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Abstract

This tutorial was adapted from the conference paper “Waveguide Filter Tutorial,” by J.O.
Smith, Proceedings of the International Computer Music Conference (ICMC-87), pp. 9–16,
Champaign-Urbana, 1987, Computer Music Association.
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1 Introduction

Digital Waveguide Filters (DWF) have proven useful for building computational models of acoustic
systems which are both physically meaningful and efficient for digital synthesis. The physical
interpretation opens the way to capturing valued aspects of real instruments which have been
difficult to obtain by more abstract synthesis techniques. Waveguide filters were derived for the
purpose of building reverberators using lossless building blocks [6], but any linear acoustic system
can be approximated using waveguide networks. For example, the bore of a wind instrument can
be modeled very inexpensively as a digital waveguide [7]. Similarly, a violin string can be modeled
as a digital waveguide with a nonlinear coupling to the bow [7]. When the basic model is physically
meaningful, it is often obvious how to introduce nonlinearities correctly, thus leading to realistic
behaviors far beyond the reach of purely analytical methods.

A basic feature of DWF building blocks is the exact physical interpretation of the contained
digital signals as traveling pressure waves or velocity waves. A byproduct of this formulation is
the availability of signal power defined instantaneously with respect to both space and time. This
instantaneous handle on signal power yields a simple picture of the effects of round-off error on
the growth or decay of the signal energy within the DWF system [8]. Another nice property of
waveguide filters is that they can be reduced in special cases to standard lattice/ladder digital filters
which have been extensively developed in recent years [4]. One immediate benefit of this connection
is a body of techniques for realizing any digital filter transfer function as a DWF. Waveguide filters
are also very closely related to Wave Digital Filters (WDF) which have been developed primarily
by Fettweis [2]. Waveguide filters can be viewed as a generalized framework incorporating aspects
of lattice and ladder digital filters, wave digital filters, one-dimensional waveguide acoustics, and
classical network theory [1].

A waveguide for our purposes is any medium in which wave motion can be characterized by the
one-dimensional wave equation [5]. In the lossless case, all solutions can be expressed in terms of
left-going and right-going traveling waves in the medium. The traveling waves propagate unchanged
as long as the wave impedance of the medium is constant. The wave impedance is the square root
of the of the “massiness” times the “stiffness” of the medium; that is, it is the geometric mean of
the two sources of resistance to motion: the inertial resistance of the medium due to its mass, and
the spring-force on the displaced medium due to its elasticity. For example, the wave impedance
R of a vibrating string is R =

√
Tρ = ρc, where ρ is string density (mass per unit length) and T is

the tension of the string.
When the wave impedance changes, signal scattering occurs, i.e., a traveling wave impinging

on an impedance discontinuity will partially reflect and partially transmit at the junction in such
a way that energy is conserved. Real-world examples of waveguides include the bore of a clarinet,
the vocal tract in speech, microwave antennas, electric transmission lines, and optical fibers.

2 Reduction to Standard Forms

Digital waveguide filters (DWF) are obtained (conceptually) by sampling the unidirectional travel-
ing waves which occur in a system of ideal, lossless waveguides. Sampling is across time and space.
Thus, variables in a DWF structure are equal exactly (at the sampling times and positions, to
within numerical precision) to variables propagating in the physical medium in an interconnection
of uniform transmission-lines.
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Figure 1: Waveguide digital filter structure.
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A cascade chain of DWF sections, terminated by a pure reflection on the right, is shown in Fig. 1.
Each box enclosing the symbol ki(t) denotes a scattering junction characterized by that reflection
coefficient. While we have mentioned only the Kelly-Lochbaum and one-multiply junction, any
type of lossless scattering junction will do [4]. The DWF employs delays between each scattering
junction along both the top and bottom signal paths, unlike conventional ladder and lattice filters.
As a result, it has a direct physical interpretation as a sampled acoustic tube.

The delays preceding the two inputs to a junction can be “pushed” into the junction so that they
emerge on the outputs and combine with the delays there. (Show this using the Kelly-Lochbaum
scattering junction.) By performing this operation on every other section in the DWF chain, the
filter structure of Fig. 2 is obtained. This structure has some advantages worth considering: (1) it
consolidates delays to length 2T as do conventional lattice/ladder structures, (2) it does not require
a termination by an infinite wave impedance, allowing it to be extended to networks of arbitrary
topology (e.g., multiport branching, intersection, and looping), and (3) there is no long delay-free
signal path along the upper rail as in conventional lattice/ladder structures—a pipeline segment
is only two sections long. This structure appears to have better overall characteristics than any
other digital filter structure for many applications. Advantage (2) makes it especially valuable for
modeling physical systems.

Figure 2: Pipelineable, physically extendible, consolidated-delay, waveguide filter.

Given a reflecting termination on the right, the half-rate DWF chain of Fig. 2 can be reduced
further to the conventional ladder/lattice structure of Fig. 3. Every delay on the upper rail is pushed
to the right until they have all been worked around to the bottom rail. In the end, each bottom-
rail delay becomes 2T seconds instead of T seconds. Such an operation is possible because of the
termination at the right by an infinite (or zero) wave impedance. In the time-varying case, pushing
a delay through a multiply results in a corresponding time advance of the multiplier coefficient.
The time arguments of the reflection coefficients in the figure indicate the amount of the time shift
for each section. Note that because of the reflecting termination, conventional lattice filters cannot
be extended to the right in any physically meaningful way. Also, creating network topologies more
complex than a simple series (or acyclic tree) of waveguide sections is not immediately possible
because of the delay-free path along the top rail. In particular, the output cannot be fed back to
the input.
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Figure 3: Conventional ladder/lattice filter structure.

3 Power-Normalized Waveguide Filters

Above, we adopted the convention that the time variation of the wave impedance did not alter the
traveling force waves f±

i
. In this case, the power represented by a traveling force wave is modulated

by the changing wave impedance as it propagates. The actual power becomes inversely proportional
to wave impedance:

Ii(t, x) = I+
i

(t, x) + I−

i
(t, x) =

[f+
i

(t, x)]2 − [f−

i
(t, x)]2

Ri(t)

In some applications (e.g. [6]), it may be desirable to compensate for the power modulation
so that changes in the wave impedances of the waveguides do not affect the power of the signals
propagating within.

In [8], three methods are discussed for making signal power invariant with respect to time-
varying branch impedances: (1) The normalized waveguide scheme compensates for power modu-
lation by scaling the signals leaving the delays so as to give them the same power coming out as
they had going in. It requires two additional scaling multipliers per waveguide junction. (2) The
normalized wave approach [4] propagates rms-normalized waves in the waveguide. In this case,
each delay-line contains f̃+

i
(t, x) = f+

i
(t, x)/

√

Ri(t) and f̃−

i
(t, x) = f−

i
(t, x)/

√

Ri(t). In this case,
the power stored in the delays does not change when the wave impedance changes. This is the
basis of the normalized ladder filter (NLF) [3, 4]. Unfortunately, four multiplications are obtained
at each scattering junction. (3) The transformer-normalized waveguide approach to normalization
changes the wave impedance at the output of the delay back to what it was at the time it entered
the delay using a “transformer.”

A transformer joins two waveguide sections of differing wave impedance in such a way that
signal power is preserved and no scattering occurs. From Ohm’s Law for traveling waves, and from
the definition of power waves, we see that to bridge an impedance discontinuity with no power
change and no scattering requires the relations

[f+
i

]2

Ri(t)
=

[f+
i−1]

2

Ri−1(t)

[f−

i
]2

Ri(t)
=

[f−

i−1]
2

Ri−1(t)

Therefore, the junction equations for a transformer [1] can be chosen as

f+
i

= gi(t)f
+
i−1 f−

i−1 = g−1
i

(t)f−

i
(1)
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where

gi(t)
∆
=

√

Ri(t)

Ri−1(t)
=

√

1 + ki(t)

1 − ki(t)
(2)

The choice of a negative square root corresponds to the gyrator [1]. The gyrator is equivalent to a
transformer in cascade with a dualizer [9]. A dualizer is a direct implementation of Ohm’s Law for
traveling waves (to within a scale factor): the forward path is unchanged while the reverse path is
negated. On one side of the dualizer there are force waves, and on the other side there are velocity
waves. Ohm’s law can thus be interpreted as a gyrator in cascade with a transformer whose scale
factor equals the wave admittance.

The transformer-normalized DWF junction is shown in Fig. 4a. We can now modulate a single
junction, even in arbitrary network topologies, by inserting a transformer immediately to the left or
right of the junction. Conceptually, the wave impedance is not changed over the delay-line portion
of the waveguide section; instead, it is changed to the new time-varying value just before (or after)
it meets the junction. When velocity is the wave variable, the coefficients gi and g−1

i
in Fig. 4a are

swapped (or inverted).
So, as in the normalized waveguide case, for the price of two extra multiplies per section, we can

implement time-varying digital filters which do not modulate stored signal energy. Moreover, trans-
formers enable the scattering junctions to be varied independently, without having to propagate
time-varying impedance ratios throughout the waveguide network.

It can be shown [9] that cascade waveguide chains built using transformer-normalized wave-
guides are equivalent to those using normalized-wave junctions. Thus, the transformer-normalized
DWF in Fig. 4a and the wave-normalized DWF in Fig. 4b are equivalent. One simple proof is to
start with a transformer and a Kelly-Lochbaum junction, move the transformer scale factors inside
the junction, combine terms, and arrive at Fig. 4b. One practical benefit of this equivalence is
that the normalized ladder filter (NLF) can be implemented with only three multiplies and three
additions instead of four multiplies and two additions.

4 Conclusions

Waveguide digital filters were derived by sampling ideal waveguide networks with respect to space
and time. It was shown that the DWF can be transformed into well known ladder and lattice digital
filter structures simply by pushing delays around to the bottom rail (in the special case of a cascade,
reflectively terminated chain of waveguides). The DWF structure gives a precise implementation
of physical wave phenomena in time-varying media; consequently, waveguide filters are useful as
building blocks for computational models of acoustic systems.
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Figure 4: a) Transformer-normalized waveguide digital filter section, for transformer on left of
junction. b) Normalized ladder filter section. The two are equivalent.
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