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Non-Negative Matrix Factorization

Data[
V

]
≈

Basis Vectors[
W

] Weights[
H

]

• A matrix factorization where everything is non-negative

• V ∈ RF×T
+ - original non-negative data

• W ∈ RF×K
+ - matrix of basis vectors, dictionary elements

• H ∈ RK×T
+ - matrix of activations, weights, or gains

• K < F < T (typically)
• A compressed representation of the data
• A low-rank approximation to V
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NMF With Spectrogram Data

V ≈ W H

NMF of Mary Had a Little Lamb with K = 3 play stop

• The basis vectors capture prototypical spectra [SB03]

• The weights capture the gain of the basis vectors



Factorization Interpretation I

Columns of V ≈ as a weighted sum (mixture) of basis vectors

v1 v2 ... vT

 ≈
 K∑
j=1

Hj1 wj

K∑
j=1

Hj2 wj ...
K∑
j=1

HjT wj





Factorization Interpretation II

V is approximated as sum of matrix “layers”

= + +

v1 v2 . . . vT

 ≈
w1 w2 . . . wK




h
T

1

h
T

2
...

h
T

K


V ≈ w1 h

T
1 +w2 h

T
2 + . . .+ wK hT

K



General Separation Pipeline

1 STFT

2 NMF

3 FILTER

4 ISTFT

NMF

STFT

ISTFT

FILTERx

\X
x̂S

x̂1

x̂2ISTFT

ISTFT

...

W H,

|X̂1|

|X̂2|

|X̂S |
V = |X|



An Algorithm for NMF

Algorithm KL-NMF

initialize W,H
repeat

H← H .∗
WT V

WH

WT 1

W←W .∗
V

WH
HT

1HT

until convergence return W,H
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Non-Negativity

• Question: Why do we get a ’parts-based’ representation of
sound?

• Answer: Non-negativity avoids destructive interference
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Constructive and Destructive Interference

Constructive Interference

x + x = 2x

Destructive Interference

x + (−x) = 0
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Non-Negative Constructive and Destructive Interference

Constructive Interference

|x| + |x| = 2|x|

Destructive Interference

|x| + | − x| = 2|x|
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Non-negativity Avoids Destructive Interference

• With non-negativity, destructive interference cannot happen

• Everything must cumulatively add to explain the original data

• But . . .
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Approximation I

In doing so, we violate the superposition property of sound

x = x1 +x2 + . . .+ xN

and actually solve

|X| ≈ |X1|+ |X2|+ . . .+ |XN |



Approximation II

Alternatively, we can see this approximation via:

x = x1 +x2 + . . .+ xN

|X| ejφ = |X1| ejφ1 + |X2| ejφ2 + . . .+ |XN | ejφN

|X| ejφ ≈ (|X1|+ |X2|+ . . .+ |XN |) ejφ

|X| ≈ |X1|+ |X2|+ . . .+ |XN |



Roadmap of Talk

1 Review

2 Further Insight

3 Supervised and Semi-Supervised Separation

4 Probabilistic Interpretation

5 Extensions

6 Evaluation

7 Future Research Directions

8 Matlab



Unsupervised Separation I

Single, simultaneously estimation of W and H from a mixture V

V ≈ W H

What we’ve seen so far



Unsupervised Separation II

• Complex sounds need more than one basis vector

• Difficult to control which basis vector explain which source

• No way to control the factorization other than F, T, and K
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Supervised Separation

General idea:

1 Use isolated training data of each source within a mixture to
pre-learn individual models of each source [SRS07]

2 Given a mixture, use the pre-learned models for separation
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Supervised Separation I

Example:
Drum + Bass
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Supervised Separation II
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Supervised Separation II
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Supervised Separation III

Throw away the activations H1 and H2
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Supervised Separation IV

Concatenate basis vectors of each source for complete dictionary
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Supervised Separation V
Now, factorize the mixture with W fixed (only estimate H)
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Supervised Separation V
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Drum + Bass

F
re

q
u

e
n

c
y

Time

Basis Vectors

F
r
e

q
u

e
n

c
y
 
(
H

z
)

Basis

Basis Vectors

F
r
e

q
u

e
n

c
y
 
(
H

z
)

Basis

V ≈ W H

≈
[
W1 W2

] [
H

T

1

H
T

2

]



Complete Supervised Process

1 Use isolated training data to learn a factorization (WsHs) for
each source s

2 Throw away activations Hs for each source s

3 Concatenate basis vectors of each source (W1,W2,...) for
complete dictionary W

4 Hold W fixed, and factorize unknown mixture of sources V
(only estimate H)

5 Once complete, use W and H as before to filter and separate
each source
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Sound Examples
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Masking filters used to process mixture into the separated sources.



Question

• What if you don’t have isolated training data for each source?

• And unsupervised separation still doesn’t work?
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Semi-Supervised Separation

General Idea:

1 Learn supervised dictionaries for as many sources as you can
[SRS07]

2 Infer remaining unknown dictionaries from the mixture
(only fix certain columns of W)
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Semi-Supervised Separation I

Example:
Drum + Bass
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Semi-Supervised Separation II

Use isolated training data to learn factorization for as many
sources as possible (e.g. one source)
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Semi-Supervised Separation III

Throw away the activations H1
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Semi-Supervised Separation IV

Concatenate known basis vectors with unknown basis vectors
(initialized randomly) for complete dictionary
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Semi-Supervised Separation V
Now, factorize the mixture with W1 fixed (estimate W2 and H)

Drum + Bass

F
re

q
u

e
n

c
y

Time

Basis Vectors

F
r
e

q
u

e
n

c
y
 
(
H

z
)

Basis

V ≈ W H

≈
[
W1 W2

] [
H

T

1

H
T

2

]



Semi-Supervised Separation V
Now, factorize the mixture with W1 fixed (estimate W2 and H)

Drum + Bass

F
re

q
u

e
n

c
y

Time

Basis Vectors

F
r
e

q
u

e
n

c
y
 
(
H

z
)

Basis

Basis Vectors

F
r
e

q
u

e
n

c
y
 
(
H

z
)

Basis

V ≈ W H

≈
[
W1 W2

] [
H

T

1

H
T

2

]



Complete Semi-Supervised Process

1 Use isolated training data to learn a factorization (WsHs) for
as many sources s as possible

2 Throw away activations Hs for each known source s

3 Concatenate known basis vectors with random init vectors for
unknown sources to construct complete dictionary W

4 Hold the columns of W fixed which correspond to known
sources, and factorize a mixture V (estimate H and any
known column of W)

5 Once complete, use W and H as before to filter and separate
each source
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Sound Examples
Supervised the bass.
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Probabilistic Interpretation
Some notation:
z indexes basis vectors, f frequency bins, and t time frames.

The model:
For each time frame t, repeat the following:

• Choose a component from p(z|t). z
−→

t −→

= H

• Choose a frequency from p(f |z). f
−→

z −→

= W

The spectrogram Vft are the counts that we obtain at the end of
the day. We want to estimate p(z|t) and p(f |z).
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Probabilistic Interpretation

Is this realistic?

• We’re assuming the spectrogram contains counts. We sample
“quanta” of spectral energy at a time.

• This model is popular in topic modeling, where we assume
documents are generated from first sampling a topic from
p(z|d) and then a word from p(w|z).

• probabilistic latent semantic indexing, or pLSI [Hof99]
• latent Dirichlet allocation, or LDA [BNJ03]

• In audio, this model is called probabilistic latent component
analysis, or PLCA [SRS06]
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Latent Variable Model

We only observe the outcomes Vft. But the full model involves
unobserved variables Z.

p(z|t) Z

p(f |z)

F

N
T

The Expectation-Maximization (EM) algorithm is used to fit
latent variable models. It is also used in estimating Hidden Markov
Models, Gaussian mixture models, etc.
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Maximum Likelihood Estimation
To fit the parameters, we choose the parameters that maximize the
likelihood of the data. Let’s zoom in on a single time frame:

p(v1, ..., vF ) =
(
∑

f vf )!

v1!...vF !

F∏
f=1

p(f |t)vf

According to the model on the previous slide, the frequency could
have come from any of the latent components. We don’t observe
this so we average over all of them.

p(f |t) =
∑
z

p(z|t)p(f |z)

Putting it all together, we obtain:

p(v1, ..., vF ) =
(
∑

f vf )!

v1!...vF !

F∏
f=1

(∑
z

p(z|t)p(f |z)
)vf
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Maximum Likelihood Estimation

p(v1, ..., vF ) =
(
∑

f vf )!

v1!...vF !
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• We want to maximize this over p(z|t) and p(f |z).

• In general, with probabilities it is easier to maximize the log
than the thing itself:

log p(v1, ..., vF ) =

F∑
f=1

vf log
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p(z|t)p(f |z)
)

+ const.

• Remember from last week: First thing you should always
try is differentiate and set equal to zero. Does this work here?
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The Connection to NMF

• Last week, we talked about minimizing the KL divergence
between V and WH.

D(V ||WH) = −
∑
f,t

Vft log

(∑
z

WfzHzt

)
+
∑
f,t

∑
z

WfzHzt+const.

• Compare with maximizing the log-likelihood:

log p(v1, ..., vF ) =

F∑
f=1

vf log

(∑
z

p(z|t)p(f |z)
)

+ const.

subject to
∑

z p(z|t) = 1 and
∑

f p(f |z) = 1.

• Last week, we used majorization-minimization on D(V ||WH):

− log

(∑
z

φftz
WfzHzt

φftz

)
≤ −

∑
z

φftz log
WfzHzt

φftz

• Now watch what we do with the log-likelihood....
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EM Algorithm

• Suppose we observed the latent component for a frequency
quanta. Then we wouldn’t need to average over the
components; its log-likelihood would be:

log p(z|t)p(f |z)

• But we don’t know the latent component, so let’s average this
over our best guess of the probability of each component:∑

z

p(z|f, t) log p(z|t)p(f |z)

• In summary, we’ve replaced

log

(∑
z

p(z|t)p(f |z)
)

by
∑
z

p(z|f, t) log p(z|t)p(f |z)

Look familiar?
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EM Algorithm

E-step: Calculate

p(z|f, t) =
p(z|t)p(f |z)∑
z p(z|t)p(f |z)

M-step: Maximize∑
f,t

Vft
∑
z

p(z|f, t) log p(z|t)p(f |z)

Majorization: Calculate

φftz =
WfzHzt∑
zWfzHzt

Minimization: Minimize

−
∑
f,t

Vft
∑
z

φzft logWfzHzt+
∑
f,t,z

WfzHzt

The EM updates are exactly the multiplicative updates for NMF,
up to normalization!
The EM algorithm is a special case of MM, where the minorizing
function is the expected conditional log likelihood.
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Geometric Interpretation

• We can think of the basis vectors p(f |z) as lying on a
probability simplex.

• The possible sounds for a given source is the convex hull of
the basis vectors for that source.
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Geometric Interpretation

In supervised separation, we try to explain time frames of the
mixture signal as combinations of the basis vectors of the different
sources.
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Extensions

• The number of parameters that need to be estimated is huge:
FK +KT .

• In high-dimensional settings, it is useful to impose additional
structure.

• We will look at two ways to do this: priors and
regularization.
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Priors

• Assume the parameters are also random, e.g., H = p(z|t) is
generated from p(H|α). This is called a prior distribution.

α H

p(z|t)

Z

p(f |z)

F

N
T

• Estimate the posterior distribution p(H|α, V ).

• Bayes’ rule: p(H|α, V ) =
p(H,V |α)

p(V |α)
=
p(H|α)p(V |H)

p(V |α)
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Bayesian Inference

• Bayes’ rule gives us an entire distribution over H = p(z|t).

• One option is the posterior mean: computationally
intractable.

• An easier option is the posterior mode (MAP):

maximize
H

log p(H|α, V ) = log p(H|α) + log p(V |H)− p(V |α)
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Regularization Viewpoint

• Another way is to add another term to the objective function:

minimize
W,H≥0

D(V ||WH) + λΩ(H)

Ω encodes the desired structure, λ controls the strength.

• We showed earlier that D(V ||WH) is the negative log
likelihood. So:

λΩ(H)⇐⇒ − log p(H|α)

• Some common choices for Ω(H):

• sparsity: ||H||1 =
∑

z,t |Hzt|
• smoothness:

∑
z,t(Hz,t −Hz,t−1)2
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Evaluation Measures

• Signal-to-Interference Ratio (SIR)

• Signal-to-Artifact Ratio (SAR)

• Signal-to-Distortion Ratio (SDR)

We want all of these metrics to be as high as possible [VGF06]



Evaluation Measures

To compute these three measures, we must obtain:

• s ∈ RT×N original unmixed signals (ground truth)

• ŝ ∈ RT×N estimated separated sources

Then, we decompose these signals into

• starget — actual source estimate

• einterf — interference signal (i.e. the unwanted source)

• eartif — artifacts of the separation algorithm



Evaluation Measures

To compute starget, einterf , and eartif

• starget = Psj ŝj

• einterf = Psŝj − Psj ŝj
• eartif = ŝj − Psŝj

where Psj and Ps are T × T projection matrices



Signal-to-Interference Ratio (SIR)

A measure of the suppression of the unwanted source

SIR = 10 log10
||starget||2
||einterf ||2



Signal-to-Artifact Ratio (SAR)

A measure of the artifacts that have been introduced by the
separation process

SAR = 10 log10
||starget + einterf ||2

||eartif ||2



Signal-to-Distortion Ratio (SDR)

An overall measure that takes into account both the SIR and SAR

SDR = 10 log10
||starget||2

||eartif + einterf ||2



Selecting Hyperparameters using BSS Eval Metrics

• One problem with NMF is the need to specify the number of
basis vectors K.

• Even more parameters if you include regularization.

• BSS eval metrics give us a way to learn the optimal settings
for source separation.

• Generate synthetic mixtures, try different parameter settings,
and choose the parameters that give the best BSS eval
metrics.
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BSS Eval Toolbox

A Matlab tool box for source separation evaluation [VGF06]:

http://bass-db.gforge.inria.fr/bss_eval/

http://bass-db.gforge.inria.fr/bss_eval/
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Research Directions

• Score-informed separation - sheet music

• Interactive separation - user-interaction

• Temporal dynamics - how sounds change over time

• Unsupervised separation - grouping basis vectors, clustering

• Phase estimation - complex NMF, STFT constraints, etc.

• Universal models - big data for general models of sources



Demos

• Universal Speech Models

• Interactive Source Separation
• Drums + Bass
• Guitar + Vocals + AutoTune
• Jackson 5 Remixed



STFT

x1 = wavread(‘bass’);

x2 = wavread(‘drums’);

[xm fs] = wavread(‘drums+bass’);

FFTSIZE = 1024;

HOPSIZE = 256;

WINDOWSIZE = 512;

X1 = myspectrogram(x1,FFTSIZE,fs,hann(WINDOWSIZE),-HOPSIZE);

V1 = abs(X1(1:(FFTSIZE/2+1),:));

X2 = myspectrogram(x2,FFTSIZE,fs,hann(WINDOWSIZE),-HOPSIZE);

V2 = abs(X2(1:(FFTSIZE/2+1),:));

Xm = myspectrogram(xm,FFTSIZE,fs,hann(WINDOWSIZE),-HOPSIZE);

Vm = abs(Xm(1:(FFTSIZE/2+1),:)); maxV = max(max(db(Vm)));

F = size(Vm,1);

T = size(Vm,2);

• https://ccrma.stanford.edu/~jos/sasp/Matlab_

listing_myspectrogram_m.html

• https://ccrma.stanford.edu/~jos/sasp/Matlab_

listing_invmyspectrogram_m.html

https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_myspectrogram_m.html
https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_myspectrogram_m.html
https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_invmyspectrogram_m.html
https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_invmyspectrogram_m.html


NMF
K = [25 25]; % number of basis vectors

MAXITER = 500; % total number of iterations to run

[W1, H1] = nmf(V1, K(1), [], MAXITER,[]);

[W2, H2] = nmf(V2, K(2), [], MAXITER,[]);

[W, H] = nmf(Vm, K, [W1 W2], MAXITER, 1:sum(K));

function [W, H] = nmf(V, K, W, MAXITER, fixedInds)

F = size(V,1); T = size(V,2);

rand(’seed’,0)

if isempty(W)

W = 1+rand(F, sum(K));

end

H = 1+rand(sum(K), T);

inds = setdiff(1:sum(K),fixedInds);

ONES = ones(F,T);

for i=1:MAXITER

% update activations

H = H .* (W’*( V./(W*H+eps))) ./ (W’*ONES);

% update dictionaries

W(:,inds) = W(:,inds) .* ((V./(W*H+eps))*H(inds,:)’) ./(ONES*H(inds,:)’);

end

% normalize W to sum to 1

sumW = sum(W);

W = W*diag(1./sumW);

H = diag(sumW)*H;



FILTER & ISTFT

% get the mixture phase

phi = angle(Xm);

c = [1 cumsum(K)];

for i=1:length(K)

% create masking filter

Mask = W(:,c(i):c(i+1))*H(c(i):c(i+1),:)./(W*H);

% filter

XmagHat = Vm.*Mask;

% create upper half of frequency before istft

XmagHat = [XmagHat; conj( XmagHat(end-1:-1:2,:))];

% Multiply with phase

XHat = XmagHat.*exp(1i*phi);

% create upper half of frequency before istft

xhat(:,i) = real(invmyspectrogram(XmagHat.*exp(1i*phi),HOPSIZE))’;

end
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