
MUS420 Lecture
Digital Waveguide Modeling of Horns

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music, Stanford University
Stanford, California 94305

February 5, 2019

Outline

• Horn Modeling (Trumpet)

• Piecewise Conical Bore Modeling

• Truncated Infinite Impulse Response (TIIR) Filters
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Horn Modeling

Bore Profile Reconstruction from Measured
Trumpet Reflectance
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• Inverse scattering applied to pulse-reflectometry data
to fit piecewise-cylindrical model (like LPC model)

• Bore profile reconstruction is reasonable up to bell

• The bell is not physically equivalent to a
piecewise-cylindrical acoustic tube, due to

– complex radiation impedance,

– conversion to higher order transverse modes
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Trumpet-Bell Impulse Response Computed from
Estimated Piecewise-Cylindrical Model
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Bell Reflection Impulse Response

• From pulse reflectometry on trumpet with no
mouthpiece

• Bore profile is reconstructed, smoothed, and
segmented

• Impulse response of “bell segment” = “ideal filter”

• At fs = 44.1 kHz, filter length is ≈ 400 to 600
samples
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• A length 400 FIR bell filter is too expensive!

• Convert to IIR? Hard because

– Phase (resonance tunings) must be preserved

– Magnitude (resonance Q) must be preserved

– Rise time ≈ 150 samples

– Phase-sensitive IIR design methods perform poorly
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FIR to IIR Conversion Attempts

Bell Impulse Response (dB) Before
Truncation

0 500 1000 1500 2000 2500
−120

−100

−80

−60

−40

−20

0
Log−Magnitude of Input Signal (for Evaluating Truncation Point)

Time (samples)

M
a
g
n
it
u
d
e
 (

d
B

)

• 561 samples gives cut-off around -60 dB relative to
maximum

• This length 561 FIR filter can be reduced to a
lower-order IIR filter by minimizing some norm of the
impulse-response error
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• Hankel norm minimization should always work in
theory

Hankel Norm Method

Eigenvalues of Hankel Matrix (dB)
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Largest Eigenvalues of Hankel Matrix (dB)
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Order 15 Hankel-Norm IIR Fit to Length 561 FIR
Measured Trumpet-Bell Reflectance
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• Order 15 is a “sweet spot” in the eigenvalues plot

• Hankel Norm is the only phase-sensitive IIR error
norm we know which can always be reliably minimized
in principle
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• Norm is sensitive to linear magnitude error, not dB

• This bell filter is too “bright” and fit is generally poor

• Initial time-domain match is reasonable, but it can’t
“hold on” until the main reflection

• Numerical failure is a likely (in Matlab/PentiumII
doubles)
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Order 8 Hankel-Norm IIR Fit to Length 561 FIR
(Evidence of Numerical Failure in Previous

Example)
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• Halving the order actually looks better (“can’t
happen”)

• Error plot indicates numerical troubles here as well
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• An order P IIR filter is made using P th eigenvector of
the 561× 561 Hankel matrix (condition number =
51751075)

• Numerical failure occurs at the higher orders we need

• Slow rise time of impulse response causes “numerical
stress” on all phase-sensitive IIR design methods
when the IIR order is much less than the rise time
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Order 10 Steiglitz-McBride L2 Fit to a
Length 561 FIR Filter Model
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• All poles concentrated at low frequencies

• Little attention to high frequencies

• Internal “equation-error” weighting

• Numerical ill-conditioning warning printed by Matlab
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SM-10 Group Delay Fit
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SM-10 Phase Delay Fit
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SM-10 Amplitude Response Fit
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Another Measured Trumpet Bell Reflectance
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Idea!

• Break up impulse response into exponential or
polynomial segments

• Exponential and polynomial impulse-responses can be
designed using Truncated IIR (TIIR) Filters
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Four-Exponential Fit to
Estimated Trumpet-Bell Filter (Exp-4)
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Exp-4 Amplitude Response Fit
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Exp-4 Low-Frequency Zoom
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Exp-4 Group Delay Fit

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

100

200

300

400

500

600

700

Normalized Frequency

G
ro

up
 D

el
ay

 (s
am

pl
es

)

Group Delay Fit

Ideal
approximation

Exp-4 Phase Delay Fit
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Exp-4 Impulse Response Fit (Repeated)

0 50 100 150 200 250 300 350 400 450
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time (samples)

Time−Domain Fit Using Four Offset Exponentials

Am
pl

itu
de

ideal
exp1
exp2
exp3
exp4

Exp-4 Slope Fit

0 50 100 150 200 250 300 350 400 450
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Time (samples)

Am
pl

itu
de

 S
lo

pe

Time−Domain Slope Fit

ideal
exp1
exp2
exp3
exp4

21

Two Exponentials Connected by a Cubic Spline
Measured Trumpet Data (Exp2-S3)
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Exp2-S3 Amplitude Response Fit

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency

Ma
gn

itu
de

 (d
B)

Magnitude Fit over Entire Nyquist Band

Ideal
Approximation

Exp2-S3 Low-Frequency Zoom

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
−60

−50

−40

−30

−20

−10

0

Normalized Frequency

Ma
gn

itu
de

 (d
B)

Magnitude Fit

Ideal
Approximation

25

Exp2-S3 Group Delay Fit
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Exp2-S3 Impulse Response Fit
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Two Exponentials Followed by a 6th-Order IIR
Filter Designed by Steiglitz McBride Algorithm

(Exp2-SM6)
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Exp2-SM6 Impulse Response Fit
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Exp2-SM6 Phase Response Fit
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Exp2-SM6 Amplitude Response Fit
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Exp2-SM6 Group Delay Fit
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Results for Measured Trumpet Data Using Two
Offset Exponentials and Two Biquads
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• Bell model filter complexity comparable to order 8+
IIR

• Offset exponentials were fit using fmins() in Matlab

• Two biquads were fit as a single fourth-order filter
using the Steiglitz-McBride algorithm (stmcb() in
Matlab)
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Measured Trumpet Bell Impulse Response
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Measured Trumpet Bell Amplitude Response
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Trumpet Bell Phase Delay Fit
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Comparison to Measurements

The next two pages of plots compare the measured
impulse response with that produced by the final digital
waveguide model consisting of a trumpet bore + bell
(but no mouthpiece).

• Comparison 1: two offset exponentials and two
biquads to model the bell impulse response

• Comparison 2: two offset exponentials and three
biquads to model the bell impulse response
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Measured Impulse Response
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Measured Impulse Response

0 10 20 30 40 50 60 70 80 90

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

time (ms)

empirical

Synthesized Impulse Response, Order 6 Tail

0 10 20 30 40 50 60 70 80 90

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

time (ms)

Digital Waveguide + Bell Filter

39

Piecewise Conical Acoustic Tube
Modeling

Simple Example: Cylinder with Conical Cap

Delay(100) Delay(50)
R(z)

Σ -
Σ -

pi(nT)/2

Reduced DWM for Maximum Computational Efficiency:

L1 = 50 cT L2 = 25 cT

pi(t)

Physical Outline of Cylinder and Cone:

Delay(50)

Delay(50)

T(z)

Delay(25)

Delay(25)

R(z) -1R(z)

T(z)

pi(nT)/2

Digital Waveguide Model (DWM) for Pressure Waves:

where

R(z) =

(

1

99

)(

1 + z−1

1− 101

99
z−1

)

T (z) =

(

100

99

)(

1− z−1

1− 101

99
z−1

)

= 1 +R(z)
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• Problem: Reflection filter R(z) and
transmission filter T (z) are unstable (pole at
z = 101/99)

• Overall system is passive ⇒ unstable pole is canceled

Implementation Idea

Apply TIIR “alternate and reset” idea
to the unstable conical subsystem

• Cone is not truly FIR ⇒ t60 replaces FIR length

• When cylinder is closed-ended, cone traveling-wave
components increase without bound ⇒ must switch
out and reset the entire cone assembly
(scattering-junction filter R(z) and cone’s entire delay
line)

• According to simulations thus far, cylinder waves are
well behaved and do not need to be reset (no general
proof yet)

Basic Principle

Periodically reset any subsystem containing a

canceled unstable pole at intervals greater than or

equal to the t60 for that subsystem
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Interesting Paradox at DC

Delay(50)

Delay(50)

Delay(25)

Delay(25)

-1

p(t) = p+(t) + p-(t) = x  (constant)

p(nT)/2 = x/2

p(t) = x  (const)

-1

0

0

DC Steady State: Closed-End Cylinder

-1

-d-d

x+dx/2

p(nT) = x

x/2

x/2 x/2

x+d

p(nT) = x

• R(1) = −1 (dc response of reflection filter inverts)

• T (1) = 0 (dc does not transmit through the junction)

• Physically obvious dc solution (constant pressure
offset) is not possible in either the cone or the
cylinder model!

• Simulated impulse responses agree with the literature

• A final constant dc offset is observed in the
simulations
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Solution to Paradox

• It turns out the reflection transfer function looking
into the cone from the cylinder has two poles and two
zeros at dc

• The dc poles and zeros cancel and leave a dc cone
reflectance equal to +1 (the physically obvious
answer)

• We can’t just set the reflection filter to its dc
equivalent to figure out the dc behavior of the overall
model

• Instead, a more careful limit must be taken

In the s plane, the conical cap pressure reflectance, seen
from the cylinder, can be derived to be

H(s)
∆
=

1 +R(s)(1 + 2stx)

2stx − 1−R(s)

where tx is the time (in seconds) to propagate across the
cone, and

R(s) = −e−2stx

is the reflectance of the cone at its entrance. We have

lim
s→0

R(s) = −1

lim
s→0

H(s) = +1
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Truncated Infinite Impulse Response
(TIIR) Digital Filters

An FIR filter can be constructed as the difference of two
IIR filters:
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General FIR filter

• Coefficients: {h0, . . . , hN}

• Implementation (convolution):

y(n) = (h ∗ x)(n) =

N
∑

m=0

hmx(n−m)

• Transfer function:

HFIR(z)
∆
= h0 + h1z

−1 + . . . + hNz
−N

∆
= z−NC(z),
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where C(z) is the N -th degree polynomial in z formed by
the hk

General P -th order IIR filter

• Difference equation

y(n) = −

P
∑

k=1

aky(n− k) +

P
∑

ℓ=0

bℓx(n− ℓ)

• Transfer function

HIIR(z)
∆
=

b0 + b1z
−1 + . . . + bPz

−P

1 + a1z−1 + . . . + aPz−P

∆
=

b0z
P + b1z

P−1 + . . . + bP
zP + a1zP−1 + . . . + aP

∆
=

B(z)

A(z)
∆
= h0 + h1z

−1 + h2z
−2 + . . . ,

where

A(z)
∆
= zP + a1z

P−1 + . . . + aP (monic)

B(z)
∆
= b0z

P + b1z
P−1 + . . . + bP
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TIIR Construction: A One-Pole Example

Consider an FIR filter having a truncated geometric
sequence {h0, h0p, . . . , h0p

N} as an impulse response.
This filter has the same impulse response for the first
N + 1 terms as the one-pole IIR filter with transfer
function

HIIR(z) =
h0

1− pz−1
.

Subtracting off the tail of the impulse response gives

HFIR(z) = h0 + h0pz
−1 + · · · + h0p

Nz−N

=
{

h0 + h0pz
−1 + · · ·

}

−
{

h0p
N+1z−(N+1) + h0p

(N+2)z−(N+2) + · · ·
}

=
h0

1− pz−1
− pN+1z−(N+1) h0

1− pz−1

= h0
1− pN+1z−(N+1)

1− pz−1

The time-domain recursion for this filter is

y[n] =

N
∑

k=0

h0p
kx[n− k]

= py[n− 1] + h0

(

x[n]− pN+1x[n− (N + 1)]
)
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Complexity Notes

• Direct FIR filter implementation requires N + 1
multiplies and N adds

• TIIR implementation requires 3 multiplies and 2 adds,
independent of N

• No savings in memory

Note that there is a pole-zero cancellation in the TIIR
transfer function

H(z) = h0
1− pN+1z−(N+1)

1− pz−1
= h0+h0pz

−1+· · ·+h0p
Nz−N

• If |p| < 1, no problem since the canceled pole is stable

• If |p| ≥ 1, imperfect pole-zero cancellation due to
numerical rounding leads to exponentially growing
round-off error

Basic Idea: Since the overall TIIR filter is FIR(N),
alternate between two instances of each unstable
one-pole, starting each new one from the zero state N
samples before it is actually used. (Apparently first
suggested by T. Fam at Asilomar-’87 for the case of
distinct poles.)
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Extension to Higher-Order TIIR Sequences

We can extend this idea from the one-pole case to any
rational filter H(z) = B(z)/A(z). The general procedure
is to find the “tail filter” H ′

IIR(z) and subtract it off:

HFIR(z) = HIIR(z)−H ′
IIR(z)

Multiply HIIR(z) by z
N to obtain

zNHIIR(z) = h0z
N + · · · + hN−1z + hN

+ hN+1z
−1 + hN+2z

−2 + · · ·
∆
= C(z) +H ′

IIR(z)

=
zNB(z)

A(z)
∆
= C(z) +

B′(z)

A(z)

• B′(z) is the unique remainder after dividing zNB(z)
by A(z) using “synthetic division”
(zNB(z) ≡ B′(z) (mod A(z)))

• We may assume Deg {B′(z)} = Deg {A(z)} − 1

• B′(z) gives us our desired “tail filter” for forming
HFIR = HIIR −H ′

IIR:

H ′
IIR(z) =

B′(z)

A(z)
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Higher-Order TIIR Filters

We have

HFIR(z) = HIIR(z)− z−NH ′
IIR(z)

=
B(z)− z−NB′(z)

A(z)

The corresponding difference equation is

y[n] = −

P
∑

k=1

aky[n− k] +

P
∑

ℓ=0

bℓx[n− ℓ]

−

P−1
∑

m=0

b′mx[n−m− (N + 1)]

Since the denominators of HIIR(z) and H ′
IIR(z) are the

same, the dynamics (poles) can be shared:

Σ
-+

Delay Linex(n)

y(n)

N

B(z) B’(z)

...

( )
1

zA

49

Complexity and Storage-Cost

HFIR(z) =
B(z)− z−NB′(z)

A(z)

N = FIR order and let P = A(z) order (#poles)

• The computational cost of the general truncated P -th
order IIR system is 3P + 1 multiplies and 3P − 2
adds, independent of N

• Net computational savings is achieved when N > 3P

Storage Requirements

• P output samples for the IIR feedback dynamics A(z)

• N input samples of the FIR filter (main delay line)

• P input samples for B(z) (normally in delay line)

• P input samples for B′(z) (also possibly in delay line)

Thus, we need a total of at least N + P input delay
samples, of which only 2P are accessed, and P output
delay samples. This is between P and 2P more than a
direct FIR implementation.

50

Example

We wish to truncate the impulse response of

H+(z) =
B+(z)

A+(z)
=

1

1− 1.9z−1 + 0.98z−2

after N = 300 samples to obtain a length 301 FIR filter
H+

FIR(z)

Steps:

1. Perform synthetic division on z300B+(z) by A(z) to
obtain the remainder

B′+(z) = −0.162126z + 0.139770

2. Form the TIIR filter as

H+
FIR(z) =

N
∑

k=0

h+
k z

−k =
B+(z)− z−NB′+(z)

A+(z)

=
1 + 0.162126 z−299 − 0.139770 z−300

1− 1.9z−1 + 0.98z−2
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Impulse Response of TIIR Implementation
Without Resets
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• At time n = 301, the tail of the response is
subtracted off, and the impulse-response magnitude
drops by about
115 dB

• Due to quantization errors, there is a residual response

• Poles are all stable, so error decays
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Impulse Response of TIIR Implementation With
Resets
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• Again, impulse-response tail is subtracted off at time
n = 301, giving around 115 dB attenuation

• Additionally, state variables are cleared every 300
samples

• Residual response completely canceled at time
n = 600

• System has truly finite memory
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Unstable Example

To form a linear phase TIIR filter based on the previous
example, we need also the “flipped” impulse response
generated by

H−
FIR(z) =

−0.139770z2 + 0.162126z − z−300

0.98z2 − 1.9z + 1

=
−0.142622z2 + 0.165435z − 1.020408z−300

z2 − 1.938776z + 1.020408

where the last equation is normalized by 0.98 to make the
denominator monic.

This system has two unstable hidden modes.
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Impulse Response Without Resets
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• Tail is canceled with about 125 dB attenuation

• Due to the unstable canceled poles, quantization
noise grows without bound

• By time 1500 samples, the quantization noise
dominates

• (Arithmetic = double-precision floating point with
single-precision state variables)
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Impulse Response of TIIR Implementation With
Resets
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• State-variable resets zero-out the quantization noise
before it becomes significant

• Overall system has truly finite memory
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Synthetic Division Algorithm

Algorithm for performing synthetic division to generate
the tail-canceling polynomial B′(z):

int i,j;

double *w=(double *)malloc((P+1)*sizeof(double));

/*** load the numerator coefficients for B(z) ***/

for(i=0;i<P+1;i++){

w[i]=b[i];

}

/*** do synthetic division ***/

for(i=0; i<=N; i++){

factor=w[0];

for(j=0;j<P;j++){

w[j]=w[j+1]+factor*a[j];

}

w[P]=0;

/**** The remainder after the i-th step is in w[0..(P-1)] ***/

}

/*** copy the result to the output array ***/

for(i=0;i<P;i++) {

bb[i]=w[i];

}
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A One-Pole (Almost) TIIR Filter

1P

Shared Delay Linex(n)

y(n)

N

1P

...
... ...

Clear(n)

Switch(n)

¬  Clear(n)

Clear(n)

Time(samples)

......
......

......
Warm(n)

Switch(n)

Warm(n) & ¬  Switch(n)

¬Warm(n) & Switch(n)

Σ
-+

N

0

0

1

1

1

0

(rising edge active)

=
1

1

− zp −11P

Clear and halt filter 1

Start filter 1 on direct signal

Switch to using filter 1

Clear & halt filter 2

etc.

n

......

• Generates truncated exponentials or constants

• Filter complexity on average ≈ one pole

• Shared delay line

• Shared dynamics
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Offset Exponentials

Use two one-pole TIIRs, to make an offset exponential :

h(n) =

{

aecn + b, n = 0, 1, 2, . . . , N − 1

0, otherwise

• The constant portion b requires only one multiply
(by b) since the pole for this TIIR filter is at z = 1

• Resets for pure integrators are needed less often than
for growing exponentials

• Using a cascade of digital integrators, any polynomial
impulse response is possible

• A cubic-spline impulse response requires four
integrators

δ(n) ∫∫∫∫

+

a0 a1 a2 a3

constant ramp quadratic cubic

=∫
1

1

− z−1

( ) nbnbnbbny +++= 3
3

2
210
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