
Audio Signal Processing in Faust

Julius O. Smith III

Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music, Stanford University, Stanford, California 94305 USA

jos at ccrma.stanford.edu

Abstract

Faust is a high-level programming language for digital signal processing, with spe-
cial support for real-time audio applications and plugins on various software platforms
including Linux, Mac-OS-X, iOS, Android, Windows, and embedded computing en-
vironments. Audio plugin formats supported include VST, lv2, AU, Pd, Max/MSP,
SuperCollider, and more. This tutorial provides an introduction focusing on a simple
example of white noise filtered by a variable resonator.

Contents

1 Introduction 3
1.1 Installing Faust . 4
1.2 Faust Examples . 5

2 Primer on the Faust Language 6
2.1 Basic Signal Processing Blocks (Elementary Operators on Signals) 8
2.2 Block Diagram Operators . 9
2.3 Examples . 9
2.4 Infix Notation Rewriting . 9
2.5 Encoding Block Diagrams in the Faust Language 10
2.6 Statements . 11
2.7 Function Definition . 11

1

http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://music.stanford.edu/
http://www.stanford.edu/

2.8 Partial Function Application . 12
2.9 Functional Notation for Operators . 13
2.10 Examples . 13
2.11 Summary of Faust Notation Styles . 13
2.12 Unary Minus . 13
2.13 Fixing the Number of Input and Output Signals 14
2.14 Naming Input Signals . 14
2.15 Naming Output Signals . 14
2.16 Signal Types . 14
2.17 Signal Comparison Operators . 15
2.18 Bitwise Operations for Integer Signals . 15
2.19 Foreign Constants and Variables . 16
2.20 Foreign Functions . 16

2.20.1 Example 1 . 16
2.20.2 Example 2 . 17
2.20.3 Functions from math.h . 17

2.21 Parallel and Sequence Iterations . 18
2.22 Sum and Product Macros . 18
2.23 Pattern Matching in Faust . 18

2.23.1 Formal Parameter Exception . 19
2.23.2 Formal Parameter Substitution1 . 21
2.23.3 Recursive Block Diagram Specification 21
2.23.4 Understanding count and take from basics.lib 22
2.23.5 Pattern Matching Implementation . 22
2.23.6 Using Pattern Matching in Rewriting Rules 23
2.23.7 Using Lisp Syntax to Express Trees 23
2.23.8 Pattern-Matching Example . 24
2.23.9 Pattern-Matching Algorithm Description 24
2.23.10Miscellaneous Pattern-Matching Examples 24

2.24 Scope Rules . 25
2.25 White Noise Generator . 25
2.26 Further Readings on the Faust Language 26
2.27 Acknowledgment . 26

3 A Simple Example Faust Program 26

4 Verifying and Testing Faust Programs 27
4.1 Generating Faust Block Diagrams . 27
4.2 A Look at the Generated C++ code . 30
4.3 Printing/Plotting the Output Signal(s) . 30
4.4 Inspecting the Output Signal(s) in Matlab or Octave 33

1Thanks to Yann Orlarey for assisting with this section.

2

4.5 Summary of Faust Program Testing Strategies 34

5 Adding a GUI 35

6 Generating Stand-Alone Qt or GTK Applications 36

7 Generating Other Applications and Plugins 37

8 Generating a LADSPA Plugin via Faust 38

9 Feeding Soundfiles to Faust Standalone Apps 39
9.1 Offline Processing of Soundfiles in Faust . 40
9.2 Soundfile Input for Standalone Faust Applications 42
9.3 Soundfile Input for Faust Plugins . 43

10 Generating a MIDI Synthesizer for PD 43

11 MIDI Synthesizer Test Patch 44

12 Using Faust with SuperCollider 44
12.1 Getting Started with SuperCollider . 47
12.2 Linux and Faust-Generated SuperCollider Plugins 47
12.3 Mac OS X and Faust-Generated SuperCollider Plugins 49

13 Using Faust with Open Sound Control (OSC) 49

14 Conclusions 54

A Appendix A: State-Space Models to Faust 55
A.1 State-Space BiQuad in Faust . 56

B Appendix B: Inspecting Assembly to Fine-Tune Performance 60

1 Introduction

The Faust programming language2 by Yann Orlarey et al. at Grame [3, 7, 8, 4] generates
C++ for real-time signal-processing applications and plugins from a high-level specification.
In addition to generating efficient inner loops in C++, Faust supports Graphical User
Interface (GUI) specification in the source code. Moreover, Faust can generate easy-to-read
block diagrams directly from the source, illustrating signal flow and processing graphically.

2The Faust home page is https://faust.grame.fr/. The examples in this tutorial were developed
using Faust version 0.9.9.2a2 and updated as needed over time, with the latest version considered being
2.32.1. The name “Faust” comes from “Functional AUdio STream.”

3

https://faust.grame.fr/

This tutorial provides some basic getting-started info for Faust, a brief overview of main
aspects of the language, and example applications and plugins generated from a simple
Faust program specifying a resonator driven by white noise. It was written before most of
the Faust online documentation,3 so there is naturally overlap in content, but the styles are
quite different. In part because Faust is always evolving forward, this tutorial is incomplete,
but it is updated when anything addressed needs revision (please report suggestions and
errata to the author). The most up-to-date specification of the language has been the
Faust Quick Reference4 manual.

The Faust compiler translates the Faust language into C++ files (and other back-end
languages that will not be considered here). These C++ files must then be compiled and in-
stalled somewhere for use. The reader is therefore assumed to have elementary proficiency in
UNIX operating environments such as any Linux distributions or Mac OS.5 Such proficiency
includes familiarity with a Command-Line Interface (CLI) such as a UNIX shell (principally
tcsh or bash in this tutorial), source-code version control using git, and elementary com-
piling, linking, and installation using make, some C++ compiler, the standard linker ld, and
so on. For text editing, Emacs is recommended, but any will do.

1.1 Installing Faust

Packaged Faust distributions for Linux, Mac, and Windows, etc., tend to be significantly
behind the latest version under development. While you can probably get by fine with them,
there may be different locations for various pieces of the installation, and some items might
not be installed at all. Below we will assume you have installed the latest Faust from
GitHub.

To download the latest version of the Faust distribution from GitHub (anonymously, read-
only), say

> git clone https://github.com/grame-cncm/faust

> cd faust

> git checkout master-dev

where ‘>’ denotes your shell prompt, such as in Terminal.app on a Mac. Next, follow
README.md to compile and install Faust on your system. In particular, you will need
CMake installed (port install cmake on a Mac using MacPorts, etc. Normally port can
be replaced by brew for brew users). I always use the latest Faust master-dev version, and
find it to be quite stable. From time to time, update to the latest and reinstall as follows
(in the faust directory):

> git pull --recurse-submodules

> make

> sudo make install

3https://faust.grame.fr/
4https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf
5For Windows, options include Cygwin, Windows System for Linux (WSL), and Linux virtual machines.

4

https://faust.grame.fr/
https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf

Recursing submodules takes care of updating the faustlibraries submodule as well as
Faust.

On the Mac, the Faust distribution depends on the pkgconfig package, and also on qt5 for
making standalone apps using the faust2caqt script that installs with Faust. A general
trick for easily installing all necessary dependencies is to first install Faust using your local

package manager, and then uninstall Faust, leaving its dependencies installed. For example,
using MacPorts on a Mac:

> sudo port install faust

... (dependencies installed, then faust) ...

> sudo port uninstall faust

> cd ~

> git clone https://github.com/grame-cncm/faust.git faust

> cd faust

> make

> sudo make install

> rehash

To include OSC and HTTP support (which require liblo and libmicrohttp respectively),
as well as all Faust language “back ends” (target languages beyond C++) say “make world”
in place of “make” above.

On a Mac, you need the Command Line Tools for Xcode to be able to compile C++ code
in the standard ways for the Mac. These tools are downloadable via
https://developer.apple.com/downloads/index.action. See also the Xcode menu item
Xcode / Open Developer Tool / More Developer Tools

1.2 Faust Examples

The Faust distribution contains a set of programming examples in the examples subdirec-
tory. For example, to see the graphical equalizer demo on a Mac, assuming your Termi-
nal/shell working directory is where you typed make above, say

> cd examples/filtering/

> faust2caqt graphicEqLab.dsp

> open graphicEqLab.app

and experiment with the example real-time filterbank driven by a sawtooth oscillator or
white/pink noise. The use of faust2caqt assumes you are on a Mac (‘ca’ stands for “Core
Audio”) and have Qt installed (e.g., MacPorts’ qt5-mac or brew’s qt5 on the Mac). If not,
there is also faust2jack which uses the GNOME ToolKit (GTK), etc. (sudo dnf install

gtk2-devel on Fedora Linux as of May 2020).

The source code for the functions used in graphicEqLab.dsp (prefix ‘dm.’) may be found
in libraries/demos.lib. They, in turn, call functions in the Faust libraries such as
libraries/filters.lib.

5

https://developer.apple.com/downloads/index.action

Note that the Faust libraries are developed in a separate git project6 from Faust, but
they are copied in the faustlibraries submodule of the Faust project.

More Faust demos/examples can be found online.7

2 Primer on the Faust Language

Faust is a functional programming language [6]. Each function specifies a block diagram

having some number of input and output signals, all streaming at the same sampling rate,
starting at time 0. Five block-diagram operators (§2.2) may be used to combine block di-
agrams in Faust expressions (see below for examples). Every Faust program (filename
extension .dsp) must define a function named process, analogous to “main” in C or C++
programs. The process function contains Faust expressions and/or other function expan-
sions that specify the signal-processing block diagram associated with that Faust program.8

A very simple Faust program is

process(x) = x;

which defines a simple “wire” block diagram that connects its single input to its single
output. We can also define a pair of wires for stereo operation:

process(x,y) = x,y;

Here we have introduced the comma block-diagram operator (,) on the righthand side which
combines block diagrams in parallel. (On the lefthand side, a comma separates function
arguments, which is a different usage of comma.)

Common block-diagram functions are predefined, such as “+”:

process(x,y) = x,y:+;

Now we have introduced the colon (:) operator for combining block diagrams in series. The
block diagram consisting of two wires x and y in parallel is connected to the two inputs of
the + block diagram.

Since the + operator already has two inputs, we do not need to refer to them explicitly. Thus,

process = +;

is equivalent to “process(x,y) = x,y:+;”, and it therefore also specifies a block diagram
consisting of two input signals, one output signal, and a summer, as shown in Fig. 1.

The underbar symbol , also called a “wire”, denotes the trivial block diagram that feeds its
single input to its single output. Thus, using the predefined block diagram “ ” we can define
the “mono wire” function “process(x)=x;” as

6https://github.com/grame-cncm/faustlibraries.git
7https://faust.grame.fr/
8On July 26, 2021, Yann Orlarey wrote the following to Faust users

<faudiostream-users@lists.sourceforge.net>: “Faust is inspired by Moses Schönfinkel’s combinatory
logic (1924) and John Backus’ FP (1977). The idea of Schönfinkel was to eliminate the need for variables in
mathematical logic. In functional programming, this style is known as ‘point-free’ or ‘tacit’ programming.”

6

https://github.com/grame-cncm/faustlibraries.git
https://faust.grame.fr/

Figure 1: Main process block diagram for a two-input adder: process = +;

process = _;

and the “stereo bus” as

process = _,_;

which is equivalent to “process(x,y)=x,y;”.

The block diagram generated by faust -svg wire.dsp (as used by the script faust2firefox),
where wire.dsp contains process= ;, is shown in Fig. 2.

process

Figure 2: process = ;

Arguably even simpler is

process = 0;

where 0 can be thought of as a predefined block diagram having no input signals, and one
output signal that is a stream of zeros. The block diagram for this is shown in Fig. 3.

It is convenient to refer to a block diagram as a signal when it has no input signals and one
output signal.

Similarly,

process = 1;

specifies a block diagram having no input signals and an output signal that is a stream of
ones starting at time zero. Block-diagrams such as ‘0’ and ‘1’ may be thought of as constant
signals. However, since a constant signal, as defined, is semantically a block diagram, all

7

operations valid for block diagrams (listed below) can be applied. For example, using the
one-sample-delay postfix operator ’, we can specify the unit impulse signal by

impulse = 1 - 1’;

because 1 is the unit-step signal (a unit constant turning on at time 0) and 1’ is the unit-step
delayed by one sample.

Figure 3: process = 0;

2.1 Basic Signal Processing Blocks (Elementary Operators on Sig-
nals)

In addition to numbers which specify constant signals, primitive signal-processing blocks
include the following (see “C-equivalent primitives” in the Faust Quick Reference,9 for the

complete list):

- output signal = first input signal minus the second input signal
(referring to Fig. 1, the “first” signal is the one nearest the black reference dot)

+ output signal = first input signal plus the second input signal
* output signal = pointwise product of the two input signals
/ output signal = first input divided by second input (pointwise)
^ output signal = first input raised to the power of the second input (pointwise)
! (“cut”) input signal is terminated (no output signal)
% (“modulo”) output = remainder after dividing first input by second input

mem output signal = input signal delayed by one sample (same as @(1))
@ output = first input delayed by (integer) value of second input

9https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf

8

https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf

2.2 Block Diagram Operators

There are several fundamental block-diagram operators:

: combine block diagrams in series

, combine block diagrams in parallel

<: split: signal fan-out
:> merge: signal fan-in (with summation)
~ recursive: specify feedback

These will be illustrated in the examples below.

2.3 Examples

If any of the following examples are not obvious, paste them into the Faust Editor10, or a
file named test.dsp followed by “faust2firefox test.dsp” in a shell:

process = _ : _; // series combination (1 in, 1 out)

process = _ , _; // parallel combination (2 ins, 2 outs)

process = +; // summer (2 ins, 1 out)

process = _,_ : +; // same summer

process = _,_ : + : _; // same summer

process = -; // signal subtractor

process = *; // pointwise signal multiplier (nonlinear)

process = /; // pointwise signal divider (nonlinear)

process = mem; // unit-sample delay

process = _, 1 : @; // unit-sample delay

process = _,10 : @; // ten-sample delay

process = a ~ b; // feedback thru b around a

process = _ ~ _ ; // feedback thru _ (generates 0)

process = mem ~ _; // two-sample closed loop (generates 0)

process = + ~ _; // digital integrator

process = _ <: _ , _; // mono to stereo

process = _ <: _ , _, _, _; // mono to quad

process = _ , _ <: _ , _, _, _; // stereo to quad (see diagram)

process = _ , _ :> _; // stereo to mono [equiv to +]

process = _, _ , _ , _ :> _ ; // quad to mono [equiv to +,+:+]

2.4 Infix Notation Rewriting

For readability and convenience, infix notation such as x * y is recognized and translated to
Block-Diagram Normal Form (BDNF) as x,y:*, i.e., the parallel signals x and y are fed to
the two-input multiplier *. Similarly, the notation f(x) is rewritten to x:f if f is a primitive

10https://faust.grame.fr/editor/

9

https://faust.grame.fr/editor/

function. (More generally, f(x) is first rewritten as possible using pattern-matching (§2.23)
and definition-expansion (§2.7)). Postfix operators such as ’ are handled similarly. More
formally, we can write

x * y → x,y : *

x / y → x,y : /

x ^ y → x,y : ^

pow(x,y) → x,y : ^

x @ y → x,y : @

x’ → x : mem

f(x) → x : f

f(x,y) → x,y : f

f(x,y,z) → x,y,z : f

and so on.

2.5 Encoding Block Diagrams in the Faust Language

While many block diagrams are simple to write down in Faust, such as elementary series
and/or parallel combinations of basic primitives, there are others which are harder to imme-
diately see, particularly when there are multiple overlapping feedback loops. A slew limiter

is a simple example containing dual overlapping feedback.11

A general procedure for encoding block diagrams in Faust, informally called “brute force
Faustification,” is obtained by following the originally published theorem on the generality
of Faust as a language for encoding block diagrams [7]. An alternative approach, based
on methods of automatic control, is to first write down a state-space model of the system,
from which a Faust description readily follows (see Appendix A). An early implementation
of this method was the Synth-A-Modeler Compiler [1]. A disadvantage of this approach is
that the resulting Faust can be less readable. Instead of a natural left-to-right processing
specification, it produces a general state-space model which takes the form of a vector first-
order finite-difference recursion.

In this tutorial, apart from Appendix A, simple and immediately obvious translations of
block diagrams into Faust will be used, as these suffice most of the time and provide the
most readable code. There is also usually a small performance advantage of the more intuitive
encodings over the more general state-space formulation. The performance difference is small
because the Faust compiler does a good job of optimizing the computations implied by the
sparse matrices of the state-space description.

11Writing a Slew Limiter in the Faust Language (8m): https://youtu.be/3WY0ikTFAe4

10

https://youtu.be/3WY0ikTFAe4

2.6 Statements

As described in the Faust 12 Manual and Faust Quick Reference,13 there are four types of
statements in Faust:

• definition — define a function in the Faust language

• fileimport — incorporate other files (like #include in C)

• declaration — declare “meta data” such as author, copyright, etc.

• documentation — provide XML-style “tags” for in-source documentation

The only required type of statement in a Faust program is the definition statement, and
the only required definition-statement is the one defining process (analogous to main() in
C):

process = faust_expression;

In this tutorial, we will be concerned almost exclusively with definition statements (with
some occasional file-imports).

2.7 Function Definition

Faust is a functional programming language [7]. From this point of view, every block
diagram may be seen as a function mapping its input signals to its output signals.

A fully general function definition in Faust is of the form

f(a) = b;

where f is a name, and a and b are block diagram specifications. In principle, the compiler
must recognize the block diagram a flowing into the symbol f and replace all that by b,
with any occurrences of a within b appropriately wired up to the original input a. Function
arguments are normally a simple parallel bank of named signals, such as f(x,y,z) = b,
where b is a block-diagram expression that may contain symbols x, y, and z which will be
bound to the input signals as expected. Naming input signals in this way is often the easiest
and most readable way to copy input signals within a block-diagram expression:

sum_and_diff_unnamed = _,_<:_,_,_,_:+,-;

sum_and_diff_named(x,y) = x+y, x-y;

More general cases will be discussed in §2.23 below (“pattern matching”).

Function definitions can appear in any order; thus, Faust statements can appear in any
order; however, there is one exception: When defining a function differently for different
argument patterns (§2.23), statement order matters because pattern-matches are tried in
the order given.

12https://faust.grame.fr
13https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf

11

https://faust.grame.fr
https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf

Unused definitions (unused by process, either directly or indirectly) are discarded by the
Faust compiler and have no effect on the generated code:

x=1;

y=2; // no effect

process = x;

Sometimes we have to force inclusion of inaudible processing using the attach primitive.
For example, the following cases appear equivalent, even in the generated block diagram,
but only levelmeter2 makes it into the generated C++ code (levelmeter1 gets optimized
away by the compiler):

import("stdfaust.lib");

smoother(s) = _ : *(1.0 - s) : (+ ~ *(s)); // unity-dc-gain lowpass filter

levelmeter1 = abs : smoother(0.9) : ba.linear2db : vbargraph("Level 1 [unit:dB]",-70,10);

levelmeter2 = abs : smoother(0.9) : ba.linear2db : vbargraph("Level 2 [unit:dB]",-70,10);

sol1 = _ <: _,levelmeter1 : _,!;

sol2 = _ <: attach(levelmeter2);

process = _ <: sol1, sol2;

In summary, every definition-statement defines a function mapping its name (together with
any function-arguments) to a block diagram. Only functions encountered via the process

function are used, unless retained in the compilation using attach.

2.8 Partial Function Application

Faust supports partial application of functions. For example, if f(x,y) specifies some stereo
process, then f(x) specifies the same stereo process, but the left channel has a formal-
parameter name x and the right channel remains an unnamed input wire:

x x

process

Figure 4: process(x) = x, ;

A common use of partial function application is to define named special cases:

general_case(case,arg1,arg2,...) = ...;

12

special_case_1 = general_case(1);

special_case_2 = general_case(2);

...

2.9 Functional Notation for Operators

All of the basic signal processing blocks in §2.1 can be written also in functional notation:

+(x) → ,x : +

/(x) → ,x : /

-(x) → ,x : -

^(x) → ,x : pow

and so on.

2.10 Examples

process = @(1); // _, 1 : @ [unit-sample delay]

process = @(10); // _, 10 : @ [10-sample delay]

process = *(2); // _, 2 : * [scale by 2]

2.11 Summary of Faust Notation Styles

In summary, Faust supports the following notational variations for the expression f(x,y)

= x+2*y:

• Core: x,y:f

• Functional (“applicative”): f(x,y)

• Partial application: y:f(x)

• Infix: x+2*y

In a post to the Faust mailing list, Yann Orlarey writes: “How do you choose between core,
infix and partial application notations? It is largely a matter of taste. Personally, I like to
combine core notation (for the overall structure) with partial application notation (for the
slowly varying “parameters”) ... and infix notation for mathematical expressions.”

2.12 Unary Minus

There is a special unary minus in Faust:

-x → 0,x : -

Thus, assuming x denotes a signal, -x is the same as 0-x (the negated signal) while -(x)

is a block diagram (not a signal) having one input from which x is subtracted (and usually
read as “minus of x”).

13

As another example, -(1+cos(w)) is a single-input, single-output block diagram in which
the output of (1+cos(w)) (a signal) is subtracted from the input signal, while -1-cos(w)

denotes a signal (no input).

2.13 Fixing the Number of Input and Output Signals

In the examples above, the input signals were usually defined implicitly by the defining
Faust expression:

foo = faust_expression; // inputs and outputs determined by expression

Sometimes, however, it is helpful to fix the number of input signals. For example, to define
a stereo processor, one can begin and end its definition with two wires:

foo = _,_ : faust_expression : _,_;

Such practice also helps to more easily catch errors when the number of input or output
signals comes out wrong in the defining expression.

2.14 Naming Input Signals

Input signals can be given a name by including them as formal function parameters. The
previous example can be modified to do this as follows:

foo(x,y) = x,y : faust_expression : _,_;

This option is important to remember when the explicit names are easier to work with than
unnamed “incoming wires”:

foo(x,y) = faust_expression_with_x_and_y_appearing_in_the_middle_somewhere;

2.15 Naming Output Signals

Suppose you have a block diagram bd that outputs two signals, and you would like to give
them names. You cannot simply say “x,y = bd” as you would in matlab or python. Instead,
use the signal blocking operator ‘!’:

x = bd : _,!;

y = bd : !,_;

This does not result in two instances of bd. The optimization recognizes the common subex-
pression bd and computes it only once.

2.16 Signal Types

The two signal types in Faust are int and float. When compiling, a float can be elevated
to double or quad precision by means of the -double or -quad options to the Faust compiler.
An int is always 32-bit precision, for reasons mentioned in §2.25 below.

14

In the Faust language, the type of a signal can be forced (with conversion, if necessary), as
follows:

int(x) → integer part of the signal x
float(x) → treat the signal x as a float in expressions

The int(x) conversion implements what is normally called magnitude truncation, or “round-
ing toward zero”. Thus, int(0.99) = int(-0.99) = 0. Magnitude truncation is often
preferred in digital signal processing applications because it normally best preserves the sta-
bility of all feedback loops. (When signals have a physical-amplitude interpretation, such as
pressure or voltage, then magnitude truncation, unlike rounding, is always passive, i.e., not
energy-creating.)

Note that integer expressions are automatically converted to float when necessary to avoid
a loss of precision. Thus, for example,

process = 1/2; // = 0.5, 0.5, 0.5,...

outputs 0.5, while

process = int(1/2); // = 0, 0, 0, ...

puts out the constant zero signal.

2.17 Signal Comparison Operators

Signals can be compared sample by sample to produce an integer-valued signal that is 1
when the comparison is true and 0 otherwise. The comparison operator symbols coincide
with those in the C language:

< <= > >= == !=

For example, the program

process(L,R) = L > R;

Produces a signal that is 1 when signal L is greater than signal R and 0 otherwise.

2.18 Bitwise Operations for Integer Signals

There are also C-style operators for manipulating the bits in each sample of an integer signal:

<< >> | & xor

For example, & can be used to apply a bit mask:

ramp = _~+(1); // integer ramp 1,2,3,...

process = ramp & ((1<<8)-1); // restart ramp every 256 samples

15

2.19 Foreign Constants and Variables

Faust provides linkages to the hosting environment via “foreign” entities. For example,
here are some selected declarations from the Faust Librariess:14

SR = fconstant(int fSamplingFreq, <math.h>);

BS = fvariable(int count, <math.h>);

tanh = ffunction(float tanhf (float), <math.h>,"");

The foreign constant in the above example is the audio sampling rate SR, which is not known
until run-time. It is typically used in Faust expressions to calculate normalized frequencies
f/SR. The Faust compiler assumes that foreign constants are determined at initialization
time and never change.

The foreign variable example is the audio block size BS (or “buffer size” or “inner-loop
length”). The Faust compiler assumes that foreign variables are constant within an inner
loop (typically 64 samples), but may change between blocks (like values coming from user-
interface widgets).

2.20 Foreign Functions

A foreign function is declared as

ffunction(<function-declaration>, <include-file>, <library>)

where the function-declaration must be of the form

<type> fn(<type>);

where <type> is either int or float. In addition, the input type can be omitted, indicating
no input argument. Thus, <function-declaration> means one of the following:

int fn(int);

int fn(float);

float fn(int);

float fn(float);

int fn(); // not ’fn(void)’

float fn();

2.20.1 Example 1

For example,

process = ffunction(float fn(float), "<math.h>", "-lm");

compiles to (as of 2020-04-29 using the latest Faust master-dev branch)

14These were originally defined in math.lib, while now they are in maths.lib and expanded in some
cases.

16

...

/* link with : "-lm" */

#include "<math.h>"

...

virtual void compute(int count, FAUSTFLOAT** inputs, FAUSTFLOAT** outputs) {

FAUSTFLOAT* input0 = inputs[0];

FAUSTFLOAT* output0 = outputs[0];

for (int i = 0; (i < count); i = (i + 1)) {

output0[i] = FAUSTFLOAT(float(fn(float(input0[i]))));

}

}

...

2.20.2 Example 2

The program

process = ffunction(int fn(int), "<math.h>", "-lm");

compiles to

...

/* link with : "-lm" */

#include "<math.h>"

...

virtual void compute(int count, FAUSTFLOAT** inputs, FAUSTFLOAT** outputs) {

FAUSTFLOAT* input0 = inputs[0];

FAUSTFLOAT* output0 = outputs[0];

for (int i = 0; (i < count); i = (i + 1)) {

output0[i] = FAUSTFLOAT(int(fn(int(float(input0[i])))));

}

}

...

Note the explicit float to int conversions.

A foreign function can have zero or more input arguments, and it must return a single
FAUSTFLOAT as output.

2.20.3 Functions from math.h

Typical special functions defined in math.h, such as cos and sin, are either native primitive
functions in Faust or may be defined as foreign functions. See <faustlibraries distribution>/maths.lib

for the complete list already incorporated or predefined. The list of incorporated primitives
is given in §3.5.3 (p. 32) of the Faust Quick Reference,15. All of these functions accept a

15https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf

17

https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf

signal and return a signal computed by applying the function to each sample.

2.21 Parallel and Sequence Iterations

For compact specification of large parallel and series arrays of block diagrams, the par and
seq “iterations” are provided:

pf = par(i,N,f(i)); // pf = f(0) , f(1) , ... , f(N-1);

sf = seq(i,N,f(i)); // sf = f(0) : f(1) : ... : f(N-1);

A very useful example of par is in defining the bus macro16

bus(n) = par(i,n,_);

process = bus(4) <: bus(12); // quad to 12-channel (see diagram)

2.22 Sum and Product Macros

There are similarly prod and sum macros:

pf = prod(i,N,f(i)); // pf = f(0) * f(1) * ... * f(N-1);

sf = sum(i,N,f(i)); // sf = f(0) + f(1) + ... + f(N-1);

One often does not need sum because of the summing property of :> , and the latter yields
a more compact block-diagram drawing.

2.23 Pattern Matching in Faust

In Faust, pattern matching is used in functional rewriting rules:

f(pattern) = expression;

where f is any valid function name, and both pattern and expression are arbitrary expres-
sions in the Faust language. Such a definition specifies a rewriting rule: When f(pattern)

is recognized in any function definition, it is replaced by expression. Pattern matching is
commonly supported in functional programming languages such as Haskell [6], a language
that influenced the design of Faust.

Pattern-matching allows different function-definitions for different argument-patterns. For
example, the following use of pattern-matching defines different amplitudes and frequencies
for a simple additive synthesizer [5]:

import("stdfaust.lib");

amp(0) = 1.0; // amplitude of fundamental frequency

amp(1) = 0.5; // amplitude of first harmonic

amp(2) = 0.3;

freq(i) = (i+1)*440;

16The bus function was initially defined in the Faust Libraries distribution’s maths.lib, and was moved
to signals.lib near the end of 2016.

18

partial(i) = amp(i) * os.osc(freq(i)); // osc defined in oscillators.lib

process = sum(i, 3, partial(i));

The ‘0’ in amp(0) above is referred to as a single-value pattern, as are ‘1’ and ‘2’ in the next
two lines. Each single-value pattern matches only one value exactly. The ‘i’ in freq(i)

above may be called a free variable in the pattern (consisting of only that variable), and it
matches anything at all (any block diagram in the Faust language).

Pattern-matching can be used to define functions recursively. A simple example is the
recursive definition of factorial:

fact(0) = 1;

fact(n) = n * fact(n-1);

process = fact(4); // output signal = 24,24,24,...

While Faust function definitions can appear in any order, lexical order matters for pattern

definitions. Thus, in the above factorial example, the rewrite rule using the single-value
pattern 0 is tried first, while the one using the variable pattern n matches for any block

diagram (which should, in our intended use, and to avoid an infinite loop, evaluate to an
integer each sample). If the first two lines are interchanged in the above example, an infinite
loop is obtained at compile time.

Another example [5] is the fold operator:

fold(1,f,x) = x(0);

fold(n,f,x) = f(fold(n-1,f,x),x(n-1));

Then in the additive synthesis example above, sum(i, 3, partial(i)) can be replaced by
fsum(3,partial) where fsum(n) = fold(n,+).

More general expressions can appear in a pattern definition, as described in §2.23.5 below.

2.23.1 Formal Parameter Exception

The pattern-matching facility is not applied to ordinary formal function parameters [5]. In
other words, f(x,y,z)=expression is treated as a function having three formal parameters
that are expected to appear literally in expression (e.g., an expression such as x*y+z).
This interpretation is in contrast to a function whose input is three parallel block diagrams
of arbitrary generality. As a result of this exception, the mere number of formal parameters
does not contribute to the uniqueness of a pattern. For example, the following program
generates a compile-time error:

f(x,y) = f(x) + f(y); // (x,y) => f(x),f(y):+

f(x) = 2*x; // (x) => 2,x:*

process = f(3,5);

The compiler-error triggered is “inconsistent number of parameters in pattern-matching rule:
(x) =¿ 2,x:*; previous rule was (x,y) =¿ f(x),f(y):+”. On the other hand, the following
program outputs the constant signal 16:

19

f((x,y)) = f(x) + f(y);

f(x) = 2*x;

process = f((3,5));

The extra parentheses distinguish the pattern (x,y) from formal parameters x,y in this
case.

20

2.23.2 Formal Parameter Substitution17

Formal parameters are block diagrams substituted where they occur in the function defini-
tion, which is then evaluated. Any unused parameters are replaced by signal inputs.

For example, given

f(x) = x + x;

“f(2)” gives 4, and f(_) gives “_,_ : +,” (not “_ <: _,_:+” or “_ : *(2)”). Pass-
ing in a two-input block diagram, such as “f(*),” yields the four-input block diagram
“_,_,_,_ : *, * : +.” Writing simply “f” compiles to a two-input adder, following the
rule for unused parameters.

As another example of function structure depending on argument type, given

f(x) = 1, 2 : _, _, x;

“process = f;” defines the block diagram “1,2,_,” but “process = f(_);” expands to
“1,2 : _,_,_” and fails to compile (two outputs into three inputs). Desired structure can
often be enforced by adding parentheses, e.g.,

f(x) = (1, 2 : _, _), x;

To ensure that a function expansion has exactly N input signals, it is good to start the
function definition with a bus of size N :

f(x) = _ : (1, 2 : _, _), x; // f and f(_) compile but not f(3)

or si.bus(N) more generally. This way, when the function is used in an unintended manner,
compilation is more likely to fail and alert the user.

2.23.3 Recursive Block Diagram Specification

Recursive pattern matching, introduced and illustrated for computing factorial in §2.23
above, also gives a powerful way to define a block diagram recursively in terms of its par-
titions. For example, the following Faust program defines Hadamard matrices of order 2n

where n is a positive integer:

bus(n) = par(i,n,_); // There is si.bus(n) in the \FL s

//hmtx(2) = _,_ <: +,-; // scalar butterfly

hmtx(2) = _,_ <: (bus(2):>_),(_,*(-1):>_) ; // prettier drawing

hmtx(n) = bus(n) <: (bus(n):>bus(n/2)) , // vector butterfly

((bus(n/2),(bus(n/2):par(i,n/2,*(-1)))) :> bus(n/2))

: (hmtx(n/2) , hmtx(n/2));

process = hmtx(16); // look at the diagram in the Faust Editor, e.g.

Other examples include Feedback Delay Networks (FDN) and the square waveguide mesh of
order 2n defined in the Faust Libraries (see fdnrev0 in reverbs.lib and mesh square()

17Thanks to Yann Orlarey for assisting with this section.

21

in misceffects.lib). An especially interesting example is the Fast Fourier Transform (fft
defined in analyzers.lib).

See also basics.lib for examples of using recursion for a kind of list processing, such as in
count and take.

Note that it is also possible to implement counterparts to par and seq using pattern matching
(see the duplicate function on page 14 of the FaustQR.

2.23.4 Understanding count and take from basics.lib

In basics.lib, we have the following definition of count:

count ((xs, xxs)) = 1 + count(xxs);

count (xx) = 1;

This definition uses pattern matching to count the number of block diagrams in parallel. For
example count((6,5,4)) evaluates to 3. The first pattern recognizes a parallel arrangement
of two block diagrams, while the second pattern will match any block diagram. In the multi-
element case, the list is parsed as its first element in parallel with a block diagram consisting
of all remaining elements (analogous to CAR and CDR in the Lisp programming language).
Note that (a,b,c,d) matches (xs,xxs) as ((a),(b,c,d)).

Also in basics.lib, we have the following definition of take:

take (1, (xs, xxs)) = xs;

take (1, xs) = xs;

take (nn, (xs, xxs)) = take (nn-1, xxs);

This definition uses pattern matching to return the specified element. For example take(2,(6,5,4))
yields 5. The extra parentheses around (xs,xxs) avoid the structure of mere formal argu-
ments separated by commas.

Note that take is 1-based while seq and par et al. are 0-based.

2.23.5 Pattern Matching Implementation

The pattern matching facility in Faust operates on block-diagram expressions in Faust

Block-Diagram Normal Form (BDNF), which is the low-level Faust expression format ap-
pearing in compile-time errors and drawn in scalable vector graphics (.svg) files generated
by the faust -svg option.

BDNF expressions can be viewed as trees. The leaves of these trees are numbers and primitive
block diagrams such as +, , !, abs, sin, etc. The nodes of the trees are the five operations
of the Block-Diagram Algebra (BDA) (, | : | <: | :> | ~).

A pattern is a Faust expression optionally containing free variables. A Faust expression
is a pattern when it appears as a function argument on the left-hand side of a function
definition:

f(pattern) = expression;

22

Such function definitions specify rewriting rules such that when f(pattern) is recognized
elsewhere, it is replaced by expression with any free variables in the pattern replaced by
what they matched in the expression. If there are no free variables in the pattern, then the
pattern will only match block diagrams whose BDNF is identical.

For example, the pattern (a) consists of only the free variable a, which will match any
expression. The pattern (2*a) = (2,a:*) can be represented as a tree consisting of a ‘:’
node at the top, a ‘,’ node as its left child, and the ‘*’ operator leaf as its right child. The
‘,’ node in turn has the left-leaf ‘2’ and right-leaf ‘a’ (a free variable).

2.23.6 Using Pattern Matching in Rewriting Rules

As mentioned above, rewriting rules are specified in Faust source by function definitions of
the form

f(pattern) = expression;

where f is any valid function name, and both pattern and expression are arbitrary expres-
sions in the Faust language. The Faust compiler stores all rewriting rules in the lexical or-
der they were specified (since lexical order determines pattern-matching precedence). When
an instance of f(arg) is encountered in the Faust source, the argument arg is compared,
in Block Diagram Normal Form, to the first defined pattern for f, also in BDNF. The nodes
of the BDNF are compared and traversed in the standard order (top-down, left-to-right),
and the match is successful when (1) all nodes and non-variable leaves match literally, and
(2) the free variables in the pattern (if any) “greedily” match subtrees in arg. After an
unsuccessful match, additional patterns for f are tried, until a match is found. After a suc-
cessful match, any free variables in pattern are bound to their matching subtrees in arg,
and expression is evaluated and inserted in place of f(arg). We will illustrate an example
below using Lisp tree syntax.

2.23.7 Using Lisp Syntax to Express Trees

Lisp syntax is nice for expressing tree structure in linear text. A Lisp expression has the
form

expr = (functionName expr1 expr2 ... exprN)

where functionName names a function (analogous to a procedure or subroutine in other
languages), and expr1...exprN are the N function arguments, each of which is a Lisp
expression itself. So, in Lisp, an example three-level tree consisting of one parent, two
children, and five grandchildren, could look like

tree = (topNode

(leftChild

(leftLeftGrandChild leftMiddleGrandChild leftRightGrandChild))

(rightChild

(rightLeftGrandChild rightRightGrandChild)))

23

2.23.8 Pattern-Matching Example

Does the pattern (a:b) match (2+3)? Yes, as we will see below.18

Rewriting 2+3 in BDNF gives ((2,3):+). Expressing this in Lisp form gives

2+3 -> ((2,3):+) -> (: (, 2 3) (+))

The arguments to the function ‘:’ are the expressions ‘(, 2 3)’ and ‘(+)’. The arguments to
the function ‘,’ are ‘2’ and ‘3’.

Rewriting the pattern (a:b) in Lisp form gives

(a:b) -> (: a b)

Since both patterns are of the form (: a b), the patterns match.

2.23.9 Pattern-Matching Algorithm Description

The pattern matching algorithm can be roughly recursively defined as follows:19

// match (pattern, expression) -> bool

match (v , E) = true a pattern-matching-variable matches any expression

match (E , E) = true two identical expressions match

match ((op P1, P2), (op E1 E2)) = true

if match(P1, E1) and match(P2, E2), false otherwise

match (P, E) = false

In other words, a pattern P matches an expression E if we can replace the free variables v1,
v2, ... in P with subexpressions E1, E2, ... from E to make it identical to E. That is, P
matches E if there exist E1, E2, ... such that P[v1=E1, v2=E2, ...] == E.

2.23.10 Miscellaneous Pattern-Matching Examples

Decide what you think process is defined as in the examples below, and then find the
answers at the end:

Example 1:

a = 2; // this definition is not used

f(a,b) = a+b; // a is a formal argument that is used

process = f(3,4); // see below for the answer

Example 2:

a = 2; // this definition is used (not shadowed by formal arg)

f(c*b) = a+b;

process = f(3*4); // see below

18Thanks to Yann Orlarey for this example and associated discussion on how pattern-matching works in
Faust.

19Thanks to Yann Orlarey for this description.

24

Example 3:

a = 2; // not used - shadowed by pattern variable

f(a*b) = a+b;

process = f(3*4);

Answers: 7, 6, 7

2.24 Scope Rules

As illustrated in §3 below, a with{...}; block may be used to define local symbols (block
diagrams). Otherwise, everything is globally defined.

A library “foo.lib” may be loaded into its own namespace by writing

f = library("foo.lib");

and then symbols from that library may be accessed using the given prefix:

fPI = f.PI; // use definition of PI given in foo.lib

fTanZero = f.tan(0); // use definition of tan() given in foo.lib

An environment works similarly:

e = environment {

Phi = 0.5*(1.0+sqrt(5));

}

golden_ratio = e.Phi;

For convenience, “component("prog.dsp")” is defined to mean the same thing as
“library("prog.dsp").process”.

Definitions within an environment can be replaced (or appended) using the following bracket
syntax:

f = library("filters.lib")[pole(p) = _;];

process = f.dcblocker; // now it is one-zero, no pole

2.25 White Noise Generator

The Faust noise generator defined in noises.lib is an instructive example. It generates
uniform pseudo-random white noise in [0, 1) by the linear congruential method.20

random = +(12345) ~ *(1103515245); // overflowing mpy & offset

RANDMAX = 2147483647.0;

noise = random / RANDMAX;

Note that for this noise-generator to give identical results on all platforms, Faustmust define
integers as 32 bits everywhere, and overflow behavior must be normalized across platforms
as well.

20The mathematical notation [a, b) denotes a half-open interval, i.e., the interval includes endpoint a but
but not b.

25

2.26 Further Readings on the Faust Language

It is important to note that this brief overview is not complete.

See the Faust Manual21 and the Faust Quick Reference,22 for more examples, features of
the language, and discussion. Historically, the Faust Quick Reference document is the only
fully up-to-date specification of the latest features of the language.

New since this tutorial was written is an online description of Faust syntax:
https://faustdoc.grame.fr/manual/syntax/.

2.27 Acknowledgment

Thanks to Yann Orlarey for helpful clarifications regarding the Faust language.

3 A Simple Example Faust Program

Figure 5 lists a small Faust program specifying the constant-peak-gain resonator discussed
in [10].

process = firpart : + ~ feedback

with {

bw = 100; fr = 1000; g = 1; // parameters - see caption

SR = fconstant(int fSamplingFreq, <math.h>);

pi = 4*atan(1.0); // circumference over diameter

R = exp(-pi*bw/SR); // pole radius

A = 2*pi*fr/SR; // pole angle (radians)

RR = R*R;

firpart(x) = (x - x’’) * g * (1-RR)/2;

// time-domain coefficients ASSUMING ONE-SAMPLE FEEDBACK DELAY:

feedback(x) = 0 + 2*R*cos(A)*x - RR*x’;

};

Figure 5: Faust program specifying a constant-peak-gain resonator. Input param-
eters are resonance frequency fr (Hz), resonance bandwidth bw (Hz), and desired
peak-gain g.

We will now study this example in a variety of ways. First we will illustrate the typical
development cycle (look at the block diagram, etc.) Second, we will add a GUI and look at
some of the various types of applications and plugins that can be generated from it.

21https://faustdoc.grame.fr
22https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf

26

https://faustdoc.grame.fr/manual/syntax/
https://faustdoc.grame.fr
https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf

4 Verifying and Testing Faust Programs

It takes a bit of experience to write a correct program on the first try. Therefore, we often
have to debug our programs by some technique. Typically, inspecting the automatically
generated block diagrams and listening to the results are tools enough for debugging Faust

source code.

4.1 Generating Faust Block Diagrams

A good first check on a Faust program (after getting it to compile) is to generate its block
diagram using the -svg option.23 For example, the command

> faust -svg cpgr.dsp

creates a subdirectory of the current working directory named cpgr-svg which contains a
“scalable vector graphics” (.svg) file for each block-diagram expression in cpgr.dsp. For
this example, there is a block diagram generated for the process line, and for each of the
last five lines in the with clause (not counting the comment).

Figure 6 shows the block diagram generated for the main process block from Fig. 5:

process = firpart : + ~ feedback

The dot on each block indicates its standard orientation (analogous to a “pin 1” indicator
on an integrated circuit chip). The small open square at the beginning of the feedback loop
indicates a unit sample delay introduced by creating a signal loop. Needless to say, it is
important to keep track of such added delays in a feedback loop.

firpart

+

feedback

process

Figure 6: Main process block for the constant-peak-gain resonator.

Figure 7 shows the block diagram generated for the firpart abstraction:

23The faust2firefox script can be used to generate SVG block diagrams and open them in the Firefox
web browser, among others.

27

firpart(x) = (x - x’’) * g * (1-RR)/2;

x

x

x mem mem

-

1

g

*

1

g

RR

-

2

/

*

firpart

Figure 7: FIR-part (x - x’’) * g * (1-RR)/2 in Faust.

Similarly, Fig. 8 shows the block diagram generated for the feedback path:

feedback(x) = 0 + 2*R*cos(A)*x - RR*x’;

If not for the added sample of delay in the feedback loop (indicated by the small open square
in Fig. 6), the feedback-path processing would have been instead 0 + 2*R*cos(A)*v’ -

RR*v’’.

Note that the block diagrams are drawn as though all details of the expression are to be
evaluated every sample. However, the Faust compiler instead computes constant expressions
at init time and allocates memory locations for them. More generally, the Faust compiler
separately optimizes full-rate signals at the sampling rate (calculated in the inner loop),
slowly varying signals (updated at the “buffer rate” outside of the inner loop—currently
every 64 samples), and constant signals (evaluated once at initialization time).

28

x

0

2

R

*

A cos

*

x

*

+

RR

x mem

*

-

feedback

Figure 8: Feedback block 0 + 2*R*cos(A)*x - RR*x’ in Faust.

29

4.2 A Look at the Generated C++ code

One normally never needs to look at the C++ code generated by Faust. However, we will
do this now just to see how it looks, and note a few things.

Running Faust with no architecture file, e.g.,

> faust cpgr.dsp

causes the C++ signal-processing code to be printed on the standard output, as shown for
this example in Fig. 9.

We see that init calls classInit, which is where read-only wavetables are initialized (none
being used in this example), followed by instanceInit, which resets all parameters to
their default values. Thus, instanceInit provides a more efficient processor “reset” when
readonly wavetables are in use.

Since all processor state is allocated as instance variables of the mydsp class (which can be
changed to any name using the -cn Faust-compiler option), there is no allocation in init.

Notice how constant subexpressions, such as for fconst0, are computed only once in instanceInit.
The template faustpower<2>(x) (omitted in the above listing) expands to x*x, thereby
avoiding calling the pow function. In general, Faust does a lot of such optimization.

The buildUserInterface method calls the appropriate interface function for each control
widget (slider, button, etc.), but there are none in this simple example. In §5 we will add GUI
controls, and you compile that to see how buildUserInterface changes as a result. The
GUI control variables are also included among the processor state variables, and the interface
is given pointers to them. (The interface holds no signal-processing state, including both
signal and controller values.) The interface may update the control variables asynchronously
(e.g., in another thread of execution), and they will get sampled in the signal processor once
per execution of the compute inner loop. Thus, the control rate is the sampling rate divided
by the audio buffer length count. As a result, elaborate Faust expressions in the control
variables are normally very inexpensive computationally. For optimization, we tend to look
hard only at the for loop in the compute function; for example, we generally try to avoid
calls to libc for things like sin() and cos(), which can be relatively slow. There are fast
approximate alternatives such as the fastapprox library,24 and linearly interpolated lookup
tables are often used.

4.3 Printing/Plotting the Output Signal(s)

Sometimes, beyond inspecting the block diagram, it may be necessary to verify the output
signal(s) in more detail. For this purpose, Faust has a useful “architecture file” named
plot.cpp which results in generation of a main C++ program that simply prints the output
signal(s) to the standard output. This printout can be used to plot the output (using, e.g.,
gnuplot) or compare it to the output of some other program. A similar architecture file,

24https://fastapprox.googlecode.com/svn/tags/fastapprox

30

class mydsp : public dsp {

private:

float fConst0; float fConst1;

float fVec0[3]; float fConst2;

float fRec0[3];

public:

static void metadata(Meta* m) { }

virtual int getNumInputs() { return 1; }

virtual int getNumOutputs() { return 1; }

static void classInit(int samplingFreq) { }

virtual void instanceInit(int samplingFreq) {

fSamplingFreq = samplingFreq;

fConst0 = expf((0 - (314.1592653589793f / float(fSamplingFreq))));

fConst1 = (2 * cosf((6283.185307179586f / float(fSamplingFreq))));

fConst2 = (0.5f * (1 - faustpower<2>(fConst0)));

for (int i=0; i<3; i++) fVec0[i] = 0;

for (int i=0; i<3; i++) fRec0[i] = 0;

}

virtual void init(int samplingFreq) {

classInit(samplingFreq);

instanceInit(samplingFreq);

}

virtual void buildUserInterface(UI* interface) {

interface->openVerticalBox("cpgr");

interface->closeBox();

}

virtual void compute (int count, FAUSTFLOAT** input, FAUSTFLOAT** output) {

FAUSTFLOAT* input0 = input[0];

FAUSTFLOAT* output0 = output[0];

for (int i=0; i<count; i++) {

float fTemp0 = (float)input0[i];

fVec0[0] = fTemp0;

fRec0[0] = ((fConst2 * (fVec0[0] - fVec0[2]))

+ (fConst0 * ((fConst1 * fRec0[1]) - (fConst0 * fRec0[2]))));

output0[i] = (FAUSTFLOAT)fRec0[0];

// post processing

fRec0[2] = fRec0[1]; fRec0[1] = fRec0[0];

fVec0[2] = fVec0[1]; fVec0[1] = fVec0[0];

}

}

};

Figure 9: C++ code emitted by “faust cpgr.dsp”, slightly reformatted.

31

matlabplot.cpp, results in a program that outputs an input file for Matlab or Octave that
will define a matlab matrix containing each Faust output signal in a column of the matrix.
These techniques are discussed further in the following subsections.

This section gives an example of comparing the impulse response of the filter in Fig. 5 to
the output of a matlab version. Specifically, we will compare the printed output from the
Faust-generated program to the output of the matlab test program shown in Fig. 10.

SR = 44100; % Sampling rate

fr = 1000; % Resonant frequency

bw = 100; % Bandwidth

g = 1; % Peak gain

N = 10; % Samples to generate in test

R = exp(-pi*bw/SR); % pole radius

A = 2*pi*fr/SR; % pole angle (radians)

firpart = g * [1 0 -1] * (1-R^2)/2;

feedback = [1 -2*R*cos(A) R^2]; % freq-domain coeffs

freqz(firpart,feedback); % freq-response display

format long;

h = impz(firpart,feedback,N) % print impulse response

Figure 10: Constant Peak-Gain Resonator—matlab version

In our Faust program, we need a test impulse, e.g.,

process = 1-1’ : firpart : + ~ feedback

with { ... <same as before> ... };

The signal 1 = [1, 1, 1, . . .] is the unit-step signal consisting of all ones, and 1’ = [0, 1, 1, . . .]
is the unit step delayed by one sample. Therefore, 1-1’ is the impulse signal δ = [1, 0, 0, . . .].

Suppose the file cpgrir.dsp (“Constant-Peak-Gain Resonator Impulse-Response”) contains
our test Faust program. Then we can generate the impulse-response printout as follows at
the command line:

> faust -a plot.cpp -o cpgrir-print.cpp cpgrir.dsp

> g++ -Wall -g -lm -lpthread cpgrir-print.cpp -o cpgrir-print

> cpgrir-print -n 10

(Commands similar to the first two lines above are carried out more conveniently using
the faust2plot utility distributed with Faust.) The first line generates the C++ program
cpgrir.cpp from the Faust source file cpgrir.dsp using the architecture file plot.cpp.
The second line compiles the C++ file to produce the executable program cpgrir-print.
Finally, the third line generates and prints the first 10 samples of the output signal (anything

32

more than the number of filter coefficients is usually enough), which is our desired impulse
response:25

h = [0.00707331 0.0139039 0.013284

0.012405 0.0112882 0.00995947

0.00844865 0.00678877 0.00501544

0.00316602 ...]

The matlab version produces the following impulse response:

h =

[0.00707328459864603 0.01390382707778288 0.01328399389241600

0.01240496991806334 0.01128815312793390 0.00995943544693653

0.00844861689634155 0.00678874919376101 0.00501542304704597

0.00316601431505539 ...]

Since matlab uses double-precision floating-point while Faust used single-precision floats
in this example, we see differences after six or so decimal digits. The precision of the float
type in Faust can be extended to double or quad by changing the compile line as follows:

> faust -double ...

> faust -quad ...

4.4 Inspecting the Output Signal(s) in Matlab or Octave

The faust2octave script, distributed with Faust, executes shell commands similar to the
faust2plot script mentioned above, then executes the generated program to write a matlab
input file, and finally loads the file in Octave. The result is typically as if the following
commands were typed for the above example:

> faust -a matlabplot.cpp cpgrir.dsp -o cpgrir.cpp

> g++ -O3 cpgrir.cpp -o cpgrir

> cpgrir -n 600 > cpgrir.m

> octave --persist cpgrir.m

In Octave, the variable faustout is a matrix containing the program output. Each output
signal is a column of this matrix. In the above example, we have one output signal that is
600 samples long, so the faustout matrix is a 600× 1 column vector.

In Octave, an overlay of all output signals can be plotted by the command

octave:1> plot(faustout);

Very often in signal processing we need to see the spectrum of the signal:

octave:1> plot(20*log10(abs(fft(faustout,1024))(1:512,:)));

25This specific output was obtained by editing cpgrir-print.cpp to replace %8f by %g in the print
statements, in order to print more significant digits.

33

In this example, the signal is zero-padded out to 1024 samples, a Fast Fourier Transform
(FFT) is performed, the first 512 samples are selected, the absolute value is taken, followed
by conversion to dB, and finally this dB spectral magnitude is plotted. If there are multiple
output signals, their dB-magnitude spectra are all plotted overlaid.

4.5 Summary of Faust Program Testing Strategies

The development of a Faust program p.dsp, say, typically consists of the following steps:

> faust p.dsp # does it compile?

> faust2firefox p.dsp # check the block diagram

> faust2octave p.dsp # (maybe) inspect the output signal(s) in Octave

> faust2jaqt p.dsp # make a JACK-compatible application

These operations are so common that I have shell aliases f, f2ff, f2o, and f2j for these
commands. More recently,the first two may be replaced by the Faust Editor. The third
(f2o) is typically only used for serious testing, such as for a publication.

34

5 Adding a GUI

To illustrate automatic generation of user-interface controls, we will add two “numeric entry”
fields (nentry) and one “horizontal slider” (hslider) to our example of Fig. 5. These controls
will allow the application or plugin user to vary the center-frequency, bandwidth, and peak
gain of the constant-peak-gain resonator in real time. A complete listing of cpgrui.dsp

(“Constant-Peak-Gain Resonator with User Interface”) appears in Fig. 11.

declare name "Constant-Peak-Gain Resonator";

declare author "Julius Smith";

declare version "1.0";

declare license "GPL";

/* Controls */

fr = nentry("frequency (Hz)", 1000, 20, 20000, 1);

bw = nentry("bandwidth (Hz)", 100, 20, 20000, 10);

g = hslider("peak gain", 1, 0, 10, 0.01);

/* Constants (FAUST provides these in math.lib) */

SR = fconstant(int fSamplingFreq, <math.h>);

PI = 3.1415926535897932385;

/* The resonator */

process = firpart : + ~ feedback

with {

R = exp(-PI*bw/SR); // pole radius

A = 2*PI*fr/SR; // pole angle (radians)

RR = R*R;

firpart(x) = (x - x’’) * g * (1-RR)/2;

// time-domain coefficients ASSUMING ONE-SAMPLE FEEDBACK DELAY:

feedback(v) = 0 + 2*R*cos(A)*v - RR*v’;

};

Figure 11: Listing of cpgrui.dsp—a Faust program specifying a constant-peak-
gain resonator with three user controls. Also shown are typical header declarations.

Note that GUI element specifications such as “nentry(<string>,<number>,...)” and
“hslider(<string>,<number>,...)” should be regarded as predefined block diagrams hav-
ing one slow output (and also a signal input, in the case of vbargraph() and hbargraph(),
and the string and number arguments are all compile-time constants. There is no partial ap-
plication (§2.8 on page 12) or alternate notations such as “widget(x) = <string>,<number>,x:widget”
for GUI elements, principally because strings are not elements of the Faust language. While
output-only GUI elements have no alternate syntax, bar graphs have two equivalent forms,
e.g.,

35

x:vbargraph(<string>,<min>,<max>) and vbargraph(<string>,<min>,<max>)(x).

Because GUI widget outputs are “slow”, expressions involving them are moved out of the
inner-loop by the compiler, which is very helpful for reducing CPU load. We can then choose
audio block size to trade CPU load against GUI responsiveness. Thus, the “control rate”
(often called “K rate”, at least since Csound) equals the audio sampling rate divided by
audio block size.

6 Generating Stand-Alone Qt or GTK Applications

The next step after debugging a Faust program is typically generating the desired applica-
tion or plugin. For example,

> faust2jaqt p.dsp # make a standalone JACK-compatible Qt application

> faust2jack p.dsp # make a standalone JACK-compatible GTK application

where p.dsp is the Faust program to be compiled. On the Mac, each of the above commands
would create p.app. On a Linux system, the binary executable program p would be created.

faust2jaqt and faust2jack are convenience scripts distributed with Faust.26 A screen-
shot of the Qt main window (obtained using Grab.app on the Mac) is shown in Fig. 12.

Figure 12: Main (and only) window of a Qt application generated by faust2jaqt from
cpgrui.dsp on a Mac OS X system.

When the application is run, it automatically binds its outputs to the system output if
JACK is running (and it will exit if JACK is not running!). In a Linux environment, it

26The author has verified (July 2010) that working Qt applications are generated on both Mac OS X and
Fedora 12 Linux systems, and working GTK applications are generated on Fedora 12 Linux.

36

is necessary to manually connect the program output to the system audio outputs. JACK
may be conveniently started on Mac OS X using JackPilot, and on Linux systems using
qjackctl.

7 Generating Other Applications and Plugins

The faust compiler translates the Faust language to C++. Using its architecture files
(written in C++) and convenience scripts (such as faust2jaqt), working tests, applica-
tions, and plugins can be quickly generated from Faust source. Above we looked at
using faust2plot, faust2matlabplot, faust2firefox, faust2octave, faust2jaqt, and
faust2jack on a simple example. There are many others. For the latest list, cd to the
faust/tools/faust2appls/ directory and list its contents. At the time of this writing
(May 2020), the result is as follows:

Directory faust/tools/faust2appls/

Info.plist faust2firefox faust2octave faust2svgviewer

README.md faust2gen faust2osxiosunity faust2teensy

check-au.sh faust2graph faust2owl faust2unity

encoderunitypackage faust2graphviewer faust2paqt faust2vst

faust2alqt faust2ios faust2pdf faust2vsti

faust2alsa faust2jack faust2plot faust2w32max6

faust2alsaconsole faust2jackconsole faust2png faust2w32msp

faust2android faust2jackrust faust2portaudiorust faust2w32puredata

faust2androidunity faust2jackserver faust2pure faust2w32vst

faust2api faust2jaqt faust2puredata faust2w64max6

faust2atomsnippets faust2jaqtchain faust2raqt faust2w64vst

faust2au faust2juce faust2ros faust2wasm

faust2bela faust2ladspa faust2rosgtk faust2webaudiowasm

faust2caqt faust2linuxunity faust2rpialsaconsole faust2webaudiowast

faust2caqtios faust2lv2 faust2rpinetjackconsole faust2winunity

faust2csound faust2mathdoc faust2sam faustoptflags

faust2csvplot faust2mathviewer faust2sig faustpath

faust2dssi faust2max6 faust2sigviewer filename2ident

faust2dummy faust2md faust2smartkeyb readme-faust2au.txt

faust2dummymem faust2msp faust2sndfile unsupported

faust2eps faust2netjackconsole faust2soul usage.sh

faust2esp32 faust2netjackqt faust2supercollider

faust2faustvst faust2nodejs faust2svg

These shell scripts are easily read to find out how each one works. Check out in particular
the options supported (each script should accept a -h option that prints out a summary of
options supported).

Additional information is found in the faust/examples directory. See also the Faust Li-

37

braries documentation somewhere under https://faust.grame.fr/.27

8 Generating a LADSPA Plugin via Faust

LADSPA stands for “Linux Audio Developer Simple Plugin API”, and it is a common audio
plugin API for Linux applications. [Note: LADSPA has been superseded by LV2, and this
section should be updated to show how to create lv2 plugins instead. See the faust2lv2

script for details. It’s not significantly different at this level.] It can be considered the
Linux counterpart of the widely used VST plugin standard for Windows applications. In
the Planet CCRMA distribution, most of the LADSPA plugins are found in the directory
/usr/lib/ladspa/. At the time of this writing, there are 161 audio plugins (.so files) in
or under that directory.

To generate a LADSPA plugin from Faust source, it is merely necessary to use the ladspa.cpp
architecture file, as in the following example:

> faust -a ladspa.cpp cpgrui.dsp -o cpgruilp.cpp

> g++ -fPIC -shared -O3 \

-Dmydsp=’Constant_Peak_Gain_Resonator’ \

cpgruilp.cpp -o cpgruilp.so

> cp cpgruilp.so /usr/local/lib/ladspa/

(Recall that cpgrui.dsp was listed in Fig. 11 on page 35.) We see that the C++ compilation
step calls for “position-independent code” (option -fPIC) and a “shared object” format (op-
tion -shared) in order that the file be dynamically loadable by a running program. (Recall
that pd similarly required its externals to be compiled -shared.) The Faust distribution
provides the make file /usr/lib/faust/Makefile.ladspacompile (among others) which
documents such details.

Many Linux programs support LADSPA programs, such as the sound editor Audacity, the
multitrack audio recorder/mixer Ardour, and the sequencer Rosegarden. However, for our
example, we’ll use a simple application-independent LADSPA effects rack called JACK Rack
(select “Applications / Planet CCRMA / Jack / JACK Rack”).

Figure 13 shows the appearance of the jack-rack main window after adding28 the plugin
named Constant Peak Gain Resonator. Note that the two numeric entry fields have been
converted to horizontal sliders. (Vertical sliders are also converted to horizontal.) Also, the
controller names have been simplified. A bug is that the default values for the controls are
not set correctly when the plugin loads. (They were set manually to obtain Fig. 13 as shown.)

27It is inadvisable to publish links into content within the Faust website, even something as large as the
manual, editor, or library documentation, as they frequently change incompatibly. Fortunately, the language
rarely has an incompatible change.

28After running jack-rack, the LADSPA plugin was added by clicking on the menu items “Add
/ Uncategorised / C / Constant Peak Gain Resonator”. If jack-rack does not find this or other
plugins, make sure your LADSPA PATH environment variable is set. A typical setting would be
/usr/local/lib/ladspa/:/usr/lib/ladspa/.

38

https://faust.grame.fr/

Figure 13: JACK Rack screenshot after adding the LADSPA plugin
Constant Peak Gain Resonator. Additional LADSPA plugins can be loaded in
the space below (and connected in series).

To test the LADSPA plugin, any program’s audio output can be routed through jack-rack

to the sound-out driver (typically “ALSA PCM” these days). For example, pd’s audio output
can be routed through jack-rack to alsa pcm as shown in Fig. 14.29

9 Feeding Soundfiles to Faust Standalone Apps

The Faust standalone apps we have considered thus far expect sound input in real time,
such as from your computer’s microphone input. Sometimes it is handy to be able to feed a
prerecorded soundfile instead. Below we will discuss two approaches to soundfile processing
in Faust:

1. Offline Processing — an output soundfile is created from the input soundfile and
no time-varying manipulation of processing parameters is possible, much like when
running sox on a soundfile.

2. Real Time Processing — the input soundfile is processed in real time, allowing
parameter manipulation and audio monitoring.

29Sound routings such as this may be accomplished using the “Connect” window in qjackctl. In that
window, there is an Audio tab and a MIDI tab, and the Audio tab is selected by default. Just click twice
to select the desired source and destination and then click “Connect”. Such connections can be made
automatic by clicking “Patchbay” in the qjackctl control panel, specifying your connections, saving, then
clicking “Activate”. Connections can also be established at the command line using aconnect from the
alsa-utils package (included with Planet CCRMA).

39

Figure 14: JACK audio connections routing pd through jack-rack to the ALSA sound-
out driver alsa pcm.

9.1 Offline Processing of Soundfiles in Faust

If you have the Faust distribution and libsndfile installed on your computer, then you
can simply say

> faust2sndfile myprocessor.dsp

> myprocessor input.wav output.wav

to produce soundfile output.wav from input.wav using myprocessor.dsp. The first line
uses the shell script faust2sndfile, normally installed in /usr/local/bin/, to create the
binary program myprocessor from Faust source, and the second line runs myprocessor on
input.wav, writing the processed signal to output.wav.

You can also set Faust parameters (such as sliders and buttons) on the command line, and
generate a soundfile with no input file:

> mysynth -duration 1 -gate 1 -gain 0.5 -freq 440 output.wav

where of course myprocessor.dsp defines these UI elements. Note that the parameter names
are made lower case and have spaces and such removed; you can find out what they became
using the -help option:

> myprocessor -h

*** USAGE: myprocessor input_sfile output_sfile

...

-duration [0..1]

-gate [0..1]

-gain [0..1]

-freq [20..10000]

Thus, the name of each parameter is printed along with its range.

40

Under the hood, the faust2sndfile script uses the Faust architecture file sndfile.cpp,
which in turn uses Erik de Castro Lopo’s libsndfile library to process the channels of an
input soundfile, producing a single output sound file containing all of the output channel
signals.

For example, suppose the file gain-stereo.dsp contains the one-line Faust program

process = *(0.5),*(0.5);

Then the following command will compile it to C++:

> faust -a sndfile.cpp gain-stereo.dsp > gain-stereo.cpp

The file gain-stereo.cpp contains

#include <sndfile.h>

which is installed with the libsndfile distribution. The main function in gain-stereo.cpp

is as follows:

int main(int argc, char *argv[])

{

SNDFILE* in_sf;

SNDFILE* out_sf;

SF_INFO in_info;

SF_INFO out_info;

CMDUI* interface = new CMDUI(argc, argv);

DSP.buildUserInterface(interface);

interface->process_command();

// open input file

in_info.format = 0;

in_sf = sf_open (interface->input_file(), SFM_READ, &in_info);

if (in_sf == NULL) { sf_perror(in_sf); exit(0); }

// open output file

out_info = in_info;

out_info.format = in_info.format;

out_info.channels = DSP.getNumOutputs();

out_sf = sf_open(interface->output_file(), SFM_WRITE, &out_info);

if (out_sf == NULL) { sf_perror(out_sf); exit(0); }

// create separator and interleaver

Separator sep (kFrames, in_info.channels, DSP.getNumInputs());

Interleaver ilv (kFrames, DSP.getNumOutputs(), DSP.getNumOutputs());

41

// init signal processor

DSP.init(in_info.samplerate);

//DSP.buildUserInterface(interface);

interface->process_init();

// process all samples

int nbf;

do {

nbf = sf_readf_float(in_sf, sep.input(), kFrames);

sep.separate();

DSP.compute(nbf, sep.outputs(), ilv.inputs());

ilv.interleave();

sf_writef_float(out_sf, ilv.output(), nbf);

//sf_write_raw(out_sf, ilv.output(), nbf);

} while (nbf == kFrames);

// close the input and output files

sf_close(in_sf);

sf_close(out_sf);

}

Thus, after opening the input and output soundfiles, there is a loop over time frames
(sample times).30 For each frame, the interleaved input channels are read from disk by
sf readf float() and deinterleaved into a set of separate buffers by sep.separate(). The
input buffers are processed by DSP.compute to produce output buffers, one for each output
signal. The output buffers are then interleaved by ilv.interleave() and written to the
output soundfile on disk by sf writef float(). After all time frames have been processed,
the input and output soundfiles are closed.

9.2 Soundfile Input for Standalone Faust Applications

JACK standalone apps read and write JACK ports which are easily connected to other
JACK-compatible sound sources/sinks via qjackctl in Linux or Jack Pilot on a Mac (see
§8 and §6 for other examples of using JACK to connect audio streams).

Thus, to feed a soundfile to a standalone Faust app, run any program that can output a
soundfile on a JACK port (such as pd), and connect the programs JACK output ports to the
Faust app input ports using the connect/routing GUI interface of qjackctl or Jack Pilot.

The following convenience scripts are distributed with Faust:31

• faust2jack - make a JACK-GTK standalone app

30At each time sampling instant, the set of audio samples from all channels is called a frame.
31Additionally there are faust2jackinternal and faust2jackserver which are beyond the scope of this

tutorial.

42

• faust2jaqt - make a JACK-Qt standalone app
• faust2jackconsole - make a JACK console standalone app (no local GUI)

9.3 Soundfile Input for Faust Plugins

Each plugin host has its own soundfile input facilities. For example, in SuperCollider, one
often reads an entire soundfile into an instance of the Buffer class using the Buffer.read

method. Similarly, pd has a soundfiler object for reading a soundfile into a table in memory
(see, for example, the pd Help Browser at Pure Data / 2.audio.examples / B07.sampler.pd).
Finally, typical VST plugin hosts have extensive facilities for reading, writing, and manipu-
lating sound clips, plugin parameters, and so on.

10 Generating a MIDI Synthesizer for PD

The faust2puredata script has a -poly option for generating a MIDI synthesizer plugin

for pd. The synth has eight voices and manages voice allocation when played from MIDI.
For this to work, the Faust program should be written to synthesize one voice using the
following three standard synthesis parameters (which are driven from MIDI data in the pd

plugin):

• freq - frequency of the played note (Hz)
• gain - amplitude of the played note (0 to 1)
• gate - 1 while “key is down”, 0 after “key up”

The parameters freq and gain are set according to MIDI note-number and velocity, respec-
tively, while the gate parameter is set to 1 on a MIDI “note-on” and back to zero upon
“note-off”. The abstraction midi-in.pd receives and decodes MIDI data in pd.

Let’s make a simple 8-voiced MIDI synthesizer based on the example Faust program cpgrs.dsp

(“Constant-Peak-Gain Resonator Synth”) listed in Fig. 15 below.

• Copy the text in Fig. 15 and save it in your working directory in a file named cpgrs.dsp.

• Creating a pd synth is like creating a pd effect plugin, except that the -poly option is
used:

> faust2puredata -poly cpgrs.dsp

This creates the file cpgrs∼.pd darwin in your working directory.

• If you see the error “m pd.h file not found”, you may not have Pure Data installed.

In addition to converting the frequency and amplitude parameters to the standard names
freq and gain, we have added a classic ADSR envelope generator32 (defined in Faust’s
envelopes.lib file) which uses our new gate parameter, and which adds four new envelope

parameters attack, decay, sustain, and release.

32The Attack, Decay, Sustain, and Release (ADSR) envelope is said to have been invented by Robert
Moog in collaboration with composer Herbert Deutsch in the 1960s.

43

To see lower-level details of how the pd plugin is created, read the faust2puredata shell
script, typically installed in /usr/local/bin/ from faust/tools/faust2appls/faust2puredata.

11 MIDI Synthesizer Test Patch

The example synth is loaded into pd like any plugin-wrapper. A manually written test patch
(cpgrshelp.pd) is shown in Fig. 16. Note that the standard MIDI-synth control parameters
(freq, gain, gate) are handled behind the scenes and do not appear among the plugin
GUI controls.

To drive our MIDI synth, we need a source of MIDI data. Perhaps the simplest resource
for this purpose is the Virtual Keyboard (vkeybd), which is standard in Red Hat Fedora,
and in the planetccrma-menus at “Applications / Planet CCRMA / MIDI / Vkeybd”).
Figure 17 shows a screen shot of the Virtual Keyboard with its key-range and velocity
controllers displayed (menu item “View / Key/Velocity”). The velocity controller sets the
gain parameter, mapping MIDI velocity (0-127) to the unit interval (0-1). The key-range
controller transposes the keyboard by octaves. Pressing a key determines, together with the
key-range, the freq parameter in our synth. Pressing a key also sets the gate parameter to
1, and releasing it sets gate to 0. The ADSR envelope is triggered when gate transitions
to 1, and it begins its “release” phase when gate transitions to 0, as is standard for ADSR
envelopes triggered by a keyboard. Note that the bottom two rows of ASCII keyboard keys
are mapped to virtual-keyboard keys, enabling the playing of chords in real time on the
regular computer keyboard.

Figure 18 illustrates the MIDI tab of qjackctl’s Connect window after connecting the
Virtual Keyboard MIDI output to pd’s MIDI input.33

To play back a MIDI file (extension .mid), a nice way is to open it in Rosegarden (“Ap-
plications / Planet CCRMA / Sequencers / Rosegarden”) and connect Rosegarden’s MIDI
output to pd’s MIDI input as above. (You can still play along on the Virtual Keyboard.)

12 Using Faust with SuperCollider

This section describes and illustrates making SuperCollider (SC) plugins from Faust source
on Linux and Mac OS X. (Windows should also work.)

33Pd must have at least one MIDI-input port defined at startup for this to work. For example, a typical
~/.pdrc file might contain the following startup options for pd:
-jack -r 48000 -alsamidi -midiindev 1 -midioutdev 1 -audiooutdev 1 -outchannels 2 -path

/usr/lib/pd/...

44

import("stdfaust.lib"); // define en.adsr, ma.SR, ma.PI

declare name "Constant-Peak-Gain Resonator Synth";

declare author "Julius Smith";

declare version "1.0";

declare license "GPL";

/* Standard synth controls supported by faust2pd */

freq = nentry("freq", 440, 20, 20000, 1); // Hz

gain = nentry("gain", 0.1, 0, 1, 0.01); // frac

gate = button("gate"); // 0/1

/* User Controls */

bw = hslider("bandwidth (Hz)", 100, 20, 20000, 10);

/* ADSR envelope parameters */

attack = hslider("attack", 0.01,0, 1, 0.001); // sec

decay = hslider("decay", 0.3, 0, 1, 0.001); // sec

sustain = hslider("sustain",0.5, 0, 1, 0.01); // frac

release = hslider("release",0.2, 0, 1, 0.001); // sec

/* Synth */

process = no.noise * env * gain : filter

with {

env = gate :

vgroup("1-adsr",

en.adsr(attack, decay, sustain, release));

filter = vgroup("2-filter", (firpart : + ~ feedback));

R = exp(0 - ma.PI * bw / ma.SR); // pole radius

A = 2 * ma.PI * freq / ma.SR; // pole angle (radians)

RR = R*R;

firpart(x) = (x - x’’) * (1-RR)/2;

// time-domain coefficients ASSUMING ONE-SAMPLE FEEDBACK DELAY:

feedback(v) = 0 + 2*R*cos(A)*v - RR*v’;

};

Figure 15: Listing of cpgrs.dsp—a Faust program specifying a simple synth patch
consisting of white noise through a constant-peak-gain resonator.

45

print

bandwidth-Hz

bandwidth-Hz 200

bandwidth-Hz 300

loadbang

active 0

active 1

;

pd dsp 0

;

pd dsp 1

dac~

cpgrs

attack

0.01

decay

0.3

release

0.2

sustain

0.5

bandwidth-Hz

20

midi-in 8
0

Figure 16: Test patch for the pd synth plugin cpgrs.pd generated by faust2pd based
on cpgrs.dsp in Fig. 15.

Figure 17: The Virtual Keyboard (MIDI source).

46

Figure 18: JACK MIDI connections routing MIDI from the Virtual Keyboard (vkeybd)
to pd’s first MIDI input port.

12.1 Getting Started with SuperCollider

The reader is assumed to have worked through a first tutorial on SuperCollider (SC). In par-
ticular, the “Getting Started with SC” tutorial in the SuperCollider Documentation34 is a
good place to begin. The SC installation page is https://supercollider.github.io/download.
After a basic orientation via tutorials, the online documentation is excellent. It can be ef-
fective to work through various tutorial examples, placing the cursor (in Emacs, e.g.) on
a class name, and typing C-c C-h to jump to the class documentation (Cmd-D in the Mac
app), which in turn refers to other classes and online tutorials, and so on. (Note that sclang
must be running for this to work.) For more on using Faust with SuperCollider, see [8]. See
the “SuperCollider Book” [12] for introductions to and fuller presentation of many aspects
of SC. When you are ready for it, read through relevant SC source code (*.sc). Note that
“C-c :” in Emacs will go to the class definition file when the editing cursor is on the name
of the class. Also, “C-c ;” will look up references to methods marked by the cursor. Read-
ing .sc code will rapidly get you comfortable with SC as a general-purpose object-oriented
programming language.

12.2 Linux and Faust-Generated SuperCollider Plugins

The examples below were last fully tested on a Fedora 15 64-bit Linux system running Faust

version 0.9.43 (on 8/4/2011), and later updated based on email feedback in May of 2020. If
anything else needs updating, please let me know via email.

The shell script faust2supercollider can be used to create a SuperCollider (SC) plugin
from a Faust source file:

> faust2supercollider mysynth.dsp

The resulting class file mysynth.sc (the sclang “extension”) and shared-object file mysynth.so
(the scsynth or supernova “plugin”) can be copied from the current working directory to

34http://doc.sccode.org

47

http://doc.sccode.org/Tutorials/Getting-Started/00-Getting-Started-With-SC.html
https://supercollider.github.io/download
http://doc.sccode.org

your SC extensions directory, typically as follows on Linux systems:

> mkdir -p ~/share/SuperCollider/Extensions/Faust/

> cp mysynth.s[co] ~/share/SuperCollider/Extensions/Faust/.

Below we speak of using scsynth as the SuperCollider sound-synthesis server, but supernova,
the more recent multithreaded generalization of scsynth, should also work in its place.

To try out the Faust example osc.dsp, for example, first copy the generated files into your
SC extensions directory:

cp <faust>/examples/supercolliderdir/osc.s[co] ~/share/SuperCollider/Extensions/Faust

Next, restart sclang and scsynth,35 and execute the following code in sclang:

y = {

var out;

out = {FaustOsc.ar(freq:100.0,volume:-40.0)}.dup;

}.play(s)

You should hear a soft sinusoid at frequency 100 Hz. (Execute “y.free;” when you are
tired of listening to it, which will likely be quite soon.)

The FaustOsc class in the file osc.sc created by the make is as follows:

FaustOsc : UGen

{

*ar { | freq(1000.0), volume(0.0) |

^this.multiNew(’audio’, freq, volume)

}

*kr { | freq(1000.0), volume(0.0) |

^this.multiNew(’control’, freq, volume)

}

name { ^"osc" }

}

We see for example that the default frequency and volume are 1 kHz and 0 dB, respectively.
Adapting a cool example from the SuperCollider Book, we can control the amplitude and
frequency of the oscillator with the mouse as follows:

z = {

var out;

out = (FaustOsc.ar(

MouseX.kr(400,3000,\exponential), // freq (Hz)

MouseY.kr(-90,10,\linear) // amp (dB)

) * MouseButton.kr).dup; // gate = LEFT mouse button

35After restarting sclang, the class name FaustOsc will be defined. In emacs, this is indicated by typeset-
ting it in the special color for known class names. When scsynth is started, you can obtain a printout of the
line “Faust: osc numControls=2” in the post buffer when the module is loaded, if you remove -DNDEBUG
from the compiler flags in either faust2supercollider or Makefile.sccompile.

48

}.play(s);

z.free;

12.3 Mac OS X and Faust-Generated SuperCollider Plugins

On the Mac, SuperCollider (SC) extensions go in the directory

~/Library/Application Support/SuperCollider/Extensions

instead of ∼/share/SuperCollider/Extensions as on Linux. Again it is nice to organize
all Faust-generated plugins in a Faust subdirectory of Extensions.

For a nice collection of example SC plugins, see https://github.com/supercollider/example-plugins

Since pre-built versions of SC for the Mac do not seem to include the headers for compiling
plugins, you probably need also to download the SC source and set the SUPERCOLLIDER HEADERS

environment variable to point into it. For example, at the time of this writing, the latest
stable SC source is v3.4.4, so I have

setenv SUPERCOLLIDER_HEADERS $HOME/sc-3.4.4/common/Headers

in my .tcshrc file. For Bourne shell (bash) users, add the lines

SUPERCOLLIDER_HEADERS=$HOME/sc-3.4.4/common/Headers

export SUPERCOLLIDER_HEADERS

in ∼/.bashrc, etc.

To create a 32-bit plugin instead of the default 64-bit case, copy the faust2supercollider
script and add “-m32” at the end of the SCFLAGS variable to get

SCFLAGS="-DNO_LIBSNDFILE -DSC_DARWIN -bundle -m32"

One difference on the Mac relative to Linux is that the mouse-controlled example of the
previous section has its vertical axis flipped. That is, on the Mac, the volume gets louder as
the mouse goes down on the screen.

If either of the above FaustOsc examples does not work on either Linux or the Mac, try
checking out the latest git Faust distribution, as described in §1.1. This document is
updated to stay in sync with that (latest) version, as opposed to any particular prior Faust
release.

For some SuperCollider doc on making FaustUGens, see https://doc.sccode.org/Guides/WritingUGens.html#FAUST

13 Using Faust with Open Sound Control (OSC)

Faust contains some very nice Open Sound Control (OSC) support facilities [2, 9]. OSC,
which can be viewed as a generalized replacement for MIDI, is often used for messaging
between music applications, even across networks. It is used, for example, as the com-
munication protocol between the SuperCollider client (sclang) and server (scsynth). It

49

https://github.com/supercollider/example-plugins
https://doc.sccode.org/Guides/WritingUGens.html#FAUST

is also the protocol of choice for messages from external controllers, such as iOS/Android
applications running on tablets.

OSC uses the User Datagram Protocol (UDP) to send and receive messages. UDP is like
TCP/IP (the more typical internet message protocol) except that message delivery is not
guaranteed. In other words, if some process gets behind and a message is dropped, nobody
worries about it. Faust OSC support makes use of three UDP ports for input, output, and
errors. By default these are the UDP ports numbered 5510, 5511, and 5512, respectively;
when necessary, Faust will try higher numbers until a free UDP port is found.

To send an OSC message to some process on some host on the Internet, one needs to
know the host’s IP address, the UDP port used by the process for receiving, and a “name
path” (much like a UNIX file path) to the control being affected. The path starts with
the application name and includes all group names down to the control name itself. For
example, in the zita rev1.dsp example below, the path to the “dry-wet mix” slider is
/Zita Rev1/Output/Dry Wet Mix, where Zita Rev1 is the name of the application, Output
is a control group defined in the Faust source, and Dry Wet Mix is the name of the control
slider itself within the Output group.

We will use three shells for the examples below, each in its own Terminal window. In Window
1, we will run a Faust standalone JACK application that will receive OSC messages on UDP
port 5510 and respond on port 5511. In Window 2, we will run oscdump (distributed with
the liblo package) to print out OSC message activity on port 5511. In Window 3, we will
run oscsend (also from liblo) to send OSC messages to port 5510, where the Faust JACK
app is listening. Any responses from the app will appear in Window 2.

Since we are using a standalone JACK application for these examples, remember to start the
JACK daemon jackd (via qjackctl on Linux or JackPilot on the Mac). If you forget, jackd
will be autolaunched with default setup parameters from your ∼/.jackdrc configuration file.

Below, comments and program printout are on lines beginning with ‘#’.

In Terminal Window 1 (application window):

> cd <faust>/examples/generator/

> faust2jack -osc noise.dsp

Drill down on /usr/local/bin/faust2jack and its output to see all the code "under the hood".

> ./noise

After perhaps some delay (especially if JACK is autolaunched), you should see

...

Faust OSC version 0.91 application ’noise’ is running on UDP ports 5510, 5511, 5512

...

The UDP port numbers are for input, output, and error messages, respectively.

In Terminal Window 2 (OSC dump window):

> oscdump 5511

50

watch this space for OSC message replies from the Faust JACK app

In Terminal Window 3 (OSC send window):

> oscsend localhost 5510 /* s "hello"

Window 2 receives the following, after some seconds of delay:

/noise siii "0.0.0.0" 5510 5511 5512

Notice the use of ’s’ to indicate that a string follows. Note that * is passed to oscsend

as *. We are just quoting it to avoid shell filename expansion here. On Red Hat Fedora
17 Linux (liblo v0.26), say 0 in place of localhost above. On a remote machine, use the
server-machine’s IP address in place of localhost.

> oscsend localhost 5510 /* s "get"

Window 2 receives the following (immediately):

/noise/Volume fff 0.000000 0.000000 1.000000

This printout says there is one parameter whose OSC address path is ’/noise/Volume’ (case
matters) and its current value is 0, minimum value is 0, and maximum value is 1. Let’s set
it to 0.1:

> oscsend localhost 5510 /noise/Volume f 0.1

Nothing is echoed, so let’s ask for the current value:

> oscsend localhost 5510 /noise/Volume s "get"

/noise/Volume fff 0.100000 0.000000 1.000000

^C # Stop the noise app so that the next example can use port 5510.

It worked! Notice the use of ’f’ to indicate that a floating-point value follows. If we didn’t
type control-C (^C) to end the program, the next example would listen for OSC messages
on UDP port 5513. This is fine, and both programs would work in parallel (both being
connected to system output in JACK), but we will keep to one example at a time here.

Now let’s make OSC JACK apps out of some more Faust examples and exercise them:

In Window 1:

> cd <faust>/examples/dynamic/

> # Mac:

> faust2jaqt -osc distortion.dsp

> open ./distortion.app

> # Linux:

> faust2jack -osc distortion.dsp

> ./distortion

If Window 2 is still set up running oscdump as above, we see

Faust s " OSC version 1.22 - ’CUBIC_NONLINEARITY_cubicnl’ is running on UDP ports 5513, 5511,

In Window 3:

51

> oscsend localhost 5510 /* s "hello"

/distortion siii "0.0.0.0" 5510 5511 5512

> oscsend localhost 5510 /* s "get"

/distortion//SINE_WAVE_OSCILLATOR_oscrs//Amplitude fff -38.299999 -120.000000 10.000000

/distortion//SINE_WAVE_OSCILLATOR_oscrs//Frequency fff 37.599998 1.000000 88.000000

/distortion//SINE_WAVE_OSCILLATOR_oscrs//Portamento fff 0.846000 0.000000 1.000000

/distortion//CUBIC_NONLINEARITY_cubicnl//Bypass fff 0.000000 0.000000 1.000000

/distortion//CUBIC_NONLINEARITY_cubicnl//Drive fff 0.630000 0.000000 1.000000

/distortion//CUBIC_NONLINEARITY_cubicnl//Offset fff 0.000000 0.000000 1.000000

/distortion//SPECTRUM_ANALYZER_CONTROLS/Level_Averaging_Time fff 0.510000 0.000000 1.000000

/distortion//SPECTRUM_ANALYZER_CONTROLS/Level_dB_Offset fff 18.000000 0.000000 100.000000

> oscsend localhost 5510 /distortion//CUBIC_NONLINEARITY_cubicnl//Drive f 0.9

> oscsend localhost 5510 /distortion//CUBIC_NONLINEARITY_cubicnl//Drive s "get"

/distortion//CUBIC_NONLINEARITY_cubicnl//Drive fff 0.900000 0.000000 1.000000

and so on. Notice how the GUI grouping gets into the control name path. The appearance
of // in the path indicates an unnamed group, which causes no problem. An attempt to set
a parameter out of range (less than 0 or greater than 1 in this case) results in the parameter
being clipped to the limit.

Here’s another example (you now know which window is being listed):

^C

> cd <faust>/examples/reverb/

> # Mac:

> faust2jaqt -osc zitaRev.dsp

> open ./zitaRev.app

> # Linux:

> faust2jack -osc zitaRev.dsp

> ./zitaRev

Faust OSC version ssssiii "0.91" "-" "’Zita_Rev1’" "is running on UDP ports " 5510 5511

> oscsend localhost 5510 /* s "get"

/Zita_Rev1/Input/In_Delay fff 24.400000 20.000000 100.000000

/Zita_Rev1/Decay_Times_in_Bands_(see_tooltips)/LF_X fff 1000.000000 50.000000 1000.000000

/Zita_Rev1/Decay_Times_in_Bands_(see_tooltips)/Low_RT60 fff 1.875000 1.000000 8.000000

/Zita_Rev1/Decay_Times_in_Bands_(see_tooltips)/Mid_RT60 fff 1.455000 1.000000 8.000000

/Zita_Rev1/Decay_Times_in_Bands_(see_tooltips)/HF_Damping fff 10418.099609 1500.000000

/Zita_Rev1/RM_Peaking_Equalizer_1/Eq1_Freq fff 1108.900024 40.000000 2500.000000

/Zita_Rev1/RM_Peaking_Equalizer_1/Eq1_Level fff 11.000000 -15.000000 15.000000

/Zita_Rev1/RM_Peaking_Equalizer_2/Eq2_Freq fff 2474.000000 40.000000 2500.000000

/Zita_Rev1/RM_Peaking_Equalizer_2/Eq2_Level fff -0.200000 -15.000000 15.000000

/Zita_Rev1/Output/Dry_Wet_Mix fff 1.000000 -1.000000 1.000000

/Zita_Rev1/Output/Level fff 14.150000 -70.000000 40.000000

52

Other examples are similar.

Finally, let’s make an OSC JACK app out of the Faust-STK piano and try it out:

> cd <faust>/examples/physicalModeling/faust-stk/

> # Mac:

> faust2jaqt -osc piano.dsp

> open ./piano.app

> # Linux:

> faust2jack -osc piano.dsp

> ./piano

Faust OSC version ssssiii "0.91" "-" "’piano’" "is running on UDP ports " 5510 5511 5512

> oscsend localhost 5510 /* s "get"

/piano/Basic_Parameters/freq fff 440.000000 20.000000 20000.000000

/piano/Basic_Parameters/gain fff 1.000000 0.000000 1.000000

/piano/Basic_Parameters/gate fff 0.000000 0.000000 1.000000

/piano/Physical_Parameters/Brightness_Factor fff 0.000000 0.000000 1.000000

/piano/Physical_Parameters/Detuning_Factor fff 0.100000 0.000000 1.000000

/piano/Physical_Parameters/Hammer_Hardness fff 0.100000 0.000000 1.000000

/piano/Physical_Parameters/Stiffness_Factor fff 0.280000 0.000000 1.000000

/piano/Reverb/reverbGain fff 0.137000 0.000000 1.000000

/piano/Reverb/roomSize fff 0.720000 0.010000 2.000000

/piano/Spat/pan_angle fff 0.600000 0.000000 1.000000

/piano/Spat/spatial_width fff 0.500000 0.000000 1.000000

As with all synth examples, a note is played on the piano patch by setting parameters as
desired (such as freq) and then setting the gate parameter to 1 to start the note. Setting
gate back to 0 starts the decay phase of the note. In patches with ADSR or ASR envelopes,
gate transitioning to 1 starts the Attack phase, while a transition to 0 starts the Release
phase, as is typical in synthesizers driven by a keyboard. The bowed instrument is an example
using an ADSR envelope:

^C

> # (Make bowed like piano above)

> ./bowed

Faust OSC version 0.91 application ’bowed’ is running on UDP ports 5510, 5511, 5512

> oscsend localhost 5510 /* s "get"

/bowed/Basic_Parameters/freq fff 440.000000 20.000000 20000.000000

/bowed/Basic_Parameters/gain fff 1.000000 0.000000 1.000000

/bowed/Basic_Parameters/gate fff 0.000000 0.000000 1.000000

/bowed/Envelopes_and_Vibrato/Envelope_Parameters/Envelope_Attack fff 0.010000 0.000000

/bowed/Envelopes_and_Vibrato/Envelope_Parameters/Envelope_Decay fff 0.050000 0.000000 2.000000

/bowed/Envelopes_and_Vibrato/Envelope_Parameters/Envelope_Release fff 0.100000 0.000000

/bowed/Envelopes_and_Vibrato/Vibrato_Parameters/Vibrato_Attack fff 0.500000 0.000000 2.000000

/bowed/Envelopes_and_Vibrato/Vibrato_Parameters/Vibrato_Begin fff 0.050000 0.000000 2.000000

/bowed/Envelopes_and_Vibrato/Vibrato_Parameters/Vibrato_Freq fff 6.000000 1.000000 15.000000

53

/bowed/Envelopes_and_Vibrato/Vibrato_Parameters/Vibrato_Gain fff 0.010000 0.000000 1.000000

/bowed/Envelopes_and_Vibrato/Vibrato_Parameters/Vibrato_Release fff 0.010000 0.000000 2.000000

/bowed/Physical_and_Nonlinearity/Nonlinear_Filter_Parameters/Modulation_Frequency fff 220.000000

/bowed/Physical_and_Nonlinearity/Nonlinear_Filter_Parameters/Modulation_Type fff 0.000000

/bowed/Physical_and_Nonlinearity/Nonlinear_Filter_Parameters/Nonlinearity fff 0.000000

/bowed/Physical_and_Nonlinearity/Nonlinear_Filter_Parameters/Nonlinearity_Attack fff 0.100000

/bowed/Physical_and_Nonlinearity/Physical_Parameters/Bow_Position fff 0.700000 0.010000

/bowed/Physical_and_Nonlinearity/Physical_Parameters/Bow_Pressure fff 0.750000 0.000000

/bowed/Reverb/reverbGain fff 0.137000 0.000000 1.000000

/bowed/Reverb/roomSize fff 0.720000 0.010000 2.000000

/bowed/Spat/pan_angle fff 0.600000 0.000000 1.000000

/bowed/Spat/spatial_width fff 0.500000 0.000000 1.000000

There are many more examples and Faust-STK examples to look into. This is just a start.

OSC Aliases

See the Faust OSC documentation (Section 6.8) in the Faust Quick Reference,36 for more
advanced techniques such as the use of OSC aliases which allow arbitrary OSC messages37

to be mapped to controller parameters (for use with remote controllers such as TouchOSC
on Android that can only transmit predefined messages).

The Faust OSC documentation provides additional information.

14 Conclusions

In summary, writing signal processing applications in the Faust language is rewarding in
several respects. First, the language is high-level, yet it compiles to efficient C++ code. The
development cycle is very short, typically involving only (1) syntax debugging, (2) block-
diagram inspection, and (3) trying out the app/plugin. When precise verification is required,
the output signals can be printed or loaded into Matlab/Octave for detailed analysis. Finally,
writing in Faust makes it very easy to generate applications and plugins for a wide range
of hosting environments.

36https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf
37Example: vslider("Volume[osc:/1/fader1]", 0, 0, 1, 0.1) will map the OSC path /1/fader1 to

this Volume slider.

54

https://faust.grame.fr/
https://github.com/grame-cncm/faust/blob/master-dev/documentation/faust-quick-reference.pdf

A Appendix A: State-Space Models to Faust

A digital state-space model is normally written mathematically as

y(n) = Cx(n) +Du(n)

x(n+ 1) = Ax(n) +Bu(n)

where

• x(n) ∈ R
N = state vector at time n

• u(n) = p× 1 vector of inputs

• y(n) = q × 1 output vector

• A = N ×N state transition matrix

• B = N × p input coefficient matrix

• C = q ×N output coefficient matrix

• D = q × p direct path coefficient matrix

The matrices B, C and D make up the feedforward part, while A is the feedback part.

Note that all four matrices may change each sample instant n to implement a general time-

varying linear system.

A Faust example for the general linear state-space model is shown in Fig. 19. The Faust-
generated block diagram is shown in Fig. 20.

Since a state-space model can implement any Nth-order linear system with p inputs and
q outputs, all we have to do is come up with the (A,B,C,D) matrix entries and use the
general state-space formulation in Faust given in Fig. 19.

Here are the steps for finding the state-space matrices:

1. Label each delay element as a state variable xi. Delay lines can be treated as one
“generalized delay” (Feedback Delay Networks are often written this way). In terms
of the mathematical description above, the ith delay input is x

i
(n+1), and the output

is x
i
(n).

2. By tracing connections in the block diagram, write x
i
(n + 1) as a linear combination

of either inputs u(n) or states x(n) for each i = 1, 2, . . . , N . Place these coefficients
where they go in the ith row of B (for inputs) and A (for states), and enter zeros for
inputs and states not needed to create x

i
(n+ 1).

3. Now do the same for each output y
i
(n), i = 1, . . . , q, which is similarly a linear com-

bination of inputs and/or states. Use these coefficients to populate the ith row of D
(for inputs) and C (for states).

4. Now you’ve filled your (A,B,C,D) matrices, so they can be plugged into Faust code
based on Fig. 19.

55

A simple example for trying out and checking this process can be found by starting at step
3 of “Converting to State-Space Form by Hand” [11].38 The details appear below in §A.1.
Also be aware of the matlab function tf2ss for converting a transfer function to state-space
form.

// General Linear State-Space Model Example

import("stdfaust.lib");

p = 2; // number of inputs

q = 3; // number of outputs

N = 5; // number of states

A = matrix(N,N); // state transition matrix

B = matrix(N,p); // input-to-states matrix

C = matrix(q,N); // states-to-output matrix

D = matrix(q,p); // direct-term matrix, bypassing state

matrix(M,N) = tgroup("Matrix: %M x %N", par(in, N, _)

<: par(out, M, mixer(N, out))) with {

fader(in) = ba.db2linear(vslider("Input %in", -10, -96, 4, 0.1));

mixer(N,out) = hgroup("Output %out", par(in, N, *(fader(in))) :> _);

};

Bd = par(i,p,mem) : B; // input delay needed for conventional definition

vsum(N) = si.bus(2*N) :> si.bus(N); // vector sum of two N-vectors

impulse = 1-1’; // For zero initial state, set impulse = 0 or simplify code

x0 = par(i,N,i*impulse); // initial state = (0,1,2,3,...,N-1)

system = si.bus(p) <: D, (Bd : vsum(N)~(A), x0 : vsum(N) : C) :> si.bus(q);

process = system;

Figure 19: Faust example illustrating a general state-space model having 2 inputs,
3 outputs, and 5 state variables.

A.1 State-Space BiQuad in Faust

The block diagram of a general BiQuad filter section realized in Direct Form II is shown in
Fig. 21 [10].39

38https://ccrma.stanford.edu/~jos/StateSpace/Converting State Space Form Hand.html
39https://ccrma.stanford.edu/~jos/filters/Direct Form II.html

56

https://ccrma.stanford.edu/~jos/StateSpace/Converting_State_Space_Form_Hand.html
https://ccrma.stanford.edu/~jos/filters/Direct_Form_II.html

D

Bd

A

x0

C

process

Figure 20: State-space model in Faust having 2 inputs, 3 outputs, and 5 state variables.

u(n)

−a2

y(n)

x1(n)

x2(n)

b1

b2

x1(n+ 1) b0

−a1

z−1

z−1

Figure 21: Direct-Form-II implementation of a 2nd-order filter section, with state vari-
ables labeled as the delay outputs x1(n) and x2(n).

57

From this diagram, we find the state-space matrices to be

A =

[

−a1 −a2

1 0

]

B =

[

1

0

]

C =
[

b1 − b0a1 b2 − b0a2
]

D = [b0]

The Faust code for the state-space realization of a specific resonator is shown in Fig. 22.

58

// State-Space BiQuad Example

import("stdfaust.lib");

process = tpss; // state-space form

//process = tpdirect; // direct form

//Test to compare outputs of the two:

//process = 1-1’ <: tpdirect, tpss * (-1) :> _; // ~0

// Make direct-form coefficients for a simple resonator:

R = 0.9; // pole radius

fc = ma.SR/10.0; // pole angle frequency in Hz

wcT = 2.0 * ma.PI * fc / ma.SR;

a1 = -2*R*cos(wcT); a2 = R*R;

b0 = 1.0; b1 = 0.0; b2 = -1.0; // zeros at dc and SR/2

tpdirect = fi.tf2(b0,b1,b2,a1,a2); // filters.lib implementation

// State Space Model for Direct Form II:

p = 1; // number of inputs

q = 1; // number of outputs

N = 2; // number of states

a(1,1) = -a1; a(1,2) = -a2;

a(2,1) = 1; a(2,2) = 0;

b(1,1) = 1;

b(2,1) = 0;

c(1,1) = b1-b0*a1; c(1,2) = b2-b0*a2;

d(1,1)= b0;

// We presently also need these catch-all rules (which are not used):

a(m,n) = 10*m+n; b(m,n) = a(m,n);

c(m,n) = a(m,n); d(m,n) = a(m,n);

matrix(M,N,f) = si.bus(N) <: ro.interleave(N,M)

: par(n,N, par(m,M,*(f(m+1,n+1)))) :> si.bus(M);

A = matrix(N,N,a); B = matrix(N,p,b);

C = matrix(q,N,c); D = matrix(q,p,d);

Bd = par(i,p,mem) : B; // input delay needed for conventional definition

vsum(N) = si.bus(2*N) :> si.bus(N); // vector sum of two N-vectors

tpss = si.bus(p) <: D, (Bd : vsum(N)~(A) : C) :> si.bus(q);

Figure 22: Faust state-space BiQuad filter, comparing to direct form.

59

B Appendix B: Inspecting Assembly to Fine-Tune Per-

formance

On the Faust mailing list, Dario Sanfilippo suggested that we change the default one-pole
smoother fi.smoo in filters.lib from the form (1 − b) ∗ x(n) + b ∗ y(n − 1) to instead
x(n)+ b ∗ [y(n− 1)− x(n)], recognizing that multiplications are more expensive in hardware
than additions. This appendix was written from my email reply to the list:

This is a winner. I am strongly in favor of the change. One multiply and two additions is
fundamentally less work than two multiplies and one addition. However, when two multiplies
are available in parallel, then (1-b) * x + b * y can be faster than x + b * (y-x) because
it takes two steps instead of three. Thus, a parallel-processing implementation might prefer
the first form.

Ideally both forms would compile to the same assembly, but this is not yet the case. Neither
the Faust compiler nor the C++ compiler appear to work to minimize multiplies relative
to additions when the target architecture warrants that.

Of course we should run benchmarks to measure the actual improvement on each archi-
tecture,40 but looking at assembly can also give the answer. I recently learned about the
Compiler Explorer at godbolt.org, for comparing assemblies on various processors, and this
was my first use of it:

First, the Faust source, adapted from mailing-list thread, is shown in Fig. 23.

import("stdfaust.lib");

smooth(coeff, x) = fb ~ _ with { fb(y) = y + (1.0 - coeff) * (x - y); };

c = 1.0 - 44.1 / ma.SR

smooth3(s, x) = fb ~ _ with { fb(y) = s * (y - x) + x; };

process = _ <: si.smooth(c), smooth(c), smooth3(c);

Figure 23: Faust program specifying three different one-pole smoothers in parallel.

Next, I compiled the Faust source at the command line with no options, and copy/pasted
the compute() function to create the stand-alone code snippet shown in Fig. 24. (Note that
it’s no longer a virtual function.)

This code can be pasted into the left panel of the Compiler Explorer at godbolt.org. Next
choose your processor architecture and compiler on the right panel, and your C++ com-
piler options. Here I chose the first Intel case (more readable than ARM): x86-64 clang

(assertions trunk), with compiler options -std=c++17 -O3. The term “trunk” refers to
the latest version of the compiler source, but you can also try earlier versions of the compiler
listed next. WebAssembly, alternative compilers, and many embedded processors appear as
choices. My choice is ideal for my iMac Pro where I do most of my work, but I need to

40Faust benchmarking tools are documented at https://github.com/grame-cncm/faust/tree/master-dev/tools/benchmark

60

https://github.com/grame-cncm/faust/tree/master-dev/tools/benchmark

#define FAUSTFLOAT float

int fSampleRate = 44100;

float fConst0 = 0.1; // linear-interpolation constant

float fConst1 = 0.9; // 1-fConst0

float fRec0[2];

float fRec1[2];

float fRec2[2];

void compute(int count, FAUSTFLOAT** inputs, FAUSTFLOAT** outputs) {

FAUSTFLOAT* input0 = inputs[0];

FAUSTFLOAT* output0 = outputs[0];

FAUSTFLOAT* output1 = outputs[1];

FAUSTFLOAT* output2 = outputs[2];

for (int i0 = 0; (i0 < count); i0 = (i0 + 1)) {

float fTemp0 = float(input0[i0]);

fRec0[0] = ((fConst1 * fRec0[1]) + (fConst0 * fTemp0));

output0[i0] = FAUSTFLOAT(fRec0[0]);

fRec1[0] = (fRec1[1] + (fConst0 * (fTemp0 - fRec1[1])));

output1[i0] = FAUSTFLOAT(fRec1[0]);

fRec2[0] = (fTemp0 + (fConst1 * (fRec2[1] - fTemp0)));

output2[i0] = FAUSTFLOAT(fRec2[0]);

fRec0[1] = fRec0[0];

fRec1[1] = fRec1[0];

fRec2[1] = fRec2[0];

}

}

Figure 24: C++ program adapted from the output of simplest Faust compilation
at the command line.

61

check ARM also for my iOS work. The Compiler Explorer is a great tool for fine-tuning
performance at the lowest level.

Figure 25 shows the assembly output with added comments indicating where I guessed
things came from. You can see that the specified computation structure is preserved all the
way down to the bottom, even with -O3 optimization. The clear winner is smooth3, and
benchmarks should verify that. It has only one multiply and two additions, and only six
instructions (lines of assembly code) total.

Stéphane Letz commented in the discussion thread that in his tests using faustbench-llvm

on an Apple M1, process = par(i, 10, si.smoo); was faster, while the following ran a
bit slower:

voice(i) = os.osc(400+i*300) : si.smoo;

process = par(i, 10, voice(i));

This is not yet understood.

62

compute(int, float**, float**): # @compute(int, float**, float**)

...

.LBB0_2: # %for.body

output0[i0] = ((fConst1 * fRec0[1]) + (fConst0 * input0[i0])), 7 lines:

movss xmm1, dword ptr [r8 + 4*rax] # xmm1 = mem[0],zero,zero,zero

mulss xmm0, dword ptr [rip + fConst1]

movss xmm2, dword ptr [rip + fConst0] # xmm2 = mem[0],zero,zero,zero

mulss xmm2, xmm1

addss xmm2, xmm0

movss dword ptr [rip + fRec0], xmm2

movss dword ptr [rcx + 4*rax], xmm2

output1[i0] = (fRec1[1] + (fConst0 * (input0[i0] - fRec1[1]))), 7 lines:

movss xmm0, dword ptr [rip + fRec1+4] # xmm0 = mem[0],zero,zero,zero

movaps xmm2, xmm1

subss xmm2, xmm0

mulss xmm2, dword ptr [rip + fConst0]

addss xmm2, xmm0

movss dword ptr [rip + fRec1], xmm2

movss dword ptr [rsi + 4*rax], xmm2

output2[i0] = (input0[i0] + (fConst1 * (fRec2[1] - input0[i0]))), 6 lines:

movss xmm0, dword ptr [rip + fRec2+4] # xmm0 = mem[0],zero,zero,zero

subss xmm0, xmm1

mulss xmm0, dword ptr [rip + fConst1]

addss xmm0, xmm1

movss dword ptr [rip + fRec2], xmm0

movss dword ptr [rdx + 4*rax], xmm0

fRec0[1] = fRec0[0];

movss xmm0, dword ptr [rip + fRec0] # xmm0 = mem[0],zero,zero,zero

movss dword ptr [rip + fRec0+4], xmm0

fRec1[1] = fRec1[0];

movss xmm1, dword ptr [rip + fRec1] # xmm1 = mem[0],zero,zero,zero

movss dword ptr [rip + fRec1+4], xmm1

fRec2[1] = fRec2[0];

movss xmm1, dword ptr [rip + fRec2] # xmm1 = mem[0],zero,zero,zero

movss dword ptr [rip + fRec2+4], xmm1

i0 = i0 + 1

add rax, 1

cmp rdi, rax

jne .LBB0_2

#------------------------ end of loop ---------------------------

...

Figure 25: Intel x86-64 assembly language, generated using the first (latest) Intel
option of the Compiler Explorer at godbolt.org (compiler options -std=c++17

-O3).

63

References

[1] E. Berdahl and J. O. Smith, “An introduction to the synth-a-modeler compiler: Modular and
open-source sound synthesis using physical models,” in Proceedings of the 10th International
Linux Audio Conference (LAC-12), CCRMA, Stanford, http://lac.linuxaudio.org/,
2012, paper: http://lac.linuxaudio.org/2012/papers/34.pdf, software:
http://github.com/eberdahl/SaM.git.

[2] D. Fober, Y. Orlarey, and S. Letz, “Faust architectures design and OSC support,” in
Proceedings of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris,
France, September 19–23, 2011.

[3] E. Gaudrain and Y. Orlarey, “A Faust tutorial,” Sept. 2007, See https://www.grame.fr.

[4] A. Gräf, “Interfacing Pure Data with Faust,” in Proceedings of the 5th International Linux
Audio Conference (LAC-07), TU Berlin,
http://www.kgw.tu-berlin.de/~lac2007/proceedings.shtml, 2007.

[5] A. Gräf, “Term rewriting extension for the Faust programming language,” in Proceedings of
the 8th International Linux Audio Conference (LAC-10), Utrecht,
http://lac.linuxaudio.org/, 2010, http://lac.linuxaudio.org/2010/papers/30.pdf.

[6] P. Hudak, “Conception, evolution, and application of functional programming languages,”
ACM Computing Surveys, vol. 21, pp. 359–411, Sept. 1989, Available without fee for
noncommercial use:
https://ccrma.stanford.edu/~jos/pdf/FunctionalProgramming-p359-hudak.pdf.

[7] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and semantical aspects of Faust,” Soft
Computing, vol. 8, no. 9, pp. 623–632, 2004.

[8] Y. Orlarey, A. Gräf, and S. Kersten, “DSP programming with Faust, Q and SuperCollider,”
in Proceedings of the 4th International Linux Audio Conference (LAC2006), ZKM Karlsruhe,
http://lac.zkm.de/2006/proceedings.shtml, pp. 39–40, 2006,
http://lac.zkm.de/2006/proceedings.shtml#orlarey et al.

[9] A. Schmeder, A. Freed, and D. Wessel, “Best practices for open sound control,” in Linux
Audio Conference, (Utrecht, NL), 01/05/2010 2010.

[10] J. O. Smith, Introduction to Digital Filters with Audio Applications,
https://ccrma.stanford.edu/~jos/filters/, Sept. 2007, online book.

[11] J. O. Smith, Physical Audio Signal Processing, https://ccrma.stanford.edu/~jos/pasp/,
Dec. 2010, online book.

[12] S. Wilson, N. Collins, and D. Cottle, eds., The SuperCollider Book, Cambridge, MA: MIT
Press, 2011.

64

http://lac.linuxaudio.org/
http://lac.linuxaudio.org/2012/papers/34.pdf
https://github.com/eberdahl/SaM.git
https://www.grame.fr
http://www.kgw.tu-berlin.de/~{}lac2007/proceedings.shtml
http://lac.linuxaudio.org/
http://lac.linuxaudio.org/2010/papers/30.pdf
https://ccrma.stanford.edu/~jos/pdf/FunctionalProgramming-p359-hudak.pdf
http://lac.zkm.de/2006/proceedings.shtml
http://lac.zkm.de/2006/proceedings.shtml#orlarey_et_al
https://ccrma.stanford.edu/~jos/filters/
https://ccrma.stanford.edu/~jos/pasp/

	Introduction
	Installing Faust
	Faust Examples

	Primer on the Faust Language
	Basic Signal Processing Blocks (Elementary Operators on Signals)
	Block Diagram Operators
	Examples
	Infix Notation Rewriting
	Encoding Block Diagrams in the Faust Language
	Statements
	Function Definition
	Partial Function Application
	Functional Notation for Operators
	Examples
	Summary of Faust Notation Styles
	Unary Minus
	Fixing the Number of Input and Output Signals
	Naming Input Signals
	Naming Output Signals
	Signal Types
	Signal Comparison Operators
	Bitwise Operations for Integer Signals
	Foreign Constants and Variables
	Foreign Functions
	Example 1
	Example 2
	Functions from math.h

	Parallel and Sequence Iterations
	Sum and Product Macros
	Pattern Matching in Faust
	Formal Parameter Exception
	Formal Parameter SubstitutionThanks to Yann Orlarey for assisting with this section.
	Recursive Block Diagram Specification
	Understanding count and take from basics.lib
	Pattern Matching Implementation
	Using Pattern Matching in Rewriting Rules
	Using Lisp Syntax to Express Trees
	Pattern-Matching Example
	Pattern-Matching Algorithm Description
	Miscellaneous Pattern-Matching Examples

	Scope Rules
	White Noise Generator
	Further Readings on the Faust Language
	Acknowledgment

	A Simple Example Faust Program
	Verifying and Testing Faust Programs
	Generating Faust Block Diagrams
	A Look at the Generated C++ code
	Printing/Plotting the Output Signal(s)
	Inspecting the Output Signal(s) in Matlab or Octave
	Summary of Faust Program Testing Strategies

	Adding a GUI
	Generating Stand-Alone Qt or GTK Applications
	Generating Other Applications and Plugins
	Generating a LADSPA Plugin via Faust
	Feeding Soundfiles to Faust Standalone Apps
	Offline Processing of Soundfiles in Faust
	Soundfile Input for Standalone Faust Applications
	Soundfile Input for Faust Plugins

	Generating a MIDI Synthesizer for PD
	MIDI Synthesizer Test Patch
	Using Faust with SuperCollider
	Getting Started with SuperCollider
	Linux and Faust-Generated SuperCollider Plugins
	Mac OS X and Faust-Generated SuperCollider Plugins

	Using Faust with Open Sound Control (OSC)
	Conclusions
	Appendix A: State-Space Models to Faust
	State-Space BiQuad in Faust

	Appendix B: Inspecting Assembly to Fine-Tune Performance

