From Jack to UDP packets to sound, and back

Fernando Lopez-Lezcano
CCRMA, Stanford University
Stanford, CA, USA
nando @ccrma.stanford.edu

Abstract

The Mamba Digital Snakes are commercial products
created by Network Sound, that are used in pairs to
replace costly analog cable snakes by a single
Ethernet cable. A pair of boxes can send and receive
up to 64 channels at 48KHz sampling rate packed
with 24 bit samples. This paper describes the
evolution of jack-mamba, a small jack client that can
send and receive UDP packets to/from the box
through a network interface and transforms it into a
high channel count soundcard.

Keywords
Jack, UDP, Networking, Soundcard, USB

1 Introduction

The jack-mamba program is the offshoot of a
project that is still in progress, with the goal of
creating a small trial Wave Field Synthesis system at
CCRMA (a 32 channel system for experimentation
and possible future expansion).

The conventional solution in most current WES
systems is to use high channel count PCI or PCle
sound cards, usually from the RME MADI family.
The MADI output of the soundcard (64 channels) is
then split into 8 ADAT 8 channel ports with a MADI
to ADAT bridge, and each ADAT lightpipe is fed
into 8 channel ADAT D/A converters that drive the
speakers. This solution is proven and reliable, easy to
synchronize across multiple hosts using a word clock
signal, but expensive. For a base 32 channel system
the price hovered around $180 per channel (64
channel systems would have a lower cost per
channel, of course).

We though it was worthwhile to explore other non-
conventional solutions that might lower the cost of
the system.

2 A network sound card

Another possibility would be to eliminate the
sound card entirely and explore delivery of audio
through network packets to custom built boxes that
would include a network port and D/A converters.
There are already many systems that deliver high
quality audio over Ethernet, but most of them use
proprietary protocols (a Wikipedia article includes
pointers to most[1]). Of course there is also the very
complete and complex IEEE 1722 protocol[2]. This
topic (an Ethernet “soundcard”) has also surfaced on
the LAD, LAU and Jack mailing lists several times
on recent years (see, for example, a long thread in
2009[3] started by Will Godfrey - Folderol, another
one in mid-2011[4] by Dan Swain). As far as I'm
aware this has not yet crystallized into working
hardware.

3  The Mamba digital snake

A local Silicon Valley company (Network Sound)
has created a family of products that replace high
cost analog cable snakes with A/D and D/A boxes
connected through a single CATS Ethernet cable (the
Mamba Digital Snake [S][7]). A pair of boxes can
interconnect two locations with up to 64 channels of
48KHz low latency 24 bit audio through a dedicated
Ethernet link. Their solution is dedicated and point to
point, and thus does not implement resource
discovery, overall sampling rate synchronization and
hence the communication protocol is very simple.

We thought it would be interesting to explore the



possibility of using one half of a 32 channel digital
snake as a "soundcard". A rough cost estimate for
that solution seemed to be about 1/3 of the traditional
soundcard solution (this ignores for now the problem
of synchronizing multiple units driven by different
computers so that all the analog outputs are sample
synchronous, a requirement of a WES system).

The box is controlled by an FPGA, has 32 A/D
and D/A converters and analog I/O ports, and an
Ethernet connector. It is meant to be driven by an
identical system, and when running as a slave it
recovers its audio clock from the timing of the
received UDP packets. The formatting of the UDP
packets is very simple and there are no protocols to
implement. We just need to send UDP packets with
the proper timing and contents to get 32 analog
outputs. Network Sound was kind enough to provide
us with the packet format specification they receive
and transmit.

3.1 The software

We started looking around for open source free
software we could use as a starting point. The first
candidate was Jacktrip, a system designed at
CCRMA to do multichannel high quality long
distance audio collaboration[6]. A we started reading
the source we found that it was a complex system,
difficult to tweak for our purposes, and mostly
written using Qt classes, with which the author was
not familiar (the original goal was to write a simple
command line jack client using plain C).

In the meanwhile LAC 2011 took place and Jorn
Netingsmeier pointed out the existence of jack.tools
by Rohan Drape[7], a set of GPL jack command line
tools. One of them is jack.udp and it seemed to be an
almost perfect fit for the task at hand:

"jack.udp is a UDP audio transport mechanism
for JACK. The send mode reads signals from a set of
JACK input ports and sends UDP packets to the
indicated port at the indicated host at a rate
determined by the local JACK daemon. The "recv"
mode reads incoming packets at the indicated port
and writes the incoming data to a set of JACK output
ports at a rate that is determined by the local JACK
daemon. "

After looking at the source (simple C, very
readable) it seemed that it would be relatively simple
to modify the send and receive functions and adapt
them to the packet and sample formats needed by the
Mamba box, replacing the sending side of the digital
snake with a general purpose Linux computer.

3.2 Initial tests

The Mamba box uses a simple packet format, in
the case of the 32 channel version each UDP packet
holds 8 32 channel 24 bit audio frames. Our jack
client program would have to send packets at the rate
of one packet every 166.67 uSecs.

The jack.udp program has (as a sender) a separate
thread for sending UDP packets, which is fed
samples from the Jack callback function by a lock-
free ring buffer. The Jack callback pushes its samples
into the lock-free ring buffer and wakes the UDP
send thread through a write to a pipe. The UPD
thread, which was waiting on the pipe, reads the
samples in packet-sized chunks from the ring buffer
and sends them out to the proper IP address and port,
where normally a second instance of jack.udp in
receive mode does the opposite.

It was easy to replace the packet assembly and
disassembly functions with versions that packed 24
bit samples into 8 channel frames with the proper
header information. We were able to test sending and
receiving audio between two computers as with the
original program, except that in this case the
formatting of the packets corresponded to the
Mamba specifications.

In May 2011 we visited Network Solutions for a
first test. We used the Ethernet port of a laptop
configured as a statically addressed interface to send
the packets.

The first try were less than successful as the UDP
packets seemed to go nowhere. Tcpdump made it
was easy to see why, as nobody was answering ARP
requests. The Network Sound engineers burned a
different version of the FPGA code that included
ARP generation, and we were able to send packets to
the box. For these initial tests sending on the box was



disabled (it only received UDP packets), and internal
buffering was maximized to make it as robust as
possible to latency problems in the jack client
program.

After that, we managed to send a sine wave to the
Mamba box and got a clean output, albeit with quite
frequent dropouts. But we knew that the packets
were getting to the box, and that the formatting of the
packets and the samples was correct.

3.3  Clock jitter issues

There was a mismatch between the modified
jack.udp and the internals of the Mamba box. All
UDP packets packed with samples from a Jack
callback were sent together at the beginning of the
callback as in the original jack.udp code. As the
Mamba box recovers its audio clock from the timing
of the received UDP packets the uneven timing
creates jitter in the recovered audio clock.

To see if the problem could be minimized we
added delays between packets to space them more
evenly within a jack cycle. The timing on the
receiving end was definitely better after that change.

The fact that the modified jack.udp is a normal
Jack client was also going to have extra second order
jitter effects. The absolute starting point of the Jack
callback in time could move from period to period as
Jack clients enter or leave the graph, or when
connections are changed so that the order of
execution of existing clients change. Those changes,
while minimal, would also have an effect in the
transmit timing of the UDP packets. In addition to
that, the wakeup latency of the UDP send thread
itself would add an additional (small) delay to the
first packet being sent out in a given Jack period.

As a first approximation the code was good
enough to verify that the network stack and high
resolution timers in Linux could deliver packets
reliably to the box every 166.6 uSecs.

3.4 More testing

Another test on June Ist was much more
successful. The glitches that had plagued the
previous test were the result of a coding error. The

UDP send thread was actually not running in the
SCHED_FIFO scheduling ring (booo!). With that fix
in place the audio output was much more stable.

We received a loaner box from Network Sound
with the custom FPGA code and we were able to
keep testing at CCRMA, this time using a desktop
machine with a second network interface dedicated
to the audio link. This combination did much better
than the laptop and there were almost no dropouts
even when loading the computer and transferring big
files through the regular ethO interface.

3.5 Receiving audio

Receiving packets from the Mamba box did not
work and it took a long time to debug the problem.
We could see packets being received by the Linux
machine with tcpdump, but nothing was received by
the program. Eventually we found out by using
netstat that the packets being sent by the Mamba box
were not legal (we could see the network stack error
counters being incremented). A hex disassembly of a
dumped packet confirmed that the checksum was
wrong. A bug in the FPGA code, which was
promptly fixed by the Network Sound engineers.

Now we were at the end of June. Another flashed
FPGA and a test at Network Sound and we managed
to receive audio from the Mamba box with one
instance of the modified jack.udp program. A jaaa
process showed a perfect sine wave being received at
our end (one of the channels of the Mamba box was
being fed by a high quality audio analyser test
signal).

3.6 Looking at the recovered audio clock jitter

We fired another instance of the modified jack.udp
to send packets to the mamba box. And almost
immediately jaaa showed visible side bands around
the single spike that represented the sine wave.
Puzzling, until one of the engineers (I forget her
name) pointed out the obvious cause, this was the
confirmation that jitter in the received packets in the
Mamba box caused jitter in the recovered audio
clock. See below for measurements.



The jitter in the recovered audio clock is not a
problem in the real digital snake as the timing of the
packets sent by the master box is hardware driven.

3.7 Thread priorities

It is necessary to optimize the priority of all
SCHED_FIFO threads involved in this network
based “audio stack”.

As the timing of the outgoing packets is critical to
minimize audio clock recovery jitter, the UDP send
thread runs with a priority that is higher (by one)
than the priority of the main SCHED_FIFO thread of
jackd. Receiving packets is very important but the
timing is not so critical, so that the UDP receiving
thread runs with higher priority than the jackd client
thread of jack-mamba (it has less priority than
sending).

There are two additional sets of threads that can
use priority tweaking, although the result is not as
drastic as the main UDP send and receive threads
inside the modified jack-udp program.

As in the case of Jack, the IRQ thread for the
hardware Ethernet interface dedicated to audio can
be raised in priority. It should be higher than the
priority of jackd but probably lower than the priority
of the IRQ thread that takes care of the soundcard
hardware (more experimentation is needed to fine-
tune this — this will probably depend on the
reliability of the hardware drivers for sound and
network packets).

The kernel also has network transmit and receive
software interrupts that run with SCHED_FIFO
priority. They can also be optimized to run at higher
priority than other software interrupts.

4  Getting rid of the pipe

With the previous tests we had confirmed that it
was possible to send and receive packets from a
stock Linux machine running an RT patched kernel
with very occasional packet delays. Almost all of the
delays were short enough that the buffering inside
the Mamba box could cover for them.

To get better performance and to minimize the
jitter in the recovered audio clock we had to change
the internal architecture of the original jack.udp
program (now renamed jack-mamba). We wanted to
do away with the pipe based wakeup calls that the
jack callback function used to drive the UDP send
thread. After all, the UDP send thread needed to send
packets at a regular rate that should be locked to the
sampling rate of the soundcard being used by Jack.

If the UDP send thread were to send all packets at
exactly the right time, there should be no need for
wakeup calls, the Jack callback could feed the ring
buffer and the UDP send thread could empty it at
exactly the same rate, and both halves would not
need any additional synchronization. Enough extra
buffering in the ring buffer in the form of a fixed
time offset between arrival of samples to the Jack
callback and delivery of those samples in UDP
packets would provide for a cushion against latency
variations in the Jack callbacks and uneven
scheduling latencies in all processes involved,
including the UDP send thread.

Based on Jack time (jack_last_frame_time tells us
when the current Jack cycle started) we can know
exactly when the next packet should be sent. The
UDP thread can then use absolute time
clock_nanosleep calls instead of relative nanosleep
waits for delivering the packets at the right time. And
we can pass the absolute time stamp for each packet
in the same ring buffer that sends samples from the
jack callback to the UDP send thread.

The UDP thread is now an infinite loop that
checks for availability of data in the ring buffer in
each iteration. If there is enough data available to fill
one UDP packet, it reads it together with the absolute
time when it should be sent, and waits with a call to a
clock_nanosleep delay (with a TIMER_ABSTIME
argument). The packet is then sent at the right time
and the loop is iterated again.

If there is not enough data available in the ring
buffer the thread waits using a relative
clock_nanosleep call that delays the thread for the
duration of the pre-calculated inter-packet delay.



This can happen when there is a Jack xrun or the
Jack callback thread gets delayed for a long time.
After the wait the loop is iterated again.

In this way there is no additional scheduling delay
for the first packet at the beginning of a jack cycle
due to the pipe wakeup, all packets are scheduled at
the right time (in the steady state condition), the
scheduling time only depends on the start of each
Jack cycle and we can add a time offset for
additional buffering (and latency) in the ring buffer.

The jitter in packet delivery will of course be
impacted by any scheduling delays in the UDP send
thread, but with a properly configured RT patched
kernel and correct IRQ priorities it works fine.

The next graph shows inter-packet scheduling
delay measurements using tcpdump (with inter-
packet time stamps, the “-ttt” option) on the sending
machine over a period of 5 minutes, The X axis is
measured packet spacing (the theoretical delay in this
case should be 166.667 uSecs running Jack at 48KHz
with 128 x 2) and the Y axis is number of packets
that fall in a particular microsecond-wide bin:

300000 e

250000 —‘L

200000 =

150000 J U

100000

|
r

0 " L
140 145 150 155 160 165 170 175 180 185 190
Time delay between sent packets

Even with a properly tuned system there are still
occasional cases of long scheduling delays. A more
complete investigation needs to be done, adding code
to trigger Jack stack traces in those cases to try to see

why the scheduling latencies are happening.

The figure below show a 1KHz sine wave from a
Minirator MR-PRO generator being fed into channel
#1 of the Mamba box and received by a single
instance of jack-mamba:

o-
BW = 0.37 Hz = -4.36 dBHz, VA = 0, Ptot = -5.67

n|
MKl = 9999 Hz, -5.68dB | B (+21) [ AR

The next figure shows the effect of recovered audio
clock jitter due to received packet timing differences
when we add another instance of jack-mamba
sending silence to the Mamba box (no other
changes). This is using jaaa peak hold and averaging
functions to see the worst long term distortion
products:

0-
BW = 0.37 Hz = -4 36 dBHz, VA = 17, Ptot = -5 68

ny
Mkl = 9983 Hz, 6939 dB | B (+18) e jENEd]

-40- [

-1004 | el i ' i ] i ] ISR
960 960 1000 1020 1040

The bandwidth of the measurement is very small



(0.366Hz) and the distortion products are at or below
70dB below full scale. These measurements were
taken on a workstation with quad core Q9450 Intel
processors @ 2.66GHz, running Fedora 14 with a
2.6.33.19-rt31 kernel while logged into an NFS
served account through the normal ethO interface.

4.1 Managing latency

The fact that there are elastic ring buffers between
the reception and transmission of the UDP packets,
and the Jack callbacks means we have potentially
variable input and output audio latencies.

The number of samples stored by the Jack callback
in the outgoing ring buffer determines the additional
output latency, and can be controlled. The number of
received UDP packets stored in the incoming ring
buffer determines the additional input latency. This
is set at program start time by discarding packets
until the latency corresponds to the desired amount.
Currently there is no way to detect dropped incoming
packets as there is no packet sequence information
being sent by the Mamba box in the header of the
packets. More work needs to be done in this regard.

4.2 Jack xruns

If an xrun occurs then the synchronization between
the jack callback thread and the UDP send thread is
broken. When that happens the reference timing for
the two threads is recalculated so that they are
synchronous again.

4.3 Error reporting

To report errors to the main program we added
another lock-free ring buffer that communicates error
messages back to the main program, it samples the
error queue and reports statistics to the console.

To be able to properly report errors with readable
timestamps we found it necessary to record the offset
between the return of the time system call and that of
clock_gettime at the startup of the program to
compensate the printed values for an offset between
the two clocks.

5 Network packet priorities

Linux provides several ways to prioritize network

traffic and we tried to add those options to the
program to further optimize performance and timing
of the packet delivery.

The first one is setting a higher socket priority for
the socket being used to transmit the UDP packets
(SO_PRIORITY) using setsockopt. We chose the
highest priority that we could use without having to
run the program with special privileges (6).

The second one is to change the Type of Service
(IP_TOS) of the packets. For this option it is
necessary for the executable to have special
permissions so it is not so easy to use. If that option
is used and the function returns an error, the program
suggests setting the executable to have the
appropriate capability (if file based capabilities are
available, of course).

6  Trial by fire

The Transitions Concert, our end of summer
concert, was going to have a first night (on
September 28"™) curated by the author of this paper
with a new outdoors sound system that used 16 main
speakers in a 3D setup and 4 sub-woofers. Our goal
was to have a reliable system that could drive all 20
speakers from the 32 channel Mamba D/A box.

We used a Quad Core Intel machine running
Fedora 14 with a 2.6.33.14-rt31 patched kernel. A
second PCI express Intel dual port Ethernet card was
installed and provided a dedicated point to point
connection to the Mamba box. The computer was left
in the server room and just three Ethernet cables
connected the system to the outdoor concert venue.
Two were used to remote the monitor and USB
peripherals, and the third one connected the
workstation to the Mamba box. Jack-mamba worked
perfectly. No xruns or glitches in the 1 1/2 hours the
concert lasted.

7 A 32 channel USB soundcard

When using laptops it is normally desired to be
able to use the wired Ethernet interface to have a fast
network connection to the Internet. While it may be
possible to share the interface with the audio packets
using proper routing, it would be much better to have



a second Ethernet interface dedicated to audio.

We tried to use a USB 2.0 to Ethernet dongle and
the results were very promising. We configured the
Ethernet interface using the Network Managwer GUI
in a Fedora 14 installation to be tied to the hardware
address of the dongle, and use the proper fixed IP
address that the Mamba box sends to. We also set up
routing so that the default route for Internet access is
not changed and the new interface does not interfere
with existing network connections.

Once the interface is properly set up, it is possible
to plug in the dongle, wait until it is discovered by
Network Manager, and start jack-mamba right away.
It is almost as easy to use as a real USB soundcard.
The dongle can even be disconnected and
reconnected and audio starts streaming again with no
problems when the interface is again detected.

We could also create udev rules so that the priority
of the USB IRQ thread in RT patched kernels is
changed from the default when the dongle is
connected. No tests have been made on what
happens when the USB dongle shares the internal
chipset USB hub with other USB ports and
peripherals. Maybe this solution will not be workable
in all cases.

8 Processor load

On an Intel Quad Core workstation running at
2.66GHz the jack-mamba process uses around 15.9%
of a CPU (split into the three main threads that use
7.3%, 53% and 3.3%), the IRQ thread for the
Ethernet card uses 3.6% and the network software
IRQ (sirg-net-rx/1) uses 9.3% (for a total of
approximately 28.8%). This is one disadvantage of
this “soundcard” as it uses more processing power
than a standard PCI[e] interface.

Using the USB Ethernet interface instead, the total
load of jack-mamba is 17.9%, the ehci_hcd IRQ
thread for the USB interface uses 9%, the uhci_hcd
2%, and assorted sirq-net* and tasklets use 8.8% for
a total of around 37%.

While a USB based Ethernet dongle uses 30%

more CPU than a PCI express Ethernet interface it is
not unreasonable for such an interesting solution. Of
course the actual numbers in both cases will change
slightly with different hardware drivers.

9 Creating a networked audio hub

Another feasibility test we performed was to run in
the same machine jack-mamba and instances of
jack_netsource (the netone version of netjack) tied to
another dedicated Ethernet port with a DHCP server
running on it. With this setup a computer can use the
workstation as a networked audio hub and connect to
the Mamba box through a network interface. This is
the scheme the author uses to implement network
audio connectivity in his OpenMixer project (albeit
with regular PCI based RME soundcards delivering
audio to the speakers).

10 Future development

Currently the determination of the spacing
between outgoing UDP packets is based just on the
absolute times of the last two jack cycles, a more
precise determination should be arrived at, either
based on a moving average of jack period lengths, or
a proper phase locked loop[8].

A very desirable next step would be to convert the
jack client program into a proper jack backend. We
would need a stable clock source to drive the audio
packet delivery.

A simple option would be to switch the Mamba
box into master mode, and use the received UDP
packets to trigger the sending of the transmitted UDP
packets. In this way the sampling rate would be
defined by the Mamba box itself and there would be
no jitter noise added due to audio clock recovery.

A Mamba Jack backend would transform the
Mamba box into a real "sound card". And a USB to
Ethernet dongle would make this "sound card"
independent of the availability of a free Ethernet port
in the machine (USB ports are plentiful).

The jack-mamba program currently has support for
16, 32, 48 and 64 channel Mamba boxes but we have
only tested it with the 32 channel version. It remains



to be seen if a 64 channel box can be made to run
reliably and if the CPU load of the network stack
processes is low enough to make it practical.

Another task is devising a synchronization scheme
so that multiple boxes can have sample synchronous
output (maybe impossible). There are protocols that
can synchronize the clock of several computers very
accurately, perhaps with enough resolution to be able
to send UDP packets from different computers to
different Mamba boxes at the same absolute time.
But the ring buffer induced latencies and the
possibility of dropped packets could make this
unreliable. Word clock I/O on the Mamba boxes
could alleviate these problems.

We also need to see if Network Sound can add
sequence numbers to the Mamba UDP packet
headers to enable us to detect missing or out of
sequence packets. It would also be neat for the box to
be able to copy a word from the incoming header to
the outgoing header as this would make it possible to
try to detect outgoing packet loss.

The newest products from Network Sound can be
programmed through special UDP packets (including
the send and receive IP addresses and ports, master
mode, number of channels, etc). We need to write a
small program that can access that functionality.

11 Conclusion

A Jack client has been presented which sends and
receives UDP packets from one half of a Mamba
digital snake box and slaves its sampling rate to a n
existing soundcard. It has been tested with a 32
channel box with no problems in real life situations
(concert diffusion), and works even through a cheap
USB to Ethernet adapter. It runs in a regular Linux
workstation with no special tweaks other than an RT
patched kernel and proper IRQ thread priority
optimization.

While solving the original problem (a low cost
network based delivery of audio for WFS systems) is
not yet done, this simple program and its planned
migration to a full Jack backend could be useful
nevertheless for situations where a high channel

count soundcard is desired with low cost.

Jack-mamba will be made available under the GPL
in time for LAC2012.

12 Acknowledgements

It would have taken a much longer time to write
this program from scratch if it were not for Rohan
Drape, his jack.tools package and jack.udp. Of
course without Jack itself and all the wonderful
audio programs that can use it this would not have
been possible either. Many thanks to all the members
of the Linux Audio community!

It would also have been impossible to do this
without the enthusiastic support of CCRMA and
Chris Chafe (CCRMA's Director), and without the
help of all the people at Network Sound.

References

[1] Wikipedia: Audio over Ethernet
http://en.wikipedia.org/wiki/Audio over Ethernet
[2] Wikipedia: Audio Video Bridging
http://en.wikipedia.org/wiki/Audio Video Bridging

[3] LAU/LAD: “FOSS Ethernet soundcard” thread
(Will Godfrey - Folderol):

http://linuxaudio.org/mailarchive/lau/2009/11/23/162
370

[4] Jack-Audio-Devel:  “Ethernet-based audio
interface using (net)jack idea” thread (Dan Swain):

http://permalink.gmane.org/gmane.comp.audio.jackit
/24568

[5] Network Sound: Mamba Digital Snake:
http://www.networksound.com/Digsnake.html

[6] Jacktrip and SoundWire:
https://ccrma.stanford.edu/groups/soundwire/softwar

e/jacktrip/
[6] Rohan Drape, jack.tools:

http://slavepianos.org/rd/

[7] Network Sound: Mamba Audio Streamer:
http://www.networksound.com/Mamba AS.html
[7] Using a DLL to filter time, Fons Adriansen,

http://kokkinizita.linuxaudio.org/papers/usingdll.pdf



http://en.wikipedia.org/wiki/Audio_over_Ethernet
http://kokkinizita.linuxaudio.org/papers/usingdll.pdf
http://www.networksound.com/Mamba_AS.html
http://slavepianos.org/rd/
https://ccrma.stanford.edu/groups/soundwire/software/jacktrip/
https://ccrma.stanford.edu/groups/soundwire/software/jacktrip/
http://www.networksound.com/Digsnake.html
http://permalink.gmane.org/gmane.comp.audio.jackit/24568
http://permalink.gmane.org/gmane.comp.audio.jackit/24568
http://linuxaudio.org/mailarchive/lau/2009/11/23/162370
http://linuxaudio.org/mailarchive/lau/2009/11/23/162370
http://en.wikipedia.org/wiki/Audio_Video_Bridging

	1 Introduction
	2 A network sound card
	3 The Mamba digital snake
	3.1 The software
	3.2 Initial tests
	3.3 Clock jitter issues
	3.4 More testing
	3.5 Receiving audio
	3.6 Looking at the recovered audio clock jitter
	3.7 Thread priorities

	4 Getting rid of the pipe
	4.1 Managing latency
	4.2 Jack xruns
	4.3 Error reporting

	5 Network packet priorities
	6 Trial by fire
	7 A 32 channel USB soundcard
	8 Processor load
	9 Creating a networked audio hub
	10 Future development
	11 Conclusion
	12 Acknowledgements

