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Abstract—We describe computational modeling of flaring horns and piecewise conical bores
using “Truncated Infinite Impulse Response” (TIIR) digital filtering techniques. The approach
yields highly efficient and accurate computational models and is therefore appropriate for real-time
simulations of woodwind and brass musical instruments.

1 Introduction

Efficient time-domain models of wind instruments generally involve at least three components: the
mouthpiece and (lip-)reed interface, the main bore plus any valve segments or tone holes, and the
bell. Mouthpiece, lip and reed models pose challenging problems which continue to be addressed.
A uniform cylindrical or conical bore is easily modeled in the digital waveguide formulation [7]
using a single delay line to represent the associated round-trip propagation delay. (Associated
losses may be lumped elsewhere, such as at the mouthpiece.) The bell of the instrument, assuming
linearity, may be characterized by its reflection and transmission impulse responses, and is therefore
efficiently modeled as a “lumped” horn reflectance and transmittance. Other non-uniform tubular
segments are potentially well modeled using the well known piecewise conical bore formulation, but
its time-domain application has so far been strongly limited due to numerical problems. In this
paper we present practical and efficient methods for modeling and implementing piecewise conical
bores and horn reﬂectancesm
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!Since the transmittance does not participate in the sound generation mechanism, and can be modeled as an
external component, we consider explicitly only the reflectance from this point forward.
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A straightforward but computationally expensive discrete-time model of the bell is to use its
impulse response as a convolution filter. This yields a trivially designed finite-impulse-response
(FIR) filter model for the reflectance. Alternatively, an infinite-impulse-response (IIR) digital filter
can be designed to approximate the bell reflection response. In general, IIR filters can approxi-
mate a given impulse response with much less computation because they are recursive. However,
prevalent phase-sensitive IIR filter-design methods perform poorly when applied to a measured bell
reflectance. This is due mainly to the long, slowly rising, quasi-exponential portion of the time-
domain response, arising from the smoothly flaring bore profile that is characteristic of musical
horns. As a result, there is a need for more effective digital filter design techniques in this context.

Inspections of horn reflectances in the time domain suggest that a natural modeling approach
might consist of dividing the response into at least two sections: an initial growing exponential,
followed by a more oscillatory “tail.” The tail can be faithfully modeled using more conventional
filter-design methods. The most efficient way to model a growing exponential is by means of an
unstable one-pole filter, just as we encounter in piecewise conical acoustic tubes [4]. Thus, the
problems of modeling flared horns and piecewise conical bores give rise to the problem of how to
utilize unstable digital filters as modeling elements without running into numerical problems.

It turns out that growing exponential impulse-response segments can be efficiently and practi-
cally devised using “Truncated Infinite Impulse Response” (TIIR) digital filtering techniques [10].
The basic idea of a TIIR filter is to synthesize an FIR filter as an IIR filter minus a delayed “tail
canceling” IIR filter (which has the same poles as the first). That is, the second IIR filter generates
a copy of the “tail” of the first so that it can be subtracted off, thus creating an FIR filter. When
all TIR, poles are stable, TIIR filters are straightforward. In the unstable case, the straightforward
implementation fails numerically: While the filter tails always cancel in principle, the exponential
growth of the roundoff-error eventually dominates. Thus, in the unstable case, TIIR filters must
switch between two alternate instances of the desired TIIR filter (i.e., two pairs of tail-canceling IIR
filters). The state of the “off-duty” filter is cleared in order to zero out the accumulating round-off
noise. The key observation is that, because the desired TIIR filter functions as an FIR filter, it
reaches exact “steady state” after only N samples, where N is the length of the synthesized FIR
filter. As a result, a “fresh instance” of the TIIR filter, when “ramped up” from the zero state, is
ready to be switched in exactly after only N samples, even though the component IIR filters have
not yet reached the same internal state as those of the TIIR filter being switched out.

An empirically derived trumpet bell reflectance was found to have an impulse response duration
on the order of 10 ms (which is on the order of 400 samples at a 44.1 kHz sampling rate). While a
length 400 FIR filter can faithfully model the trumpet-bell reflectance, use of TIIR methods reduces
the complexity by well over an order of magnitude with good matching of the principal time-domain
and frequency-domain features (accurately preserving the horn resonances in particular).

In the remainder of this paper, we will discuss (1) the needed class of TIIR filters, (2) TIIR
modeling of flared horns, using a theoretically derived Bessel horn reflectance as the desired re-
sponse, (3) construction and calibration of a TIIR-based digital waveguide trumpet model, based
on experimental data, and finally (4) TIIR modeling of piecewise conical acoustic bores.

2 TIIR Filters

An FIR filter can be constructed in general as the difference of two IIR filters [10]. The output of
the second IIR filter is delayed, scaled, and subtracted, so as to cancel the “tail” of the first IIR



filter. The overall output is that of an FIR filter, but with great computational savings when the
delay is large compared with the IIR order.

Figure [1/shows the case of a one-pole based TIIR filter which is sufficiently general for purposes
of this paper; it can be configured for either a truncated growing exponential or a truncated
constant impulse response. There are various choices of filter structure even in this simple case.
Figure [1 shows the “shared delay” form. By “pushing” all four one-pole filters forward through
the subtraction block, one obtains additionally the “shared dynamics” form suggested in [10]. For
simplicity, however, we will describe the version in Fig. [1.

Select(tn) M =N

+
1P Select(n)
N

x(n) —= Shared Delay Line

e— N —— M —

Time(samples) n-—»

y(n)

Select(n) 1P

One-polefilters reset

on rising edge of :1_712_1
control input P

Figure 1: Example of a TIIR filter for generating a growing exponential or constant segment.

Referring to Fig. suppose the upper pair of one-pole filters is switched in (as the figure
indicates). When the Select signal transitions, the alternate one-pole pair below is selected, and the
upper one-poles can be cleared and halted (or simply not computed in a software implementation).
If the TIIR impulse-response length is NV samples, then the first upper filter on the left is restarted
N samples before it is to be switched back in, while the second upper filter is restarted on the
same sample as when it is switched back in. This works because, even though the upper pair will
not be in the same state as the lower pair after N times steps, its tail-canceling difference, which
synthesizes an FIR filter, is identical (ignoring round-off errors). Therefore, the switching resets
can be as often as every N samples. It is desirable, however, to switch much less often than every
N samples in order to minimize computations. The minimum switching rate, at the other extreme,
is determined by the exponential growth rate and available dynamic range [10].

Note that the multiply-add which forms the tail-canceling subtraction can be shared since only
the output of the actively selected branch is needed.

Finally, we note that when the structure of Fig. [1/is used to implement a truncated constant
impulse response, the one-poles become digital integrators (no multiplies), and the tail-canceling
multiply-subtract becomes only a subtraction. The resets for digital integrators can be considerably
less often than for growing exponentials, because the round-off error grows more slowly in an
integrator [10].

In summary, a TIIR filter for making a truncated constant or rising exponential impulse response
segment can be computed at a cost close to that of a one-pole filter and a multiply-add, plus some



associated switching and control logic.

3 Horn Reflectance Filter

A general characteristic of musically useful horns is that their internal bore profile is well approx-
imated with a Bessel horn [2]. Although any real instrument bell will show significant deviations
from this approximation in its bore shape and acoustic reflectance, a theoretically derived Bessel
horn reflection function may serve as a suitable generalized target-response for developing effective
digital filter design techniques. In order to obtain such a target-response, the pressure reflectance
of a Bessel horn that approximates the shape of a trumpet bell was computed as in [9].

As shown in Fig.[2] the Bessel horn reflection impulse response has a slow, quasi-exponentionally
growing portion at the beginning, corresponding to the smoothly increasing taper angle of the
horn. A one-pole TIIR filter gives a truncated exponential impulse response y(n) = ae, for
n=20,1,2,...,N — 1, and zero afterwards. We can use this truncated exponential to efficiently
implement the initial growing trend in the horn response (¢ > 0). We found empirically that
improved accuracy is obtained by using the sum of an exponential and a constant, i.e.,

(n) = ae+b, n=0,1,2,...,.N—1
YI=9 o, otherwise

The truncated constant b can also be generated using a one-pole TIIR filter, with its pole set to
z = 1. In this case, no multiplies are needed, except for the single scale factor b. The transfer
function of the TTIR filter for modeling a single segment of the horn impulse response as an offset
exponential can be written as

1 _pN+1Z7(N+1) 1— Z*(NJrl)

H(z) = ho (1)

1—pz—1 Tz 271
The remaining reflection impulse response has a decaying trend, and can therefore be modeled
accurately with diverse conventional filter design techniques. Here, the Steiglitz-McBride IIR filter
design algorithm was applied [3].

In Fig. [2, the TIIR horn filter structure (using a 3rd-order IIR tail filter approximation) is
compared with the theoretical response. The phase delay (directly proportional to the “effective
length” of the bell for standing waves), has a particularly good fit, which is important for accurate
musical resonance frequencies of a brass instrument.

4 Application to the Trumpet Using Empirically Derived Data

Acoustic pulse reflectometry techniques [6] were applied to obtain the impulse response of a trumpet
(without mouthpiece). A piecewise cylindrical section model of the bore profile was reconstructed
using an inverse-scattering method [1], taking into account the viscothermal losses (see Fig. [4).
The piecewise cylindrical model corresponds well to the physical bore profile for non-flaring tube-
segments, thus giving a good physical model up to the bell. The remaining cylindrical sections do
not provide valid geometrical information, but they retain all relevant acoustical information of the
bell reflectance, including the complex effects of higher transversal modes and radiation impedance.
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Figure 2: Bessel horn response (solid) compared with digital filter approximation (dashed) in terms
of impulse response (a), magnitude (b) (up to Nyquist) and phase delay (c) (up to bell cut-off).
The vertical line in (a) indicates the segmentation into an growing exponential and a decaying tail.
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Figure 3: Trumpet bore profile reconstruction. The valves and the final tubular bend show as
‘dents’ in the profile. The main bore plus mouthpipe can be modeled with a cylindrical section
preceded by a truncated cone (dashed lines).



The main bore of a trumpet is essentially cylindrical, with an initial taper widening (mouth-
pipe) (see Fig.[3). Thus, an accurate digital waveguide model of the trumpet can be derived by
approximating the bore profile data with a cylindrical bore, plus a conical section to model the
mouthpipe, and modeling the remaining part of the reconstruction as the isolated bell reflectance
Hpepy(w). The complexity of the model can be further reduced by lumping the viscothermal losses
of the main bore with the bell reflectance filter, yielding the “round-trip filter” H,4(w):

o Hbore(w)
T )

where Hp,.(w) represents the response “seen” from the bell (see Fig. [3) while assuming an ideal
closed end at the junction between the mouthpiepe and the main bore, and H, ,/me (w) is the theo-
retical value of Hp,pe(w) assuming no losses. The inverse Fourier transform h,(t) differs from the
theoretical Bessel horn response primarily in its two-stage build-up towards the primary reflection
peak (see Fig. [4). This characteristic was observed for a variety of brass instruments. By adding
another offset-exponential TIIR section (Eq. (1)) to the basic horn filter structure, the filter design
methodology is sufficiently flexible to cover the two-stage build-up. The resulting impulse response
and corresponding input impedance curve Z;,(w) (“seen” from the start of the main bore) are
depicted in Fig.[4. The small amplitude deviations are mainly due to the fact that the TIIR ap-
proximation of the initial slow rise is insensitive to reflections caused by bore profile dents. Note
that the resonance frequencies, controlled by the phase delay of H,;(w) are accurately modeled.

: Hbell(w)) (2)
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Figure 4: Round-trip filter (a) and “main-bore” input impedance (b) according to empirical data
(dashed) compared to TIIR horn filter (solid). The vertical (dash-dot) lines in (a) indicate the
response segmentation into 2 growing exponentials and a tail. The tail is modeled with a 4th-order
IIR filter.

5 Piecewise Conical Bore Modeling

It is well known that a growing exponential appears when waves traveling within one conical taper
angle reflect from a section with a smaller (or more negative) taper angle [4]. This phenomenon
has precluded the use of a straightforward recursive filter model [5, 8| since such a filter would have
to be unstable. However, using TIIR principles, it is possible to use unstable digital filters in this
way while resolving practical difficulties.



The main difference in the piecewise conical modeling case is that conical segments are not
strictly FIR. However, in practical musical acoustics, they have quite short decay times. Therefore,
we may apply TIIR principles with tgo replacing the FIR filter length in determining the maximum
switching rate, where tgg is the time for the external impulse response of the model component to
decay by 60 dB. Note that the dc response must also decay to insignificance by tg.

6 Conclusions

We have presented a computationally efficient modeling framework applicable to flaring horns and
piecewise conical bores. The horn models use tail-canceling IIR filters to implement finite ex-
ponential and constant impulse response segments, with periodic replacement of unstable filter
components used to avoid indefinite build-up of round-off errors. The piecewise conical models fol-
low analogous principles with tgg replacing the FIR filter length. Compared with previous practical
approaches to modeling these musical acoustic elements computationally, the TIIR approach offers
compelling advantages.
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