5: faust2smartkeyb App Implementing a Set of Djembes.

A similar approach could be used to map keys/pads to completely different models by declaring
them in the same Faust code (i.e., voice in this case) and activating them in function the key being
touched.

Set of Bells: Examples of Independent Instrument Paradigm for Percussion Instru-
ments

The code presented in Listing 3.6 implements a SmartKeyboard app where four different bells
are associated to four different pads on the touchscreen. The strike position on each pad is used to
control the excitation position on the corresponding virtual bell.

The SmartKeyboard interface is made out of two keyboards of two keys. A single voice is
instantiated whenever the app is launched (Max Keyboard Polyphony = 0). Four bell physical
models from the Faust Physical Modeling Library are ran in parallel (see §6.2 and §B). The status
of each key in the interface is retrieved and used to trigger the excitation for each bell independently.

CHAPTER 3. MOBILEFAUST 97

declare interface "SmartKeyboard{

’Number of Keyboards’:’2’,’Max Keyboard Polyphony’:’0’,

’Keyboard 0 - Number of Keys’:’2’,’Keyboard 1 - Number of Keys’:’2’,

’Keyboard 0 - Send Freq’:’0’,’Keyboard 1 - Send Freq’:’0’,

’Keyboard 0 - Piano Keyboard’:’0’,’Keyboard 1 - Piano Keyboard’:’0’,

’Keyboard 0 - Send Key Status’:’1’,’Keyboard 1 - Send Key Status’:’1’,

’Keyboard 0 - Send X’:’1’,’Keyboard 0 - Send Y’:’1’,

’Keyboard 1 - Send X’:’1’,’Keyboard 1 - Send Y’:’1’,

’Keyboard 0 - Key 0 - Label’:’English’,

’Keyboard 0 - Key 1 - Label’:’French’,

’Keyboard 1 - Key 0 - Label’:’German’,

’Keyboard 1 - Key 1 - Label’:’Russian’

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS

kb0k0status = hslider("kb0k0status",0,0,1,1) : min(1) : int;

kb0k1status = hslider("kb0k1status",0,0,1,1) : min(1) : int;

kb1k0status = hslider("kb1k0status",0,0,1,1) : min(1) : int;

kb1k1status = hslider("kb1k1status",0,0,1,1) : min(1) : int;

x = hslider("x",1,0,1,0.001);

y = hslider("y",1,0,1,0.001);

// MODEL PARAMETERS

strikeCutoff = 6500; strikeSharpness = 0.5;

strikeGain = 1; nModes = 10; // synthesize 10 modes out of 50

t60 = 30; // resonance duration is 30s

nExPos = 7; // number of excitation positions

exPos = min((x*2-1 : abs),(y*2-1 : abs))*(nExPos-1) : int;

// ASSEMBLING MODELS

bells =

(kb0k0status : pm.strikeModel(10,strikeCutoff,strikeSharpness,

strikeGain) : pm.englishBellModel(nModes,exPos,t60,1,3)) +

(kb0k1status : pm.strikeModel(10,strikeCutoff,strikeSharpness,

strikeGain) : pm.frenchBellModel(nModes,exPos,t60,1,3)) +

CHAPTER 3. MOBILEFAUST 98

(kb1k0status : pm.strikeModel(10,strikeCutoff,strikeSharpness,

strikeGain) : pm.germanBellModel(nModes,exPos,t60,1,2.5)) +

(kb1k1status : pm.strikeModel(10,strikeCutoff,strikeSharpness,

strikeGain) : pm.russianBellModel(nModes,exPos,t60,1,3))

:> *(0.2);

process = bells <: _,_;

Listing 3.6: faust2smartkeyb App Implementing a Set of Bells.

This approach is often better suited for physical-model-based percussion instruments as it is
much closer to how acoustic musical instrument work. Indeed, unlike the djembe examples, all bell
models are constantly ran here and no concept of polyphony is used.

3.4.4 Wind Instruments: Key Combinations and Continuous Control

As for instruments from the previous categories treated in this section, wind instruments can be
implemented with faust2smartkeyb using either the “polyphonic keyboard” or the “full model”
paradigm. This second case is particularly relevant for wind instruments that are often monophonic
and where pitch is usually selected by combining several keys (unlike a piano keyboard where one
key corresponds to one pitch). The faust2smartkeyb code presented in Listing 3.7 implements
a clarinet app which is meant to be run on a small screen device (i.e., a smart-phone). The device
is expected to be held with two hands with thumbs underneath and all other fingers on the screen.
The instrument is played by blowing onto the built-in microphone which is used to control breath
pressure. Different buttons on the screen interface represent the keys of the instrument. The y
axis of the built-in accelerometer controls the “bell opening” parameter which acts as a mute on the
instrument.

The screen interface is made out of two keyboards of four and five keys, respectively. The highest
key on both keyboards can be used to switch between octaves (see Figure 3.12). The key on the
first keyboard switches octaves up (octaveShiftUp) and the key on the second keyboard octaves
down (octaveShiftDown). These keys are meant to be touched by the “baby finger” of both
hands. Other keys reproduce a simplified version of clarinet fingerings presented in Figure 3.12. This
mapping was designed to leverage existing skills while adapting them to what can be implemented on
a touchscreen. This type of behavior is created by retrieving the status of all keys in the interface by
using the kbMkNstatus standard parameter and comparing them to expected fingers combinations.
The length of the tube of the clarinet physical model is modulated in function of all these elements.
The model is part of the Faust Physical Modeling Library. The pressure parameter is computed
by using an envelope follower (an.amp_follower_ud()) on the signal of the built-in microphone
of the device. Better results can be achieved by using the passive mouthpiece presented in §4.2.1 or

CHAPTER 3. MOBILEFAUST 99

by using an external active breath controller.

C D E F G A B

C# Eb F# G# Bb

C
Figure 3.12: Fingers Mapping of the Interface of the App Generated From the Code Presented in
Listing 3.7.

declare interface "SmartKeyboard{

’Number of Keyboards’:’2’,’Max Keyboard Polyphony’:’0’,

’Keyboard 0 - Number of Keys’:’4’,’Keyboard 1 - Number of Keys’:’5’,

’Keyboard 0 - Send Freq’:’0’,’Keyboard 1 - Send Freq’:’0’,

’Keyboard 0 - Piano Keyboard’:’0’,’Keyboard 1 - Piano Keyboard’:’0’,

’Keyboard 0 - Send Key Status’:’1’,’Keyboard 1 - Send Key Status’:’1’,

’Keyboard 0 - Key 3 - Label’:’O+’,’Keyboard 1 - Key 4 - Label’:’O-’

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS

kb0k0status = hslider("kb0k0status",0,0,1,1) : min(1) : int;

kb0k1status = hslider("kb0k1status",0,0,1,1) : min(1) : int;

[...same for all other keys of all keyboards...]

// MODEL PARAMETERS

bellOpening =

CHAPTER 3. MOBILEFAUST 100

hslider("bellOpening[acc: 1 1 -10 0 10]",0.5,0.3,0.7,0.01) : si.smoo;

basePitch = 73; // C#4

pitchShift = // calculate pitch shift in function of "keys" combination

((kb0k0status == 0) & (kb0k1status == 1) & (kb0k2status == 0) &

(kb1k0status == 0) & (kb1k1status == 0) & (kb1k2status == 0) &

(kb1k3status == 0))*(-1) + // C

[...same for other notes of the chromatic scale...]

((kb0k0status == 1) & (kb0k1status == 1) & (kb0k2status == 1) &

(kb1k0status == 1) & (kb1k1status == 1) & (kb1k2status == 1) &

(kb1k3status == 1))*(-13); // C

octaveShiftUp = +(kb0k3status : ba.impulsify)~_; // counting up

octaveShiftDown = +(kb1k4status : ba.impulsify)~_; // counting down

octaveShift = (octaveShiftUp-octaveShiftDown)*(12);

tubeLength =

basePitch+pitchShift+octaveShift : ba.midikey2hz : pm.f2l : si.smoo;

reedStiffness = 0.5;

model(pressure) =

pm.clarinetModel(tubeLength,pressure,reedStiffness,bellOpening);

// pressure is estimated from mic signal

process = an.amp_follower_ud(0.02,0.02)*0.7 : model <: _,_;

Listing 3.7: faust2smartkeyb App Implementing a Clarinet.

Even though faust2smartkeyb has been tested and evaluated within several workshops (see
§4.4 and §5.4), it is such a large project that there probably remains bugs to be fixed. Additionally,
despite the fact that we haven’t found a touchscreen interface for live music performance that can’t
be implemented with this system yet, many cases probably haven’t been tested (or thought of) and
there definitely exists rooms for improvements.

Chapter 4

Passively Augmenting Mobile Devices

“Simplicity is the ultimate sophistication.” (Leonardo Da Vinci)

In §1.4.1, we gave an overview of how some of the limitations of mobile devices can be overstepped
by “enhancing” them with specialized passive augmentations. These usually leverage existing features
of the device such as its built-in sensors, speakers, etc., but can also be purely aesthetic, or facilitate
specific gestures.

In this chapter based on a paper [124]1 we published at the 2017 New Interfaces for Musical
Expression Conference, 2 we try to generalize the concept of “passively augmented mobile device”
and we provide a framework to design this kind of instrument. We focus on “passive augmentations”
leveraging existing components of hand-held mobile devices in a very lightweight, non-invasive way
(as opposed to “active augmentation” presented in §5 that require the use of electronic components).
We introduce Mobile3D, an OpenScad3 library to help design mobile device augmentations using
DIY digital fabrication techniques such as 3D printing and laser cutting. We give an exhaustive
overview of the taxonomy of the various types of passive augmentations that can be implemented
on mobile devices through a series of examples and we demonstrate how they leverage existing
components on the device. Finally, we evaluate our framework and propose future directions for this
type of research.

4.1 Mobile 3D

Mobile3D is an OpenScad library facilitating the design of mobile device augmentations. OpenScad
is an open-source Computer Assisted Design (CAD) software using a high level functional program-
ming language to specify the shape of any object. It supports fully parametric parts, permitting

1Some sections and figures of this paper were copied verbatim here.
2http://www.nime2017.org/
3http://www.openscad.org/

101

http://www.nime2017.org/
http://www.openscad.org/

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 102

users to rapidly adapt geometries to the variety of devices available on the market.
Mobile3D is organized in different files that are all based on a single library containing generic

standard elements (basics.scad) ranging from simple useful shapes to more advanced augmenta-
tions such as the ones presented in the following sections. A series of device-specific files adapt the
elements of basics.scad and are also available for the iPhone 5, 6, and 6 Plus and for the iPod
Touch. For example, a generic horn usable as a passive amplifier for the built-in speaker of a mobile
device can be simply created with the following call in OpenScad:

include <basics.scad>

SmallPassiveAmp();

The corresponding 3D object can be seen in Figure 4.1.

Figure 4.1: CAD Model of a Generic Passive Amplifier for the Built-In Speakers of a Mobile Device.

To generate the same object specifically for the iPhone 5, the following code can be written:

include <iPhone5.scad>

iPhone5_SmallPassiveAmp();

Finally, the shape of an object can be easily modified either by providing parameters as argu-
ments to the corresponding function, or by overriding them globally before the function is called. If
this approach is chosen, all the parts called in the OpenScad code will be updated, which can
be very convenient in some cases. For example, the radius (expressed in millimeters here) of
iPhone5_SmallPassiveAmp() can be modified locally by writing:

include <iPhone5.scad>

iPhone5_SmallPassiveAmp(hornRadius=40);

or globally by writing:

include <iPhone5.scad>

iPhone5_SmallPassiveAmp_HornRadius = 40;

iPhone5_SmallPassiveAmp();

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 103

Mobile3D is based on two fundamental elements that can be used to quickly attach any pros-
thetic to the device: the top and bottom holders (see Figure 4.2). They were designed to be 3D
printed using elastomeric material such as NinjaFlex®4 in order to easily install and remove the
device without damaging it. They also help reducing printing duration, which is often a major issue
during prototyping. These two holders glued to a laser-cut plastic plate form a sturdy case (as shown
in Figure 4.2), whereas completely printing this part would take much more time.

Bottom Holder Top Holder
Plastic Plate
Mobile Device

Figure 4.2: CAD Model of a Simple iPhone 5 Case Made From 3D-Printed Holders and a Laser-Cut
Plastic Plate.

A wide range of elements can be easily added to the basic mobile phone case presented in
Figure 4.2 by using adhesives. Some of them will be presented in greater details in the following
sections and are part of Mobile3D.

Figure 4.3 presents an example of an iPhone 5 augmented with a passive amplifier similar to the
one presented above. The bottom holder and the horn were printed separately and glued together,
but they could also have been printed as one piece. In this example, the bottom and top holders were
printed with PLA,5 which is a hard plastic, and they were mounted on the plate using Velcro®.
This is an alternative solution to using NinjaFlex® that can be useful when augmenting the mobile
device with large appendixes requiring a stronger support.

The passive amplifier presented in Figure 4.3 was made by overriding the default parameters of
the iPhone5_SmallPassiveAmp() function:

4https://ninjatek.com/
5PolyLactic Acid.

https://ninjatek.com/

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 104

Passive Amplifier iPhone 5
Velcro

Figure 4.3: iPhone 5 Augmented With a Horn Used as Passive Amplifier on Its Built-In Speaker
(Instrument by Erin Meadows).

include <lib/iPhone5.scad>

iPhone5_SmallPassiveAmp_HornLength = 40;

iPhone5_SmallPassiveAmp_HornRadius = 40;

iPhone5_SmallPassiveAmp_HornDeformationFactor = 0.7;

iPhone5_SmallPassiveAmp();

An exhaustive list of all the elements available in Mobile3D can be found on the project web-
page.6

4.2 Leveraging Built-In Sensors and Elements

Mobile devices host a wide range of built-in sensors and elements that can be used to control sound
synthesizers (see §1.3). While the variety of available sensors and elements differs from one device
to another, most smart-phones have at least a touchscreen, a loudspeaker, a microphone, and some
type of motion sensor (accelerometer, gyroscope, etc.). In this section, we’ll focus on these four
elements and we’ll demonstrate how they can be “augmented” for specific musical applications.

4.2.1 Microphone

While the built-in microphone of a mobile device can simply serve as a source for any kind of sound
process (e.g., audio effect, physical model, etc.), it can also be used as a versatile, high rate sensor
[132]. In this section, we demonstrate how it can be augmented for different kinds of uses.

6https://ccrma.stanford.edu/~rmichon/mobile3D

https://ccrma.stanford.edu/~rmichon/mobile3D

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 105

Amplitude-Detection-Based Augmentations

One of the first concrete uses of the built-in microphone of a mobile device to control some sound
synthesis process was done with Smule’s Ocarina (see §1.3.2). There, the microphone serves as a
blow sensor by measuring the gain of the signal created when blowing on it to control the gain of
an ocarina sound synthesizer.

Mobile3D contains an object that can be used to leverage this principle when placed in front
of the microphone (see Figure 4.4). It essentially allows the performer to blow into a mouthpiece
mounted on the device. The air-flow is directed through a small aperture inside the pipe, creating
a sound that can be recorded by the microphone and analyzed in the app using standard amplitude
tracking techniques. The air-flow is then sent outside of the pipe, preventing it from ever being in
direct contact with the microphone.

The acquired signal is much cleaner than when the performer blows directly onto the mic, allowing
us to generate precise control data. Additionally, condensation never accumulates on the mic which
can help extend the duration of its life, etc.

Mic Mouthpiece (where the performer can blow)

Mobile Device

Figure 4.4: Mouthpiece for Mobile Device Built-In Mic.

Frequency-Detection-Based Augmentations

The built-in microphone of mobile devices has already been used as a data acquisition system to
implement various kinds of sensors using frequency analysis techniques [95]. Mobile3D contains an
object using similar principles that can be used to control some of the parameters of a synthesizer
running on a mobile device. It is based on a conical tube (see Figure 4.5) where dozens of small
tines of different length and diameter are placed inside it. These tines get thicker towards the end

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 106

of the tube and their length varies linearly around it. When the performer blows inside the tube,
the resulting airflow hits the nails, creating sounds with varying harmonic content. By directing
the airflow towards different locations inside the tube, the performer can generate various kind of
sounds that can be recognized in the app using frequency analysis techniques. The intensity and the
position of the airflow around the tube can be measured by keeping track of the spectral centroid of
the generated sound, and used to control synthesis parameters.

The same approach can be used with an infinite number of augmentations with different shapes.
While our basic spectral-centroid-based analysis technique only allows us to extract two continuous
parameters from the generated signal, it should be possible to get more of them using more advanced
techniques such as those used with MOGEES (see §1.2.2).

Nails of different lengths anddiameters change the harmoniccontent of the soundgenerated by the air flowgoing inside the tube

Figure 4.5: Frequency-Based Blow Sensor for Mobile Device Built-In Microphone.

4.2.2 Speaker

Even though their quality and power has significantly increased during the last decade, mobile device
built-in speakers are generally only good for speech, not music. This is mostly due to their small
size and the lack of a proper resonance chamber to boost bass, resulting in a very curvy frequency
response and a lack of power.

There exists a wide range of passive amplifiers on the market to boost the sound generated by the
built-in speakers of mobile devices, also attempting to flatten their frequency response (see §1.4.1).
These passive amplifiers can be seen as resonators driven by the speaker. In this section, we present
various kinds of resonators that can be connected to the built-in speaker of mobile devices to amplify
and/or modify their sound.

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 107

Passive Amplifiers and Resonators

Mobile3D contains multiple passive amplifiers of various kinds that can be used to boost the
loudness of the built-in speaker of mobile devices (e.g., see Figure 4.3). Some of them were designed
to maximize their effect on the generated sound [59]. Their shape can vary greatly and will usually
be determined by the type of the instrument. For example, if the instrument requires the performer
to make fast movements, a small passive amplifier will be preferred to a large one, etc. Similarly, the
orientation of the output of the amplifier will often be determined by the way the performer holds
the instrument, etc. These are design decisions that are left up to the instrument designer.

3D printed musical instrument resonators (e.g., guitar body, etc.) can be seen as a special case of
passive amplifiers. Mobile3D contains a few examples of such resonators that can be driven by the
device’s built-in speakers. While they don’t offer any significant advantage over “standard” passive
amplifiers like the one presented in the previous paragraph, they are aesthetically interesting and
perfectly translate the idea of hybrid mobile instrument developed in §6.

Dynamic Resonators

Another way to use the signal generated by the built-in speakers of mobile devices is to modify it
using dynamic resonators. For example, in the instrument presented in Figure 4.6, the performer’s
hand can filter the generated sound to create a wah effect. This can be very expressive, especially
if the signal has a dense spectral content. This instrument is featured in the teaser video [4] of the
workshop presented in §4.4.

Figure 4.6: Hand Resonator for Mobile Device Built-In Speaker.

Similarly, the sound generated by the built-in speaker is sent to the mouth of the performer in

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 108

the instrument presented in Figure 4.7. The sound is therefore both modulated acoustically and
through the embedded synthesis and touch-screen. The same result can obviously be achieved by
directly applying the mouth of the performer to the speaker, but the augmentation presented in
Figure 4.7 increases the effect of the oral cavity on the sound through a passive wave guide.

Waveguide driving theoutput of the built-inspeaker to the mouthof the performer

Figure 4.7: Mouth Resonator for Mobile Device Built-In Speaker.

4.2.3 Motion Sensors

Most mobile devices have at least one kind of built-in motion sensor (e.g., accelerometer, gyroscope,
etc.). They are perfect to continuously control the parameters of sound synthesizer and have been
used as such since the beginning of mobile music (see §1.3.2).

Augmentations can be made to mobile devices to direct and optimize the use of this type of
sensor. This kind of augmentation can be classified in two main categories:

• augmentations to create specific kinds of movements (spin, swing, shake, etc.),

• augmentations related to how the device is held.

Figure 4.8 presents a “sound toy” where a mobile device can be spun like a top. This creates a
slight “Leslie effect”, increased by the passive amplifier. Additionally, the accelerometer and gyro-
scope data are used to control the synthesizer running on the device. This instrument is featured in
the teaser video [4] of the workshop presented in §4.4.

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 109

Mobile DevicePassive amplifier optimizing the Leslie effect

Hemisphere tospin the device
Figure 4.8: Mobile-Device-Based Top Creating a “Leslie” Effect When Spun.

Another example of motion-sensor-based augmentation is presented in Figure 4.13 and described
with more details in §4.4. It features a smart-phone mounted on a bike wheel [3] where, once again,
the gyroscope and accelerometer data are used to control the parameters of a synthesizer running
on the device. Similarly, a “rolling smart-phone” is presented in Figure 4.12 and described in §4.4.
Mobile3D contains a series of templates and functions to make this kind of augmentation.

Augmentations leveraging built-in sensors related to how the device is held are presented in more
detail in §4.3.

4.2.4 Other Sensors

Most mobile devices host built-in sensors that exceed the ones presented in the previous sections and
are not supported yet in Mobile3D. For example, built-in cameras can be used as very versatile
sensors, [132] and a wide range of passive augmentations could be applied to them to “customize”
their use for musical ends. We plan to support more sensors in Mobile3D in the future.

4.3 Holding Mobile Devices

Mobile devices were designed to be held in a specific way, mostly so that they can be used conveniently
both as a phone and to use the touch-screen (see §1.3.2). Passive augmentations can be designed to
hold mobile devices in different ways to help carry out specific musical gestures, better leveraging
the potential of the touch-screen and of built-in sensors.

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 110

More generally, this type of augmentation is targeted towards making mobile-device-based mu-
sical instruments more engaging and easier to play.

In this section, we give a brief overview of the different types of augmentations that can be made
with Mobile3D to hold mobile devices in different ways.

4.3.1 Wind Instrument Paradigm

One of the first attempts to hold a smart-phone as a wind instrument was Smule’s Ocarina (see
§1.3.2), where the screen interface was designed to be similar to a traditional ocarina. The idea
of holding a smart-phone as such is quite appealing since all fingers (beside the thumbs) of both
hands perfectly fit on the screen (thumbs can be placed on the other side of the device to hold it).
However, this position is impractical since at least one finger has to be on the screen in order to hold
the device securely. The simple augmentation presented in Figure 4.9 solves this problem by adding
“handles” on both sides of the device so that it can be held using the palm of the two hands, leaving
all fingers (including the thumbs) free to carry out any action. Several functions and templates are
available in Mobile3D to design these types of augmentations.

Laser cut handles

Figure 4.9: Smart-Phone Augmented to be Held as a Wind Instrument.

4.3.2 Holding the Device With One Hand

Mobile3D contains several functions and templates to hold mobile devices with one hand, leaving
at least four fingers available to perform on the touch-screen. This way to hold the device opens
up a wide range of options to fully take advantage of the built-in motion sensors and easily execute

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 111

free movements. Additionally, the performer can decide to use two devices in this case (one for each
hand).

The instrument presented in Figure 4.10 uses one of Mobile3D’s ring holders to hold the device
with only the thumb. Similarly, Figure 4.11 features an instrument held in one hand using a laser-cut
plastic handle mounted on the device.

Thumb Ring

Figure 4.10: Thumb-Held Mobile-Device-Based Musical Instrument (by Erin Meadows).

4.3.3 Other Holding Options

There are obviously many other options to hold mobile-devices to carry out specific musical gestures.
For example, one might hold the device in one hand and perform it with the other, etc. In any case,
we believe that Mobile3D provides enough options to cover the design needs for most musical
instruments.

4.4 More Examples and Evaluation

Mobile3D and its corresponding framework were evaluated through a series of two workshops during
which participants learned how to make basic musical smart-phone apps using faust2smartkeyb
(see §3.3) and how to use Mobile3D to design mobile device augmentations. They were free to
make any musical instrument or sound toy for their final project.

The first workshop (The Composed Instrument Workshop: Intersections of 3D Printing and
Digital Audio for Mobile Platforms) happened during the summer of 2016 at CCRMA [3, 2]. Some
of the instruments made by it participants can be seen in Figures 4.3, 4.12, 4.13, and 4.14.

The second workshop (Augmented Smartphone Workshop) happened in March 2017 at Aalborg
University in Copenhagen (Denmark). Some of the instruments made by its participants can be

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 112

Laser cut handle

Figure 4.11: Single-Hand-Held Musical Instrument Based Using a Laser-Cut Plastic Handle.

seen in Figures 4.15 and 4.16.
In only one week, participants mastered all these techniques and designed and implemented very

original instrument ideas. This helped us debug and improve Mobile3D with new objects and
features.

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 113

Embedded passive amplifier

Wheels

Figure 4.12: Rolling Mobile Phone With Phasing Effect (Instrument by Revital Hollander).

Figure 4.13: Mobile Device Mounted on a Bike Wheel (Instrument by Patricia Robinson).

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 114

Instrument by Mark Hertensteiner Instrument by Noa Hollander

Instrument by Chuck Cooper The Crew
Figure 4.14: Other Instruments from the 2016 Composed Instrument Workshop.

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 115

Figure 4.15: Instruments From the 2017 Copenhagen Augmented Smart-Phone Workshop (1).

CHAPTER 4. PASSIVELY AUGMENTING MOBILE DEVICES 116

Figure 4.16: Instruments From the 2017 Copenhagen Augmented Smart-Phone Workshop (2).

Chapter 5

Actively Augmenting Mobile Devices

With Sensors

“It’s easy to play any musical instrument: all you have to do is touch the right key at
the right time and the instrument will play itself.” (Johann Sebastian Bach)

Some of the limitations of mobile devices when used as musical instruments can be overstepped
by “augmenting” them with passive prosthetics (see §4). By being relatively non-invasive and
lightweight, they contribute to the overall coherence/unity of the instrument. However, their sim-
plicity can sometimes be a limitation as they remain tied to what built-in active elements of the
device (e.g., touchscreen, microphone, speaker, etc.) can offer. Inversely, active sensor augmenta-
tions can take any form and can be used to implement almost anything that mobile devices don’t
have. While their level of complexity can be more or less infinite, we encourage an incremental
approach where instrument designers should first take advantage of elements already available on
mobile devices, and then use active sensor augmentations parsimoniously to implement what they
could not have done otherwise.

In this section, we provide a framework and a method to make active sensor augmentations for
mobile devices. The special case of active acoustic augmentations is treated in §6.

Unlike passive augmentations, the scope of active sensor augmentations is huge and any musical
controller could probably fit in this category. Therefore, we will only consider the tools to carry out
this task and leave design or aesthetic considerations up to digital luthiers.

First, we present Nuance, an iPad-based instrument where a set of sensors are used to add force
sensitivity to the touchscreen of the device. It can be seen as a first step towards the framework
presented in the following sections. Next, we introduce different strategies to transmit sensor data
to mobile devices. We then use the conclusions from this study to build our active sensors augmen-
tation framework. Finally, we present a set of examples of musical instruments using active sensor

117

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 118

augmentations and that were designed in the frame of the 2017 Mobile Synth CCRMA Summer
Workshop.1

5.1 Nuance: Adding Force Detection to the iPad

Before generalizing the concept of active sensor augmentation for mobile devices, and in continuity
with the BladeAxe2 presented in §2.3, we worked on Nuance: an instrument sending sensors
data to an iPad. Nuance was designed before faust2smartkeyb (see §3.3), and its software
implementation presented in the corresponding SMC-16 paper [126]2 slightly differs from the one
introduced in this section. Nuance served as a prototype for some of the work on transmitting
sensors data to mobile devices presented in §5.2 which is why it is provided as an introduction to
the current chapter.

The lack of force sensitivity on touchscreens is a known issue in the world of mobile music (see
§1.3.2). It narrows the range of possible interactions, and makes performance with specific classes of
instruments such as percussion and plucked string instruments less intuitive. For example, striking
force must be substituted by some other dimension such as the y coordinate in a strike area.

Park et al. addressed this issue a few years ago and proposed a solution using the built-in
accelerometer of the device and a foam padding [146]. While this solution is very self-contained as
it uses only the built-in sensors of the device, it presents several limitations diminishing the range
of practical applications (e.g., no multi-touch support, sensitivity to table/support vibrations, no
automatic re-calibration, limited sampling rate, etc.).

Some of the most recent generations of devices such as the iPhone 6 provide basic multi-touch
force detection on the screen (“3D Touch”).3 This feature has already been exploited by some
companies such as ROLI with its Noise app (see §1.3.2) to create expressive musical instruments.
Unfortunately, this technology is not yet available on larger screen devices (tablets, etc.) that provide
a better interface to control certain type of instruments such as percussion [153]. Instead, tablet
manufacturers currently favor the use of force sensitive pencils4 5 that provide a simpler solution
to this problem. Also, the “3D Touch” technology of the iPhone 6 has some limitations. While it
can provide very accurate data in the case of a continuous touch event (“after-touch”), its usability
for deriving the velocity of a strike gesture on the screen is very limited. This makes it practically
unusable to control percussion or plucked string instruments where the attack is very sharp.

In this section, we introduce Nuance: a device adding high quality multi-touch low-latency force
detection to the iPad touch screen, fast and accurate enough to be suitable for deriving striking
velocity. Nuance is based on four force sensitive sensors placed on each corner at the back of

1https://ccrma.stanford.edu/~rmichon/mobileSynth/
2Some sections and figures of this paper were copied verbartim here.
3http://www.apple.com/iphone-6s/3d-touch/
4http://www.apple.com/apple-pencil/
5https://www.microsoft.com/surface/en-us/accessories/pen/

https://ccrma.stanford.edu/~rmichon/mobileSynth/
http://www.apple.com/iphone-6s/3d-touch/
http://www.apple.com/apple-pencil/
https://www.microsoft.com/surface/en-us/accessories/pen/

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 119

the device. It communicates with the iPad using its audio jack connector through a purely analog
system streaming the sensor data as an audio signal. This ensures a fast data rate (up to the audio
bandwidth of the iPad, nominally 20 kHz) as well as a high sample resolution (bit depth).

After describing the hardware implementation of Nuance, we demonstrate how it can be used
to design musical instruments. We then provide a series of examples, evaluate its performance and
discuss future applications and improvements.

5.1.1 Hardware

The case of Nuance is made out of wood (plywood and birch) and black laser cut acrylic (see
Figure 5.1). The current version was designed for the iPad Air 2 6 but it is also compatible with the
9.7 in iPad Pro. 7

Power Audio Out

iPad
Electronics

Jack in/out
Figure 5.1: Global View of Nuance.

An FSR (Force Sensitive Resistors)8 is placed under each corner of the iPad (see Figure 5.2) [73].
The FSRs are covered with a thin (1/4 in) piece of foam whose rigidity was chosen to offer a good
compromise between responsiveness and damping [153]. The foam is used to cushion the strikes of
the performer and also to give some slack to the iPad during continuous push gestures (after-touch).

6http://www.apple.com/ipad-air-2/
7http://www.apple.com/ipad-pro/
8The FSRs used for the device are Interlink Electronics FSR 400 : http://www.interlinkelectronics.com/

FSR400.php

http://www.apple.com/ipad-air-2/
http://www.apple.com/ipad-pro/
http://www.interlinkelectronics.com/FSR400.php
http://www.interlinkelectronics.com/FSR400.php

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 120

FSRs

Figure 5.2: Top View of Nuance Without the iPad.

The signals from the different FSRs is sent to the iPad using amplitude modulation (AM). The
use of this technique to send sensors data to mobile devices is further investigated in §5.2. Each
force signal controls the gain of its own analog oscillator. The oscillators are very simple based
on a 555 timer (see Figure 5.3). This kind of circuit doesn’t generate a pure sine wave but it is
straightforward to efficiently isolate each carrier wave during the demodulation process described in
§5.1.2 (reducing the dynamic range of the signal is not a problem since it is pretty large, thanks to
the audio ADC).

The frequency of each oscillator is different and is controlled by R1 and C1. Frequencies (2, 6, 10
and 14 kHz) are spread across the bandwidth of the line input of the iPad (assuming that the sampling
rate of the target app is at least 44.1 kHz). Since we’re not carrying an audio signal, and since the
sharpest attack we could achieve by tapping the screen was longer than 10ms (corresponding to a
bandwidth less than 100Hz), we don’t have to worry about sidebands. Moreover, the demodulation
technique used on the iPad (see §5.1.2) significantly reduces the risk of sidebands contaminating
neighboring signals.

The FSRs were calibrated to output their maximum value when a weight of approximately 400
grams is applied on the touchscreen. This was set empirically to provide the best feeling to our taste
but this value (that should remain reasonable to not damage the screen) can be easily adjusted by a
small potentiometer mounted on the circuit board. Since the iPad itself applies some weight to the
FSRs, the minimum value of the range is constantly adjusted on the software side (see §5.1.2).

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 121

The output of the different oscillators is mixed and sent to the iPad using the line input pin of
the audio jack input.

Figure 5.3: Circuit Diagram of One of the Simple Sine Oscillators Used in Nuance.

The system is powered with an external 5 V power supply and connects to the iPad using a 3.5
mm (1/8 inch) headset (four-pole) audio jack. The output signal is routed to a 1/4 inch stereo audio
jack mounted on the side of Nuance.

The circuits were chosen to be as simple as possible to reduce the cost of Nuance to less than
$30. Variations of the sine oscillators (stability of the frequency, purity of the sine wave, etc.) are
easily compensated on the software side.

5.1.2 Software

The amount of force applied to each FSR of Nuance is carried by different sine waves to the iPad
using its single audio analog input. Four band-pass filters isolate the signal of each sine wave (see
Figure 5.4). Their bandwidth is big enough to accommodate the variations of the frequencies of
the simple sine oscillators described in §5.1.1. The amplitude of the output signal of each filter is
extracted and corresponds to the force measured by each FSR of Nuance.

The software implementation of the different apps compatible with Nuance that are presented in
§5.1.3 is implemented using faust2smartkeyb (see §3.3). The force information extraction system
described in the previous paragraph is implemented as a single Faust function that is executed in
the same audio callback function as the synthesizer that it is controlling. In other words, the force
data from the FSRs are acquired and are controlling the synthesizer at the audio rate.

Touch events (including the (x, y) position on the screen) are compared with the data provided
by the FSRs to associate a force signal to a specific touch event on the screen (see Figure 5.4). If the
touch event was just initiated, the force is converted into a velocity proportional to the instantaneous

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 122

Nuance
Oscillator 1 Oscillator 2 Oscillator 3 Oscillator 4FSR 1 FSR 2 FSR 3 FSR 4

9v

+Input Jack
BPF 1 BPF 2 BPF 3 BPF 4Amplitude Tracking 1 Amplitude Tracking 2 Amplitude Tracking 3 Amplitude Tracking 4

TriangulationScreen TouchEvents
X PositionsY PositionsVelocitiesPressures Synth

Tablet

Audio Out
Multitouch

Figure 5.4: Overview of Nuance.

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 123

force at the beginning of the touch. If the touch event persists, then the force is converted into a
series of after-touch events.

As mentioned in §5.1.1, the iPad itself applies a certain amount of weight to the FSRs. Depending
on its position in the case or the level of inclination of the table where Nuance is installed, this value
can vary a little bit. To make sure that the range of the FSRs is always accurate, it is readjusted
when there are no fingers touching the screen. If there are several simultaneous active touches
(multi-touch) on the screen, a simple triangulation algorithm compares the force level at each FSR
with the (x, y) position of the touch on the screen to associate a velocity or an after-touch event to
it. Obviously, the more simultaneous touches on the screen, the harder it becomes for the system
to differentiate independent forces. We find that the system is very accurate in the case of two
simultaneous touches, but the force distribution tends to become more uniform if more touches are
engaged. However, we find that this is not an issue for many types of percussion and plucked-string
instrument control.

5.1.3 Examples

While it would be quite easy to write an app to use Nuance as a MIDI controller, we liked the idea
of creating standalone musical instruments taking full advantage of the possibilities offered by this
system (see §1.2). For this reason, the different apps that we created and that are compatible with
Nuance target specific instruments.

While Nuance would work well with a wide range of screen interfaces (piano keyboards, iso-
morphic keyboards, etc.), we mostly focused on percussion instruments so far. The different apps
that we created implement one or several drums represented by rectangular regions on the touch
screen. The app presented in Figure 5.5 has three different zones, each controlling a different drum.
Each offers a physical representation of the virtual instrument (striking on the edges sounds different
than striking at the middle, etc.). The drum synthesizers are all based on modal physical models
[5] which strengthens the link between the physical and virtual parts of the instrument, increasing
its overall coherence. The physical models were implemented using the Faust Physical Modeling
Toolkit (see §6).

The multi-touch capabilities of Nuance allow the performer to simultaneously strike two drums
with different velocities. The after-touch information can also be used to interact with the resonance
time (T60) of the virtual drums. This results in a highly expressive instrument.9

5.1.4 Evaluation/Discussion

The “most standard” way to connect an external music controller to the iPad is by using MIDI
through the lightening connector. While this solution works well for most basic applications (e.g., a

9https://ccrma.stanford.edu/~rmichon/nuance/ presents a series of demo videos of Nuance.

https://ccrma.stanford.edu/~rmichon/nuance/

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 124

Figure 5.5: Screenshot of One of the Percussion Apps Made With faust2smartkeyb and Com-
patible With Nuance.

MIDI keyboard triggering events in a synthesizer), the limited bandwidth and bit depth, as well as
the jitter in the latency of MIDI, can be problematic for applications requiring a high rate of data
and precise synchronization (see §5.2) [104].

The idea of using the line-input of the audio jack plug of mobile devices to send data to it has
already been exploited a lot. Various commercial products such as credit-card readers, like Square,
use this technique, but this idea has also been used by the DIY community to send sensor data. For
example, [182] is a simple modem that uses the audio jack connector of Android and iOS devices
to transmit digital data. Its main limitation is its very small bandwidth (30 bytes/sec). [193] uses
a different paradigm where the analog signals are multiplexed and sent one after the other.

Our approach described in the three previous sections is less versatile and more “low-tech” but
it allows for the streaming of the signals from four sensors to the iPad using the audio bandwidth.
The consistency and rate of the information remain constant, greatly simplifying its synchronization
with the sound synthesizer. It is also much cheaper and easier to build from scratch.

Its main disadvantage is that the demodulation technique (see §5.1.2) that it uses on the mobile
device to retrieve the sensor data is rather computationally expensive. However the extended power
of modern mobile devices compensates for this, and running the various band-pass filters, amplitude
trackers, and the triangulation function presented in Figure 5.4 only takes 4% of the resources of
the CPU on an iPad Air 2.

A more general limitation of our system is the fact that force can’t be accurately measured on
more than two independent simultaneous touches on the screen. We have not found this to be an
issue in musical-performance applications to date. Perhaps only a built-in technology, such as 3D

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 125

Touch, or a force sensitive glove can efficiently resolve this issue. The fact that the most recent
versions of iPhones address this problem leads us to think that larger devices such as the iPad
will follow this trend too in future models. As mentioned in the introduction, it seems that tablet
manufacturers prefer to settle for a force-sensitive pencil for now, which does not provide multi-touch
force. Also, while the technology used by Apple iPhone 6s is fully multi-touch, it is not as fast as
the method presented here, and it can’t be used for example to accurately detect the velocity of
striking gestures.

5.2 Transmitting Sensor Data to Mobile Devices

Despite the wide range of options and technologies available, transmitting sensor data to mobile
devices to control real-time sound synthesis can be a hard task. Finding a good balance between the
complexity of the system, good latency, portability, and universality can be hard. This section gives
a brief overview of selected techniques to send sensor data to mobile devices. They are evaluated in
the context of mobile device augmentation in order to provide the basis for our framework presented
in §5.3.

5.2.1 Digital Transmission

Hardware

Sending sensor data digitally to a mobile device will likely imply the use of a microcontroller.
This type of electronic component has been spread and generalized by the Arduino,10 that greatly
simplifies their use thanks to various high level hardware and software features (e.g., IDE11, high
level programming language, USB support, etc.).

Micro-computers from the “Arduino family” are usually powered through their USB port. While
many types of low-energy sensors can be powered directly by the microcontroller itself, sensors
requiring more power will generally require an external power supply. Therefore, lightweight aug-
mentations based on a microcontroller and a few sensors can be connected to mobile devices, that
are also used to provide power through their built-in battery. A wide range of simple standalone
musical instruments can be created using this approach.

Wired Transmission

There exists dozens of models of mobile devices made by different manufacturers. While they all offer
the possibility to connect USB devices to them, the format of the connectors used for this purpose
greatly varies between smart-phones/tablets, which tends to complexify the design of “universal”

10https://www.arduino.cc/
11Integrated Development Environment

https://www.arduino.cc/

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 126

guest devices/active sensor augmentations. Additionally, some operating systems such as iOS have
strict hardware and software requirements for external devices. For instance, the only standard
openly recognized and allowed by Apple for transmitting real-time data through USB is MIDI (see
Figure 5.6). While MIDI is well-established, extremely robust, and has been used for decades as a
protocol for transmitting musical data in real-time, it has some well-known limitations (e.g., sampling
rate, resolution/bit depth, etc.) that can be problematic in some cases.

Other proprietary/custom standards can be used, but external devices using them must be
approved by Apple, making their development out of reach for the DIY community.

To summarize, for a custom external device to work with most smart-phones and tablets, it will
have to use the MIDI standard and have replaceable USB-compatible connectors (e.g., lightening,
Micro-USB, etc.).

Turning microcontrollers into MIDI devices has been greatly simplified by the Teensy Board,12

which allows for the easily replacement of its USB serial driver by a USB MIDI one directly from its
programming interface (Teensyduino13). Previous techniques consisted of replacing the driver “by
hand” using a DFU programmer [51].

Wireless Transmission

An alternative, more generic solution to digitally transmit sensor data to mobile devices is to use
a wireless connection between the microcontroller and the mobile device (see Figure 5.6). The
two main technologies usable for this purpose and available on most mobile devices are WIFI and
Bluetooth. WIFI allows for the use of the OSC (Open Sound Control) standard, [204] which is widely
spread and is better than MIDI in many respects. On the other hand, MIDI can be transmitted over
bluetooth with relatively low latency and can be seen as “the standard way” to implement external
musical controllers on mobile devices.

However, both solutions greatly complexify the overall design of active sensor augmentations.
Indeed, bluetooth and WIFI transmitters can be expensive, take additional space, and are very
energy consuming, implying the use of powerful batteries also taking space, potentially impacting
the overall coherence of the instrument (see §1.1). To us, these disadvantages exceed the benefits
of using such technologies in the frame of this work, which is why we opted for a wired solution in
§5.3.

5.2.2 Analog Transmission

Analog transmission of sensors data can offer several advantages over digital transmission. Cost is
one of them since simple analog circuits can be designed to carry out this type of task, preventing
the use of a microcontroller which is an expensive component. For example, Nuance (see §5.1) uses

12https://www.pjrc.com/teensy/
13https://www.pjrc.com/teensy/teensyduino.html

https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/teensyduino.html

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 127

a series of cheap 555 timers to carry the signal of four force sensitive resistors (FSR) to an iPad (see
5.1.4).

When transmitted as an audio signal, sensor data can be sent directly through the microphone
input of the headphone jack present on most mobile devices (see Figure 5.6). Unlike digital USB
inputs, their format doesn’t vary between devices providing a generic way to connect to them.

Several techniques to “encode” sensor data as audio signals such as amplitude and frequency
modulation [116, 201, 135] or multiplexing [193] have been used in the context of mobile devices.
They all provide a relatively generic way to transmit data at a higher rate than MIDI and with a
better resolution.

Other analog transmission techniques consist of “hacking” some of the built-in sensors of the
mobile device such as the magnetometer. The MagGetz project [79] makes a good use of this
technique.

Finally, wireless analog transmission techniques could probably be used as well but they don’t
present any significant advantage over wired connections in the context of mobile device active sensor
augmentations.

Amplitude ModulationFrequency ModulationMultiplexing
Analog Audio (Through Audio Jack)

Magnetometer

Analog Transmission

Bluetooth MIDIOSC via WIFIWireless
USB MIDI

Serial ProprietaryUSB FormatsUSBDigital Transmission

Figure 5.6: Selected Real-Time Sensor Data Transmission Techniques for Active Sensor Mobile
Device Augmentations.

5.3 Active Sensors Augmentation Framework

In our view, mobile device augmentations should supplement existing built-in sensors (e.g., touch-
screen, motion sensors, etc.) and remain as lightweight and confined as possible. Indeed, there’s
often not much to add to a mobile device to turn it into a truly expressive musical instrument.
Nuance is a good example of that since it adds a whole new level of expressivity to the touchscreen,
simply by using a few sensors. On the other hand, unlike passive augmentations, active sensor

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 128

augmentations can be used to add an infinite number of features.
In this section, we introduce a framework for designing active sensor mobile device augmentations

supplementing sensors already available on the device. This allows us to keep our augmentations
lightweight and powered by the device, preserving the standalone aspect and partly the coherence
of the instrument.

To keep our augmentations simple, we propose to use a wired solution for transmitting sensor
data to the mobile device, which also allows for the augmentation to be powered. Augmentations
requiring an external power supply (e.g., battery) are discarded and are not considered in the frame
of this work.

MIDI is a standard universal way to transmit real-time musical (and non-musical) control data
to mobile devices, so we opted for this solution. Teensys such the Teensy 3.214 are micro-controllers
providing built-in USB MIDI support, making them particularly well suited to be used in our
framework.

Teensyduino (see §5.2.1) (Teensy’s IDE), comes with a high level library part of Bounce.h for
sending MIDI over USB. The code presented in Listing 5.1 demonstrates how to use this library to
send sensor values on a MIDI “Continuous Controller” (CC).

#include <Bounce.h>

void setup() {

}

void loop() {

int sensorValue = analogRead(A0);

int midiCC = 10; // must match the faust configuration

int midiValue = sensorValue*127/1024; // value between 0-127

int midiChannel = 0;

usbMIDI.sendControlChange(midiCC,midiValue,midiChannel); // send!

delay(30); // wait for 30ms

}

Listing 5.1: Simple Teensy Code Sending Sensor Data in MIDI Format Over USB.

Once uploaded to the microcontroller, the Teensy board can be connected via USB to any MIDI-
compatible mobile device (iOS and Android) to control selected parameters of a faust2smartkeyb
app (see §3.3). This will require the use of a USB adapter, depending on the type of USB plug
available on the device. MIDI is enabled by default in faust2smartkeyb apps and parameters in
the Faust code can be mapped to a specific MIDI CC by using a metadata (see §3.2.1):

14https://www.pjrc.com/store/teensy32.html

https://www.pjrc.com/store/teensy32.html

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 129

frequency = nentry("frequency[midi:ctrl 10]",1000,20,2000,0.01);

Here, the frequency parameter will be controlled by MIDI messages coming from MIDI CC
10 and mapped to the minimum (20Hz for MIDI CC 10 = 0) and maximum (2000Hz for MIDI CC
10 = 127) values defined in the nentry declaration. Therefore, if this parameter was controlling
the frequency of an oscillator and that the Teensy board running the code presented in Listing 5.1
was connected to the mobile device running the corresponding faust2smartkeyb app, the sensor
connected to the A0 pin of the Teensy would be able to control the frequency of the generated sound.

Other types of MIDI messages (e.g., sendNoteOn()) can be sent to a faust2smartkeyb app
using the same technique.

Most of the parameters controlled by elements on the touchscreen or by built-in sensors of
the apps presented in §3.4 could be substituted by external sensors or custom interfaces using the
technique described above.

5.4 Examples and Evaluation: CCRMA Mobile Synth Sum-

mer Workshop

The framework presented in §5.3 was evaluated within a two weeks workshop at CCRMA at the
end of June 2017. 15 It was done in continuity with the Faust Workshop taught the previous
years16 and the Composed Instrument Workshop presented in §4.4. During the first week (Mobile
App Development for Sound Synthesis and Processing in Faust), participants learned how to use
Faust through faust2smartkeyb and made a wide range of musical apps. During the second
week (3D Printing and Musical Interface Design for Smart-phone Augmentation), they designed
various passive (see §4) and active sensors augmentations using the framework presented in §5.3.
They were encouraged to first use elements available on the device (e.g., built-in sensors, touchscreen,
etc.) and then think about what was missing to their instrument to make it more expressive and
controllable.

This section presents selected works from students of the workshop.

5.4.1 Bouncy-Phone by Casey Kim

Casey Kim designed Bouncy-Phone, an instrument where a 3D printed spring is “sandwiched” be-
tween an iPhone and an acrylic plate hosting a set of photo-resistors (see Figure 5.7). The interface
on the touchscreen implements two parallel piano keyboards controlling the pitch of a monophonic
synthesizer. The instrument is played by blowing onto the built-in microphone, in a similar way
than Ocarina (see §1.3.2). The x axis of the accelerometer is mapped to the frequency of a lowpass

15https://ccrma.stanford.edu/~rmichon/mobileSynth/: this webpage contains more details about the
different instruments presented in the following subsections.

16https://ccrma.stanford.edu/~rmichon/faustWorkshops/2016/

https://ccrma.stanford.edu/~rmichon/mobileSynth/
https://ccrma.stanford.edu/~rmichon/faustWorkshops/2016/

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 130

filter applied to the generated sound. The spring is used to better control the position of the device
in space in order to finely tune the frequency of the filter. The shades created by the two hands of
the performer between the phone and the acrylic plate are used to control the parameters of various
audio effects.

Photoresistors
Spring

Figure 5.7: Bouncy-Phone by Casey Kim.

5.4.2 Something Else by Edmond Howser

Edmond Howser designed Something Else, an instrument running a set of virtual strings based
on physical models from the Faust Physical Modeling Library (see §6.2). The touchscreen of an
iPhone can be used to trigger sound excitations of different pitches. A set of three photoresistors
were placed in 3D printed cavities (see Figure 5.8) that can be covered by the fingers of the performer
to progressively block the light, allowing for a precise control of the parameters associated to them.
These sensors were mapped to the parameters of a set of audio effects applied to the sounds generated
by the string physical models. The instrument is meant to be held as a trumpet with three fingers
on top of it (one per photoresistor) and fingers from the other hand on the side, on the touchscreen.

5.4.3 Mobile Hang by Marit Brademann

Mobile Hang is an instrument based on an iPhone designed by Marit Brademann. A 3D printed
prosthetic is mounted on the back of the mobile device (see Figure 5.9). It hosts a Teensy board
as well as a set of force sensitive resistors that can be used to trigger a wide range of percussion
sounds based on modal physical models of the Faust Physical Modeling Library (see §6.2) with
different velocities. A large hole placed in the back of the tapping surface allows the performer to
hold the instrument with the thumb of his right hand. The left hand is then free to interact with the

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 131

Photoresistors

Figure 5.8: Something Else by Edmond Howser.

different (x, y) controllers on the touchscreen controlling the parameters of various effects applied to
the generated sounds. Mobile Hang also takes advantage of the built-in accelerometer of the device
to control additional parameters.

CHAPTER 5. ACTIVELY AUGMENTING MOBILE DEVICES WITH SENSORS 132

Force Sensitive Resistors

Figure 5.9: Mobile Hang by Marit Brademann.

Chapter 6

Developing the Hybrid Mobile

Instrument

“There are no hard distinctions between what is real and what is unreal, nor between
what is true and what is false. A thing is not necessarily either true or false; it can be
both true and false.” (Harold Pinter)

In a world where everything tends to become virtual, musical instruments are no exception.
Virtual/digital instruments present a wide range of advantages over acoustic ones (see §1.1) and
are broadly used nowadays. Physical-model-based virtual instruments (see §1.5) constitute a special
branch of this family by being tied to the real/physical world. Expectations for “physically informed”
virtual instruments are usually greater than for other types of instruments of this family, probably
because of our ability to precisely analyze and process physical phenomenons.

Current technologies allow one to blur the boundary between the physical/acoustical and the
virtual/digital world. Transforming a physical object into its virtual approximation can be done
easily using various techniques (see §1.5). On the other hand, recent progress in digital fabrication,
with 3D printing in particular (see §1.6), allows us to materialize 3D virtual objects. Even though
3D printed acoustic instruments such as Scott Summit’s guitar (see §1.6.1) don’t compete yet with
“traditionally made” ones, their quality keeps increasing and they remain perfectly usable.

This chapter generalizes some of the concepts introduced by instruments presented in §2.1, §2.2,
and §2.3, where sound excitations made by physical objects are used to drive physical-model-based
virtual elements. It allows instrument designers to arbitrarily choose the nature (physical or virtual)
of the different parts of their creations.

This chapter introduces a series of tools completing the framework presented in this thesis to
approach musical instrument design in a multimodal way where physical parts can be “virtualized”
and vice versa. First, we give an overview of our framework to design mobile hybrid instruments.

133

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 134

Then we introduce the Faust Physical Modeling Library, “the core” of our framework, that can be
used to implement a wide range of physical models of musical instruments to be run on a mobile
device (e.g., using faust2smartkeyb). Finally, mesh2faust, a tool to generate Faust physical
models using 3D objects is presented.

6.1 Hybrid Instrument Framework Overview

6.1.1 From Physical to Virtual

In §1.5, we gave an overview of different physical modeling techniques that can be used to make
virtual versions of physical objects designed to generate sound (i.e., musical instruments). The
framework presented in this chapter is a bit more limiting and focuses on specific modeling techniques
that are more flexible, computationally cheap, and easy to use in the context of hybrid instrument
design.

Various linearizable acoustical physical objects can be easily turned into model physical mod-
els (see §1.5.1) using their impulse response [5]. Pierre-Amaury Grumiaux et al. implemented
ir2faust [70], a command-line tool taking an impulse response in audio format and generating
the corresponding Faust physical model compatible with the Faust Physical Modeling Library
presented in §6.2. This technique is commonly used to make signal models of musical instrument
parts (e.g., acoustic resonators such as violin and guitar bodies, etc.).

Modal physical models can also be generated by carrying out a finite element analysis (FEM) on
a 3D volumetric mesh. Meshes can be made “from scratch” or using a 3D scanner, allowing musical
instrument designers to make virtual parts using a CAD model. In §6.3, we introduce mesh2faust,
a tool to generate Faust modal physical models from 3D volumetric meshes. While this technique
is more flexible and allows us to model elements “from scratch,” generated models are usually not as
accurate as the one deduced from the impulse response of a physical object that faithfully reproduce
its harmonic content.

Even though it is tempting to model an instrument in its whole using its complete graphical
representation, better results are usually obtained using a modular approach where each part of the
instrument (e.g., strings, bridge, body, etc.) are modeled as single entities. The Faust Physical
Modeling Library introduced in §6.2 implements a wide range of ready-to-use musical instrument
parts. Missing elements can then be easily created using mesh2faust or ir2faust. Various
examples of such models are presented in §6.2.2 and §6.3.5.

6.1.2 From Virtual to Physical

§1.6 gives an overview of various digital fabrication techniques, with 3D printing in particular,
that can be used to materialize virtual representation of musical instrument parts under certain

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 135

conditions. In other words, most elements provided to mesh2faust (see §6.3) can be printed and
turned into physical objects.

6.1.3 Connecting Virtual and Physical Elements

Standard hardware for digitizing mechanical acoustic waves and vice versa can be used to connect the
physical and virtual elements of a hybrid instrument (see Figure 6.1). Piezos (contact microphones)
can capture mechanical waves on solid surfaces (e.g., guitar body, string, etc.) and microphones
mechanical air waves (e.g., in a tube, etc.). Captured signals can be digitized using an analog to
digital converter (ADC). Inversely, digital audio signals can be converted to analog signals using
a digital to analog converter (DAC) and then to mechanical waves with a transducer (for solid
surfaces) or a speaker (for the air).

In some cases, a unidirectional connection is sufficient as waves travel in only one direction and
are not (or almost not) reflected. This is the case of the BladeAxe instrument series presented in
§2.2 and §2.3 where sound excitations (i.e., plucks) are picked up using piezos and transmitted to
virtual strings. This type of system remains simple and works relatively well as the latency of the
DAC or the ADC doesn’t impact the characteristics the generated sound.

On the other hand, a bidirectional connection (see §6.2.1) might be necessary in other cases.
Indeed, reflection waves play a crucial role in the production of sound in some musical instruments
such as woodwinds. For examples, connecting a physical clarinet mouthpiece to a virtual bore (see
§E) will require the use of a bidirectional connection in order for the frequency of vibration of the reed
to be coupled to the tube it is connected to. This type of connection extends beyond the instrument
to the performer that constantly adjusts its various parameters in function of the generated sound
[42]. However, implementing this type of system can be very challenging (see §E) as the DAC and
the ADC will add latency, which in the case of the previous example will artificially increase the
length of the virtual bore. Thus, using low latency DACs and ADCs is crucial when implementing
this type of systems sometimes involving the use of active control techniques [61, 115, 114]. §E
presents an example of such a hybrid instrument.

More generally, the use of high-end components with a flat frequency response is very important
when implementing any kind of hybrid instruments. Also, hardware can become very invasive in
some cases, and it is the musical instrument designer’s responsibility to find the right between all
these parameters.

6.1.4 Adapting This Framework to Mobile Devices

Beyond this theoretical modularity (keeping in mind that audio latency can be a limiting factor in
some cases) where any part of mobile hybrid instruments can either be physical or virtual, some
design “templates” are more efficient than others. Here, we give some guidelines/rules to restrain
the scope of our framework to optimize its results when making mobile hybrid instruments.

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 136

Bidirectional Connection
ADCPhysicalElement Piezo/MicrophoneTransducer/Speaker DAC VirtualElement

Figure 6.1: Bidirectional Connection Between Virtual and Physical Elements of a Hybrid Instrument.

In the context of augmented mobile instruments where standalone aspects and lightness are
key factors, the number of physical/acoustical elements of hybrid instruments must be scaled down
compared to what is possible with a desktop-based system. Indeed, transducers are large and heavy
components requiring the use of an amplifier, which itself needs a large power source other than the
mobile device battery, etc. Similarly, multichannel ADCs and DACs can take a fair amount of space
and will likely need to be powered with an external battery/power supply.

Even though applications generated with faust2smartkeyb (see §3.3) are fully compatible
with external USB ADC/DACs, we believe that restraining hybrid mobile instruments to their
built-in ADC/DACs helps preserve their compactness and playability.

Beyond the aesthetic and philosophical implications of hybrid instruments (which are of great
interest but are not the object of this thesis), their practical goal is to leverage the benefits of physical
and virtual elements to combine them. In practice, the digital world is more flexible and allows us
to model/approximate many physical elements. However, even with advanced sensor technologies,
it often fails to capture the intimacy (see §1.1) between a performer and an acoustic instrument
allowing us to directly interact with its sound generation unit (e.g., plucked strings, hand drum,
etc.) [6].

Thus, a key factor in the success of hybrid mobile instruments lies in the use of a physical/acous-
tical element as the direct interface for the performer, enabling passive haptic feedback and taking
advantage of the randomness and unpredictability of acoustical elements (see §1.2). In other words,
even though it is possible to combine any acoustical element with any digital one, we encourage
instrument designers to use acoustical excitations to drive virtual elements (see Figure 6.2), imple-
menting the concept of “acoustically driven hybrid instruments” presented in §1.2. While the single
analog input available on most mobile devices allows for the connection of one acoustical element,
having access to more independent analog inputs would significantly expend the scope of the type
of instruments implementable with our framework. This remains one of its main limitation.

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 137

Physical Element Piezo ADC Virtual Element(s)(Physical Model(s)) DAC Audio OutAugmented Mobile Device
Figure 6.2: “Typical” Acoustically Driven Mobile Hybrid Instrument Model.

6.2 Faust Physical Modeling Library

Faust is particularly well suited for implementing digital waveguide and modal physical models (see
§1.5.3). While the Faust-STK presented in §A offers a diverse collection of physical models, it is
just a “translation”/reimplementation (with some new models) of the original STK [43] in Faust.
Even though Faust-STK models share many functions through the instrument.lib library,
they are still implemented as standalone objects, and virtual instrument parts can’t be reused.

In this section, we introduce the Faust Physical Modeling Library: physmodels.lib,1 an
environment to create physical models of musical instruments in a modular way. Low and high level
elements can be combined to implement existing or completely novel instruments.

6.2.1 Bidirectional Block-Diagram Algebra

In the physical/acoustical world, waves propagate in multiple dimensions and directions across the
different parts of musical instruments. Thus, coupling between the constituting elements of an
instrument sometimes plays an important role in its general acoustical behavior (see §6.1.3 and §E).
Coupling might be limited and even neglected when designing models of some instruments such as
the electric guitar where energy is transmitted from the string to the pickup in a unidirectional way
[176]. On the other hand, coupling is crucial for other types of instruments such as woodwinds (e.g.,
the clarinet), where the frequency of vibration of the reed(s) is determined by the length of the tube
it is connected to (see §E).

Coupling can be implemented by creating bidirectional connections between the different elements
of a model. The block-diagram algebra of Faust allows us to connect blocks in a unidirectional way
(from left to right) and feedback signals (from right to left) can be implemented using the tilde (~)
diagram composition operation:

process = (A : B) ~ (C : D) ;

where A, B, C, and D are hypothetical functions with a single argument and a single output. The
resulting Faust-generated block diagram can be seen in Figure 6.3.

In this case, the D/A and the C/B couples can be seen as bidirectional blocks/functions that
could implement some musical instrument part. However, the Faust semantics doesn’t allow them

1physmodels.lib is now a standard library and is part of the Faust distribution.

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 138

A B

CD

process

Figure 6.3: Bidirectional Construction in Faust Using the Tilde Diagram Composition Operation.

to be specified as such from the code, preventing the implementation of “bidirectional functions.”
Since this feature is required to create a library of physical modeling elements, we had to implement
it.

Bidirectional blocks in the Faust Physical Modeling Library all have three inputs and outputs.
Thus, an empty block can be expressed as:

emptyBlock = _,_,_;

The first input and output correspond to left-going waves (e.g., C and D in Figure 6.3), the second
input and output to right-going waves (e.g., A and B in Figure 6.3), and the third input and output
can be used to carry any signal to the end of the algorithm. As we’ll see in §6.2.2, this can be useful
when picking up the sound at the middle of a virtual string, for example.

Bidirectional blocks are connected to each other using the chain primitive which is part of
physmodels.lib. For example, an open waveguide (no terminations) expressed as:

waveguide(nMax,n) = par(i,2,de.fdelay4(nMax,n)),_;

where nMax is the maximum length of the waveguide and n its current length, could be connected
to our emptyBlock:

foo = chain(emptyBlock : waveguide(256,n) : emptyBlock) ;

Note the use of fdelay4 in waveguide, which is a fourth order fractional delay line [1, 189].
The Faust compiler is not able yet to generate the block diagram corresponding to the previous

expression in an organized bidirectional way (see §6.4). However, a “hand-made” diagram can be
seen in Figure 6.4.

The placement of elements in a chain matters and corresponds to their order in the physical/a-
coustical world. For example, for a set of hypothetical functions implementing the different parts of
a violin, we could write:

violin = chain(nuts : string : bridge : body);

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 139

emptyBlock waveguide(256,g) emptyBlock
RightGoingWaves

LeftGoingWavesOutput
Figure 6.4: Bidirectional Construction in Faust Using the chain Primitive.

The main limitation of this system is that it introduces a one sample delay in both directions for
each block in the chain due to the internal use of ~ [67]. This has to be taken into account when
implementing certain types of elements such as a string or a tube.

Terminations can be added on both sides of a chain using lTermination(A,B) for a left-side
termination and rTerminations(B,C) for a right-side termination where B can be any bidi-
rectional block, including a chain, and A and C are functions that can be put between left and
right-going signals (see Figure 6.5).

lTermination(A,B)

A
B

C
B

rTermination(B,C)

Figure 6.5: lTermination(A,B) and rTermination(B,C) in the Faust Physical Modeling
Library.

A signal x can be fed anywhere in a chain by using the in(x) primitive. Similarly, left and
right-going waves can be summed and extracted from a chain using the out primitive (see Code
Listing 6.1).

Finally, a chain of blocks A can be “terminated” using endChain(A) which essentially removes
the three inputs and the first two outputs of A.

Assembling a simple waveguide string model with “ideal” rigid terminations is simple using this
framework:

string(length,pluckPosition,excitation) = endChain(wg)

with{

maxStringLength = 3; // in meters

lengthTuning = 0.08; // adjusted "by hand"

tunedLength = length-lengthTuning;

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 140

nUp = tunedLength*pluckPosition; // upper string segment length

nDown = tunedLength*(1-pluckPosition); // lower string segment length

lTerm = lTermination(*(-1),basicBlock); // phase inversion

rTerm = rTermination(basicBlock,*(-1)); // phase inversion

stringSegment(maxLength,length) = waveguide(nMax,n)

with{

nMax = maxLength : l2s; // meters to samples

n = length : l2s/2; // meters to samples

};

wg = chain(lTerm : stringSegment(maxStringLength,nUp) :

in(excitation) : out : stringSegment(maxStringLength,nDown) :

rTerm); // waveguide chain

};

Listing 6.1: “Ideal” String Model With Rigid Terminations.

In this case, since in and out are placed next to each other in the chain, the position of
excitation and the position of the pickup are the same as well.

6.2.2 Assembling High Level Parts: Violin Example

The Faust Physical Modeling Library contains a wide range of ready-to-use instrument parts and
pre-assembled models. An overview of the content of the library is provided in §C and is also
available in the Faust libraries documentation [1]. Detailing the implementation of each function of
the library would be interesting, however this section focuses on one of its models: violinModel
(see Code Listing 6.2) which implements a simple bowed string connected to a body through a
bridge.

violinModel(stringLength,bowPressure,bowVelocity,bowPosition) =

endChain(modelChain)

with{

stringTuning = 0.08;

stringL = stringLength-stringTuning;

modelChain = chain(

violinNuts :

violinBowedString(stringL,bowPressure,bowVelocity,bowPosition) :

violinBridge : violinBody : out

);

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 141

};

Listing 6.2: violinModel: a Simple Violin Physical Model From the Faust Physical Modeling
Library.

violinModel assembles various high-level functions implementing violin parts. violinNuts is
a termination applying a light low-pass filter on the reflected signal. violinBowedString is made
out of two open string segments allowing us to choose the bowing position. The bow nonlinearity
is implemented using a table. violinBridge implements the “right termination” as well as the
reflectance and the transmittance filters [177]. Finally, violinBody is a simple violin body modal
model.

In addition to its various models and parts, the Faust Physical Modeling Library also implements
a series of ready-to-use models hosting their own user interface (see §C). The corresponding functions
end with the _ui suffix. For example:

process = pm.violin_ui;

is a complete Faust program adding a simple user interface to control the violin model presented
in Code Listing 6.2.

While [...]_ui functions associate continuous UI elements (e.g., knobs, sliders, etc.) to the
parameters of a model, functions ending with the _ui_midi prefix automatically format the pa-
rameters linked the Faust MIDI parameters (i.e., frequency, gain, and note-on/off) using envelope
generators. Thus, such functions are ready to be controlled by a MIDI keyboard.

Nonlinear behaviors play an important role in some instruments (e.g., gongs, cymbals, etc.).
While waveguide models and modal synthesis are naturally linear, nonlinearities can be introduced
using nonlinear allpass ladder filters [178]. allpassNL implements such a filter in the Faust

Physical Modeling Library.
Some of the physical models of the Faust-STK (see §A) were ported to the Faust Physical

Modeling Library and are available through various functions summarized in Table 6.1.

Faust-STK Model Corresponding FPML Functions
bowed.dsp violin / violin_ui / violin_ui_midi
brass.dsp brassModel / brass_ui / brass_ui_midi
clarinet.dsp clarinetModel / clarinet_ui / clarinet_ui_midi
fluteStk.dsp fluteModel / flute_ui / flute_ui_midi

Table 6.1: Faust-STK Models and Their Corresponding Function Re-Implementations in the Faust
Physical Modeling Library.

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 142

6.3 mesh2faust: a Faust Modal Physical Model Generator

While a wide range of models of existing or novel instruments can be built using any of the functions
implementing high-level musical instrument parts in the Faust Physical Modeling Library (e.g.,
strings, tubes, bow, bodies, bridges, mouthpieces, etc.), being able to use new custom parts is
important as well. We believe that the best way to specify an object to model is through its 3D
graphical representation (see §1.5.2).

In this section, we present mesh2faust, [121]2 an open-source modal physical model generator
for the Faust programming language. mesh2faust takes a volumetric mesh of a 3D object as its
main argument, carries out a finite element analysis, and generates the corresponding Faust modal
physical model. A wide range of parameters can be configured to fine-tune the analysis as well as
the behavior of the generated object.

Models generated by mesh2faust can be easily integrated to larger systems implemented with
the Faust Physical Modeling Library (see §6.2). For example, a waveguide bowed string could be
connected to a violin bridge and body modeled with mesh2faust, etc. While this system doesn’t
allow us to model “anything” and has a few limitations (e.g., nonlinearities are ignored, “air modes”
are not modeled, etc.), it remains a simple way to generate versatile models and instrument parts.

First, we present a brief review of the theory behind finite-element and modal synthesis. Next,
we describe the implementation of mesh2faust and present a complete open-source framework to
model 3D objects and turn them into physical models of musical instruments.

6.3.1 Theory: FEM

The Finite Element Method (FEM) is a frequently used technique for modeling the dynamic de-
formation of an object and synthesizing the sound emitted by the object after an excitation. The
method consists of meshing the object in small elements defined by several nodes (depending on the
desired element type), and then solving the equations of motion for each of the nodes.
The linear deformation equation with no damping can be written as follows:

M ẍ(t) + K x(t) = f(t) (6.1)

where x(t) ∈ R3n corresponds to the vector of displacements at all the nodes, and M and K repre-
sent respectively the mass and stiffness matrices determined by the object properties.
A first attempt to solve Equation 6.1 is to assume that the solutions of the corresponding homo-
geneous equation (f(t) = 0) are of the form ui(t) = Uie

jωit where Ui ∈ R3n and ωi ∈ R. The
substitution of those potential solutions into the homogeneous equation of Equation 6.1 defines the

2mesh2faust has been introduced at the ICMC-17 conference. Some sections and figures of this paper were
copied verbatim here.

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 143

commonly called generalized eigenvalue problem:

KU = ΛMU (6.2)

where Λ is a diagonal matrix containing the eigenvalues λi = ω2
i of Equation 6.1, and U is the modal

matrix containing the eigenvectors Ui of Equation 6.1. By solving this problem, both eigenvalues
and eigenvectors of the system will be obtained.
Now, the system in Equation 6.1 can be decoupled by using the transformation x = Uq and Equa-
tion 6.1 can be rewritten as

q̈ + Λq = UTf . (6.3)

Thus, the solutions of the decoupled homogeneous modal form q̈ + Λq = 0 can be implemented
using a parallel bank of modes of the form

qi = ai sin(2πfi + θi), (6.4)

where ai is the excited amplitude of the ith mode, fi is its frequency, and θi its initial phase. The
excitation force f(t) is taken to be an impulse at time t = 0, and our simulation will start at
time 0. To maximize the initial attack without creating an amplitude discontinuity at time 0, we
choose our initial phases as θi = 0. The excited mode amplitudes ai depend on the location of the
object excitation, and the frequency of the ith mode depends on the object geometry and material
properties according to

fi =
1

2π

√
λi , (6.5)

where λi denotes the ith eigenvalue obtained from solving Equation 6.2.
Since the damping matrix was omitted in the above formulation, the modes in Equation 6.4 are

missing an important factor for sound synthesis which is the exponential decay. Exponential decays
have not been estimated by FEM, as will be explained in the following section.

6.3.2 Faust Modal Physical Model

Modal synthesis [5] consists of implementing each mode of a linear system as an exponentially
decaying sine wave (see §1.5). Each mode can then be configured with its frequency, gain, and
resonance duration (T60). Sine waves with an exponential decay are typically implemented using
a sine wave oscillator with an exponential envelope or with a resonant bandpass filter [177]. The
second option offers more flexibility since any signal can be fed into the model to excite it. This
feature is important to be able to create modules compatible with FPML, which is why modal
physical models generated by mesh2faust use this approach.

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 144

Our mode filters are implemented as a biquad section having transfer function

H(z) = g
1− z−2

1 + α1z−1 + α2z−2
(6.6)

with

α1 = −2τ cosω

α2 = τ2

ω =
2πf

fs

τ = 0.001
1

t60

having the following parameters:

• g: the mode gain

• f : the mode frequency

• t60: the mode T60

The constrained form of the transfer-function numerator 1 − z−2 = (1 + z−1)(1 − z−1) enforces a
zero of transmission at both DC and half the sampling rate, thereby giving a bandpass characteristic
appropriate for a resonant mode. The denominator parameters similarly enforce a complex-conjugate
pole pair with angles ±ω and radius τ .

The corresponding Faust function (modeFilter) is used to implement our Faust “modal
model” which takes the position of excitation and the excitation signal as its two arguments:

modalModel(exPos) = _ <: par(i,nModes,modeFilter(modesFreqs(i),modesT60s

(i),modesGains(exPos,i))) :> /(nModes)

The Faust-generated3 block diagram associated with this function can be seen in Figure 6.6.
modesFreqs(i), modesT60s(i), and modesGains(exPos,i) are arrays that are formatted
by mesh2faust (see §6.3.3). This model is compatible with all the decoupled excitation functions
of the Faust Physical Modeling Library such as hammer, pluck, impulse, etc. (see §6.2).

6.3.3 mesh2faust

mesh2faust is implemented in C++ and works as a UNIX command line application taking a
volumetric mesh as its main argument and outputting a Faust modal physical model. Various
parameters can be configured using a wide range of flags that are presented in this section.4

3This diagram was generated using the faust2svg tool.
4A complete list of the mesh2faust options is available in its online documentation: https://github.com/

grame-cncm/faust/blob/master-dev/tools/physicalModeling/mesh2faust/README.md

https://github.com/grame-cncm/faust/blob/master-dev/tools/physicalModeling/mesh2faust/README.md
https://github.com/grame-cncm/faust/blob/master-dev/tools/physicalModeling/mesh2faust/README.md

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 145

modeFilter(0)

modeFilter(1)

modeFilter(2)

3

nModes

/

modalModel(ne...(20)(1)(2.5f)

(...)

Figure 6.6: Block Diagram of a Faust Modal Model Implementing Three Modes.

mesh2faust relies on the Vega FEM Library5 [62] to carry out the finite element analysis
needed to compute mode parameters. The provided volumetric mesh must be saved as an “object
file” (.obj) and its dimensions should be in meters. The volumetric mesh must first be converted
into a 3D tetrahedral mesh (see Figure 6.7). This is easily done by Vega which implements its
own tetrahedral mesher [170]. Material properties (Young Modulus in N/m2, Poisson’s Ratio, and
Density in kg/m3) are applied to the model during this step and can be configured by the user using
the --material flag.

Next, the corresponding mass and stiffness matrices are generated and fed to the Vega eigen
solver. The number of modes to be computed during this step can be configured by the user using
the --nfemmodes flag and must be smaller than the number of vertices in the volumetric mesh.
The result of this operation is a list of eigenvalues and eigenvectors that are ordered linearly starting
from the lowest mode.

As mentioned in §6.3.1, the modes frequencies can be easily calculated from eigenvalues (see
Equation 6.5), and the mode gains can be computed from the matrix of eigenvectors and the exci-
tation force.

Before the mode gains and frequencies are integrated to the Faust physical model, they are
selected based on a series of user-defined parameters:

• --nsynthmodes: number of modes to synthesize

• --minmode: lowest mode frequency

• --maxmode: highest mode frequency

• --cb: mode selection by critical bands

• --expos: list of “excitable” vertices
5http://run.usc.edu/vega/

http://run.usc.edu/vega/

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 146

• --lmexpos: number of excitation position

--minmode and --maxmode allow us to define the frequency range of the modes to synthesize.
If the number of modes within this range is smaller than --nsynthmodes, this parameter will be
adapted accordingly. Note that --nsynthmodes can be different than --nfemmodes since some
modes might be discarded at the bottom of the spectrum depending on the value of --minmode.

If the number of modes in the range defined by --minmode and --maxmode is greater than
--nsynthmodes, synthesized modes will be selected by frequency, starting from the lowest mode.
--cb allows us to change this behavior by selecting modes by critical bands. In this case, the
frequency range defined by --minmode and --maxmode will be split into --nsynthmodes critical
bands and the loudest mode for each of them will be selected. This feature is very useful if the model
has lots of modes.

By default, the number of excitation positions in the generated model is the same as the number
of vertices in the provided volumetric mesh. If this mesh has a high density, the amount of data to
integrate to the model might become a problem. For example, for a mesh with 3E4 vertices and 200
modes to synthesize, the modes gains matrix will have a size of 3E4x200 which corresponds to 6E6
floating point values to be hard-coded in the Faust physical model source code! Thus, it might be
helpful to optimize the model by limiting its number of excitation positions by using --lmexpos
. In that case, positions are “randomly” selected, however, specific vertices can be selected using
--expos. Vertex IDs can be easily retrieved using a mesh visualizer such as MeshLab6 (see §6.3.4).

After this, the resulting Faust modal physical model (see §6.3.2) is generated and placed in a
Faust library file (.lib).

Currently, mesh2faust doesn’t compute the damping matrix of the system. Thus, while mode
T60s cannot be estimated, they can be optionally empirically computed as a function of the frequency
and the gain of the modes relatively to the fundamental. This solution is temporary and we hope
to add damping matrix support to our system in the future.

6.3.4 Complete Open Source Solution to Finite Element Analysis

CAD and FEM tools are widely used in industry for different types of applications. Most of these
tools are proprietary and their cost is often prohibitive for personal applications. In this section, we
briefly describe a completely open-source (OS) framework/tool chain allowing us to quickly design
3D models from scratch and turn them into Faust physical models using mesh2faust.

OpenSCAD is an open-source CAD program in which shapes are specified using a high-level
functional programming language (see §4.1). While it allows us to design complex 3D objects by
combining or differentiating simple 3D elements (e.g., cubes, spheres, cylinders, etc.), it can also
linearly or rotationally extrude 2D shapes specified as a polygon (expressed as a set of 2D Cartesian

6http://www.meshlab.net/

http://www.meshlab.net/

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 147

Volumetric Mesh (.obj)

Tetrahedral Mesh
Eigen Solver

Faust Physical Model (.lib)
Faust Model Formatting

Mode Selection
Modes Gains Matrix Modes Frequencies

Eigenvectors Eigenvalues

Mass Matrix Stiffness Matrix
Vega FEMmesh2faust

Material Properties Model Parameters

Figure 6.7: Overview of the mesh2faust Implementation.

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 148

coordinates). Thus, mesh2faust comes with a modified version of Daniel Newman’s Inkscape to
OpenSCAD converter7 allowing us to export Inkscape8 2D paths to OpenSCAD. This is very useful
to create more complex 3D shapes (see Figure 6.8) such as the one presented in §6.3.5. Various
parameters such as the number of points (resolution) in the generated polygon can be configured,
etc. Complex 3D Shapes2D Drawing(Inkscape) Inkscape to OpenSCADConverter Extrusion(OpenSCAD)

Mesh Refinement(MeshLab)Basic 3D Object(OpenSCAD)Simple 3D Shapes mesh2faustFaust Physical Model
FEM and ModelParameters

Figure 6.8: Open Source Framework to Make Faust Modal Physical Models From Scratch.

6.3.5 Example: Marimba Physical Model Using FPML and mesh2faust

This section demonstrates how a simple marimba physical model can be made using mesh2faust
and FPML.9 The idea is to use a 3D CAD model of a marimba bar, generate the corresponding
modal model, and then connect it to a tube model implemented in FPML.

A simple marimba bar 3D model was made by extruding a marimba bar cross section (see
Figure 6.9) using the Inkscape to OpenSCAD tool presented in §6.3.4. The resulting CAD model
was then turned into a volumetric mesh by importing it to MeshLab and by uniformly re-sampling it
to have approximately 4500 vertices (more details about this type of operation are provided in §B).
The mesh produced during this step (marimbaBar.obj in the following code listing) was processed
by mesh2faust using the following command:

mesh2faust --infile marimbaBar.obj --nsynthmodes 50 --nfemmodes 200

--maxmode 15000 --expos 2831 3208 3624 3975 4403 --freqcontrol

--material 1.3E9 0.33 720 --name marimbaBarModel

The material parameters are that of rosewood which is traditionally used to make marimba bars.
The number of modes is limited to 50 and various excitation positions were selected to be uniformly
spaced across the horizontal axis of the bar. frequency control mode is activated to be able

7http://www.thingiverse.com/thing:25036/
8https://inkscape.org/
9An extended version of this example with more technical details is also available here: https://ccrma.

stanford.edu/~rmichon/faustTutorials/#making-custom-elements-using-mesh2faust

http://www.thingiverse.com/thing:25036/
https://inkscape.org/
https://ccrma.stanford.edu/~rmichon/faustTutorials/#making-custom-elements-using-mesh2faust
https://ccrma.stanford.edu/~rmichon/faustTutorials/#making-custom-elements-using-mesh2faust

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 149

to transpose the modes of the generated model in function of the fundamental frequency making the
model more generic.

2D Drawing
Inkscape to OpenSCAD

OpenSCAD to MeshLab

3D CAD Model

mesh2faustFPML Model

Volumetric Mesh

Figure 6.9: Marimba Bar Model – Steps From a 2D Drawing to a Faust Modal Model.

A simple marimba resonator was assembled using FPML and is presented in Code Listing 6.3.
It is made out of an open tube where two simple lowpass filters placed at its extremities are used to
model the wave reflections. The model is excited on one side of the tube and sound is picked-up on
the other side.

marimbaResTube(tubeLength,excitation) = endChain(tubeChain)

with{

lengthTuning = 0.04; tunedLength = tubeLength-lengthTuning;

absorption = 0.99; lowpassPole = 0.95;

endTubeReflection = si.smooth(lowpassPole)*absorption;

tubeChain = chain(

in(excitation) : terminations(endTubeReflection,

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 150

openTube(maxLength,tunedLength),

endTubeReflection) : out

);

};

Listing 6.3: Simple Marimba Resonator Tube Implemented With FPML.

Code Listing 6.4 demonstrates how marimbaBarModel can be simply connected to the marimba
resonator. A unidirectional connection can be used in this case since waves are only transmitted
from the bar to the resonator.

marimbaModel(freq,exPos) =

marimbaBarModel(freq,exPos,maxT60,T60Decay,T60Slope) :

marimbaResTube(resTubeLength)

with{

resTubeLength = freq : f2l;

maxT60 = 0.1; T60Decay = 1; T60Slope = 5;

};

Listing 6.4: Simple Marimba Physical Model.

This model is now part of the Faust Physical Modeling Library. More examples of models
created using this technique can be found in §B.

6.4 Discussion and Future Directions

The framework presented in this section remains limited by several factors. Audio latency introduced
by ADCs and DACs prevents in some cases the implementation of cohesive bidirectional chains
between physical and virtual elements. Audio latency reduction has been an ongoing research topic
for many years and more work has to be done in this direction. This problem is exacerbated by
the use of mobile devices at the heart of these systems that are far from being specialized for this
specific type of application (i.e., operating system optimizations inducing extra latency, number of
analog inputs and outputs, etc.). On the other hand, we believe that despite the compromises that
they entail, mobile devices remain a versatile, and yet easy to customize platform well suited to
implement hybrid instruments (e.g., the BladeAxe).

The Faust Physical Modeling Library is far from being exhaustive and many models and in-
struments could be added to it. We believe that mesh2faust (see §6.3) will help enlarge the set of
functions available in this system.

The framework presented in §6.2.1 allows us to assemble the different parts of instrument models
in a simple way by introducing a bidirectional block diagram algebra to Faust. While it provides

CHAPTER 6. DEVELOPING THE HYBRID MOBILE INSTRUMENT 151

a high level approach to physical modeling, Faust is not able to generate the corresponding block
diagram in a structured way. This would be a nice feature to add.

Similarly, we would like to extend the idea of being able to make multi-dimensional block diagrams
in Faust by adding new primitives to the language. This idea is further developed in §D.

More generally, we hope to make more instruments using this framework and use them on stage
for live performance.

Conclusion

“Musical interface construction proceeds as more art than science, and possibly this is
the only way that it can be done.” (Perry Cook [41])

By combining physical and virtual elements, hybrid instruments are “physically coherent” and
mutualized by nature and allow instrument designers to play to the strengths of both acoustical and
digital elements. Current technologies and techniques allow us to blur the boundary between the
physical and the virtual world enabling musical instrument designers to treat instrument parts in a
multidimensional way. The Faust Physical Modeling Library presented in §6.2 facilitates the design
of such instruments by providing a way to approach physical modeling of musical instruments at a
very high level.

Mobile devices combined with physical passive or active augmentations are well suited to im-
plement hybrid instruments. Their built-in sensors, standalone aspect, and computational capa-
bilities are the core elements required to implement the virtual portion of hybrid instruments.
faust2smartkeyb facilitates the design of mobile apps using elements from the Faust Physi-
cal Modeling Library, implementing skill transfer, and serving as the glue between the various parts
of the instrument. Mobile devices might limit the scope of hybrid instruments by scaling down
the number of connections between acoustical and digital elements because of technical limitations.
However, we demonstrated that a wide range of instruments can still be implemented using this type
of system.

The framework presented in this thesis is a toolkit for musical instrument designers. By facilitat-
ing skill transfer, it can help accelerate the learning process of instruments made with it. However,
musical instruments remain tools controlled by the performer. Having a well designed instrument
leveraging some of the concepts presented here doesn’t mean that it will systematically play beautiful
music and generate pleasing sounds: this is mostly up to the performer.

We believe that mobile hybrid instruments presented in this thesis help reconcile the haptic, the
physical, and the virtual, partially solving some of the flaws of DMIs depicted by Perry Cook [42].

We recently finished releasing the various elements of the framework presented in this thesis and
we hope to see the development of more hybrid mobile instruments in the future.

152

CONCLUSION 153

Summary of Contributions

Chapter 1 Contributions

In Chapter 1, we reviewed the literature relevant to this thesis and we gave an overview of the different
instruments that inspired this work. We demonstrated that by being modular, digital musical
instruments are often demutualized. We showed that augmented and hybrid instruments partially
solve this problem by being partly based on physical elements or existing acoustic instruments.
An overview of the field of mobile music was given. We emphasized the fact that mobile devices
constitute a suitable platform to implement standalone, versatile DMIs, and that various types of
skill transfer can be implemented on touchscreen interfaces. We gave an overview of the different
physical modeling techniques used by the various tools presented in the following chapters. Finally,
we demonstrated how digital fabrication, with 3D printing in particular, has been used to make
acoustic and electronic musical instruments.

Chapter 2 Contributions

Chapter 2 presented various instruments and art installations exploring the idea of exciting physical
models using physical/acoustical elements. The BladeAxe, which is one of them, is based on an
iPad and provided the basis for the framework presented in the following chapters. These instruments
were evaluated in the frame of various performances that were also briefly described.

Chapter 3 Contributions

The main contribution of Chapter 3 is MobileFaust, a set of tools facilitating the design of musical
mobile apps targeting live performance. faust2android and faust2ios that predated Mobile-

Faust were first presented. We showed how faust2api can be used to generate advanced DSP
engines for a wide range of platforms from a simple Faust code and how it was used as the basis of
faust2smartkeyb. We gave an overview of faust2smartkeyb’s features and we demonstrated
how it can be used to implement a wide range of instruments leveraging performers skills. Finally,
we highlighted the role of faust2smartkeyb in our framework as the “glue” between the different
constituting elements of hybrid mobile instruments.

Chapter 4 Contributions

Chapter 4 demonstrated how mobile devices can be passively augmented to enhance or suggest
specific interactions with some of their built-in elements towards musical instrument design. An
exhaustive overview of this type of augmentation was provided. A framework implemented through

CONCLUSION 154

MobileFaust, an OpenScad library to facilitate the design of musical mobile device passive augmen-
tations was introduced. Finally, a method approaching in a global way the design of musical instru-
ments based on passively augmented mobile devices and apps generated with faust2smartkeyb

was presented and evaluated through the results of a series of workshops on this topic.

Chapter 5 Contributions

Chapter 5’s main contribution is a framework to actively augment mobile devices with sensors. We
first presented Nuance, a device adding pressure sensitivity to the iPad touchscreen, increasing its
expressive potential as a musical instrument. Multiple use examples of this system implementing
various types of instruments were presented and used to evaluate it. An exhaustive overview of
communication techniques to transmit real-time sensor data to mobile devices for the control of
virtual instruments was provided. We then gave a brief description of our framework which uses
micro-controllers to transmit MIDI data to the device through USB. We demonstrated that successful
augmentations are simple, non-invasive, and should be complimentary of the built-in sensors and
features of the device. Finally, we evaluated our framework through a workshop on this topic.

Chapter 6 Contributions

Chapter 6 developed the concept of hybrid mobile instrument. A framework to design this type
of instruments was first provided. It demonstrated how musical instrument parts can be either
physical/acoustical or virtual/digital. As part of this, an overview of the techniques to connect
physical/acoustical to virtual/digital (and vice versa) was provided. It also showed how this type of
approach can be scaled down to be implemented on mobile device. The Faust Physical Modeling
Library, a tool to implement physical models of musical instruments using high and low level elements
in a modular way was introduced. We demonstrated how to use it to implement various types of
instruments. We showed how to extend the potential of this tool using mesh2faust, a system
allowing us to convert graphical 3D models to acoustic Faust modal physical models. Finally,
we evaluated our framework by making a marimba physical model from scratch using the Faust

Physical Modeling Library and mesh2faust.

Future Work

The scope of the different elements presented in this dissertation is relatively broad, therefore there
are many potential directions for future works and improvements.

Mobile technologies evolve fast and there’s a trend towards the development of apps as web appli-
cations. This solve numerous issues such as maintaining systems working on multiple platforms (e.g.,
Android, iOS, etc.), openly distributing applications, etc. While web technologies don’t compete yet

CONCLUSION 155

with native apps when it comes to real-time audio signal processing, significant progress has been
made in recent years. The future release of Audio Worklets in the Web Audio API, combined with
the power of WebAssembly, should help solve these problems in a near future. The Faust compiler is
already capable of generating WebAssembly code, so creating a web version of faust2smartkeyb
should be relatively easy when these systems will be available in all major web browser.

While the Faust Physical Modeling Library provides a convenient way to assemble bidirectional
blocks in Faust, diagrams generated by faust -svg, for example, don’t reflect well this type
of construction. This should be improved. A more advanced solution to this problem would be to
implement the multidimensional extended Faust block-diagram algebra presented in §D. We believe
that such system would greatly simplify the design of physical models of musical instruments.

Similarly, we would like to facilitate the use of linear algebra in Faust. Indeed, various physical
modeling techniques (e.g., finite difference scheme, wave digital filters, etc.) rely on the use of matrix
operations that are currently extremely hard to implement in Faust.

Beyond that, and more generally, a lot of work remains to be done in the field of physical
modeling, especially in the frame of 3D printing. Most luthiers using this digital fabrication technique
wished at some point they would be able to accurately predict the sound of an object before it is
materialized.

While the finite element method used by mesh2faust allows us to specify models in a very
high level way, simply by providing their 3D graphical representation, the type of materials they are
made of, etc., it remains limited and generated models are only approximations of their real world
counterparts. More simply, for now, we plan to add damping matrix support to mesh2faust, which
will allow us to automatically compute the resonance duration of the modes of the generated modal
models. We also plan to keep expanding the scope of the Faust Physical Modeling Library.

Finally, we believe that the field of active control of wind instruments should be further explored
(see §E). This would allow us to extend our concept of hybrid lutherie to wind instruments, for
example.

We plan to keep teaching workshops of these topics and hope to see more hybrid mobile instru-
ments in the computer music community and beyond in the future.

Appendices

156

Appendix A

Faust-STK

This appendix is based on a modified version of [125].1 It presents the Faust-STK, a set of virtual
musical instruments programmed in the Faust programming language. Most of them are based on
physical models inspired from the algorithms implemented in the Synthesis ToolKit (STK) [43] and
the program SynthBuilder [150]. The Faust-STK was the main inspiration for the Faust Physical
Modeling Library presented in §6.2.

The STK has been developed since 1996. It is a set of open source audio signal processing and
algorithmic synthesis classes written in the C++ programming language that can be used in the
development of music synthesis and audio processing software.

SynthBuilder was a program developed at Stanford’s CCRMA in the nineties to implement sound
synthesis based on physical models of musical instruments. Most of its algorithms use the waveguide
synthesis technique but some of them are also based on modal synthesis [5].

An important part of our work consisted of improving and simplifying the models from these
two sources in order to make them more efficient thanks to the Faust semantic. All Faust code in
the Faust-STK is commented, including frequent references to external bibliographical elements.
Finally, many of the algorithms from the STK and SynthBuilder were upgraded with nonlinear
allpass filters [178].

We discuss the different models of musical instruments implemented in the Faust-STK, noting
problems encountered and how they were resolved.

1Some sections and figures of this paper were copied verbatim here.

157

APPENDIX A. FAUST-STK 158

A.1 Waveguide Models

A.1.1 Wind Instruments

The algorithms used in the Faust-STK are almost all based on instruments implemented in the
Synthesis ToolKit and the program SynthBuilder. However, it is important to observe that some of
them were slightly modified in order to adapt them to the Faust semantic.

An attempt was made to use functions already defined in the default Faust libraries to build
our models. However, new support functions were written as needed in order to be able to use
parameters from the STK classes and the SynthBuilder patches verbatim, without transformation
or embedding within more general functions. The added functions were placed in a file called faust
-stk/instrument.lib.

All the wind instruments implemented in the Faust-STK are based on a similar architecture.
Indeed, in most cases, the breath pressure that corresponds to the amplitude of the excitation is
controlled by an envelope. The excitation is used to feed one or several waveguides that implement
the body of the instrument. For example, in the case of a clarinet, the excitation corresponds
to the reed that vibrates in the mouthpiece, and the body of the instrument is the bore and the
bell. In Figure A.1, it is possible to see the block diagram of one of the two clarinet models that
are implemented in the Faust-STK. In that case, an ADSR2 envelope that is embedded in the
breathPressure box controls the breath pressure.

The other clarinet implemented in the Faust-STK is a bit more complex as it has a tone hole
model that makes it possible to change the pitch of the note being played in a more natural way.
Indeed, in the algorithm shown in Figure A.1 and as in most of the basic waveguide models, the
pitch is modulated by changing the length of the loop delay line which would correspond in “the real
world” to changing dynamically the size of the clarinet’s bore during the performance, as if it were
a trombone (see §6.2).

The reed table employed with the two clarinets to excite the model was also used to create a
very simple saxophone model that is even more comparable to a violin whose strings are excited by
a reed.

Two models of flute are implemented in the Faust-STK. The first one is based on the algorithm
used in the Synthesis ToolKit that is a simplified version of [192]. The other model is showed in
Figure A.2. It uses two loops instead of one.

A simple model of a brass instrument inspired from a class of the Synthesis ToolKit and with
a mouthpiece based on the model described in [155] is implemented in the Faust-STK. It can be
used to emulate a wide range of instrument such as a French horn, a trumpet or even a trombone.
Its algorithm can be seen in Figure A.3.

Finally, a tuned bottle in which it is possible to blow through the neck to make sound is also

2Attack - Decay - Sustain - Release

APPENDIX A. FAUST-STK 159

breathPressure

filter

-0.95

*
-

reedTable
*

+

delayLine

process

Figure A.1: clarinet.dsp Algorithm Drawn by Faust Using faust2svg.

blow

+ delay1

cubic

+jetFilterdelay2

0.4

feedback2

*
2

/

0.4

feedback2

*

process

Figure A.2: flute.dsp Algorithm Drawn by Faust Using faust2svg.

APPENDIX A. FAUST-STK 160

0.85
*

borePressure

deltaPressure lipFilter

mouthPressure
*

1

b0

-

*
+ dcblocker

boreDelay

process

Figure A.3: brass.dsp Algorithm Drawn by Faust Using faust2svg.

implemented in the Faust-STK.

A.1.2 String Instruments

Some waveguide synthesis algorithms for plucked strings have previously been implemented in Faust,
[176] and elements of these ports appear in the old libraries filter.lib and effect.lib within
the Faust distribution. Going beyond these, the Faust-STK includes models of stringed instru-
ments from the STK such as a Sitar, bowed-string instrument, and SynthBuilder patches (running
on a NeXT Computer) for an acoustic bass, piano, and harpsichord. Most of these models were fur-
thermore extended with the new nonlinear allpass for spectral enrichment [178]. Further discussion
regarding the nonlinear allpass and synthesis of keyboard instruments is given below in §A.2 and
§A.5, respectively.

A.1.3 Percussion Instruments

Four objects in the Faust-STK use the banded waveguide synthesis technique (described in [55])
to model the following percussion instruments:

• an iron plaque;

• a wooden plaque;

• a glass harmonica;

• a tibetan bowl.

Each of them can be excited with a bow or a hammer.

APPENDIX A. FAUST-STK 161

A.2 Using Nonlinear Passive Allpass Filter With Waveguide

Models

Some of the instruments implemented in the Faust-STK are using nonlinear passive allpass filters
in order to generate nice natural and unnatural sound effects [178]. Nonlinear allpass filters can
add interesting timbral evolution when inserted in waveguide synthesis/effects algorithms. The
nonlinearities are generated by dynamically modulating the filter coefficients at every sample by
some function of the input signal. For the instruments that use this kind of filter in the Faust-

STK, the user can decide whether the coefficients are modulated by the input signal or by a sine
wave. In both cases, a “nonlinearity factor” parameter scales the range of the modulation of the
filter coefficients. This parameter can be controlled by an envelope in order to make the modulated
behavior more natural.

We adjust the length of the delay line of the instruments that use nonlinear allpass filters in
function of the nonlinearity factor and of the order of the filter as follows:

DL = (SR/F)− FO ×NF

where DL is the delay length in samples, SR is the sampling rate, F is the pitch frequency, FO is
the filter order and NF the nonlinearity factor (value between 0 and 1).

The nonlinear allpass filter can be placed anywhere in the waveguide loop, for example just before
the feedback as showed in Figure A.4.

breathPressure

filter

-0.95

*
-

reedTable
*

+

delayLineNLFM

process

Figure A.4: Modified Version of clarinet.dsp That Uses a Nonlinear Allpass Filter in Its Feed-
back Loop.

Finally, it is interesting to mention that we were able to implement a frequency modulation
synthesizer in the Faust-STK by using this kind of filter on a sine wave signal. A related result is
reported in [174].

APPENDIX A. FAUST-STK 162

A.3 Modal Models

A set of instruments using modal synthesis can be found in the Faust-STK. They are all imple-
mented in the same code (see Figure A.5) as they are based on the same algorithm.

excitation sourceFilter
gain

*

biquadBank
directGain

*
-

directGain
*

+

process

Figure A.5: modalBar.dsp Algorithm Drawn by Faust Using faust2svg.

A.4 Voice Synthesis

A very simple voice synthesizer based on the algorithm from the Synthesis ToolKit is implemented
in the Faust-STK. It uses a low-pass-filtered impulse-train to excite a bank of 4 bandpass filters
that shape the voice formants. The formant parameters are stored in a C++ function as a set of
center frequencies, amplitudes, and bandwidths. This function is then called in the Faust-STK

code using the foreign function primitive. The thirty-two phonemes stored in this function are the
same as in the Synthesis ToolKit.

A.5 Keyboards

A SynthBuilder patch implementing a commuted piano [175] was written in the late 1990s at Stan-
ford’s CCRMA. This patch was partly ported in 2006 by Stephen Sinclair at McGill University in
the Synthesis ToolKit [171]. A big part of his work consisted of extracting parameter-values from
the SynthBuilder patch and storing them in a set of C++ functions. We reused them to build our
Faust commuted piano version by using the foreign function mechanism [67].

In this piano model, the keyboard is split into two parts, each using a different algorithm: The
tones below E6 use the commuted waveguide synthesis technique [177] while tones above or equal
to E6 use modal synthesis (a series of biquad filters) to generate the sound (Figure A.6).

A commuted harpsichord has also been implemented in the Faust-STK. It was inspired by
another SynthBuilder patch that uses a very similar algorithm to the one described above.

APPENDIX A. FAUST-STK 163

soundBoard

conditionLowNote
*

6

* hammer

conditionHighNote
* hiPass dcBlock1 hammer

process

dcBlock1 coupledStrings
eq

+

dcBlock2a highBqs dcBlock2b

+

process

Figure A.6: Commuted Piano Algorithm Drawn by Faust Using faust2svg.

APPENDIX A. FAUST-STK 164

A.6 Using a Faust-STK Model With Gesture-Following Data

Parameter values are very important when dealing with physical modeling (see §1.5). Indeed, even
if in most cases it is possible to produce nice sounds with static values for each parameter, the sound
quality can be improved a lot by using dynamic values that can describe better the state of the
model as a function of the note and the amplitude being played.

E. Maestre worked during his PhD on modeling the instrumental gesture for the violin [108] at
the MTG.3 With his help, it was possible to modify the algorithm of the bowed instrument from
the STK in order to make it compatible with gesture data. The following changes were performed
on the model:

• the ADSR used to control the bow velocity was removed;

• a “force” parameter that controls the slope of the bow table was added;

• a switch was added at the output of the bow table;

• we created a four-string violin where it is possible to modify the value of the parameters of
each string independently;

• the simple body filter was replaced by a bank of biquad filters that impart a violin body
response on the generated sound;

• an improved reflection filter also based on a bank of biquads is used.

The Faust code was used to create a Pure Data plug-in. The gesture data for each physical
parameter (note frequencies, bow position, bow velocity, bow force, and number of the string to be
used) of the violin model were placed in separated text files that can be used in a PD patch. In the
example shown in Figure A.7, the values are changed every 4.167 milliseconds. The gesture dataset
used plays a traditional Spanish song called Muiñeira.

3Music Technology Group, University Pompeu Fabra, Barcelona (Spain).

APPENDIX A. FAUST-STK 165

textfile

read pitch.txt

freq $1

textfile

read beta.txt

bowPosition $1

textfile

bowVel $1

read bow_vel.txt read force_newtons.txt

textfile

force $1

metro 4.167

read string.txt

textfile

stringNumber $1

outlet

inlet inlet

inlet

Figure A.7: Pure Data Sub-Patch Used to Send the Gesture Data for Muiñeira in the Faust
Generated Plug-In.

Appendix B

Bell Modeling Using mesh2faust

Bells can be considered as quasi-linear systems and can be successfully synthesized using modal
synthesis.1 The acoustics of bells is well understood [158] and bell founders have been using FEM
for decades to tune bells before making them [14].

In this section, we model a church bell after Rossing’s elliptical arc approach using the framework
described in the previous sections, and we compare the results of our system with the one published
in his paper [158].

A Bezier curve was drawn on top of Rossing’s church bell profile in Inkscape and was exported
to OpenSCAD using the extension presented in §6.3.4. The radius of the bell was set to be 351mm,
as in Rossing’s paper. The result of this operation was a high definition mesh with about 25E4
vertices (see Figure B.1). This number was arbitrarily chosen to provide a good balance between
performance and quality.

This high density mesh was restructured in MeshLab using the technique described in §6.3.4 and
down-sampled to a lower definition mesh with 15E3 vertices (see Figure B.2).

This mesh was fed into mesh2faust with material parameters corresponding to bell metal [14]
(Young’s Modulus: 1.05E11 N/m2, Poisson’s Ratio: 0.33, and Density: 8600 kg/m3). The results
of the FEM modal analysis are presented in Table B.1 and plotted in Figure B.3.

Figure B.1 compares the theoretical “ideal” partial ratios to prime with the one computed by
mesh2faust (the computed frequency of the undertone partial is 490.25 Hz). The modes naming
conventions are the same as the one used by Rossing [158].

We can see that the FEM modes respect relatively well the theoretical mode hierarchy, resulting
in very realistic synthesized sounds.

The same procedure was applied for a wide range of bells (e.g., carillon bells, hand bells, church
bells from different countries, etc.) and the corresponding generated functions were added to the
Faust Physical Modeling Library. Web app synthesizers were created from these functions and are

1This appendix is partly based on [121]. Some sections and figures of this paper were copied verbatim here.

166

APPENDIX B. BELL MODELING USING MESH2FAUST 167

351mm2D Path 3D CAD Model

Inkscape toOpenSCAD

Figure B.1: Church Bell Cross Section and Corresponding CAD Model Modeled After Rossing’s
Elliptical Arc Approach.

Figure B.2: Mesh Generated in MeshLab After Quadric Edge Collapse Decimation and Laplacian
Smoothing.

APPENDIX B. BELL MODELING USING MESH2FAUST 168

1500 2000 2500 3000 3500 4000 450010005000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(2,0)

(2,1#)

(3,1)

(3,1#)

(4,1)

(4,1#)

(2,2)

(5,1)

(6,1)

Modes Frequencies (Hz)

M
od

es
 G

ai
n
s

Figure B.3: First Fifty Modes Computed by MTF for the Bell Mesh Presented in Table B.1 For an
Excitation Position Matching the Strike Position of the Clapper Inside the Bell.

APPENDIX B. BELL MODELING USING MESH2FAUST 169

Modes Names of Theoretical MTF
Partials Ratios Ratios

(2,0) Hum, undertone 0.500 0.500
(2,1#) Fundamental, prime 1.000 1.012
(3,1) Tierce, minor third 1.200 1.208
(3,1#) Quint, fifth 1.500 1.6
(4,1) Nominal, octave 2.000 1.980
(4,1#) Major Third, deciem 2.500 2.451
(2,2) Fourth, undeciem 2.667 2.610
(5,1) Twelfth, duodeciem 3.000 3.073
(6,1) Upper octave 4.000 4.11

Table B.1: Comparison Between the Theoretical “Ideal” Mode Ratios to Prime With the Ones
Computed by mesh2faust for the Bell Mesh Presented in Figure B.2.

available online.2

2https://ccrma.stanford.edu/~rmichon/pmFaust/#bells/

https://ccrma.stanford.edu/~rmichon/pmFaust/#bells/

Appendix C

FPML Functions Listing

The Faust Physical Modeling Library (physmodels.lib) is part of the Faust distribution 1 and
can be found in its /libraries folder. This appendix gives a listing of the functions of this library
(as of Sept. 20, 2017).2

Some of the functions listed here were contributed by other people. In particular, Michael Olsen
wrote most of the elements in the Vocal Synthesis section.

Global Variables rTerminations
speedOfSound closeIns
maxLength closeOuts
Conversion Tools endChain
f2l Basic Elements
l2f waveguideN
l2s waveguide
Bidirectional Utilities bridgeFilter
basicBlock modeFilter
chain String Instruments
inLeftWave stringSegment
inRightWave openString
in nylonString
outLeftWave steelString
outRightWave openStringPick
out openStringPickUp
terminations openStringPickDown
lTerminations ksReflexionFilter

Table C.1: Faust Physical Modeling Library Functions (1).

1https://github.com/grame-cncm/faust/
2The detailed documentation of these functions can be found online: http://faust.grame.fr/library.html#

physmodels.lib/

170

https://github.com/grame-cncm/faust/
http://faust.grame.fr/library.html#physmodels.lib/
http://faust.grame.fr/library.html#physmodels.lib/

APPENDIX C. FPML FUNCTIONS LISTING 171

String Instruments (Continue) clarinetMouthPiece
rStringRigidTermination brassLips
lStringRigidTermination fluteEmbouchure
elecGuitarBridge openTube
elecGuitarNuts reedTable
guitarBridge fluteJetTable
guitarNuts brassLipsTable
idealString clarinetReed
ks clarinetMouthPiece
ks_ui_MIDI brassLips
elecGuitarModel fluteEmbouchure
elecGuitar wBell
elecGuitar_ui_MIDI fluteHead
guitarBody fluteFoot
guitarModel clarinetModel
guitar clarinetModel_ui
guitar_ui_MIDI clarinet_ui
nylonGuitarModel clarinet_ui_MIDI
nylonGuitar brassModel
nylonGuitar_ui_MIDI brassModel_ui
Bowed String Instruments brass_ui
bowTable brass_ui_MIDI
violinBowTable fluteModel
bowInteraction fluteModel_ui
violinBow flute_ui
violinBowedString flute_ui_MIDI
violinNuts Exciters
violinBridge impulseExcitation
violinBody strikeModel
violinModel strike
violinModel_ui pluckString
violin_ui_MIDI blower
Wind Instruments blower_ui
openTube Modal Percussions
reedTable djembeModel
fluteJetTable djembe
brassLipsTable djembe_ui_MIDI
clarinetReed marimbaBarModel

Table C.2: Faust Physical Modeling Library Functions (2).

APPENDIX C. FPML FUNCTIONS LISTING 172

Modal Percussions (Continue) germanBell_ui
marimbaResTube russianBellModel
marimbaModel russianBell
marimba russianBell_ui
marimba_ui_MIDI standardBellModel
churchBellModel standardBell
churchBell standardBell_ui
churchBell_ui Vocal Synthesis
englishBellModel formantFilter
englishBell SFFormantModel
englishBell_ui SFFormantModel_ui
frenchBellModel SFFormantModel_ui_MIDI
frenchBell Misc Functions
frenchBell_ui allpassNL
germanBellModel
germanBell

Table C.3: Faust Physical Modeling Library Functions (3).

Appendix D

Extending Faust’s Block-Diagram

Algebra Towards Multidimensionality

In this appendix, we present an unimplemented extension of Faust’s block-diagram algebra aimed at
providing a better support for physical modeling. This unpublished work has been done at GRAME1

in Lyon in May 2016 in collaboration with Yann Orlarey.
While Faust can currently be used to implement any waveguide or modal physical model, cre-

ating multidimensional block diagrams where signals can go in any direction is not optimal. The
Faust Physical Modeling Library partially solves this problem by providing a set of functions to
implement bidirectional block diagrams (see §6.2.1). Even though this allows programmers to design
physical models at a very high level simply by connecting instrument parts together, the resulting
block-diagrams are difficult to read due to their inherent left to right orientation. For example, the
following construction made with FPML will result in the diagram presented in Figure D.1:

wg(x1) = chain(waveguide : input(x1) : out : waveguide);

mem waveguide(512... : 1,_ : max)
mem input(x1)

mem output waveguide(512... : 1,_ : max)

wg

Figure D.1: Faust-Generated Block Diagram of a Simple Physical Modeling Block Assembled Using
FPML.

In order to better describe and represent bi-directional connections, the proposed extension will

1http://grame.fr/

173

http://grame.fr/

APPENDIX D. EXTENDING FAUST’S BLOCK-DIAGRAM ALGEBRA 174

allow inputs and outputs on all four sides of a diagram.2 It will also introduce a new vertical
composition operation, the possibility to rotate expressions and a series of new routing primitives.

D.1 Conventions

D

OW,0

OW,1

IW,0

0W,2

W

ON,0 IN,0 IN,1

N

IE,0

OE,0

IE,1

OE,1

E

OS,0 IS,0 IS,1

S

Figure D.2: Generic Extended Diagram Block.

We distinguish the sides as well as the inputs and outputs of a block in a diagram (see Figure D.2)
by naming and numbering them, respectively.

Definition 1 (Side names). The sides are named: West, North, East, South and are always enu-
merated in that order.

Definition 2 (Number of inputs and outputs). We introduce 8 functions: IW,N,E,S and OW,N,E,S

to denote the number of inputs and outputs of each side of a diagram. For example, in Figure D.2,
we have: IW (D) = 1, OW (D) = 3, IN (D) = 2, etc.

Definition 3 (Numbering of inputs and outputs). Inputs and outputs of the North and South sides
are numbered from left to right starting from 0. Inputs and outputs of the West and East sides are

2Here (block-)diagram must be understood as the graphical representation of a Faust expression.

APPENDIX D. EXTENDING FAUST’S BLOCK-DIAGRAM ALGEBRA 175

numbered from top to down starting from 0. For example, IE,0(D) designates the first input on the
east side of the diagram D, and OW,2(D) the third output of the west side.

Definition 4 (Topological types). The topological type of a diagram describes its connectivity. It
indicates the number of inputs and the number of outputs of the West, North, East, and South sides.
For example, the diagram D of Figure D.2 is of type:

D : (1, 2, 2, 2)→ (3, 1, 2, 1)

For any diagram D, we have:

D : (IW (D), IN (D), IE(D), IS(D))→ (OW (D), ON (D), OE(D), OS(D))

With this new convention, Faust primitive + (see Figure D.3) has type (2, 0, 0, 0)→ (0, 0, 1, 0).

+
IW,0

IW,1

OE,0

Figure D.3: The + Primitive.

D.2 Horizontal Composition

Sequential composition A:B, split composition A<:B, and merge composition A:>B, are subsumed
under a more general horizontal composition operation also notated A:B. Horizontal composition
connects the East side of A to the West side of B. The East outputs of A are connected to the West
inputs of B, and the West outputs of B are connected to the East inputs of A. The number of inputs
and outputs must be either the same or a multiple of each other. In this case, the split or merge
rule apply. In other words, the horizontal composition A:B is possible if we have n,m, p, q ∈ N∗

such that:

n = 1 ∨m = 1

p = 1 ∨ q = 1

n.IE(A) = m.OW (B)

p.OE(A) = q.IW (B)

APPENDIX D. EXTENDING FAUST’S BLOCK-DIAGRAM ALGEBRA 176

In the example presented in Figure D.4, we have:

IE(A) = 2

OW (B) = 2

OE(A) = 2

IW (B) = 1

Thus, horizontal composition is possible. Moreover we have a merge of the East outputs of A into
the West input of B because OE(A) = 2× IE(B).

A B

Figure D.4: Horizontal Composition With Implicit Merge: OE(A) = 2× IW (B).

Horizontal composition A:B is such that:

IW (A,B) = IW (A)

IN (A,B) = IN (A) + IN (B)

IE(A,B) = IE(B)

IS(A,B) = IS(A) + IS(B)

and

OW (A,B) = OW (A)

ON (A,B) = ON (A) +ON (B)

OE(A,B) = OE(B)

OS(A,B) = OS(A) +OS(B)

APPENDIX D. EXTENDING FAUST’S BLOCK-DIAGRAM ALGEBRA 177

D.3 Vertical Composition

Vertical composition A||B, is the equivalent of horizontal composition in the vertical direction. It
connects the South side of A to the North side of B.

A

B

Figure D.5: Vertical Composition A||B.

The composition is possible if and only if we have n,m, p, q ∈ N∗ such that:

n = 1 ∨m = 1

p = 1 ∨ q = 1

n.IS(A) = m.ON (B)

p.OS(A) = q.IN (B)

APPENDIX D. EXTENDING FAUST’S BLOCK-DIAGRAM ALGEBRA 178

Vertical composition A||B is such that:

IW (A,B) = IW (A) + IW (B)

IN (A,B) = IN (A)

IE(A,B) = IE(A) + IE(B)

IS(A,B) = IS(B)

and

OW (A,B) = OW (A) +OW (B)

ON (A,B) = ON (A)

OE(A,B) = OE(A) +OE(B)

OS(A,B) = OS(B)

D.4 Parallel Composition

A

B

Figure D.6: Parallel Composition A,B.

APPENDIX D. EXTENDING FAUST’S BLOCK-DIAGRAM ALGEBRA 179

Parallel composition A,B is always possible. It is such that:

IW (A,B) = IW (A) + IW (B)

IN (A,B) = IN (A) + IN (B)

IE(A,B) = IE(A) + IE(B)

IS(A,B) = IS(A) + IS(B)

and

OW (A,B) = OW (A) +OW (B)

ON (A,B) = ON (A) +ON (B)

OE(A,B) = OE(A) +OE(B)

OS(A,B) = OS(A) +OS(B)

D.5 Route Primitive

The route() primitive is used to describe small connection routes likes those in Figure D.7.

Figure D.7: route("io.."), route("ioi.") and route(".i..").

Each route is defined with a 4-character string indicating if a side contains an input (letter “i”), an
output (letter “o”), or nothing (letter “.”). For example, route("ioio") correspond to Figure D.8
and is of type:

(1, 0, 1, 0)→ (0, 1, 0, 1)

Note that all the input signals are added together and the resulting signal is delivered to all outputs.
A route with no inputs delivers a 0 signal to its outputs.

We have the following equivalences (see Figure D.9):
route("..o.") = 0

route("i.o.") = _

route("i...") = !

APPENDIX D. EXTENDING FAUST’S BLOCK-DIAGRAM ALGEBRA 180

x+ y

x+ y

x y

Figure D.8: route("ioio").

Figure D.9: route("..o."), route("i.o."), route("i...").

D.6 Rotation

A diagram D can be rotated by -90° using the unary prefix operator <* or by +90° using the unary
postfix operator *> (see Figure D.10).
If we have D with type (a, b, c, d)→ (i, j, k, l) then <* D has type (b, c, d, a)→ (j, k, l, i), and D *>

has type (d, a, b, c)→ (l, i, j, k).

+ + + +

Figure D.10: <*<*+, <*+, +, and +*>.

We have the following equivalences:

APPENDIX D. EXTENDING FAUST’S BLOCK-DIAGRAM ALGEBRA 181

<*(A:B) = (<*B)||(<*A)

<*(A||B) = (<*A):(<*B)

(A:B)*> = (A*>)||(B*>)

(A||B)*> = (B*>):(A*>)

<*<*<*<*(A:B) = <*<*<*(<*B)||(<*A)

<*<*<*(<*B)||(<*A) = <*<*((<*<*B):(<*<*A))

<*<*((<*<*B):(<*<*A)) = <*((<*<*<*A)||(<*<*<*B))

<*((<*<*<*A)||(<*<*<*B)) = (<*<*<*<*A):(<*<*<*<*B)

(<*<*<*<*A):(<*<*<*<*B) = A:B

D.7 Examples

This section provides some examples illustrating the extended Faust block-diagram algebra pre-
sented in the previous sections.

D.7.1 General Case: Feedback

A “typical” Faust feedback loop

+~_

is equivalent to

feedback = route("..io") || route("iio.") : (_’ : route("o..i")) ||

route("ioo.");

While this is much more verbose, it is just presented as an example here and programmers are
expected to keep using the ~ composition.

D.7.2 Physical Modeling

In this section, we reformulate some of the elements of the Faust Physical Modeling Library (see
§6.2) using the extended Faust algebra.

A simple waveguide block (two parallel delay lines going in opposite directions) equivalent to
pm.waveguide() can be implemented as:

waveguide(l) = <*<*(@(l)),@(l);

where l is the delays length.
A block equivalent to pm.rTermination() closing a bidirectional chain (e.g., waveguide) on its
right side can be expressed with:

APPENDIX D. EXTENDING FAUST’S BLOCK-DIAGRAM ALGEBRA 182

terminationUp(a) = route("o..i") || <*a || route("io..");

where a can be any function with one input and one output (e.g., a filter).
Similarly, a block equivalent to pm.lTermination() closing a bidirectional chain on its right side
can be written as:

terminationDown(a) = route("..io") || a*> || route(".io");

where a can be any function with one input and one output (e.g., a filter).
Additional inputs and outputs can be easily added to the previous blocks:

terminationUpOutput(a) = route("o..i") || <*a || route("ioi.");

terminationDownInput(a) = route("i.io") || a*> || route(".io");

and simple physical elements can be created using them (see §6.2):

rigidTerminationUp = terminationUp(*(-1));

rigidTerminationUpOutput = terminationUpOutput(*(-1));

rigidTerminationDown = terminationDown(*(-1));

Finally, a simple “ideal string” model with rigid terminations equivalent to pm.idealString can
be implemented using the previous elements as:

input = _,cross : route("o.ii") || route("io.o") || route("iio.");

idealString(freq,pos) = rigidTerminationDown : waveguide(n1) : input :

waveguide(n2) : rigidTerminationUpOutput

with{

l = SR/freq/2;

n1 = l*pos;

n2 = l*(1-pos);

};

D.7.3 Transformer-Normalized Digital Waveguide Oscillator

A particularly hard algorithm to implement with the current version of Faust is that of the
tranformer-normalized digital waveguide oscillator [177]. This is mostly due to the fact that it
involves both feedback and signals crossing each others between the feed-forward and the feedback
portion of the system. Such a filter can be easily expressed using the extended block-diagram algebra
presented in this appendix:

wgOsc(g,c) = (route("..oi") || <*(_’) || route(".oi."))

: ((route("..oi") : route("i..o")) // upper feed forward

|| (*(g) : route("ioo.") : route("i.oi")

APPENDIX D. EXTENDING FAUST’S BLOCK-DIAGRAM ALGEBRA 183

: *(c) : route("i.oo") : route("iio."))

|| (route("oii.") : route("ooi."))) : (route("i..o")

|| (_’)*> || route("oi.."));

Appendix E

Hybrid Woodwind Instrument and

Active Control

For most musical instruments, the excitation is the element that has the greatest number of pa-
rameters to control (see §2.1). The properties of the bore of a clarinet for example (but this also
applies to most of the woodwind and brass instruments) can only be modified by tone holes, that are
very discrete controllers (they can be opened or closed or half closed in some cases). On the other
hand, the interactions between the mouthpiece and the player are extremely complex and difficult
to simulate on a computer. This problem has been presented in §1.1 and various kind of solutions
have been proposed.

In this appendix, we present an experimental example of a hybrid instrument involving the use
of bidirectional virtual/physical connections (see §6.1.3).1 A 3D printed mouthpiece combined with
a system based on a piezo sensor and a loudspeaker are used to drive a simple physical model of
a generic bore. We discuss the results of various experiments we carried out and try to provide
solutions to the problems encountered.

E.1 General Concept

The use of acoustic excitations to drive virtual physical models has been described in §2.1, §2.2, and
§2.3. In the case of percussion and plucked string instruments, the process is very simple as any
kind of audio impulse can be fed into a waveguide to excite it (see §6.1.3).

While this technique can be theoretically applied to any physical model of musical instruments,
things become complicated when the excitation signal partly determines the pitch of the sound

1This work is based on a series of of experiments conducted at CCRMA in 2012/2013 presented in an unpublished
report written in collaboration with John Granzow [120]. Since this work predates the creation of the framework
presented in this dissertation, it doesn’t use it.

184

APPENDIX E. HYBRID WOODWIND INSTRUMENT AND ACTIVE CONTROL 185

generated by the system. This is the case for woodwind and brass instruments for example where
there is a coupling between the mechanism that produces the excitation and the size of the bore of
the instrument [59]. In other words, the length of the bore determines the frequency of vibration of
the reed on a saxophone and of the lips on a trumpet. This is due to traveling waves reflected by
the end of the pipe of the instrument whose distance from the reed can be adjusted with the tone
holes in the saxophone case and with the pistons on the trumpet. The goal of the project presented
in this appendix is to leverage 3D printing technology to that of physical modeling to create a
hybrid single reed instrument whose 3D printed mouthpiece is connected and coupled to a virtual
computer modeled bore. The most challenging part of this work is to create a feedback system that
reproduces the reflexion pulse created by the end of the bore and send it to the mouthpiece using a
simple speaker. The advantages of such a system are multiple. It would make it possible to design
hybrid instruments whose response was partly independent of its physical geometry. The player
would have full control of the generated sound and experience some of the vibrotactile stimulation
of a real instrument.

E.2 First Model and Experiments

E.2.1 3D Printed Mouthpiece and Feedback System

Figure E.1 depicts the computer model of a tenor saxophone mouthpiece fabricated for our exper-
iment. It’s design is based on that of a real mouthpiece. We tried the printed mouthpiece with
a “real” saxophone and it competed with the original. The other object depicted in Figure E.1
connects to the mouthpiece and houses a speaker. Figure E.2 presents the printed version of these
elements with a bamboo reed mounted on the mouthpiece and the speaker attached to the other
section. We used this system to conduct most of the experiments that are presented in this report.

Originally, a microphone was placed inside the mouthpiece to pick up the audio excitation created
by the reed. This was obviously a very bad solution as the microphone was too closed to the speaker,
creating feedback. We first tried to solve this problem by replacing the microphone by a piezo film
glued on the reed. However, the impedance between the reed and the piezo was too high and we
were not able to get usable signals. The solution we adopted was to glue a very small piezo disc
(whose much stiffer than a piezo film) on the reed. This enabled us to get high quality signals of
the excitation without creating feedback with the speaker.

The position of the piezo on the reed was chosen so that it is as close as possible from the
vibrating area without affecting the sound quality. As the piezo stays in a very humid environment,
we had to find a way to protect it from becoming too wet. For that, we drilled a small hole in
the reed with an identical diameter than the one of the piezo. Finally, we covered the piezo with a
protection paste (see Figure E.3).

APPENDIX E. HYBRID WOODWIND INSTRUMENT AND ACTIVE CONTROL 186

Figure E.1: 3D Model of Our First Mouthpiece Feedback System.

Figure E.2: 3D Printed Mouthpiece Feedback System.

APPENDIX E. HYBRID WOODWIND INSTRUMENT AND ACTIVE CONTROL 187

Figure E.3: Saxophone Reed With a Piezo Disc Glued on It.

E.2.2 Physical Model

The physical model we used for our experiments is based on a simple waveguide (see §1.5). Figure E.4
presents the top level block diagram of this algorithm. The input signal (x), for instance the signal
generated by the piezo on the reed is fed into the system. The reflection filter is a simple one-zero
filter. The output of this filter is retrieved and sent to the speaker placed in front of the mouthpiece
(see Figure E.2). Before that, it is scaled and it goes through a delay line allowing us to control the
phase of the signal (however, this proved to be totally useless as changing the phase had absolutely
no effect on the behavior of the reed).

x

filter

x

micGain

*
+

delayLine

hslider(gain, 1, 0, 10, 0.01)

gain

*

phaseCtl
hslider(speakerGain, 0, 0, 20, 0.01)

speakerGain

*

process

to feedback speaker

physical model output

Figure E.4: Block Diagram of the Faust Physical Model as Drawn by faust -svg Implementing
the Virtual Portion of Our Hybrid Woodwind Instrument.

APPENDIX E. HYBRID WOODWIND INSTRUMENT AND ACTIVE CONTROL 188

E.2.3 First Experiment

In order to achieve the best latency with the audio interface we used,2 we had to use a very high
sampling rate of 192kHz with buffers of 128 samples and 2 periods per buffer. Unfortunately, we
were never able to use the PD-externals compiled from the Faust code at such a high sampling rate.
The trick we used to compensate for this was to compile our Faust code as jack applications that
we controlled from PD3 sending OSC messages. We chose PureData to carry out this task because
it is easy to quickly create controllers in this environment.

For our first experiment, we tried the system with different lengths for the virtual bore, using a
very high amplitude mouthpiece feedback signal. While we were not able to change the frequency
of vibration of the reed, the saxophone player found it very hard in some cases to hold the pitch
and felt really disturbed by the behavior of the reed when the length of the bore was set such that
it approached the natural frequency of vibration of the reed.

After these primarily experiments, we figured out that the latency introduced by our audio inter-
face, even though it was very small (around 2ms with the configuration described at the beginning
of this section), was one of the problems in the system. Indeed, a latency of 2ms in an environment
where speed of sound is 340m/s corresponds to a delay of 68cm which is huge in the case of musical
instruments. Also, we thought it would be interesting to do more basic experiments like sending a
square wave signal into the mouth piece. The implementation and the results of these experiments
are presented in the two following sections.

E.3 Square Wave Experiments

The waveform of an audio signal created by a clarinet is similar to a square wave. For this reason,
we thought it would be interesting to try to send a square wave audio signal at different amplitudes
and frequencies in the mouthpiece while blowing in it. In our first experiment, we tried to send a
high amplitude signal where the frequency of the square wave was the same as the natural frequency
of vibration of the reed (665Hz) and slowly increased it to 1000Hz. We recorded the signal from the
piezo on the reed and plotted the spectrogram (see Figure E.5).

We can see that after 3 seconds, the frequency of vibrations of the reed starts to be modulated,
creating a vibrato effect that evolves into some kind of frequency modulation behavior after 12
seconds. Therefore, somehow the square wave acts as a modulating signal on the reed which can be
compared to a carrier in this case.

Another experiment where a square wave signal with a constant frequency of 670Hz and an
increasing gain is sent to the mouthpiece. The spectrogram of the signal recorded on the reed is
plotted in Figure E.6 along with the waveform of the square wave. We can see that increasing the

2We used a Roland UA-101 for all our experiments.
3PureData: http://puredata.info/.

http://puredata.info/

APPENDIX E. HYBRID WOODWIND INSTRUMENT AND ACTIVE CONTROL 189

gain of the square wave broadens the range of the modulation, exactly like a frequency modulation
synthesizer when the index of modulation is changed.

These results prove that the frequency of vibration of the reed can be modulated by the signal
coming from a speaker if the amplitude of the wave it creates is big enough.

0 2 4 6 8
0

1

2

3

4

5

6

7

8

Time (sec)

F
re

q
 (

K
H

z)

10 12 14 16 18

Figure E.5: Spectrogram of the Signal Measured on the Reed When “Reflecting” a Square Wave
With Frequency Evolving From 665Hz to 1kHz.

E.4 Limited “Zero-Latency” System

One way to achieve 0ms latency in our system was to create a model where the latency of the
audio interface is used as the delay line of the waveguide. A diagram of this model can be seen in
Figure E.7. We basically take the signal from the reed and use the same filter as the one used in the
model depicted in Figure E.4 and send it back to the speaker. Some delay can be added to increase
the size of the simulated bore whose minimum length is defined by the latency of the audio interface
(65cm/2 = 32.5cm).

We tried to use this model by slowly increasing the length of the virtual bore starting at 32cm
(the minimum length we can achieve with this configuration) and ending at 132cm. The spectrogram
of the signal recorded from the reed can be seen in Figure E.8.

We can see that as the length of the virtual bore is increased, the frequency of the reed is shifted

APPENDIX E. HYBRID WOODWIND INSTRUMENT AND ACTIVE CONTROL 190

0

2

4

6

8

Time (sec)

G
ai

n

0 2 4 6 8 10 12 14 16 18

0

-0.5

-1

1

0.5

0 2 4 6 8 10 12 14 16 18

F
re

q
 (

K
H

z)

Time (sec)

Figure E.6: Spectrogram of the Signal Measured on the Reed When “Reflecting” a Square Wave
With Constant Frequency (670Hz) and Increasing Amplitude.

down by a semitone and comes back to its original state every time the minimum size of the bore is
doubled (every time 32cm is added). This proves that despite the fact that our system is not able
to control the frequency of vibration of the reed, it can shift it a little bit.

hslider(micGain, 1, 0, 1, 0.01)

micGain

* delayLine filter
hslider(gain, 0, 0, 10, 0.01)

gain

*

process

from the reed to the feedback speaker

Figure E.7: Block Diagram of the Faust Physical Model as Drawn by faust -svg Implementing
the “Zero-Latency” Bore Model.

APPENDIX E. HYBRID WOODWIND INSTRUMENT AND ACTIVE CONTROL 191

0 2 4 6 8 132cm32cm 64cm 96cm

Time (sec)

F
re

q
 (

K
H

z)

10
0

2

4

6

8

10

Figure E.8: Spectrogram of the Signal Measured on the Reed When Increasing the Length of the
Virtual Bore of Our “Zero-Latency” System From 32cm to 132cm.

E.5 Additional Experiments and Future Directions

E.5.1 Further Reducing Latency

While the trick we presented in the previous chapter to get rid of latency issues works, it is not
optimal because it imposes a minimal length to the virtual bore. Moreover, it increases the unpre-
dictability of the model as the addition of the feedback signal with the reed signal is not carried out
on the computer but in the real world.

The only solution to this problem is to reduce the latency of the system (ADC -> computing ->
DAC), potentially using specialized hardware.

E.5.2 Improving the Mouthpiece Feedback System

We think that our system is limited by the fact that the “real” reflected wave created by the mouth-
piece and the small pipe that links it to the speaker chamber arrives earlier and is stronger than the
virtual reflection wave generated by the speaker. Thus, we designed a new system (see Figure E.9)
where we will try to drive the wave created by the reed in a pipe. An acoustical damping material
will be placed at the end of the pipe to cancel this wave in order to prevent it from being reflected.

APPENDIX E. HYBRID WOODWIND INSTRUMENT AND ACTIVE CONTROL 192

The speaker will be placed at the middle of the pipe and thus will be able to send the virtual re-
flection before the “remains” of the damped wave reach the reed. We hope this solution will work or
provide new clues for the next step.

Figure E.9: Future Mouthpiece Feedback System.

Bibliography

[1] Faust libraries documentation. On-line. http://faust.grame.fr/library.html.

[2] CCRMA 2016 composed instrument workshop: Intersections of 3D printing and digital
audio for mobile platforms. Web-Page, 2016. URL: https://ccrma.stanford.edu/
~rmichon/composedInstrumentWorkshop/.

[3] CCRMA composed instrument workshop 2016 – final projects. On-line – YouTube Video, July
2016. https://www.youtube.com/watch?v=YOWMh66Etck.

[4] CCRMA summer workshop - intersections of 3D printing and mobile audio - teaser
video. On-line – YouTube Video, March 2016. https://www.youtube.com/watch?v=

dGBDrmvG4Yk.

[5] Jean-Marie Adrien. The missing link: Modal synthesis. In Representations of Musical Signals,
chapter The Missing Link: Modal Synthesis, pages 269–298. MIT Press, Cambridge, USA,
1991.

[6] Roberto Mario Aimi. Hybrid Percussion: Extending Physical Instruments Using Sampled
Acoustics. PhD thesis, Massachusetts Institute of Technology, USA, 2007.

[7] Ercan Altinsoy and Sebastian Merchel. Electrotactile feedback for handheld devices with touch
screen and simulation of roughness. IEEE Transactions on Haptics, 5(1):6–13, January 2012.

[8] The Ampeg Company, Elkhart, Indiana. Lyricon Wind Synthesizer Driver – Owner’s Manual,
1978.

[9] Daniel Arfib, Jean-Michel Couturier, and Loic Kessous. Expressiveness and digital musical
instrument design. Journal of New Music Research, 34(1):125–136, 2005.

[10] Rolf Bader, Jan Richter, Malte Münster, and Florian Pfeifle. Digital Guitar Workshop Manual.
Hamburg University, 2014.

193

http://faust.grame.fr/library.html
https://ccrma.stanford.edu/~rmichon/composedInstrumentWorkshop/
https://ccrma.stanford.edu/~rmichon/composedInstrumentWorkshop/
https://www.youtube.com/watch?v=YOWMh66Etck
https://www.youtube.com/watch?v=dGBDrmvG4Yk
https://www.youtube.com/watch?v=dGBDrmvG4Yk

BIBLIOGRAPHY 194

[11] Nicholas J Bailey, Theo Cremel, and Alex South. Using acoustic modelling to design and print
a microtonal clarinet. In Proceedings of the 9th Conference on Interdisciplinary Musicology –
CIM14, Berlin, Germany, 2014.

[12] Bruce Banter. Touch screens and touch surfaces are enriched by haptic force-feedback. Infor-
mation Display, 26(3):26–30, 2010.

[13] Stephen Barrass. Digital fabrication of acoustic sonifications. Journal of the Audio Engineering
Society, 60(9):709–715, September 2012.

[14] Dariusz Bartocha and Czeslaw Baron. Influence of tin bronze melting and pouring parameters
on its properties and bells’ tone. Archives of Foundry Engineering, 16(4):17–22, 2016.

[15] Marc Battier. Les Musiques électroacoustiques et l’environnement informatique. PhD thesis,
University of Paris X, Nanterre, France, 1981.

[16] Frauke Behrendt. Handymusik. Klangkunst und ‘mobile devices’. Electronic Publication, Os-
nabrück, 2004.

[17] Edgar Berdahl. Application of Feedback Control to Musical Instrument Design. PhD thesis,
Stanford University, USA, 2009.

[18] Edgar Berdahl. An introduction to the Synth-A-Modeler compiler: Modular and open-source
sound synthesis using physical models. In Proceedings of the Linux Audio Conference (LAC-
12), Stanford, USA, May 2012.

[19] Edgar Berdahl and Alexandros Kontogeorgakopoulos. The firefader: Simple, open-source, and
reconfigurable haptic force feedback for musicians. Computer Music Journal, 37(1):23–34,
Spring 2013.

[20] Edgar Berdahl and Julius Orion Smith. A tangible virtual vibrating string. In Eighth Interna-
tional Conference on New Interfaces for Musical Expression (NIME-08), Genova, Italy, June
2008.

[21] Edgar Berdahl, Hans-Christoph Steiner, and Collin Oldham. Practical hardware and algo-
rithms for creating haptic musical instruments. In Proceedings of the Internation Conference
on New Interfaces for Musical Expression (NIME-08), Genova, Italy, 2008.

[22] Frédéric Bevilacqua, Nicolas Rasamimanana, Emmanuel Fléty, Serge Lemouton, and Florence
Baschet. The augmented violin project: research, composition and performance report. In
Proceedings of the International Conference on New Interfaces for Musical Expression, Paris,
France, June 2006.

BIBLIOGRAPHY 195

[23] Frédéric Bevilacqua, Norbert Schnell, Nicolas Rasamimanana, Bruno Zamborlin, and Fabrice
Guédy. Musical Robots and Interactive Multimodal Systems, chapter Online Gesture Analysis
and Control of Audio Processing, pages 127 – 142. Springer Berlin Heidelberg, 2011.

[24] Stefan Bilbao. Numerical Sound Synthesis: Finite Difference Schemes and Simulation in
Musical Acoustics. John Wiley and Sons, Chichester, UK, 2009.

[25] Jane Bird. Exploring the 3d printing opportunity. Financial Times, August 2012.

[26] David Birnbaum and Marcelo M. Wanderley. A systematic approach to musical vibrotactile
feedback. In Proceedings of the Iternational Computer Music Conference (ICMC-07), Copen-
hagen, Denmark, 2007.

[27] Richard Boulanger and Max Mathews. The 1997 mathews radio-baton & improvisation modes.
In Proceedings of the 1997 International Computer Music Conference (ICMC-97), Thessa-
loniki, Greece, 1997.

[28] Peter Brinkmann, Peter Kirn, Richard Lawler, Chris McCormick, Martin Roth, and Hans-
Christoph Steiner. Embedding PureData with libpd. In Proceedings of the Pure Data Con-
vention, Weinmar, Germany, 2011.

[29] Cynthia Bruyns. Modal synthesis for arbitrarily shaped objects. Computer Music Journal,
30(3):22–37, Autumn 2006.

[30] Nicholas J. Bryan, Jorge Herrera, Jieun Oh, and Ge Wang. Momu: A mobile music toolkit. In
Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010),
Sydney, Australia, June 2010.

[31] Matthew Burtner. The metasaxophone: Concept, implementation, and mapping strategies for
a new computer music instrument. Organised Sound, 7(2):201–213, 2002.

[32] Bill Buxton. Multi-touch systems that i have known and loved. On-line, June 2014. http:
//www.billbuxton.com/multitouchOverview.html.

[33] Claude Cadoz, Annie Luciani, and Jean-Loup Florens. Synthèse musicale par simulation des
mécanismes instrumentaux, transducteurs gestuels rétroactifs pour l’étude du jeu instrumental.
Revue d’acoustique, (59):279–292, 1981.

[34] Claude Cadoz, Annie Luciani, and Jean Loup Florens. Cordis-anima: A modeling and simula-
tion system for sound and image synthesis: The general formalism. Computer Music Journal,
17(1):19–29, Spring 1993.

http://www.billbuxton.com/multitouchOverview.html
http://www.billbuxton.com/multitouchOverview.html

BIBLIOGRAPHY 196

[35] René Caussé, Joel Bensoam, and Nicholas Ellis. Modalys, a physical modeling synthesizer:
More than twenty years of researches, developments, and musical uses. Journal of the Acous-
tical Society of America, 130(4), 2011.

[36] Chris Chafe. Tactile audio feedback. In Proceedings of International Computer Music Confer-
ence (ICMC93), Waseda University, Japan, 1993.

[37] Chris Chafe. Case studies of physical models in music composition. In Proceedings of the 18th
International Congress on Acoustics, Kyoto, Japan, 2004.

[38] Liwei Chan, Stefanie Müller, Anne Roudaut, and Patrick Baudisch. Capstones and zebraw-
idgets: Sensing stacks of building blocks, dials and sliders on capacitive touch screens. In
Proceedings of the Conference for Human-Computer Interaction (CHI), Austin, Texas, May
2012.

[39] Mike Collicutt, Carmine Casciato, and Marcelo M. Wanderley. From real to virtual: A com-
parison of input devices for percussion tasks. In Proceedings of the International Conference
on New Interfaces for Musical Interaction (NIME09), Pittsburgh, USA, June 2009.

[40] Perry Cook. A meta-wind-instrument physical model, and a meta-controller for real-time per-
formance control. In Proceedings of the International Computer Music Conference (ICMC92),
San Jose State Univeristy, USA 1992.

[41] Perry Cook. Principles for designing computer music controllers. In Proceedings of the In-
ternational Conference on New Interfaces for Musical Expression (NIME’01), Seattle, USA,
April 2001.

[42] Perry Cook. Remutualizing the instrument: Co-design of synthesis algorithms and controllers.
In Proceedings of the Stockholm Music Acoustics Conference (SMAC-03), Stockholm, Sweden,
August 2003.

[43] Perry Cook and Gary Scavone. The Synthesis Toolkit (stk). In Proceedings of the International
Computer Music Conference (ICMC-99), Beijing, China, 1999.

[44] Adrien Cornelissen. Murmurate, the concert with smartphones as speakers. Digital|arti -
Online Journal, 2005. http://media.digitalarti.com/blog/digitalarti_mag/

murmurate_the_concert_with_smartphones_as_speakers.

[45] David Correa, Athina Papadopoulou, Christophe Guberan, Nynika Jhaveri, Steffen Reichert,
Achim Menges, and Skylar Tibbits. 3d-printed wood: Programming hygroscopic material
transformations. 3D Printing and Additive Manufacturing, 2(3):106–116, 2015.

http://media.digitalarti.com/blog/digitalarti_mag/murmurate_the_concert_with_smartphones_as_speakers
http://media.digitalarti.com/blog/digitalarti_mag/murmurate_the_concert_with_smartphones_as_speakers

BIBLIOGRAPHY 197

[46] Alain Crevoisier and Pietro Polotti. Tangible acoustic interfaces and their applications for the
design of new musical instruments. In Proceedings of the 2005 International Conference on
New Interfaces for Musical Expression (NIME05), Vancouver, Canada, May 2005.

[47] Matthew Dabin, Terumi Narushima, Stephen T. Beirne, Christian H. Ritz, and Kraig Grady.
3d modelling and printing of microtonal flutes. In Proceedings of the 16th International Con-
ference on New Interfaces for Musical Expression (NIME-16), Brisbane, Australia, 2016.

[48] Nicolas D’Alessandro and Thierry Dutoit. Handsketch bi-manual controller - investigation on
expressive control issues of an augmented tablet. In Proceedings of the 2007 Conference on
New Interfaces for Musical Expression (NIME07), New York, USA, June 2007.

[49] Philip L. Davidson and Jefferson Y. Han. Synthesis and control on large scale multi-touch
sensing displays. In Proceedings of the 2006 International Conference on New Interfaces for
Musical Expression (NIME06), Paris, France, 2006.

[50] Sarah Denoux, Stéphane Letz, Yann Orlarey, and Dominique Fober. Faustlive: Just-in-time
faust compiler... and much more. In Proceedings of the Linux Audio Conference (LAC-12),
Karlsruhe, Germany, April 2014.

[51] Dimitri Diakopoulos and Ajay Kapur. HIDUINO: A firmware for building driverless usb-midi
devices using the arduino microcontroller. In Proceedings of the International Conference on
New Interfaces for Musical Expression (NIME’11), Oslo, Norway, June 2011.

[52] Christopher Dobrian and Daniel Koppelman. The ’e’ in nime: Musical expression with new
computer interfaces. In Proceedings of the 2006 International Conference on New Interfaces
for Musical Expression (NIME06), Paris, France, 2006.

[53] Alice Eldridge and Chris Kiefer. The Self-resonating Feedback Cello: Interfacing gestural
and generative processes in improvised performance. In Proceedings of the New Interfaces for
Musical Expression Conference (NIME-17), Copenhagen, Denmark, 2017.

[54] Nicholas Ellis, Joël Bensoam, and René Caussé. Modalys demonstration. In Proceedings of
the 2005 International Computer Music Conference (ICMC05), Barcelona, Spain, 2005.

[55] Georg Essl and Perry Cook. Banded waveguides: Towards physical modeling of bowed bar per-
cussion instruments. In Proceedings of the International Computer Music Conference (ICMC-
99), pages 321—-324, Beijing, China, 1999.

[56] Georg Essl and Michael Rohs. SHAMUS – a sensor-based integrated mobile phone instrument.
In Proceedings of the International Computer Music Conference (ICMC-07), Copenhagen,
Denmark, 2007.

BIBLIOGRAPHY 198

[57] Georg Essl and Michael Rohs. Interactivity for mobile music-making. Organised Sound,
14(2):197–207, 2009.

[58] Georg Essl, Ge Wang, and Michael Rohs. Developments and challenges turning mobile phones
into generic music performance platforms. In Proceedings of the Mobile Music Workshop,
Vienna, Austria, May 2008.

[59] Neville H. Fletcher and Thomas D. Rossing. The Physics of Musical Instruments, 2nd Edition.
Springer Verlag, 1998.

[60] Jean-Loup Florens and Claude Cadoz. Modular modelisation and simulation of the instrument.
In Proceedings of the International Computer Music Conference (ICMC-90), Glasgow, UK,
1990.

[61] Christopher Fuller, Sharon Elliott, and Philip Nelson. Active control of vibration. Academic
Press, 1996.

[62] Sin Fun Shing, Daniel Schroeder, and Jernej Barbič. Vega: Nonlinear fem deformable object
simulator. Computer Graphics Forum, 32(1):36–48, February 2013.

[63] Lalya Gaye, Lars Erik Holmquist, Frauke Behrendt, and Atau Tanaka. Mobile music technol-
ogy: Report on an emerging community. In Proceedings of the International Conference on
New Interfaces for Musical Expression (NIME-06), Paris, France, June 2006.

[64] Günter Geiger. PDa: Real time signal processing and sound generation on handheld devices.
In Proceedings of the International Computer Music Conference (ICMC-03), Singapore, 2003.

[65] Günter Geiger. Using the touch screen as a controller for portable computer music instruments.
In Proceedings of the 2006 International Conference on New Interfaces for Musical Expression
(NIME-06), Paris, France, 2006.

[66] Camille Goudeseune. A violin controller for real-time audio synthesis. Technical report, Inte-
grated Systems Laborator, University of Illinois, 2001.

[67] GRAME – Centre National de Création Musicale, Lyon, France. FAUST Quick Reference,
June 2017.

[68] John Granzow. Additive Manufacturing for Musical Applications. PhD thesis, Stanford Uni-
versity, June 2017.

[69] Doug Gross. Obama’s speech highlights rise of 3-d printing. On-line – CNN, February 13 2013.
http://www.cnn.com/2013/02/13/tech/innovation/obama-3d-printing/.

http://www.cnn.com/2013/02/13/tech/innovation/obama-3d-printing/

BIBLIOGRAPHY 199

[70] Pierre-Amaury Grumiaux, Romain Michon, Emilio Gallego Arias, and Pierre Jouvelot.
Impulse-response and cad-model-based physical modeling in faust. In Proceedings of the Linux
Audio Conference (LAC-17), Saint-Etienne, France, May 2017.

[71] Reginald Langford Harrison, Stefan Bilbao, James Perry, and Trevor Wishart. An environment
for physical modeling of articulated brass instruments. Computer Music Journal, 39(4):80–95,
Winter 2015.

[72] Christian Heinrichs and Andrew McPherson. A hybrid keyboard-guitar interface using ca-
pacitive touch sensing and physical modeling. In Proceedings of the 9th Sound and Music
Computing Conference (SMC), Copenhagen, Denmark, 2012.

[73] Seongkook Heo and Geehyuk Lee. Force gestures: Augmenting touch screen gestures with nor-
mal and tangential forces. In Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST-11), Santa Barbara, California, 2011.

[74] John Hollis. Synthaxe website. On-line. http://www.hollis.co.uk/john/synthaxe.
html.

[75] Peter Holstlin. Sounds of future past: The lyricon. Red Bull Music Academy Daily, 2015.

[76] Damon Holzborn. Building Mobile Instruments for Improvised Musical Performance. PhD
thesis, Columbia University, USA, 2013.

[77] David M. Howard and Stuart Rimell. Gesture-tactile control physical modeling music synthesis.
In Proceedings of the Stockholm Music Acoustics Conference (SMAC-03), Stockholm, Sweden,
August 2003.

[78] David M. Howard and Stuart Rimell. Real-time gesture-controlled physical modelling music
synthesis with tactile feedback. EURASIP Journal on Applied Signal Processing, 7:1001–1006,
2004.

[79] Sungjae Hwang, Myungwook Ahn, and Kwang yun Wohn. Maggetz: Customizable passive
tangible controllers on and around conventional mobile devices. In Proceedings of the Sym-
posium on User Interface Software and Technology, St Andrews, United Kingdom, October
2013.

[80] Jonathan Impett. A meta-trumpet(er). In Proccedings of the International Computer Music
Conference (ICMC94), Danish Institute of Electroacoustic Music, Denmark, 1994.

[81] David A. Jaffe and Andrew Schloss. A virtual piano concerto – the coupling of the math-
ews/boie radio drum and yamaha disklavier grand piano. In Proceedings of the International
Computer Music Conference (ICMC-94), Danish Institute of Electroacoustic Music, Denmark,
1994.

http://www.hollis.co.uk/john/synthaxe.html
http://www.hollis.co.uk/john/synthaxe.html

BIBLIOGRAPHY 200

[82] David A. Jaffe and Julius Orion Smith. Extensions of the karplus-strong plucked-string algo-
rithm. Computer Music Journal, 7(2):56–69, 1983.

[83] Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin Kaltenbrunner. The reactable: Ex-
ploring the synergy between live music performance and tabletop tangible interfaces. In Pro-
ceedings of the 1st International Conference on Tangible and Embedded Interaction, pages
139–146, Baton Rouge, Louisiana, 2007.

[84] Sergi Jordà. Digital Lutherie Crafting Musical Computers for New Musics’ Performance and
Improvisation. PhD thesis, Universitat Pompeu Fabra, Spain, 2005.

[85] Ajay Kapur, Georg Essl, Philip L. Davidson, and Perry Cook. The electronic tabla controller.
In Proceedings of the 2002 Conference on New Instruments for Musical Expression (NIME-02),
Dublin, Ireland, May 2002.

[86] Matti Karjalainen, Teemu Mäki-Patola, Aki Kanerva, and Antti Huovilainen. Virtual air
guitar. Journal of the Audio Engineering Society, 54(10):964–980, October 2006.

[87] Matti Karjalainen and Julius Orion Smith. Body modeling techniques for string instrument
synthesis. In Proceedings of the International Computer Music Conference (ICMC-96), Hong
Kong, August 1996.

[88] Matti Karjalainen, Vesa Välimäki, and Tero Tolonen. Plucked-string models: From the
karplus-strong algorithm to digital waveguides and beyond. Computer Music Journal,
22(3):17–32, Autumn 1998.

[89] Kevin Karplus and Alex Strong. Digital synthesis of plucked-string and drum timbres. Com-
puter Music Journal, 7(2):43–55, Summer 1983.

[90] Sukandar Kartadinata. The gluiph: a nucleus for integrated instruments. In Proceedings of
the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada,
2003.

[91] Loic Kessous, Julien Castet, and Daniel Arfib. ’gxtar’, an interface using guitar techniques.
In Proceedings of the 2006 International Conference on New Interfaces for Musical Expression
(NIME06), Paris, France, June 2006.

[92] Juraj Kojs, Stefania Serafin, and Chris Chafe. Cyberinstruments via physical modeling syn-
thesis: Compositional applications. Leonardo Music Journal, 17:61–66, 2007.

[93] Sven Kratz, Tilo Westermann, Michael Rohs, and Georg Essl. Capwidgets: Tangible widgets
versus multi-touch controls on mobile devices. In Proceedings of the conference for Human-
Computer Interaction, Vancouver, Canada, May 2011.

BIBLIOGRAPHY 201

[94] Roland Lamb and Andrew Robertson. Seaboard: a new piano keyboard-related interface
combining discrete and continuous control. In Proceedings of the International Conference on
New Interfaces for Musical Expression, Oslo, Norway, 2011.

[95] Gierad Laput, Eric Brockmeyer, Scott Hudson, and Chris Harrison. Acoustruments: Passive,
acoustically-driven, interactive controls for handheld devices. In Proceedings of the Conference
for Human-Computer Interaction (CHI), Seoul, Republic of Korea, April 2015.

[96] Guillaume Largillier. Developing the first commercial product that uses multi-touch technol-
ogy. Information Display, 23(12):14–18, 2007.

[97] Victor Lazzarini, Steven Yi, Joseph Timoney, Damian Keller, and Marco Pimenta. The mobile
Csound platform. In Proceedings of the International Conference on Computer Music (ICMC-
12), Ljubljana, Slovenia, September 2012.

[98] Sasha Leitman and John Granzow. Music maker: 3d printing and acoustics curriculum. In
Proceedings of the New Interfaces for Musical Expression Conference (NIME-16), Brisbane,
Australia, July 2016.

[99] James Leonard and Claude Cadoz. Physical modelling concepts for a collection of multisensory
virtual musical instruments. In Proceedings of the Conference on New Interfaces for Musical
(NIME15), Baton Rouge, USA, May 2015.

[100] Stéphane Letz, Yann Orlarey, Dominique Fober, and Romain Michon. Polyphony, sample-
accurate control and MIDI support for FAUST DSP using combinable architecture files. In
Proceedings of Linux Audio Conference (LAC-17), Saint-Etienne, France, 2017.

[101] Rong-Hao Liang, Liwei Chan, Hung-Yu Tseng, Han-Chih Kuo, Da-Yuan Huang, De-Nian
Yang, and Bing-Yu Chen. Gaussbricks: Magnetic building blocks for constructive tangible
interactions on portable displays. In Proceedings of the Conference for Human-Computer
Interaction (CHI), Toronto, Ontario, May 2014.

[102] Hod Lipson and Melba Kurman. Fabricated: The New World of 3D Printing. Wiley, 2013.

[103] Henning Lohner. The upic system: A user’s report. Computer Music Journal, 10(4):42–49,
Winter 1986.

[104] Gareth Loy. Musicians make a standard: The midi phenomenon. Computer Music Journal,
9(4):8–26, Winter 1985.

[105] Otso Lähdeoja. An approach to instrument augmentation : the electric guitar. In Proceedings
of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy,
2008.

BIBLIOGRAPHY 202

[106] Tod Machover. Hyperinstruments: A progress report 1987–1991. Technical report, MIT Media
Lab, 1992.

[107] Laura Maes, Godfried-Willem Raes, and Troy Rogers. The man and machine robot orchestra
at logos. Computer Music Journal, 35(4):22–48, Winter 2011.

[108] Esteban Maestre. Modeling Instrumental Gestures: An Analysis/Synthesis Framework for
Violin Bowing. PhD thesis, Universitat Pompeu Fabra, Spain, 2009.

[109] Thor Magnusson. Of epistemic tools: musical instruments as cognitive extensions. Organised
Sound, 14(2):168–176, August 2009.

[110] Mark T. Marshall and Marcelo M. Wanderley. Vibrotactile feedback in digital musical instru-
ments. In Proceedings of the 2006 International Conference on New Interfaces for Musical
Expression (NIME06), Paris, France, June 2006.

[111] Max Mathews. Electronic violin: A research tool. Journal of the Violin Society of America,
8(1):71–88, 1984.

[112] Steven Maupin, David Gerhard, and Brett Park. Isomorphic tesselations for musical keyboards.
In Proceedings of the Sound and Music Computing Conference (SMC-11), Padova, Italy, July
2011.

[113] Sandor Mehes, Maarten van Walstijn, and Paul Stapleton. Virtual-acoustic instrument design:
Exploring the parameter space of a string-plate model. In Proceedings of the New Interfaces
for Musical Expression Conference (NIME-17), Copenhagen, Denmark, 2017.

[114] Thibaut Meurisse, Adrien Mamou-Mani, Simon Benacchio, Baptiste Chomette, Victor Finel,
David Sharp, and René Caussé. Experimental demonstration of the modification of the res-
onances of a simplified self-sustained wind instrument through modal active control. Acta
Acustica United with Acustica, 101(3):581–593, January 2015.

[115] Thibaut Meurisse, Adrien Mamou-Mani, René Caussé, Baptiste Chomette, and David B.
Sharp. Simulations of modal active control applied to the self-sustained oscillations of the
clarinet. Acta Acustica United with Acustica, 100:1149–1161, 2014.

[116] Geist Meyer and Ben Kleinerman. Simultaneous transmission of a video and an audio signal
through an ordinary telephone transmission line, 1975.

[117] Romain Michon. A hybrid sound installation: the blackbox. On-line, December 2012. https:
//ccrma.stanford.edu/~rmichon/blackbox/.

https://ccrma.stanford.edu/~rmichon/blackbox/
https://ccrma.stanford.edu/~rmichon/blackbox/

BIBLIOGRAPHY 203

[118] Romain Michon. faust2android: a Faust architecture for Android. In Proceedings of the 16th
International Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September
2013.

[119] Romain Michon. Faust tutorials. On-line, 2017. https://ccrma.stanford.edu/

~rmichon/faustTutorials.

[120] Romain Michon and John Granzow. Hybrid clarinet project. Technical report, CCRMA,
Stanford Univeristy, December 2013.

[121] Romain Michon, Sara R. Martin, and Julius O. Smith. Mesh2Faust: a modal physical model
generator for the Faust programming language – application to bell modeling. In Proceedings
of the International Computer Music Conference (ICMC-17), Shanghai, China, October 2017.

[122] Romain Michon and Yann Orlarey. The faust online compiler: a web-based ide for the faust
programming language. In Proceedings of the Linux Audio Conference (LAC-12), Stanford,
California, 2012.

[123] Romain Michon, Julius Smith, and Yann Orlarey. New signal processing libraries for Faust.
In Proceedings of the Linux Audio Conference (LAC-17), Saint-Etienne, France, May 2017.
Paper accepted to the conference but not published yet.

[124] Romain Michon, Julius Smith, Matthew Wright, Chris Chafe, John Granzow, and Ge Wang.
Passively augmenting mobile devices towards hybrid musical instrument design. In Proceedings
on the New Interfaces for Musical Expression Conference (NIME-17), Copenhagen, Denmark,
May 2017.

[125] Romain Michon and Julius O. Smith. Faust-STK: a set of linear and nonlinear physical models
for the Faust programming language. In Proceedings of the 14th International Conference on
Digital Audio Effects (DAFx-11), Paris, France, September 2011.

[126] Romain Michon, Julius O. Smith, Chris Chafe, Matthew Wright, and Ge Wang. Nuance:
Adding multi-touch force detection to the iPad. In Proceedings of the Sound and Music Com-
puting Conference (SMC-16), Hamburg, Germany, 2016.

[127] Romain Michon, Julius O. Smith, Matthew Wright, and Chris Chafe. Augmenting the iPad:
the BladeAxe. In Proceedings of the International Conference on New Interfaces for Musical
Expression, Brisbane, Australia, July 2016.

[128] Romain Michon and Julius Orion Smith. A hybrid guitar physical model controller: The
BladeAxe. In Proceedings of ICMC|SMC 2014, Athens, Greece, September 2014.

https://ccrma.stanford.edu/~rmichon/faustTutorials
https://ccrma.stanford.edu/~rmichon/faustTutorials

BIBLIOGRAPHY 204

[129] Romain Michon, Julius Orion Smith, and Yann Orlarey. MobileFaust: a set of tools to make
musical mobile applications with the Faust programming language. In Proceedings of the Linux
Audio Conference (LAC-15), Mainz, Germany, April 2015.

[130] Kurt Miller. Print me a stradivarius - how a new manufacturing technology will change the
world. On-line – The Economist, February 2011. http://www.economist.com/node/

18114327?Story_ID=18114327.

[131] Eduardo Miranda, Ross Kirk, and Marcelo Wanderley. New Digital Musical Instruments. A-R
Editions, Middleton, WI, 2006.

[132] Ananya Misra, Georg Essl, and Michael Rohs. Microphone as sensor in mobile phone perfor-
mance. In Proceedings of the New Interfaces for Musical Expression conference (NIME08),
Genova, Italy, 2008.

[133] Ali Momeni. Caress: An enactive electro-acoustic percussive instrument for caressing sound. In
Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-
15), Baton Rouge, USA, June 2015.

[134] Joseph Derek Morrison and Jean-Marie Adrien. Mosaic: A framework for modal synthesis.
Computer Music Journal, 17(1):45–56, Spring 1993.

[135] Robert Moses, Norman Durkee, and Charles Hustig. System for carrying transparent digital
data within an audio signal, 1997.

[136] Teemu Mäki-Patola. User interface comparison for virtual drums. In Proceedings of the 2005
International Conference on New Interfaces for Musical Expression (NIME05), Vancouver,
Canada, 2005.

[137] Alexander Müller, Fabian Hemmert, Götz Wintergerst, and Ron Jagodzinski. Reflective hap-
tics: Resistive force feedback for musical performances with stylus-controlled instruments. In
Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010),
Sidney, Australia, June 2010.

[138] Charles Nichols. The vbow: Development of a virtual violin bow haptic human-computer inter-
face. In Proceedings of the International Conference on New Interfaces for Musical Expression
(NIME’02), Dublin, Ireland, May 2002.

[139] Charles Nichols. The vBow: an Expressive Musical Controller Haptic Human-Computer In-
terface. PhD thesis, Stanford University, USA, 2003.

[140] Sile O’Modhrain. Playing by feel: incorporating haptic feedback into computer-based musical
instruments. PhD thesis, Stanford University, 2001.

http://www.economist.com/node/18114327?Story_ID=18114327
http://www.economist.com/node/18114327?Story_ID=18114327

BIBLIOGRAPHY 205

[141] Yann Orlarey, Stéphane Letz, and Dominique Fober. New Computational Paradigms for Com-
puter Music, chapter “Faust: an Efficient Functional Approach to DSP Programming”. Dela-
tour, Paris, France, 2009.

[142] Francesco Orrù. Francesco orrù’s portfolio. On-line. https://www.myminifactory.com/
users/4theswarm.

[143] Dan Overholt. The overtone violin: A new computer music instrument. In Proceedings of
the 2005 International Computer Music Conference (ICMC-05), Barcelona, Spain, September
2005.

[144] Sile O’Modhrain and Chris Chafe. The performer-instrument interaction: A sensory motor
perspective. In Proceedings of the International Computer Music Conference (ICMC-00),
Menlo Park, USA, 2000.

[145] Joseph A. Paradiso. Electronic music: new ways to play. IEEE Spectrum, 34(12):18–30,
December 1997.

[146] Tae Hong Park and Oriol Nieto. Fortissimo: Force-feedback for mobile devices. In Proceedings
of the International Conference on New Interfaces for Musical Expression, KAIST, Daejon,
Korea, May 2013.

[147] Olivier Perrotin and Christophe d’Alessandro. Adaptive mapping for improved pitch accuracy
on touch user interfaces. In Proceedings of the International Conference on New Interfaces for
Musical Expression, Daejeon, South Korea, May 2013.

[148] Trevor J Pinch, Frank Trocco, and TJ Pinch. Analog days: The invention and impact of the
Moog synthesizer. Harvard University Press, 2009.

[149] Cornelius Poepel. Synthesized strings for string players. In Proceedings of the 2004 Conference
on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan, 2004.

[150] Nick Porcaro, David Jaffe, Pat Scandalis, Julius Smith, Tim Stilson, and Scott Van Duyne.
Synthbuilder: a graphical rapid-prototyping tool for the development of music synthesis and
effects patches on multiple platforms. Computer Music Journal, 22(2):35–43, Summer 1998.

[151] Miller Puckette. Infuriating nonlinear reverberator. In Proceedings of the International Com-
puter Music Conference (ICMC-11), Huddersfield, UK, 2011.

[152] Miller Puckette. Playing a virtual drum from a real one. The Journal of the Acoustical Society
of America, 130(4):2432, 2011.

https://www.myminifactory.com/users/4theswarm
https://www.myminifactory.com/users/4theswarm

BIBLIOGRAPHY 206

[153] Zhimin Ren, Ravish Mehra, Jason Coposky, and Ming C. Lin. Tabletop ensemble: Touch-
enabled virtual percussion instruments. In Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (I3D ’12), Costa Mesa, California, March 2012.

[154] Stuart Rimell, David M Howard, Andy M Tyrell, Ross Kirk, and Andy Hunt. Cymatic:
Restoring the physical manifestation of digital sound using haptic interfaces to control a new
computer based musical instrument. In Proceedings of the Iternational Computer Music Con-
ference (ICMC-02), Gothenburg, Sweden, 2002.

[155] Xavier Rodet. One and two mass model oscillations for voice and instruments. In Proceedings
of the International Computer Music Conference (ICMC-95), pages 207–214, Banff, Canada,
1995.

[156] Roland Corporation. Aerophone AE-10 – Owner’s Manual, 2016.

[157] ROLI Ltd., London, UK. ROLI Seaboard GRAND – User Manual, 2015.

[158] Thomas D. Rossing and Robert Perrin. Vibrations of bells. Applied Acoustics, 20(1):41–70,
December 1987.

[159] Martin Russ. Yamaha VL1 - virtual acoustic synthesizer. Sound on Sound, July 1994.

[160] Edward Kingsley Rutter, Tom Mitchell, and Chris Nash. Turnector: Tangible control widgets
for capacitive touchscreen devices. In Proceedings of ICMC|SMC, Athens, Greece, September
2014.

[161] Spencer Salazar and Ge Wang. Auraglyph – handwriting input for computer-based music
composition and design. In Proceedings of the International Conference on New Interfaces for
Musical Expression, Goldsmiths, University of London, UK, 2014.

[162] Gary Scavone and Perry Cook. RtMidi, RtAudio, and a synthesis toolkit (STK) update. In
Proceedings of the 2005 International Computer Music Conference, Barcelona, Spain, 2005.

[163] Gary P. Scavone. THE PIPE: Explorations with breath control. In Proceedings of the 2003
Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada, 2003.

[164] Greg Schiemer and Mark Havryliv. Pocket Gamelan: tuneable trajectories for flying sources
in Mandala 3 and Mandala 4. In Proceedings of the 6th International Conference on New
Interfaces for Musical Expression (NIME06), Paris, France, 2006.

[165] Daniel Schlessinger and Julius Orion Smith. The Kalichord: A physically modeled electro-
acoustic plucked string instrument. In Proceedings of the 9th International Conference on New
Interfaces for Musical Expression (NIME-09), Carnegie Mellon Univeristy, USA, June 2009.

BIBLIOGRAPHY 207

[166] Norbert Schnell and Marc Battier. Introducing composed instruments, technical and musico-
logical implications. In Proceedings of the 2002 Conference on New Instruments for Musical
Expression (NIME-02), Dublin, Ireland, May 2002.

[167] Stefania Serafin, Matthew Burtner, Charles Nichols, and Sile O’Modhrain. Expressive con-
trollers for bowed string physical models. In Proceedings of the 1st International Conference
on Digital Audio Effects, Limerick, Ireland, December 2001.

[168] Stefania Serafin, Richard Dudas, Marcello M. Wanderley, and Xavier Rodet. Gestural control
of a real-time model of a bowed string instrument. In Proceedings of the International Computer
Music Conference, Beijing, October 1999.

[169] Stefania Serafin and Diana Young. Bowed string physical model validation through use of
a bow controller and examination of bow strokes. In Proceedings of the Stockholm Music
Acoustics Conference (SMAC03), Stockholm, Sweden, August 2003.

[170] Hang Si. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math.
Softw., 41(2):11:1–11:36, February 2015.

[171] Stephen Sinclair. Implementing the synthbuilder piano in stk. Technical report, McGill Uni-
versity, 2006.

[172] Stephen Sinclair, Gary Scavone, and Marcelo M. Wanderley. Audio-haptic interaction with
the digital waveguide bowed string. In Proceedings of the International Computer Music Con-
ference (ICMC-09), Montreal, Canada, 2009.

[173] Julius O. Smith. Physical modeling using digital waveguides. Computer Music Journal,
16(4):74–91, Winter 1992.

[174] Julius O. Smith and Perry Cook. The second-order digital waveguide oscillator. In Proceedings
of the International Computer Music Conference (ICMC-92), pages 150–153, San Jose, USA,
1992.

[175] Julius O. Smith and Scott A. Van Duyne. Commuted piano synthesis. In Proceedings of the
International Computer Music Conference (ICMC-95), pages 319–326, Banff, Canada, 1995.

[176] Julius Orion Smith. Virtual electric guitars and effects using Faust and Octave. In Proceedings
of the Linux Audio Conference (LAC-08), pages 123–127, KHM, Cologne, Germany, 2008.

[177] Julius Orion Smith. Physical Audio Signal Processing for Virtual Musical Instruments and
Digital Audio Effects. W3K Publishing, https://ccrma.stanford.edu/~jos/pasp/,
2010.

https://ccrma.stanford.edu/~jos/pasp/

BIBLIOGRAPHY 208

[178] Julius Orion Smith and Romain Michon. Nonlinear allpass ladder filters in Faust. In Proceed-
ings of the 14th International Conference on Digital Audio Effects, Paris, France, September
2011. IRCAM.

[179] Richard R. Smith. The history of rickenbacker guitars. Centerstream Publications, 1987.

[180] Starr Labs, San Diego, California. Ztar MIDI – User’s Manual, 2008.

[181] Scott Summit. System and method for designing and fabricating string instruments. US
Patent, 2014.

[182] SwitchScience. Audio jack modem for iphone and android. On-line, 2016. https://www.

switch-science.com/catalog/364/martin.

[183] Atau Tanaka. Mobile music making. In Proceedings of the 2004 conference on New interfaces
for musical expression (NIME04), National University of Singapore, 2004.

[184] Atau Tanaka. Mapping out instruments, affordances, and mobiles. In Proceedings of the 2010
Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia, June
2010.

[185] Adam R. Tindale. A hybrid method for extended percussive gesture. In Proceedings of the
2007 Conference on New Interfaces for Musical Expression (NIME07), New York, USA, 2007.

[186] Caroline Traube, Philippe Depalle, and Marcelo Wanderley. Indirect acquisition of instrumen-
tal gesture based on signal, physical and perceptual information. In Proceedings of the 2003
Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada, 2003.

[187] Dan Trueman and Perry Cook. Bossa: The deconstructed violin reconstructed. Journal of
New Music Research, 29(2):121–130, 2000.

[188] Friedrich Türckheim, Thorsten Smit, and Robert Mores. The semi-virtual violin – a perception
tool. In Proceedings of 20th International Congress on Acoustics (ICA10), Sydney, Australia,
August 2010.

[189] Vesa Valimaki and Timo I Laakso. Principles of fractional delay filters. In Acoustics, Speech,
and Signal Processing, 2000. ICASSP’00. Proceedings. 2000 IEEE International Conference
on, volume 6, pages 3870–3873. IEEE, 2000.

[190] Maarten van Walstijn and Pedro Rebelo. The prosthetic conga: Towards an actively controlled
hybrid musical instrument. In Proceedings of the International Computer Music Conference
(ICMC05), page 786–789, Barcelona, Spain, 2005.

https://www.switch-science.com/catalog/364/
https://www.switch-science.com/catalog/364/

BIBLIOGRAPHY 209

[191] Ashlee Vance. The world’s first 3d-printed acoustic guitar. On-line – Bloomberg Busi-
ness, October 12 2012. http://www.bloomberg.com/bw/articles/2012-10-11/

the-worlds-first-3d-printed-guitar.

[192] Marc-Pierre Verge. Aeroacoustics of Confined Jets with Applications to the Physical Modeling
of Recorder-Like Instruments. PhD thesis, Eindhoven University, 1995.

[193] Sonal Verma, Andrew Robinson, and Prabal Dutta. Audiodaq: Turning the mobile phone’s
ubiquitous headset port into a universal data acquisition interface. In Proceedings of the
Conference on Embedded Networked Sensor Systems (SenSys), Toronto, Ontario, November
2012.

[194] Vesa Välimäki and Tapio Takala. Virtual musical instruments - natural sound using physical
models. Organised Sound, 1(2):75–86, August 1996.

[195] Marcello M. Wanderley and Philippe Depalle. Gestural control of sound synthesis. In Pro-
ceedings of the IEEE, volume 92, pages 632–644, 2004.

[196] Marcelo Wanderley and Nicola Orio. Evaluation of input devices for musical expression: Bor-
rowing tools from hci. Computer Music Journal, 26(3):62–76, Fall 2002.

[197] Ge Wang. Ocarina: Designing the iPhone’s Magic Flute. Computer Music Journal, 38(2):8–21,
Summer 2014.

[198] Ge Wang. Artful Design – Technology in Search of the Sublime. Stanford University Press,
2018. To be published in 2018.

[199] Ge Wang, Georg Essl, and Henri Penttinen. Do mobile phones dream of electric orchestra? In
Proceedings of the International Computer Music Conference (ICMC-08), Belfast, Northern
Ireland, 2008.

[200] Ge Wang, Jieun Oh, and Tom Lieber. Designing for the iPad: Magic fiddle. In Proceedings of
the International Conference on New Interfaces for Musical Expression, Oslo, Norway, May
2011.

[201] Paul Warner. System for transmitting data simultaneously with audio, 1983.

[202] Paul White, Rachel Fletcher, and Paul Farber. Yamaha wx5 wind controller. On-line –
Sound on Sound, July 1998. http://www.soundonsound.com/sos/jul98/articles/
yamwx5.html.

[203] Gerhard Widmer, Davide Rocchesso, Vesa Välimäki, Cumhur Erkut, Fabien Gouyon, Daniel
Pressnitzer, Henri Penttinen, Pietro Polotti, and Gualtiero Volpe. Sound and music computing:
Research trends and some key issues. Journal of New Music Research, 36(3):169–184, 2007.

http://www.bloomberg.com/bw/articles/2012-10-11/the-worlds-first-3d-printed-guitar
http://www.bloomberg.com/bw/articles/2012-10-11/the-worlds-first-3d-printed-guitar
http://www.soundonsound.com/sos/jul98/articles/yamwx5.html
http://www.soundonsound.com/sos/jul98/articles/yamwx5.html

BIBLIOGRAPHY 210

[204] Matthew Wright and Adrian Freed. Open Sound Control: A new protocol for communicating
with sound synthesizers. In Proceedings of the International Computer Music Conference,
Thessaloniki, Greece, 1997.

[205] Yamaha Corporation, P.O. Box 1, Hamamatsu, Japan. VL1 Virtual Acoustic Synthesizer -
Owner’s Manual, 1993.

[206] Yamaha Corporation of America, Buena Park, California. Yamaha Digital Programmable
Algorithm Synthesizer – Operation Manual, 1983.

[207] Diana Young. The hyperbow controller: Real-time dynamics measurement of violin perfor-
mance. In Proceedings of the 2002 Conference on New Instruments for Musical Expression
(NIME-02), Dublin, Ireland, May 2002.

[208] Diana Young and Ichiro Fujinaga. Aobachi: A new interface for japanese drumming. In
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04),
Hamamatsu, Japan, 2004.

[209] Neng-Hao Yu, Li-Wei Chan, Seng-Yong Lau, Sung-Sheng Tsai, I-Chun Hsiao, Dian-Je Tsai,
Lung-Pan Cheng, Fang-I Hsiao, Mike Y. Chen, Polly Huang, and Yi-Ping Hung. Tuic: En-
abling tangible interaction on capacitive multi-touch display. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, Vancouver, Canada, May 2011.

[210] Michael Zbyszynski, Matthew Wright, Ali Momeni, and Daniel Cullen. Ten years of tablet
musical interfaces at cnmat. In Proceedings of the 2007 Conference on New Interfaces for
Musical Expression (NIME07), New York, USA, June 2007.

[211] Amit Zoran. The 3d printed flute: Digital fabrication and design of musical instruments.
Journal of New Music Research, 40(4):379–387, December 2011.

[212] Amit Zoran and Pattie Maes. Considering virtual & physical aspects in acoustic guitar design.
In Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08),
Genova, Italy, 2008.

[213] Amit Zoran and Joseph Paradiso. The chameleon guitar - guitar with a replaceable resonator.
Journal of New Music Research, 40(1):59–74, March 2011.

	Abstract
	Acknowledgments
	Introduction
	Overview
	Outline

	Background
	Physical Interfaces and Virtual Instruments: Remutualizing the Instrument
	The Rise of Musical Interfaces
	Keyboard-Based Interfaces
	Wind Instrument Controllers
	String Instrument Controllers
	Percussion Instrument Controllers
	Other Controllers
	Haptic Feedback

	Augmented and Acoustically Driven Hybrid Instruments: Thinking DMIs As a Whole
	Augmented Instruments
	Acoustically Driven Hybrid Instruments: Mixing Physical and Virtual Elements

	Mobile Devices as Musical Instruments
	Towards Smart-Phones: Tablets and Tactile Interfaces
	Smart-Phone-Based Musical Instruments
	Larger Screen Mobile Devices
	Touchscreen and Skill Transfer
	Touchscreen and Tangibility
	Limitations

	Augmenting Mobile Devices
	Passive Augmentations
	Active Augmentations

	Physical Modeling
	Digital Waveguides and Modal Synthesis
	Physical Modeling Environments
	Faust and Physical Modeling

	3D Printing, Acoustics, and Lutherie
	Printing Musical Instruments
	Modifying/Augmenting Existing Objects and Musical Instruments
	Other Uses

	Genesis
	Towards the BladeAxe
	The Féraillophone
	The HybridScreen
	The BlackBox
	The Chanforgnophone
	Augmented iPads

	The BladeAxe1: a Hybrid Guitar Physical Model Controller
	Plucking System
	Physical Model
	Neck

	The BladeAxe2: Augmenting the iPad
	Towards the BladeAxe2
	Final Version
	Control
	Physical Model
	The PlateAxe
	Discussion

	Metafont: Facilitating Musical Apps Design and Skill Transfer
	Early Tools: |faust2android| and |faust2ios|
	First Faust App Generator: |faust2ios|
	Android and Real Time Signal Processing in the Early 2010s
	Real-time Audio With |faust2android|
	Generating Code
	Simple User Interface
	Using Built-In Sensors
	Keyboard and Multitouch Interface
	OSC and MIDI Support
	Audio IO Configuration
	Easy App Generation

	Towards a Generic System: |faust2api|
	Overview
	Implementation
	Audio Latency
	Future Directions

	|faust2smartkeyb|
	Apps Generation and General Implementation
	Architecture of a Simple |faust2smartkeyb| Program
	Preparing a Faust Program for Continuous Pitch Control
	Configuring Continuous Pitch Control
	Using Specific Scales
	Handling Polyphony and Monophony
	Other Modes

	Skill Transfer and Screen Interface: |faust2smartkeyb| Apps Examples
	Plucked Strings Instruments: the Guitar
	Bowed Strings Instruments: the Violin
	Percussion Instruments: Polyphonic Keyboard and Independent Instruments Paradigms
	Wind Instruments: Key Combinations and Continuous Control

	Passively Augmenting Mobile Devices
	Mobile 3D
	Leveraging Built-In Sensors and Elements
	Microphone
	Speaker
	Motion Sensors
	Other Sensors

	Holding Mobile Devices
	Wind Instrument Paradigm
	Holding the Device With One Hand
	Other Holding Options

	More Examples and Evaluation

	Actively Augmenting Mobile Devices With Sensors
	Nuance: Adding Force Detection to the iPad
	Hardware
	Software
	Examples
	Evaluation/Discussion

	Transmitting Sensor Data to Mobile Devices
	Digital Transmission
	Analog Transmission

	Active Sensors Augmentation Framework
	Examples and Evaluation: CCRMA Mobile Synth Summer Workshop
	Bouncy-Phone by Casey Kim
	Something Else by Edmond Howser
	Mobile Hang by Marit Brademann

	Developing the Hybrid Mobile Instrument
	Hybrid Instrument Framework Overview
	From Physical to Virtual
	From Virtual to Physical
	Connecting Virtual and Physical Elements
	Adapting This Framework to Mobile Devices

	Faust Physical Modeling Library
	Bidirectional Block-Diagram Algebra
	Assembling High Level Parts: Violin Example

	|mesh2faust|: a Faust Modal Physical Model Generator
	Theory: FEM
	Faust Modal Physical Model
	|mesh2faust|
	Complete Open Source Solution to Finite Element Analysis
	Example: Marimba Physical Model Using FPML and |mesh2faust|

	Discussion and Future Directions

	Conclusion
	Summary of Contributions
	Chapter 1 Contributions
	Chapter 2 Contributions
	Chapter 3 Contributions
	Chapter 4 Contributions
	Chapter 5 Contributions
	Chapter 6 Contributions

	Future Work

	Appendices
	Faust-STK
	Waveguide Models
	Wind Instruments
	String Instruments
	Percussion Instruments

	Using Nonlinear Passive Allpass Filter With Waveguide Models
	Modal Models
	Voice Synthesis
	Keyboards
	Using a Faust-STK Model With Gesture-Following Data

	Bell Modeling Using |mesh2faust|
	FPML Functions Listing
	Extending Faust's Block-Diagram Algebra Towards Multidimensionality
	Conventions
	Horizontal Composition
	Vertical Composition
	Parallel Composition
	Route Primitive
	Rotation
	Examples
	General Case: Feedback
	Physical Modeling
	Transformer-Normalized Digital Waveguide Oscillator

	Hybrid Woodwind Instrument and Active Control
	General Concept
	First Model and Experiments
	3D Printed Mouthpiece and Feedback System
	Physical Model
	First Experiment

	Square Wave Experiments
	Limited ``Zero-Latency'' System
	Additional Experiments and Future Directions
	Further Reducing Latency
	Improving the Mouthpiece Feedback System

	Bibliography

