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Outline

e Horn Modeling (Trumpet)
e Piecewise Conical Bore Modeling

e Truncated Infinite Impulse Response (TIIR) Filters

Horn Modeling

Bore Profile Reconstruction from Measured
Trumpet Reflectance

L
|
|
|
|

I I I

|

|

| i

0 0.2 0.4 0.6 0.8 1 1.2
distance (m)

e Inverse scattering applied to pulse-reflectometry data
to fit piecewise-cylindrical model (like LPC model)

e Bore profile reconstruction is reasonable up to bell

e The bell is not physically equivalent to a
piecewise-cylindrical acoustic tube, due to

— complex radiation impedance,

— conversion to higher order transverse modes


http://ccrma.stanford.edu/~jos
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Trumpet-Bell Impulse Response Computed from
Estimated Piecewise-Cylindrical Model

Bell Reflection Impulse Response
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e From pulse reflectometry on trumpet with no
mouthpiece

e Bore profile is reconstructed, smoothed, and
segmented

e Impulse response of “bell segment” = “ideal filter”

o At f, = 44.1 kHz, filter length is =~ 400 to 600
samples

e A length 400 FIR bell filter is too expensive!

e Convert to IIR? Hard because
— Phase (resonance tunings) must be preserved
— Magnitude (resonance Q) must be preserved

— Rise time ~ 150 samples

— Phase-sensitive |IR design methods perform poorly



FIR to IIR Conversion Attempts

Bell Impulse Response (dB) Before
Truncation

Log-Magnitude of Input Signal (for Evaluating Truncation Point)
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e 561 samples gives cut-off around -60 dB relative to
maximum

e This length 561 FIR filter can be reduced to a
lower-order IR filter by minimizing some norm of the
impulse-response error

ot

e Hankel norm minimization should always work in
theory
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Largest Eigenvalues of Hankel Matrix (dB)
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Order 15 Hankel-Norm IIR Fit to Length 561 FIR
Measured Trumpet-Bell Reflectance

Order 15 Hankel fit to first 561 samples
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e Order 15 is a “sweet spot” in the eigenvalues plot

e Hankel Norm is the only phase-sensitive |IR error
norm we know which can always be reliably minimized
in principle



e Norm is sensitive to linear magnitude error, not dB
e This bell filter is too “bright” and fit is generally poor

e Initial time-domain match is reasonable, but it can't
“hold on” until the main reflection

e Numerical failure is a likely (in Matlab/Pentiuml|
doubles)
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Order 8 Hankel-Norm IIR Fit to Length 561 FIR
(Evidence of Numerical Failure in Previous
Example)

Order 8 Hankel fit to first 561 samples
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e Halving the order actually looks better (“can't
happen”)

e Error plot indicates numerical troubles here as well
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e An order P IIR filter is made using Pth eigenvector of
the 561 x 561 Hankel matrix (condition number =
51751075)

e Numerical failure occurs at the higher orders we need

e Slow rise time of impulse response causes “numerical
stress’ on all phase-sensitive IIR design methods
when the |IR order is much less than the rise time
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Order 10 Steiglitz-McBride L, Fit to a
Length 561 FIR Filter Model

Order 10 Steiglitz—McBride fit to first 561 samples
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e All poles concentrated at low frequencies
e Little attention to high frequencies
e Internal “equation-error” weighting

e Numerical ill-conditioning warning printed by Matlab
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Group Delay (samples)

SM-10 Group Delay Fit

Group Delay Fit
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Phase Delay (samples)

SM-10 Phase Delay Fit

Phase Delay Fit
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Magnitude (dB)

SM-10 Amplitude Response Fit Another Measured Trumpet Bell Reflectance
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Amplitude

Idea! Four-Exponential Fit to
Estimated Trumpet-Bell Filter (Exp-4)

e Break up impulse response into exponential or ‘ Time-Domain Fit with Four Offset-Exponential Segments ‘
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Exp-4 Amplitude Response Fit
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Amplitude

Exp-4 Impulse Response Fit (Repeated) Two Exponentials Connected by a Cubic Spline
Measured Trumpet Data (Exp2-S3)

Time—Domain Fit Using Four Offset Exponentials
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Time—Domain SLOPE Fit
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Exp2-S3 Impulse Response Fit

Time—Domain Fit
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Two Exponentials Followed by a 6th-Order IIR
Filter Designed by Steiglitz McBride Algorithm
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Exp2-SM6 Impulse Response Fit
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Results for Measured Trumpet Data Using Two Measured Trumpet Bell Impulse Response
Offset Exponentials and Two Biquads
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e Bell model filter complexity comparable to order 8+

IR TIHR Trumpet Bell Impulse Response
e Offset exponentials were fit using fmins () in Matlab
e Two biquads were fit as a single fourth-order filter

using the Steiglitz-McBride algorithm (stmcb () in oo
Matlab) '
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Measured Trumpet Bell Amplitude Response Trumpet Bell Phase Delay Fit
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Comparison to Measurements

The next two pages of plots compare the measured
impulse response with that produced by the final digital
waveguide model consisting of a trumpet bore + bell
(but no mouthpiece).

e Comparison 1: two offset exponentials and two
biquads to model the bell impulse response

e Comparison 2: two offset exponentials and three
biquads to model the bell impulse response
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Measured Impulse Response
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Measured Impulse Response
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Piecewise Conical Acoustic Tube
Modeling

Simple Example: Cylinder with Conical Cap

Physical Outline of Cylinder and Cone:

Ly=50cT Ly=25cT ——=

pi()

Digital Waveguide Model (DWM) for Pressure Waves:
Delay(50)

pi(nT)/2

pi(nD)/2

where
i 14271
99 — ozl
100 1— 21
— ) (—=—)=14+R
( 99 ) (1 - 19%12‘1) + R(z)
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e Problem: Reflection filter R(z) and
transmission filter 7'(z) are unstable (pole at
2 =101/99)

e Overall system is passive = unstable pole is canceled
Implementation Idea

Apply TIIR “alternate and reset” idea
to the unstable conical subsystem

e Cone is not truly FIR = ¢4y replaces FIR length

e When cylinder is closed-ended, cone traveling-wave
components increase without bound = must switch
out and reset the entire cone assembly
(scattering-junction filter R(z) and cone's entire delay
line)

e According to simulations thus far, cylinder waves are
well behaved and do not need to be reset (no general
proof yet)

Basic Principle

Periodically reset any subsystem containing a
canceled unstable pole at intervals greater than or
equal to the tgy for that subsystem

41

Interesting Paradox at DC

DC Steady State: Closed-End Cylinder

p(t)=pT (@ + p(t) = x (constant) p(f) = x (const)

x/2

Delay(50)

pnT)/2 =x/2 pnT) =x

Delay(50)

x/2

e R(1) = —1 (dc response of reflection filter inverts)
e T'(1) = 0 (dc does not transmit through the junction)

e Physically obvious dc solution (constant pressure
offset) is not possible in either the cone or the
cylinder model!

e Simulated impulse responses agree with the literature

e A final constant dc offset /s observed in the
simulations
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Solution to Paradox Truncated Infinite Impulse Response
(THR) Digital Filters

e It turns out the reflection transfer function looking
into the cone from the cylinder has two poles and two An FIR filter can be constructed as the difference of two

zeros at dc [IR filters:

e The dc poles and zeros cancel and leave a dc cone
reflectance equal to +1 (the physically obvious

Infinite Impulse Response (IIR) = Delayed and Scaled IIR = Truncated IIR = FIR

answer)

e We can't just set the reflection filter to its dc
equivalent to figure out the dc behavior of the overall
model

R S %
Time (sec) t Time (sec) t Time (sec)

e |nstead, a more careful limit must be taken

In the s plane, the conical cap pressure reflectance, seen

from the cylinder, can be derived to be General FIR filter

H(s) 2 12+1€R(8>1(1 +]§ft;) e Coefficients: {hg,...,hy}
Sty — 1 — S . .
where t, is the time (in seconds) to propagate across the * Implementation (convolutlon).N
cone, and
R(s) = —e ¥t y(n) = (hxz)(n) = Z hina(n —m)
is the reflectance of the cone at its entrance. We have _ m=0
: e Transfer function:
£1§[1]R(S) - Hypr(2) S ho+ 'y Y
lim H(s) = +1 IR T P e TN
o 2 N0e)
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where C(z) is the N-th degree polynomial in z formed by TIHR Construction: A One-Pole Example
the Ay

Consider an FIR filter having a truncated geometric
General P-th order IIR filter sequence {hg, hop, . .., hop™} as an impulse response.
This filter has the same impulse response for the first

o Difference equation N + 1 terms as the one-pole IIR filter with transfer

P P function h
y(n) ==> aryln —k)+ > ba(n — 1) Hig(z) = —0
k=1 =0 1 — pzfl
e Transfer function Subtracting off the tail of the impulse response gives
" A bp+biz L+ bp T Hpr(2) = ho+hopz '+ + hgp™ 2™V
mr(z) = l+az7t+...+apz? = {h0+h0pz_l+~- }
A boz? + b2V L+ 4+ bp _ {hUpNHZ—(NH) + hopNH2 = (N+2) }
2P +aizP-t+ .. +ap
A B(2) _ v ey ho
= 1—pzt 1 —pz-!
A(z) ] — pN+1,—(N+1)
S T e P = hyo e
where The time-domain recursion for this filter is
A P P—1 : N
Alz) = 2" +a12” 4+ ... +ap (monic)
n| = hop*a[n — k
B(z) 2 bz + 012" L+ bp yin) kz_; opein = k)

= pyln — 1]+ ho (z[n] = p"aln — (N + 1)])
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Complexity Notes

e Direct FIR filter implementation requires N + 1
multiplies and /N adds

e TIlIR implementation requires 3 multiplies and 2 adds,

independent of IV

e No savings in memory

Note that there is a pole-zero cancellation in the TIIR

transfer function

1 — pN+l —(N+1)
H(z) = hg—L =

1—pz!

e If [p| < 1, no problem since the canceled pole is stable

e If |p| > 1, imperfect pole-zero cancellation due to
numerical rounding leads to exponentially growing
round-off error

Basic Idea: Since the overall TIIR filter is FIR(N),
alternate between two instances of each unstable
one-pole, starting each new one from the zero state N
samples before it is actually used. (Apparently first
suggested by T. Fam at Asilomar-'87 for the case of
distinct poles.)
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= ho+hopz - - +hop™N 2~
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Extension to Higher-Order TIIR Sequences

We can extend this idea from the one-pole case to any
rational filter H(z) = B(z)/A(2). The general procedure
is to find the “tail filter” H{z(%) and subtract it off:

Hrir(z) = Hur(z) — Hyg(2)
Multiply Hyr(2) by 2% to obtain

ZNHHR<Z) = h()ZN + -+ hN,12 + hN
+ hN+1Z_1 -+ hN+QZ_2 + -

= C<Z)(+)HI/IR(Z) )
_ 2NB(z A oy, B'(z
- ae YT

e B'(2) is the unique remainder after dividing 2"V B(z)
by A(z) using “synthetic division”
(2NB(z) = B'(2) (mod A(z)))

e We may assume Deg {B'(2)} = Deg {A(2)} — 1

e B'(z) gives us our desired “tail filter” for forming
Hpm = Hir — Hijg:

HfIR<Z) = M
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Higher-Order TIIR Filters

We have
Hpr(z) = Hugr(2) — 2 VHijp(2)
_ B(z) - zNB'(2)
A(z)

The corresponding difference equation is

yln] = — Z apyln — k| + Z bex[n — ¢
k=1 =0
P-1
— Zb;nx[n—m— (N +1)]

Since the denominators of Hyr(2) and Hijz(2) are the
same, the dynamics (poles) can be shared:

ne) y(n)
B(2) 2 < B’(z)

N

x(n) 7—>’ Delay Line
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Complexity and Storage-Cost

Hpr(z2) = B) _A?z) 1)

N = FIR order and let P = A(z) order (#poles)

e The computational cost of the general truncated P-th
order lIR system is 3P + 1 multiplies and 3P — 2
adds, independent of N

e Net computational savings is achieved when N > 3P

Storage Requirements

e P output samples for the IIR feedback dynamics A(z)

e N input samples of the FIR filter (main delay line)

e P input samples for B(z) (normally in delay line)

e P input samples for B'(z) (also possibly in delay line)
Thus, we need a total of at least N + P input delay
samples, of which only 2P are accessed, and P output

delay samples. This is between P and 2P more than a
direct FIR implementation.
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Example Impulse Response of TIIR Implementation
Without Resets

We wish to truncate the impulse response of
_ B7(2) 1

H*(z) = = °
(2) At(z)  1—-1.927140.98272 i
after N = 300 samples to obtain a length 301 FIR filter »
Hypp(2) g "Ml
éo U[WVAVA'
Steps: ;
1. Perform synthetic division on z3"°BT(z) by A(z) to 4
obtain the remainder Y 500 7000 1500 2000
Time (Samples)
B (z) = —0.162126z + 0.139770
2. Form the TIIR filter as %
N Il 0
BT (z) — 2V B"(2)
+ _ o,k ©
Hpg(z) = kz_;hkz = A+ (z) E’
~ 1+40.162126 272 — 0.139770 2 3% g .
B 1—1.927140.9822 | .
~300 500 7000 1500 lmml““

Time (Samples)
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e At time n = 301, the tail of the response is Impulse Response of TIIR Implementation With

subtracted off, and the impulse-response magnitude Resets
drops by about
115 dB
. . . . 5
e Due to quantization errors, there is a residual response A
e Poles are all stable, so error decays 3
2
o 1
% 0 n\/[WVAVA'
<,1
2
-3
-4t
-50 560 1 O‘OO 1 5‘00 2000

Time (Samples)

50

-50

-100

-150

Amplitude (dB)

-200

-250

-300

i i
1000 1500 2000
Time (Samples)
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e Again, impulse-response tail is subtracted off at time
n = 301, giving around 115 dB attenuation

e Additionally, state variables are cleared every 300
samples

e Residual response completely canceled at time
n = 600

e System has truly finite memory
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Unstable Example

To form a linear phase TIIR filter based on the previous
example, we need also the “flipped” impulse response
generated by

—0.13977022 + 0.1621262 — z 3%

0.9822 —1.92+1
—0.14262222 + 0.1654352 — 1.020408z 300

22 — 1.938776z + 1.020408

where the last equation is normalized by 0.98 to make the
denominator monic.

Hpp(z) =

This system has two unstable hidden modes.
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Amplitude (dB)

Impulse Response Without Resets

il

Amplitude
o

i i i
0 500 1000 1500
Time (Samples)

50

2000

50}

-100

-150

-200

-250

-300

i i i
(0] 500 1000 1500
Time (Samples)
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2000

e Tail is canceled with about 125 dB attenuation

e Due to the unstable canceled poles, quantization
noise grows without bound

e By time 1500 samples, the quantization noise
dominates

e (Arithmetic = double-precision floating point with
single-precision state variables)
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Impulse Response of TIIR Implementation With

Amplitude (dB)

Resets

Amplitude
o

_ i i i
50 500 1000 1500 2000
Time (Samples)

50

oF N 4
50} B 4

-100} .

-150 : B

-200 : 4

-250 1

- I I i
300O 500 1000 1500 2000

Time (Samples)
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e State-variable resets zero-out the quantization noise
before it becomes significant

e Overall system has truly finite memory
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Synthetic Division Algorithm

Algorithm for performing synthetic division to generate
the tail-canceling polynomial B'(z):

int 1,];
double *w=(double *)malloc((P+1)*sizeof (double));
/**x* load the numerator coefficients for B(z) **xx*x/
for(i=0;i<P+1;i++){
wlil=b[i];
}
/**x do synthetic division ***/
for(i=0; i<=N; i++){
factor=w[0];
for(j=0;j<P;j++){
wljl=wlj+1]+factor*alj];
}
w[P]=0;
/**x* The remainder after the i-th step is in w[0..(P-1)] xx*x
}
/*x* copy the result to the output array x*x/
for(i=0;i<P;i++) {
bb[i]=w[i];
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A One-Pole (Almost) TIIR Filter

- Warm(n) & Switch(n)
Warm(n) & = Switch(n) Clear(n)

Ol - Clear(n)
0 LA { > y(n)
@) 0O Y
1P 0
B

- T » Switch(n)

x(n) 4% Shared Delay Line
(rising edge active)

Clear(n) ...
_ 1 Warm(n) Mear& halt filter 2

1 _pzfl etc.

Switch(n) ... L[ 1 ..

—N ——  Time(samples) n—

Clear and halt filter 1
Start filter 1 on direct signal

Switch to using filter 1

e Generates truncated exponentials or constants
e Filter complexity on average ~ one pole
e Shared delay line

e Shared dynamics
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Offset Exponentials

Use two one-pole TIIRs, to make an offset exponential:

ac”+b, n=0,1,2,..., N —1

0, otherwise

h(n) =

e The constant portion b requires only one multiply
(by b) since the pole for this TIIR filter is at z =1

e Resets for pure integrators are needed less often than
for growing exponentials

e Using a cascade of digital integrators, any polynomial
impulse response is possible

e A cubic-spline impulse response requires four
integrators

constant ramp quadratic  cubic

o(n)

az

‘ + }—» y(n) = by +byn+byn’ +byn’
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