
Methods for Synthesizing Very High Q Parametrically Well

Behaved Two Pole Filters

Max Mathews
Julius O. Smith III

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University

Stanford, California 94305

Stockholm Musical Acoustic Conference (SMAC)

August 6-9, 2003

Abstract

Techniques for synthesizing two pole filters are well known. A number of techniques introduce
unpleasant sounding transients in the filter response when the frequency or damping of the filter
is rapidly changed. We will demonstrate a difference equation for a digital filter in which both
the frequency and the damping can be changed without producing discontinuities in the filter
output. The technique is based on the well known property of the product of complex numbers.
In polar form, the magnitude of the product of two numbers is the product of their magnitudes
and the angle of the product is the sum of their angles. Successive multiplies can produce a
rotating vector whose real or imaginary parts are samples of constant amplitude sine waves or
of exponentially damped sine waves. The frequency and damping of the resulting waves can be
changed without changing the amplitude of the waves. These properties can be used to make
a digital filter whose input, frequency, and damping can all be functions of time in a useful
way. Two alternative structures are additionally proposed, having better numerical properties
for low-cost fixed-point implementations. A program to demonstrate some musical applications
of these filters will be shown.

1

http://ccrma.stanford.edu/~mvm
http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/

Contents

1 Introduction 3

2 Oscillator based on Complex Number Multiplication 3

3 High Q Filter Difference Equations 4

3.1 Homogeneous Solution . 4
3.2 Forced Solution . 5
3.3 State Space Formulation . 6
3.4 Phase-Preserving Restrikes . 6
3.5 Numerical Considerations . 7

3.5.1 Modified Coupled Form Resonator . 7
3.5.2 Digital Waveguide Resonator . 8

4 Program to Produce and Filter Sound Waves 8

5 Conclusions 10

6 Sound Examples 10

2

1 Introduction

Filters, whose parameters can be varied in time provide an important new resource in musical
timbres. High Q filters are also desirable since most musical instruments involve high Q mechanical
filters. Unfortunately, tuning a high Q filter can introduce artifacts which change the energy in the
filter and produce unpleasant transients in the sound. A mechanical filter consisting of an object
on a spring provides a simple example of the problem. The resonant frequency of the object-spring
system can be changed by either changing the stiffness of the spring or the mass of the object. But
if the mass of the object is changed while the object is moving, the kinetic energy in the object
will be changed. Likewise, if the stiffness of the spring is changed while the spring is stretched, the
potential energy stored in the spring will be changed. Any change of energy will cause a change in
the amplitude of the oscillation.

2 Oscillator based on Complex Number Multiplication

A well known difference equation exists which can compute samples of parametrically well behaved
sinusoids [1, 2]. The frequency of the sinusoid can easily be changed without changing the amplitude.
The equation is a property of the multiplication of two complex numbers.1 Complex numbers can
be represented as two dimensional vectors in a plane in which the x axis is the real part of the
number and the y axis is the imaginary part of the number. The polar coordinate form of the
vector is a magnitude and an angle (measured from the x axis). The magnitude of the product of
two numbers is the product of the magnitudes of the two numbers and the angle of the product is
the sum of the angles of the two numbers.

We will use the following definitions and relations:

j
∆
=

√
−1

z
∆
= a complex number

r
∆
= |z|

θ
∆
= ∠z

In terms of real and imaginary components:

z = x + jy

where

x = r cos(θ)

y = r sin(θ)

Let a sequence of complex numbers

z(n), n = 0, 1, 2, 3, ...

be formed from the product of two complex numbers

z(n + 1) = z1z(n), (1)

1http://ccrma.stanford.edu/~jos/mdft/Complex Numbers.html

3

http://{ccrma}.stanford.edu/~{}jos/mdft/Complex_Numbers.html

where z1
∆
= ejθ1 = cos(θ1) + j sin(θ1). The initial state is taken to be z(0) = 1, i.e., the initial

magnitude and angle are r(0) = 1 and θ(0) = 0, respectively. By the rules of complex number
multiplication, we have

r(1) = r(2) = · · · = r(n) = 1

and
θ(n) = nθ1.

The imaginary part of z(n) is the desired sine wave:

y(n) = sin(nθ1).

The magnitude of the sine wave is always 1. The period of the sine wave is 2π/θ1 samples.
By changing θ1, the period can be changed without affecting the magnitude.
The actual difference equations to compute the sine wave are obtained by writing Eq. (1) as real

and imaginary parts. This yields two difference equations which can be extrapolated to compute
x(n) and y(n):

x(n + 1) = x1x(n) − y1y(n) (2)

y(n + 1) = y1x(n) + x1y(n) (3)

where x1 = cos(θ1) and y1 = sin(θ1).

3 High Q Filter Difference Equations

3.1 Homogeneous Solution

Equations (1–3) can be modified to compute the response of a finite Q filter simply by changing
r1 to some value different from unity. From Eq. (1), |z(n)| will be r1 raised to the nth power, and
y(n) will be

y(n) = rn
1 sin(nθ1) (4)

If r1 is less than one, Eq. (4) shows the homogeneous solution to Eq. (1) is a sinusoid times a
decaying exponential. This solution is the response of a two pole filter.

Equations (2–3) are unchanged except that the coefficients x1 and y1 become

x1 = r1 cos(θ1) (5)

y1 = r1 sin(θ1) (6)

If y(n) is the input to a digital-to-analog converter operating at a sampling rate of fs samples per
second, then x1 and y1 can be written

x1 = e
−

1

τfs cos

(

2π
f

fs

)

(7)

y1 = e
−

1

τfs sin

(

2π
f

fs

)

(8)

4

where

τ
∆
= time in seconds for filter to decay to 1/e (9)

f
∆
= resonant frequency of filter in Hz (10)

fs
∆
= sampling rate in samples per second (11)

Equations (7–10) are valid for f less than fs/2. For f between fs/2 and fs, the generated
frequency will be reflected about fs/2.

Negative values of τ will generate exponentially increasing sinusoids which can be musically
useful.

3.2 Forced Solution

The output of our digital filter is y(n). We have not so far provided a mechanism to input a series
of samples of a time function into the filter. An input is necessary if we wish to use the filter in
a traditional way—that is, to “filter” samples of a sound wave. A number of possibilities exist for
adding input samples to our difference equation. We have chosen to add input samples to x(n).
With this modification, Equations (2–3) become

x(n + 1) = x1x(n) − y1y(n) + u(n) (12)

y(n + 1) = y1x(n) + x1y(n) (13)

where u(n) are samples of the input to the filter. The transfer function of the filter is then

H(z)
∆
=

Y (z)

U(z)
=

y1z
−2

1 − 2x1z−1 + (x2
1 + y2

1)z
−2

(14)

=
r1 sin(θ1)z

−2

1 − 2r1 cos(θ1)z−1 + r2
1z

−2
(15)

This is a so-called “all pole” filter, since its two zeros are at z = ∞ and therefore do not affect the
magnitude response. This choice of input can be interpreted as driving the poles in series, since
the transfer functions of series (cascade) filter combinations simply multiply.

We have compared both the sound and the spectrum of our filter output with the outputs of
other filter difference equations realizations and we have detected no differences.

We may alternatively add the input samples u(n) on the right-hand side of Eq. (13) to obtain
the transfer function

H(z) =
z−1 − x1z

−2

1 − 2x1z−1 + (x2
1 + y2

1)z
−2

(16)

=
z−1 − r1 cos(θ1)z

−2

1 − 2r1 cos(θ1)z−1 + r2
1z

−2
. (17)

This choice of input introduces a finite zero at z = x1 = r1 cos(θ1), which is the real part of the
location of both poles. This can be interpreted as driving the poles in parallel, since denoting the

5

complex conjugate of z = x + jy by z = x − jy, we have

zn
1 + zn

1 ↔ 1

1 − z1z−1
+

1

1 − z1z−1
(18)

=
2 − 2re {z1} z−1

1 − 2re {z1} z−1 + |z1|2z−2
(19)

= 2
1 − x1z

−1

1 − 2x1z−1 + r2
1z

−2
= 2zH(z). (20)

3.3 State Space Formulation

Rewriting the filter in state-space form,2 we have

[

x(n + 1)

y(n + 1)

]

=

[

x1 −y1

y1 x1

] [

x(n)

y(n)

]

+

[

b1

b2

]

u(n)

or

x(n + 1) = Ax + Bu(n) (21)

y(n) = C
T x(n) + Du(n) (22)

where C
T = [c1, c2] = [0, 1] and D = 0. As is well known, the transfer function of a state-space

model (A,B,C,D) is given by

H(z) = C
T (zI − A)−1

B + D (23)

=
e1z

−1 + e2z
−2

1 − 2r1 cos(θ1)z−1 + r2
1z

−2
, (24)

where

e1 = c1b1 + c2b2 (25)

e2 = −c1(b1x1 + b2y1) + c2(b1y1 − b2x1). (26)

Thus, under all choices of input or output, there is at most one real finite zero at z = −e2/e1.

3.4 Phase-Preserving Restrikes

An interesting third (nonlinear) input possibility is to add the input to the instantaneous magnitude
of z(n). This mode is useful for “restriking” a decaying filter oscillation in a phase-preserving
manner. The result is that the amplitude of a decaying oscillation can be jumped without altering
its phase at all.

Adding a real signal u(n) to the magnitude of z(n) is equivalent to scaling z(n) by g(n) =
u(n)/r(n) + 1, where r(n) = |z(n)|, to get

[

u(n)

r(n)
+ 1

]

z(n) = [u(n) + r(n)]ejθ(n).

2http://ccrma.stanford.edu/~jos/filters/State Space Models.html

6

http://{ccrma}.stanford.edu/~{}jos/filters/discretionary {-}{}{}State_Space_Models.html

Since amplitude jumps can be perceived as “clicks” when they are too fast, it is useful to delay
amplitude jumps until the next zero-crossing of the output y(n). Waiting for a zero-crossing in
y(n) is equivalent to waiting for the phase of z(n) to reach either 0 or π.

Waiting for phase 0 to scale the state z(n) = x(n) by some gain factor g is equivalent to adding
an input impulse with amplitude u(n) = (g−1)|z(n)| = (g−1)x(n) to x(n) at that time. Therefore,
another approach to achieving smooth filter restriking is to delay them until the next positive-going
zero-crossing in the output signal y(n).

3.5 Numerical Considerations

Since the difference equations (12–13) are based simply on the multiplication of two complex num-
bers, their extrapolation is guaranteed to be stable for any value of f provided the computer
arithmetic is perfect. Round-off errors in computer arithmetic will limit the maximum value of τ ,
the accuracy of the resonant frequency, and the stability of the extrapolation in ways we have not
studied in detail. Using 64 bit floating point arithmetic seems to be entirely adequate for musical
purposes. For lower precision implementations, the alternate forms described in the following two
subsections may be considered.

3.5.1 Modified Coupled Form Resonator

Robust behavior in fixed-point implementations using short word lengths, including perfect stability
in the undamped case, can be obtained by replacing the complex multiply in Equations (12–13)
with a damped version of the so-called “modified coupled form” (MCF) sine oscillator [2]:

x(n + 1) = r1[x(n) − ǫy(n)] + b1u(n) (27)

y(n + 1) = r1[ǫx(n + 1) + y(n)] + b2u(n) (28)

where ǫ = 2 sin(θ1/2), and nominally b1 = 1 and b2 = 0. This recursion is highly insensitive to
round-off error. When excited by an impulse (u(n) = δ(n)) with no damping (r1 = 1), the signals
[x(n), y(n)], viewed as coordinates in the complex plane, follow a fixed elliptical orbit over time. As
ǫ → 0, the ellipse approaches a perfect circle. The complex multiply algorithm of Equations (12–
13), on the other hand, generates an exact circle for all frequencies in the absence of quantization
errors.3 The component sinusoids x(n) and y(n) remain samples of pure sinusoids at the same
frequency, as in the complex multiply case. The elliptical orbit is due only to the components
having a relative phase difference other than 90 degrees. The relative phase approaches 90 degrees
as the oscillation frequency (pole angle) approaches zero.

3In the field of computer graphics, the MCF has been called the “magic circle” algorithm, because it can be used
to recursively draw “circles” on the screen that always close on themselves, even in low-precision arithmetic. While
the drawing may look like a circle (when sufficiently many points are computed along its circumference), it is really
an ellipse.

7

3.5.2 Digital Waveguide Resonator

Another attractive second-order filter structure, based on the “digital waveguide oscillator” [1], is
the digital waveguide resonator (DWR):

x′(n) = gx(n) (29)

v(n) = c′[x′(n) + y(n)] (30)

x(n + 1) = v(n) − y(n) + b̃1u(n) (31)

y(n + 1) = x′(n) + v(n) + b2u(n) (32)

where4

g = r2
1 (33)

b̃1 = b1

√

1 − c′

1 + c′
(34)

c′ =

√

1

1 + tan2(θ)(1+g)2+(1−g)2

4g

(35)

≈ 1 − tan2(θ)(1 + g)2 + (1 − g)2

8g
. (36)

Note that c′ = cos(θ1) when g = 1 (undamped case). Like the MCF, the DWR produces steady
sinusoidal oscillations indefinitely, even for short word lengths. This happens because the resonance
tuning is controlled by only one coefficient, when the damping goes to zero. As would be the case
for any oscillator structure which is controlled by one coefficient affecting tuning only, quantization
of that coefficient can only affect tuning as well. Unlike the MCF and complex multiply, which
require four multiplies per sample, the DWR requires only two multiplies per sample. Moreover,
when the decay is set to τ = ∞ (r1 = 1), one of the multiplies in the DWR disappears, leaving
only one multiply per sample for sinusoidal oscillation. As a result, the DWR appears to be best
suited for VLSI implementation. As an added bonus, the x and y outputs of the DWR are in exact
phase quadrature, like the complex-multiply case considered first above. Note, however, that the
choice of input (to either the x(n) or y(n) state variables) results different amplitude scaling.

Figure 1 shows an overlay of initial impulse responses for the three resonators discussed above.
The decay factor was set to r1 = 0.99, and the output of each multiplication was quantized to
16 bits, as were all coefficients. The three waveforms sound and look identical. (There are small
differences, however, which can be seen by plotting the differences of pairs of waveforms.)

Figure 2 shows the same impulse-response overlay but with r1 = 1 and only 4 significant bits
in the coefficients and signals. The complex multiply oscillator can be seen to decay toward zero
due to coefficient quantization (x2

1 + y2
1 < 1). The MCF and DWR remain steady at their initial

amplitude. All three suffer some amount of tuning perturbation.

4 Program to Produce and Filter Sound Waves

To experiment with the timbres that can be synthesized with our high Q filters, we wrote a test
program, filter.cpp. The program runs on an 800mHz PC running a Linux operating system.
The program can

4http://ccrma.stanford.edu/~jos/waveguide/Digital Waveguide Oscillator.html

8

http://{ccrma}.stanford.edu/~{}jos/waveguide/Digital_Waveguide_Oscillator.html

0 50 100 150 200 250 300
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response Overlay

Am
pli

tud
e

Time (samples)

2DR
MCF
WGR

Figure 1: Overlay of three resonator impulse re-
sponses, with B

T = [1, 0] and C
T = [0, 1], for the

(1) complex-multiply resonator (labeled “2DR”
for “2D rotation”), (2) modified coupled form
(MCF), and (3) second-order digital waveguide
resonator (DWR).

0 500 1000 1500 2000 2500 3000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response Overlay

Am
pli

tud
e

Time (samples)

2DR
MCF
WGR

Figure 2: Overlay of three resonator impulse re-
sponses, as in Fig. 1, but with r1 = 1 and quanti-
zation of coefficients and signals to 4 significant
bits.

• Compute up to 200 filters whose outputs are summed and sent to a d-to-a converter (16bit,
monaural, 44.1kHz) running as a real-time synthesis process.

• Accept impulse inputs to blocks of filters to generate homogeneous filter responses.

• Accept samples from a sound wave put through an a-to-d converter (16bit, monaural, 44.1kHz)
running as a real-time effects processor.

• Accept samples from .wav files in the computer hard disk as input.

• Dynamically change the resonant frequencies and damping of blocks of filters in response to
either computer keyboard key presses or midi input commands from a midi keyboard.

• Display either waveforms or envelopes of various sampled waves in the computer program

Computations are done in double precision floating point arithmetic. The program has not been
carefully optimized. Only about 30 percent of the computer power seems to run all 200 filters.

Tests where parametric changes (both frequencies and decay times) of blocks of filters were sud-
denly changed showed that neither visible nor audible transients were produced by the parametric
changes. Thus it would appear that both frequency and decay can be used as rapidly changing
time-varying parameters to form “compositional lines” in compositions.

In the presentation of this paper at the SMAC 03 meeting, we will demonstrate various timbres
and effects that can be produced by the filters.

9

5 Conclusions

Although no significant compositions employing our high Q parametrically well behaved two pole
filters have yet been written, we believe the filters will provide an important new resource for
composers, particularly for generating new timbres.

6 Sound Examples

Sound examples from the accompanying CD-ROM are available on-line:

http://ccrma.stanford.edu/~jos/smac03maxjos/SoundExamples.html

References

[1] J. O. Smith and P. R. Cook, “The second-order digital waveguide oscillator,” Proceedings of
the 1992 International Computer Music Conference, San Jose. 1992, pp. 150–153, Comp.
Mus. Assoc., http://ccrma.stanford.edu/~jos/wgo/.

[2] J. W. Gordon and J. O. Smith, “A sine generation algorithm for VLSI applications,” in
Proceedings of the 1985 International Computer Music Conference, Vancouver. 1985, CMA.

10

http://discretionary {-}{}{}{ccrma}.stanford.edu/~{}jos/smac03maxjos/SoundExamples.html

	Introduction
	Oscillator based on Complex Number Multiplication
	High Q Filter Difference Equations
	Homogeneous Solution
	Forced Solution
	State Space Formulation
	Phase-Preserving Restrikes
	Numerical Considerations
	Modified Coupled Form Resonator
	Digital Waveguide Resonator

	Program to Produce and Filter Sound Waves
	Conclusions
	Sound Examples

