
Music 420A / EE 367A: Introduction to the Synthesis Tool Kit

(STK)

Julius O. Smith III

Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music, Stanford University, Stanford, California 94305 USA

April 15, 2017

Getting Started with the Synthesis Tool Kit (STK)

This intro provides a “getting started” guide for the Synthesis Tool Kit (STK) [1, 2] under Linux
[3] and Mac OS X. This guide is aimed at developers of STK software, as opposed to mere users.
As a result, a couple of modifications will be introduced to facilitate software development (i.e.,
debugging C++ code). It is assumed that the reader already has some familiarity with programming
in C and ideally also C++.

Installing and Testing the STK

As of this writing (April 14, 2017), the preferred way to obtain the STK software is by cloning the
GitHub project:

git clone git://github.com/thestk/stk

Doing it this way gets around a “broken pipe” problem in one of the percussion demos. It also
gives you the latest and greatest at all times, including any new bugs introduced by the developers.
Any bugs encountered should be reported on Piazza, and if appropriate we file a bug report on
the “Issues” page at the STK GitHub site. (Feel free to do this yourself if you are an experienced
software developer.)

Alternatively, the STK software distribution may be obtained by going to the STK home page,1

navigating to the download page,2 and downloading the latest “source distribution” (stk-4.5.1.tar.gz3

as of 4/15/2017).
See the file INSTALL.md for instructions on installing it. The basic drill for users (see below for

developers) is to cd to the top-level stk directory in a shell (such as an Emacs shell, or Terminal.app
on the Mac) and type

autoconf

./configure

make

1https://ccrma.stanford.edu/software/stk/
2https://ccrma.stanford.edu/software/stk/download.html
3https://ccrma.stanford.edu/software/stk/release/stk-4.5.1.tar.gz

1

http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://music.stanford.edu/
http://www.stanford.edu/
https://ccrma.stanford.edu/software/stk/
https://ccrma.stanford.edu/software/stk/download.html
https://ccrma.stanford.edu/software/stk/release/stk-4.5.1.tar.gz

where the autoconf utility is part of the GNU Autotools (already installed at CCRMA). On a
Mac, you can use either MacPorts or Homebrew to install autoconf, e.g.,

> sudo port install autoconf

where the port command is installed when MacPorts4 is installed.

Note: As of this writing (April 15, 2017), on the Mac, there is a missing configure

dependency for the Jackmp framework, so that the play command fails at run-time.
This does not happen on the CCRMA Linux systems.

It is recommended anyway to use the play command installed by the sox distribution:

port install sox

where the port command is installed by MacPorts.

Familiarizing with the STK

• Read the file README.md to get oriented regarding the STK.

• Study the STK documentation in doc/.

• Read the files INSTALL.md about configuring and compiling the STK. The configure script,
which itself was generated by autoconf from the “autotools” distribution [4], generates all
the various STK Makefiles based on automatically detected characteristics of your system.

– If you want to use the JACK audio server (typical on Linux systems), for example, you
can add the --with-jack option to configure when generating the Makefiles.

– For the Mac, you can add the --with-core option to configure when generating the
Makefiles.

• A fairly comprehensive STK test is to make and run the main demo:

cd projects/demo

make

StkDemo

Be sure to try selecting different instruments in the Instruments pull-down menu.

STK Subdirectory Overview

Now cd to the top-level STK directory and follow along:

• The doc directory contains a copy of the STK documentation, including the release notes,
platform-specific README files, and some papers (doc/html/papers/). Other doc, such an
introductory tutorial5 and C++ class documentation6 can be browsed online. (The C++ class
documentation was generated from the source files by the doxygen utility.)

4https://www.macports.org/
5https://ccrma.stanford.edu/software/stk/tutorial.html
6https://ccrma.stanford.edu/software/stk/classes.html

2

https://www.macports.org/
https://www.macports.org/
https://ccrma.stanford.edu/software/stk/tutorial.html
https://ccrma.stanford.edu/software/stk/classes.html

• The src directory contains C++ source files for the STK library. The library is built by going
to that directory and typing make.

• The include directory contains C++ header files for the STK library.

• The rawwaves directory contains “raw” 16-bit soundfiles, i.e., no header of any kind.7

• The projects directory contains a variety of subdirectories holding programs which exercise
the STK:

> ls -F

demo/ effects/ eguitar/ examples/ ragamatic/

– Above, > denotes the shell command prompt (i.e., don’t type it).

– The demo directory contains some demo programs. Below we will go into that directory
and try out a demo.

– The effects directory contains source for the effects program which applies various
digital audio effects to microphone input in real time (much fun!). See README-effects.txt
in that directory for more info.

– The eguitar directory contains a basic electric-guitar example.

– The examples directory contains a variety of short programs illustrating various pro-
gramming techniques in the STK.

– The ragamatic project is a larger demo which plays automatically generated meditative
music on sitar, drones, and tabla. There are sliders for configuring parameters of the
performance and various raga presets.

Overview of STK Demos

A variety of interesting demo scripts (extension .bat) are contained in the demos directory projects/demo/:

• Drums: Provides Tcl/Tk selection-buttons for the Bass, Snare, LoTom, MidTom, HiTom,
Homer, Hat, Ride, Crash, CowBel, Tamb (tambourine), and Homer (“doh!”) patch presets

• Modal: Has demo-select buttons for the Marimba, Vibraphone, Agogo, Wood1, Reso, Wood2,
Beats, 2fix, and Clump presets

• Shakers: Demos the Maraca, Sekere, Water Drops, Tambourine, Sleigh Bells, Maraca, Sekere,
Cabasa, Bamboo, Water Drops, Tambourine, Sleigh Bells, Guiro, Sticks, Crunch, Wrench,
Sand Paper, Coke Can, NeXT Mug, Mug & Penny, Mug & Nickle, Mug & Dime, Mug &
Quarter, Mug & Franc, Mug & Peso, Big Rocks, Little Rocks, and Tuned Bamboo patches

• Physical: Includes Clarinet, BlowHole, Saxofony, Flute, Brass, BlowBotl, Bowed, Plucked,
StifKarp, Sitar, and Mandolin patches

7The STK has a compile-time macro called RAWWAVE PATH which defaults to “../../rawwaves/”. This works for
programs located in directories such as projects/someproject/ within the top-level STK directory. One can set the
rawwaves path at run time with the message Stk::setRawwavePath() sent to the global Stk object; similar messages
set other global variables such as the sampling rate.

3

• Voice: Includes FMVoice and Formant example patches for singing voice

• Banded: Demos the Bar, Marimba, GlassHarmonica, and PrayerBowl

• StkDemo: This master demo script uses a menu to select patches instead of buttons, and offers
everything listed above.

The demos most closely related to Music 420A are Modal and Physical. Type, for example,

> cd projects/demo

> make

> ./Modal.bat

[Press the NoteOn button - you should hear a Marimba strike.]

[Try out some of the other selections using buttons along the top.]

> ./Physical.bat

[Press NoteOn for a clarinet toot---then NoteOff.]

[During a clarinet NoteOn, try the "Breath Pressure" slider}

STK Tutorial Examples

The STK documentation (online at the STK home page8 or in the release itself at doc/html/tutorial.html)
includes a series of tutorials9 providing an overview of some STK-specific coding conventions, and
several of the example programs in the projects/examples/ directory are discussed. This is an
excellent time to go read through those tutorial pages.

Debugging STK Programs in gdb

[The remainder of this intro can be omitted on a first reading. However, remember that it’s here
when you are ready to debug an STK program by single-stepping in gdb.]

One of the nicest aspects of working with STK programs is that all source (C++) is available,
facilitating debugging. Single-stepping someone else’s STK program is a good way to learn how it
works. Object oriented software is often hard to read because its functionality is spread out over
many member functions in many class files, some of which may be in separate libraries. Single-
stepping the code in a debugger solves this problem by showing you exactly what code is being
executed and in a natural order, complete with the ability to inspect variables, stack frames, and
even larger data structures such as arrays, structs, and objects.

On Windows platforms, development tools such as Microsoft Visual C++ provide all the debug-
ging support you need.

On the Mac, the standard IDE (“Integrated Development Environment”) is Xcode.app. In
that environment, C++ source files have extension .mm to distinguish them from purely Objective
C source files (.m).

An IDE commonly used in Linux environments is eclipse. It can handle all kinds of languages
by means of its plugin architecture, and is used extensively for Web programmin (Javascript, Java,
and many others, in addition to C++).

8https://ccrma.stanford.edu/software/stk/
9https://ccrma.stanford.edu/software/stk/tutorial.html

4

https://ccrma.stanford.edu/software/stk/
https://ccrma.stanford.edu/software/stk/tutorial.html

Another IDE of sorts is the powerful text editor (and process manager) Emacs. Emacs (like
other IDEs) can serve as a front end for the standard UNIX-style software development tools such
as make, compilers, linkers, and debuggers such as gdb. Since Emacs is available on all major
platforms, we will use that case below. For an introduction to many of its features, see Travis
Skare’s video intro:

https://docs.google.com/file/d/0B85zuZBDyib8Q0Q2Q0lRSnNsdnM/edit?pli=1

On UNIX platforms (including Linux and Mac OS X, and even Windows systems using Cygwin),
the standard C++ debugger for decades has been gdb.10

STK Debug Configuration

For ease of debugging STK software, use the following configure command:11

configure --enable-debug CPPFLAGS="-g -O0"

The --enable-debug flag turns on some diagnostic printout in the STK source. The compiler
flag -g results in symbols and line-numbers being retained in the compiler output .o file (useful for
single-step debugging in gdb), and the -O0 compiler flag turns off optimization—also often needed
for single-stepping at the source level in gdb.

An Example .gdbinit File

Below is an example .gdbinit file used with the simple example STK patch (the “acoustic echo
simulator”) described above:

echo set args 2 \n

set args 2

echo dir ../../src \n

dir ../../src

echo b FileWvIn::tick(void) \n

b FileWvIn::tick(void)

The .gdbinit file goes in the same directory as the main program where gdb is started. It
assumes that the library of standard stklib modules is located in ../../src/ (which works if your
main directory is located in or parallel to subdirectories of the STK projects folder). A correct
pointer to the STK source directory is necessary for viewing source code while single-stepping
standard STK modules.

Note that a breakpoint is always set at the tick function of the FileWvIn object. When the
program is run, it will halt just before sound reading begins, after preliminary set-up is finished.
You can also set the breakpoint at main in order to see absolutely everything that happens.

The “echo” commands are not required, but they remind the user that the .gdbinit file is
being executed every time gdb is started in this directory.

10For further introductory information regarding compiling, linking, and debugging programs in the UNIX envi-
ronment, see http://cslibrary.stanford.edu/107/.

11At the time of this writing, the STK-4.4.4 configure script does not allow overriding CXXFLAGS which would
normally be the flags for the C++ compiler. Overriding CPPFLAGS (normally aimed at the C preprocesor) is a
workaround we can use here.

5

https://docs.google.com/file/d/0B85zuZBDyib8Q0Q2Q0lRSnNsdnM/edit?pli=1
http://cslibrary.stanford.edu/107/

Preparing your Program for Debugging

If you have followed the instructions of the preceding intro, you are already prepared for debugging
in gdb, and you can skip to the next section. Otherwise, before using gdb, you need to

(1) compile your program and the STK library with symbols using the ‘-g’ compiler switch, and

(2) compile without optimization (no ’-O’, ’-O2’, ’-O3’ options, etc. -O0 explicitly turns it off).

Optimization can cause gdb’s line-number information to become incorrect (when lines of code
are optimized away). Furthermore, intermediate variables are also often optimized away, in which
case you can no longer inspect them while single-stepping.

For example, suppose your Makefile contains the following:

CFLAGS = -O3 -Wall ...

Before running gdb, we need to change this to

CFLAGS = -g -O0 -Wall ...

and recompile by typing “make” in that directory.

Executing gdb from the command line

Suppose the main program is called main. Then in a terminal emulation program (any “shell”), cd
to the working directory containing main and type

gdb main

r

Executing gdb from Emacs

A great advantage to using gdb in emacs is that it works the same on all platforms (Linux, Windows,
etc.), and it displays the source in a separate emacs buffer window. As you single-step the program,
a pointer shows you which line of source code will be executed next. Many nice new features have
evolved for debugging in Emacs, as illustrated at the video link given near the beginning of this
section.

To start gdb within emacs, say M-x gdb <Enter>, edit the gdb execution line, if necessary, and
type <Enter> again. A gdb buffer window is created by emacs, and you will see the (gdb) prompt.
Set a breakpoint (if not already provided by your .gdbinit file), and type r <Enter> to run the
program. When the program stops, a second emacs buffer window will be created containing the
source code with a pointer “=>” indicating the next line of code to be executed. This is your first
breakpoint.

In the source display window within emacs, a breakpoint can be set for the line containing the
cursor by typing C-x <space>.

6

Useful commands in gdb

Below is a useful subset of gdb commands, listed roughly in the order they might be needed.
The first column gives the command, with optional characters enclosed in [square brackets]. For
example, the run command can be abbreviated r. The second column gives a short description of
the command. Type help <command> in gdb to obtain more information on each command.

h[elp] Get help on gdb commands
h[elp] <cmd> Get help on a specific gdb command

r[un] Run to next breakpoint or to end
s[tep] Single-step, descending into functions
n[ext] Single-step without descending into functions
fin[ish] Finish current function, loop, etc. (useful!)

c[ontinue] Continue to next breakpoint or end

up Go up one context level on stack (to caller)
do[wn] Go down one level (only possible after up)

l[ist] Show lines of code surrounding the current point
p[rint] <name> Print value of variable called <name>
p ∗ <name> Print what is pointed to by <name>
p/x <name> Print value of <name> in hex format
p <name>@<n> print <n> values starting at <name>
p <chars><tab> List all variables starting with <chars>

b[reak] <name> Set a breakpoint at function <name>
b <class>::<name> Set a breakpoint at <name> in <class>
b <class>::<tab> List all members in <class>
h[elp] b Documentation for setting breakpoints

i[nfo] b List breakpoints
i List all info commands
dis[able] 1 Disable breakpoint 1
en[able] 1 Enable breakpoint 1
d[elete] 1 Delete breakpoint 1
d 1 2 Delete breakpoints 1 and 2
d Delete all breakpoints
cond[ition] 1 <expr> Stop at breakpoint 1 only if <expr> is true
cond 1 Make breakpoint 1 unconditional
comm[ands] 1 Add a list of gdb commands to execute

each time breakpoint 1 is hit
(usually just print <var>)

Dealing with C++ in gdb

To print instance variables of a C++ class in gdb, it is sometimes necessary to include an explicit
object pointer. For example, after setting a breakpoint in the tick method of the class Guitar
and continuing to the breakpoint, gdb prints something like

Breakpoint 2, Guitar::tick (this=0x805cde8) at Guitar.cpp:100

(gdb)

7

The this variable points to the current instance of the Guitar object. If an instance variable,
say pluckAmp, cannot be found when you try to print it, try instead

(gdb) p this->pluckAmp

$1 = 0.296875

Also, this can be dereferenced to list all instance variables, e.g.,

(gdb) p *this

$2 = {<Plucked3> = {<Instrmnt> = {<Stk> = {static STK_SINT8 = 1,

static STK_SINT16 = 2, static STK_SINT32 = 8,

static STK_FLOAT32 = 16, static STK_FLOAT64 = 32,

static srate = 22050, _vptr.Stk = 0x8059020},

lastOutput = 0}, delayLine = 0x805ce70, delayLine2 = 0x8064f18,

combDelay = 0x806cfb0, filter = 0x8075040, filter2 = 0x80750f8,

resonator = 0x80751a0, length = 442, loopGain = 0.99999000000000005,

baseLoopGain = 0.995, lastFreq = 2637.0204553029598,

lastLength = 8.36170988194581, detuning = 0.996, pluckAmp = 0.296875,

pluckPos = 0.234567}, soundfile = 0x8075248, dampTime = 8,

waveDone = 0, feedback = 0, noise = 0x8075088,

excitationFilter = 0x8075398,

excitationCoeffs = 0x0}

Suppose we’re interested in filter2 above:

(gdb) p filter2

$3 = (BiQuad *) 0x80750f8

(gdb) p *filter2

$4 = {<Filter> = {<Stk> = {static STK_SINT8 = 1,

static STK_SINT16 = 2, static STK_SINT32 = 8,

static STK_FLOAT32 = 16, static STK_FLOAT64 = 32,

static srate = 22050, _vptr.Stk = 0x80590e0},

gain = 0.60459499999999999, nB = 3, nA = 3,

b = 0x8075140, a = 0x8075120,

outputs = 0x8075180, inputs = 0x8075160}, <No data fields>}

(gdb)

We see that filter2 is an instance of the BiQuad class. Note that the superclass instance variables
are enclosed in curly brackets (the leaf class instance variables begin with gain in this example). We
are omitting this here, since doing it once seems to make gdb know about it thereafter. Suppose
we want to see the filter coefficients:

(gdb) p filter2->b[0] @ 3

$5 = {1, -1.03, 0.21540000000000001}

(gdb) p filter2->a[0] @ 3

$6 = {1, -1.3337300000000001, 0.446191}

(gdb)

and so on.

Multithread Backtrace in gdb

Obtain a backtrace on all active threads in an application as follows:

(gdb) thread apply all backtrace

(gdb) # or, equivalently:

(gdb) thr ap al bt

8

Miscellaneous tricks in gdb under Emacs

• To get back to debugging after a spate of editing, go to the gdb buffer (the one named
gud-<program name>) and type up followed by down. This restores the source pointer in
the other window.

• Reissuing the M-x gdb command to emacs will go to the pre-existing debugging session, if
any. Therefore, after the program is recompiled, emacs’s gdb buffer must be explicitly killed.

• To break when an input signal file is nonzero after a long string of zeros, use a conditional
breakpoint. E.g.,

cond 2 insamp != 0

cont

• When single-stepping, everything on one line is executed by the next command. Thus, for
example, typing n at the line

for (i=0; i<6; i++) { string[i] = 0 };

will execute the entire loop, while

for (i=0; i<6; i++) {

string[i] = 0

};

must be traversed all six iterations. (Of course, you can also set a breakpoint after the loop
and then continue to it.)

Debugging Plugin Modules in Emacs

[Note: We will not be using software plugins in Music 420A. However, the information is included
in case it may help with your optional-unit project work.]

DSSI and LADSPA Plugins

A plugin is a loadable module that is dynamically loaded by a host program such as the rosegarden
music sequencer on Linux. A LADSPA plugin (Linux Audio Developer’s Simple Plugin API12) is a
loadable C or C++ module that implements an audio processor such as a digital filter, reverberator,
or other digital audio effect. A DSSI plugin (Disposable Soft Synth Interface) usually implements
a synthesizer plugin such as for doing wavetable, virtual analog, or FM synthesis. The DSSI API
has been described as “LADSPA for instruments,” providing capabilities comparable to that of the
popular VSTi13) API by Steinberg. DSSI is implemented as a superset of the LADSPA API. As
a result, sound port management and basic plugin controls are handled identically as in LADSPA
plugins. Extensions for DSSI plugins include support for MIDI controllers, MIDI “program select”,
and session management (saving and loading of configuration data). To maximize cross-platform
compatibility, GUIs for editing DSSI plugins are specified to be separate stand-alone programs (or

12API stands for “Application Programming Interface”
13VST stands for “Virtual Studio Technology,” and VSTi stands for “VST Instrument.”

9

loadable modules) managed by the host (as opposed to the plugin itself). The plugin communicates
with the host by means of Open Sound Control (OSC) messages, so the GUI can run on a separate
computer (commonly done for rack-mounted hosts).

On typical Linux/UNIX systems, one can find DSSI plugins as

/usr[/local]/lib/dssi/*.so,

and LADSPA plugins as

/usr[/local]/lib/ladspa/*.so.

(Plugins of both types are installed via the Planet CCRMA distribution.) Most music/audio
applications offer plugin selection via pop-up menus that are automatically generated from listings
of these standard plugin installation directories. In Miller Puckett’s pd, LADSPA plugins may be
loaded using the plugin~ “tilde object” by Jarno Seppänen, and DSSI plugins may be loaded using
dssi~ by Jamie Bullock.

A lot of information about the DSSI and LADSPA plugin APIs can be found in the respective
header files

/usr/include/dssi.h

and

/usr/include/ladspa.h.

Additionally, the RFC in the doc directory of the DSSI “specification & example code repository”
(dssi-0.9.1 as of this writing) provides a good high-level orientation.

The remainder of this section is written specifically about DSSI plugin debugging. However, it
applies with little modification to LADSPA plugins, and to loadable C modules in general. While
it is possible to use C++ in plugins, it seems to be more common to use plain C written in an “object
oriented style”. Therefore, we will postpone consideration of C++ to a later section below.

You will need a simple host application for debugging your plugin. A good choice for this is
ghostess by Sean Bolton. Even if ghostess is already installed on your system, you will want
to download and compile it from source so that you can single-step within it as well as your
dynamically loaded plugin.

The jack audio server must be running for ghostess (as for many other Linux audio programs).
One can use qjackctl to start the jack daemon14 jackd. Be sure the jack sampling-rate is set to
a value supported by your sound hardware.

Single-Stepping a Plugin in gdb

The first step is to compile your plugin with symbols retained and optimization turned off. For
plugin distributions using configure, it should work to type

configure "CFLAGS=-g -O0 -DDEBUG"

14a daemon is a program that runs in the “background” to provide services to other programs.

10

(Note that ‘-O0’ is a hyphen followed by the letter ’O’, followed by the number zero.) This works for
the example programs such as trivial synth.c in the DSSI example code repository. By default,
ghostess is compiled with -g -O2, which is fine for the host.15

In order for your host program to find your plugin in the current working directory where it is
compiled, the DSSI PATH environment variable needs to be set up containing that directory first in
the search path. Since I use tcsh as my shell, my ~/.tcshrc file contains the line

setenv MODULENAME "${HOME}/projects/dssi/modulename"

setenv DSSI_PATH \

"${MODULENAME}:/usr/local/lib/dssi:/usr/lib/dssi"

Users of the bash shell may add something like the following in their ~/.bashrc file:

MODULENAME="${HOME}/projects/dssi/modulename"

DSSI_PATH="${MODULENAME}:/usr/local/lib/dssi:/usr/lib/dssi"

export MODULENAME DSSI_PATH

Note that ghostess requires all DSSI PATH elements to begin with /, so you must provide a full
absolute path to your working directory. Of course, if you have root privileges on your computer,
you can simply type make install each time you change your plugin, and the host program will
find your .so file in /usr/local/lib/dssi by following the default DSSI search path.

The debugging cycle tends to go like this:

• Say make to compile your module.

• If you are using the default DSSI search path, type, in another window (as root), make

install.16

• Start gdb on ghostess in the usual way:

M-x gdb <Enter>

gdb ghostess -debug -1 modulename.so <Enter>

• Use the dir command to provide paths to any source files not in the current working directory
(typically the ghostess source directory).

• Set a breakpoint somewhere in your module, such as at its instantiate, activate, or run
function. Since the module is not loaded yet, emacs will ask you if you want a pending
breakpoint as follows:

Function "modulename" not defined.

Make breakpoint pending on future shared library load?

Type y and the breakpoint will be installed when the module is loaded.

• run ghostess under gdb.

15While optimization level 2 interferes with detailed single-stepping and variable inspection, it does not interfere
with setting breakpoints and general looking around, which is all we need for the host program.

16Some prefer to type su -c "make install", but then you have to give the root password every time.

11

• Click on the UI button in the small main window for ghostess. This opens a simple editor
window for your plugin that was automatically generated by ghostess based on its port
declarations.

• Click on the Test Note button in the plugin editor window. This issues the equivalent of a
MIDI note-on for your plugin.

• Find and fix all bugs in your plugin!

To streamline the startup, I use a .gdbinit file like the following:

echo dir /l/dssi/ghostess-20050916/src/ \n

dir /l/dssi/ghostess-20050916/src/

echo set args -debug -1 ./modulename.so \n

set args -debug -1 ./modulename.so

(I maintain a large set of convenient symbolic links in the directory /l on my system.) I also have
a symbolic link g -> /l/u/dssi/.../src/ghostess in the module source directory, so in emacs I
can simply say

M-x gdb <Enter>

gdb g <Enter>

to get started.

References

[1] P. Cook and G. Scavone, Synthesis Tool Kit in C++, Version 4,
https://ccrma.stanford.edu/software/stk/, 2010, see also https://-

ccrma.stanford.edu/~jos/stkintro/.

[2] P. R. Cook, “Synthesis Tool Kit in C++, version 1.0,” in SIGGRAPH Proceedings, As-
soc. Comp. Mach., May 1996.

[3] E. Siever, A. Weber, and S. Figgins (Ed.), Linux in a Nutshell, Fourth Edition, Cambridge:
O’Reilly, 2003.

[4] G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor, GNU Autoconf, Automake, and libtool,
SAMS, 2000.

12

https://ccrma.stanford.edu/software/stk/
https://ccrma.stanford.edu/~jos/stkintro/

