MUS420 Lecture Digital Waveguide Modeling of Horns

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305

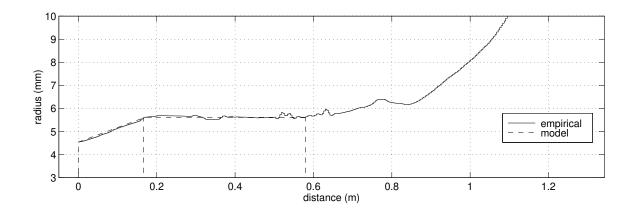
February 5, 2019

Outline

- Horn Modeling (Trumpet)
- Piecewise Conical Bore Modeling
- Truncated Infinite Impulse Response (TIIR) Filters

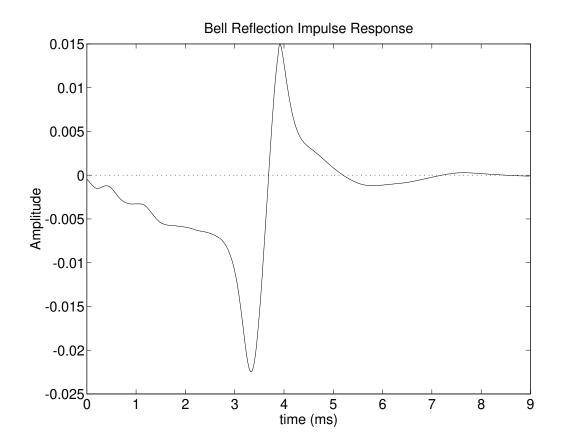
Horn Modeling

Bore Profile Reconstruction from Measured Trumpet Reflectance



- Inverse scattering applied to pulse-reflectometry data to fit piecewise-cylindrical model (like LPC model)
- Bore profile reconstruction is reasonable up to bell
- The bell is not physically equivalent to a piecewise-cylindrical acoustic tube, due to
 - complex radiation impedance,
 - conversion to higher order transverse modes

Trumpet-Bell Impulse Response Computed from Estimated Piecewise-Cylindrical Model

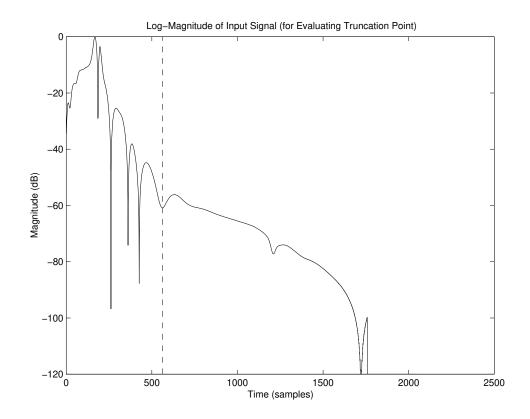


- From pulse reflectometry on trumpet with no mouthpiece
- Bore profile is reconstructed, smoothed, and segmented
- Impulse response of "bell segment" = "ideal filter"
- \bullet At $f_s=44.1$ kHz, filter length is \approx 400 to 600 samples

- A length 400 FIR bell filter is too expensive!
- Convert to IIR? Hard because
 - Phase (resonance tunings) must be preserved
 - Magnitude (resonance Q) must be preserved
 - Rise time pprox 150 samples
 - Phase-sensitive IIR design methods perform poorly

FIR to IIR Conversion Attempts

Bell Impulse Response (dB) Before Truncation

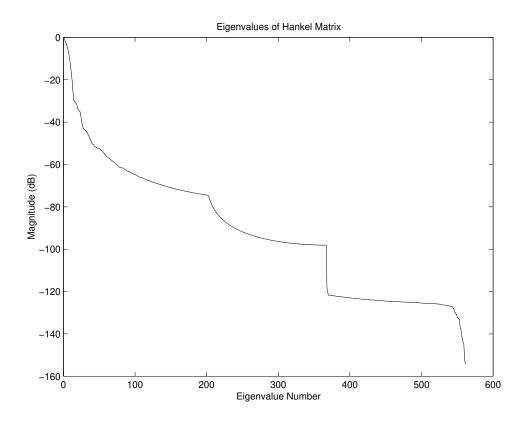


- 561 samples gives cut-off around -60 dB relative to maximum
- This length 561 FIR filter can be reduced to a lower-order IIR filter by minimizing some norm of the impulse-response error

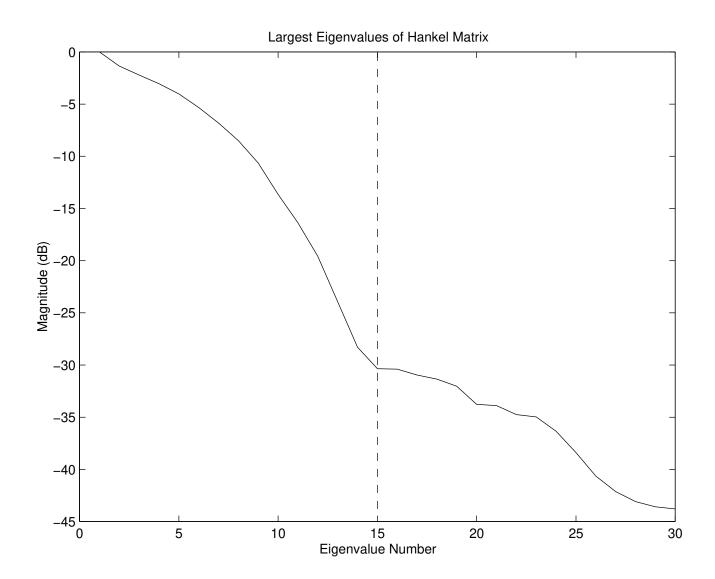
 Hankel norm minimization should always work in theory

Hankel Norm Method

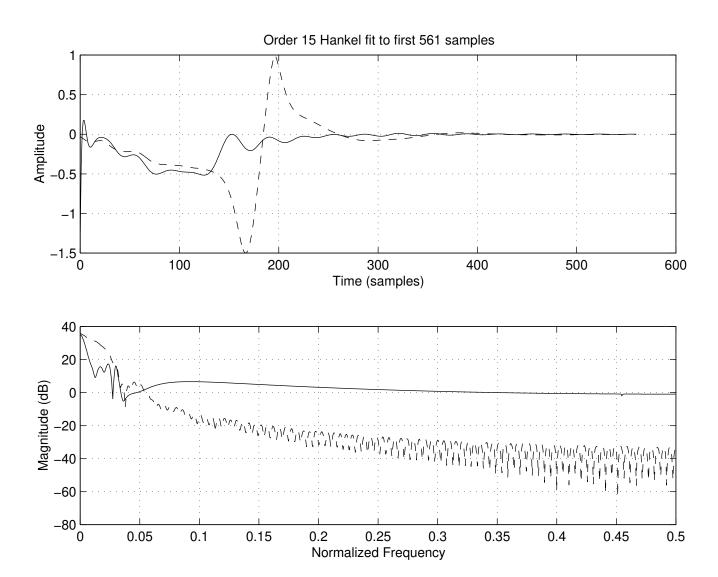
Eigenvalues of Hankel Matrix (dB)



Largest Eigenvalues of Hankel Matrix (dB)



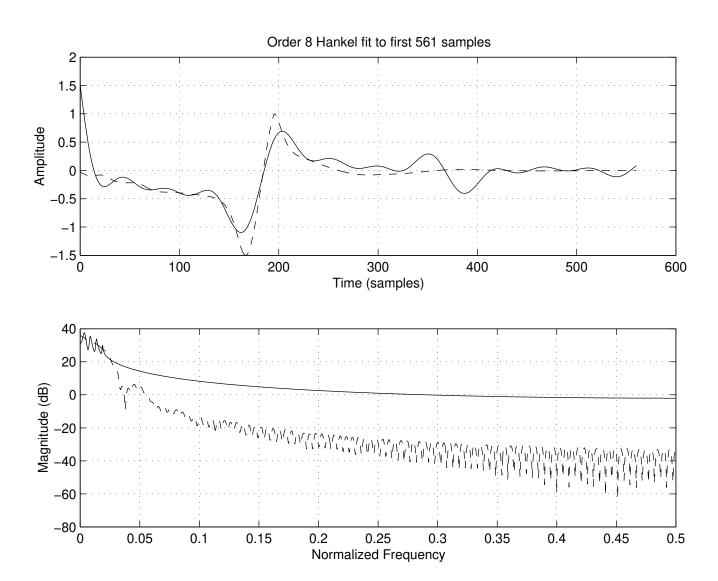
Order 15 Hankel-Norm IIR Fit to Length 561 FIR Measured Trumpet-Bell Reflectance



- Order 15 is a "sweet spot" in the eigenvalues plot
- Hankel Norm is the *only* phase-sensitive IIR error norm we know which can always be reliably minimized in principle

- Norm is sensitive to *linear* magnitude error, not dB
- This bell filter is too "bright" and fit is generally poor
- Initial time-domain match is reasonable, but it can't "hold on" until the main reflection
- Numerical failure is a likely (in Matlab/PentiumII doubles)

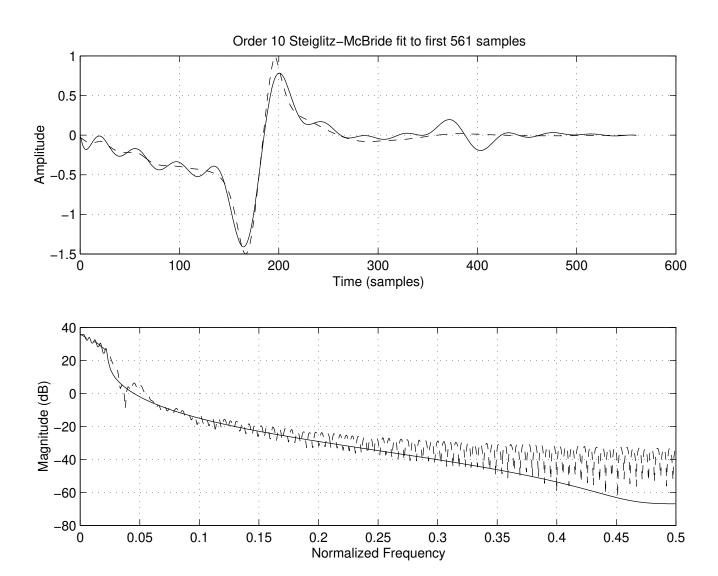
Order 8 Hankel-Norm IIR Fit to Length 561 FIR (Evidence of Numerical Failure in Previous Example)



- Halving the order actually looks better ("can't happen")
- Error plot indicates numerical troubles here as well

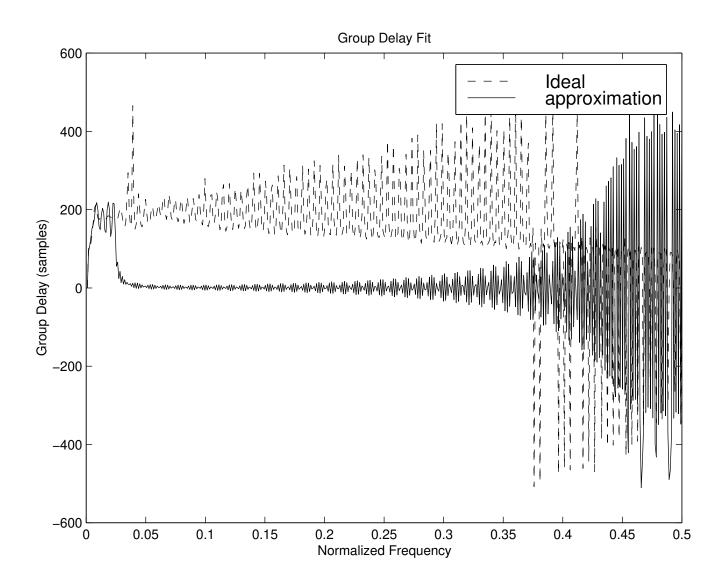
- An order P IIR filter is made using Pth eigenvector of the 561×561 Hankel matrix (condition number = 51751075)
- Numerical failure occurs at the higher orders we need
- Slow rise time of impulse response causes "numerical stress" on all phase-sensitive IIR design methods when the IIR order is much less than the rise time

Order 10 Steiglitz-McBride L_2 Fit to a Length 561 FIR Filter Model

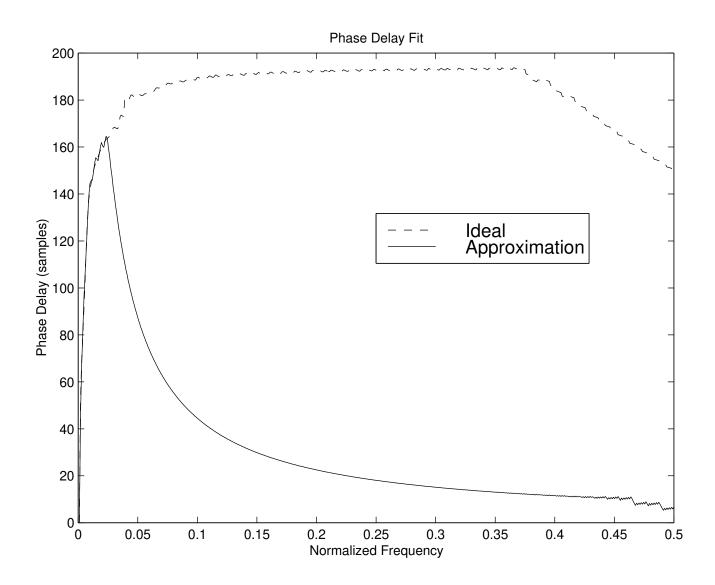


- All poles concentrated at low frequencies
- Little attention to high frequencies
- Internal "equation-error" weighting
- Numerical ill-conditioning warning printed by Matlab

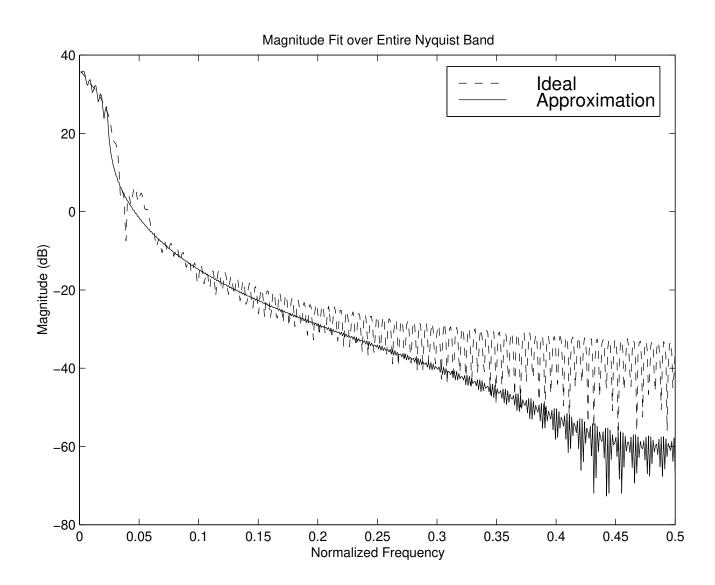
SM-10 Group Delay Fit



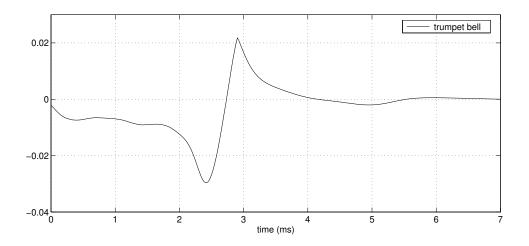
SM-10 Phase Delay Fit



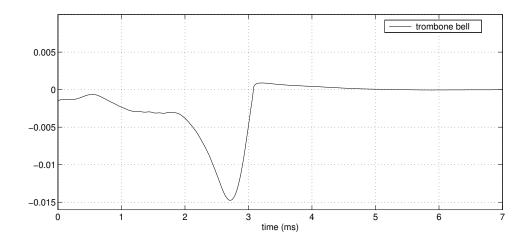
SM-10 Amplitude Response Fit



Another Measured Trumpet Bell Reflectance

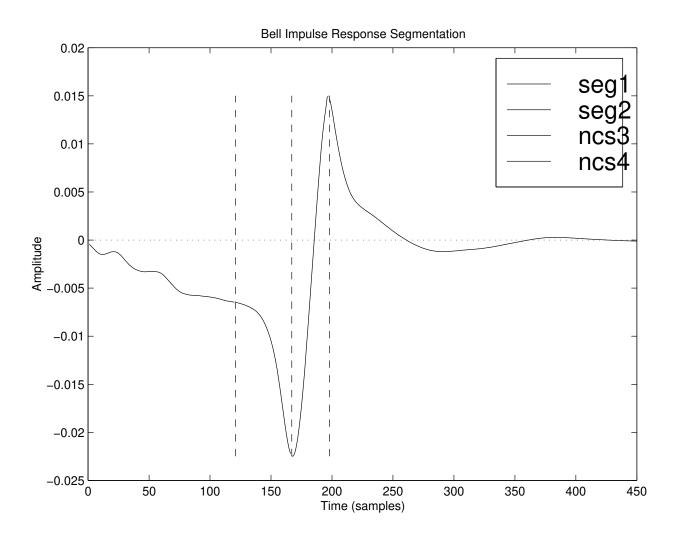


Measured Trombone Bell Reflectance

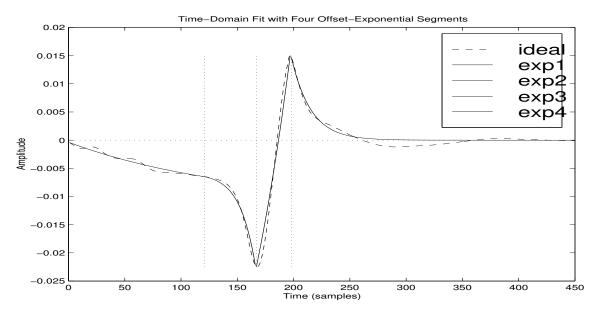


Idea!

- Break up impulse response into exponential or polynomial segments
- Exponential and polynomial impulse-responses can be designed using *Truncated IIR (TIIR) Filters*

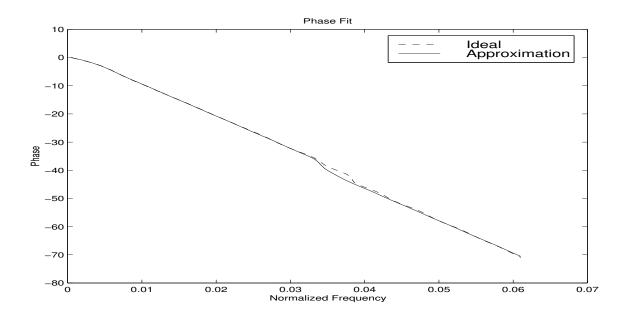


Four-Exponential Fit to Estimated Trumpet-Bell Filter (Exp-4)

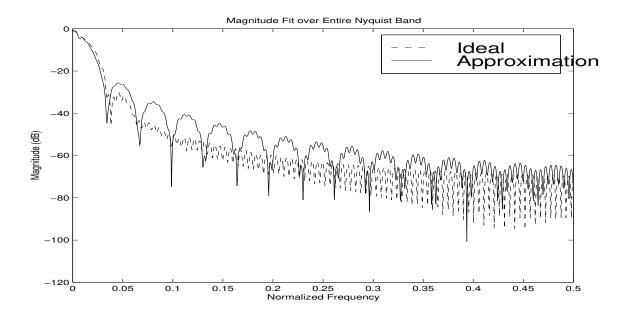


Exp-4 Impulse Response Fit

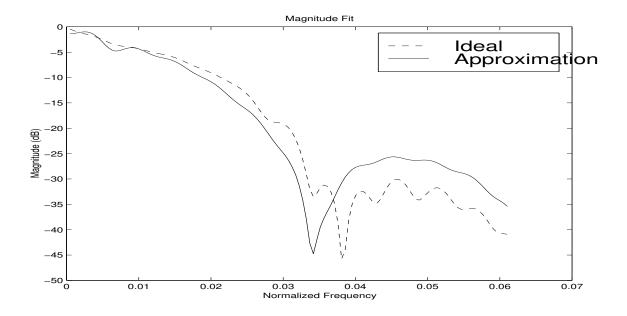
Exp-4 Phase Response Fit



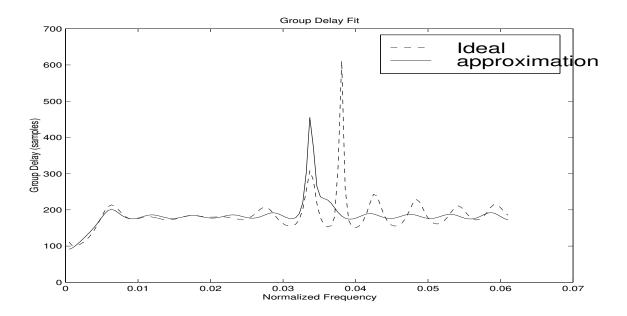
Exp-4 Amplitude Response Fit



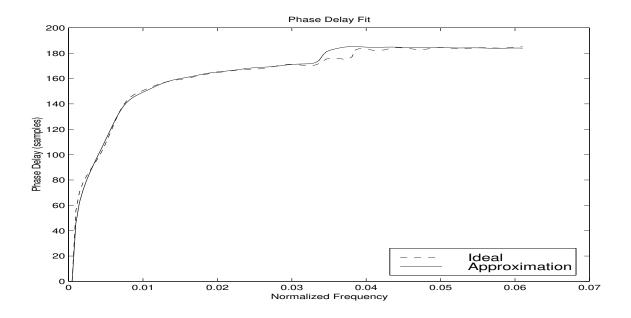
Exp-4 Low-Frequency Zoom



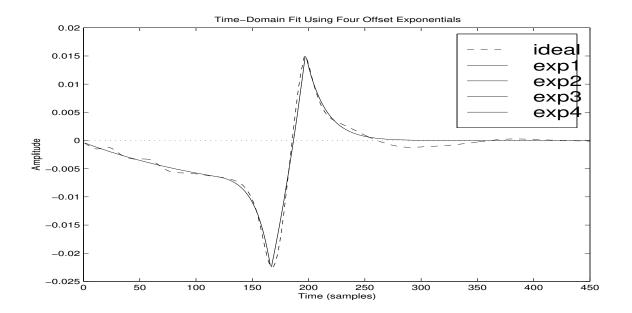
Exp-4 Group Delay Fit



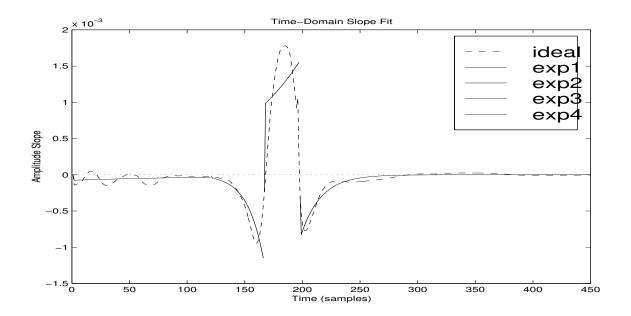
Exp-4 Phase Delay Fit



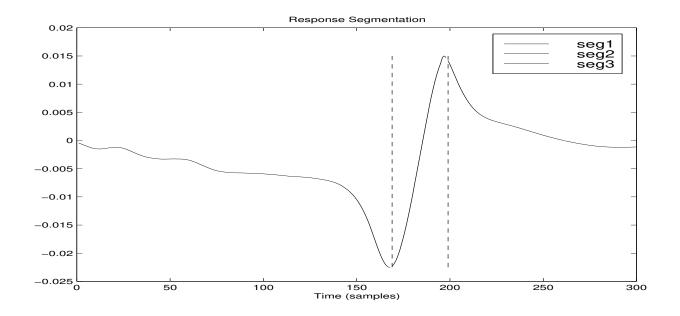
Exp-4 Impulse Response Fit (Repeated)



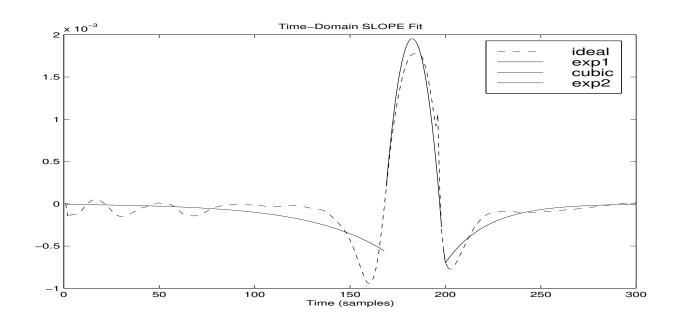
Exp-4 Slope Fit



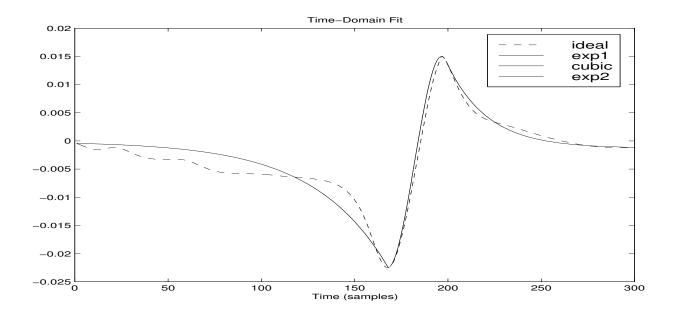
Two Exponentials Connected by a Cubic Spline Measured Trumpet Data (Exp2-S3)



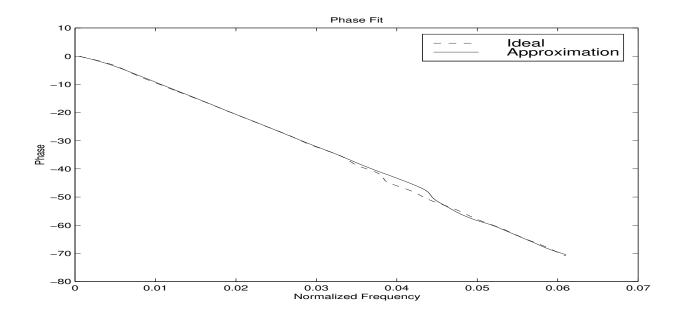
Exp2-S3 Slope Fit



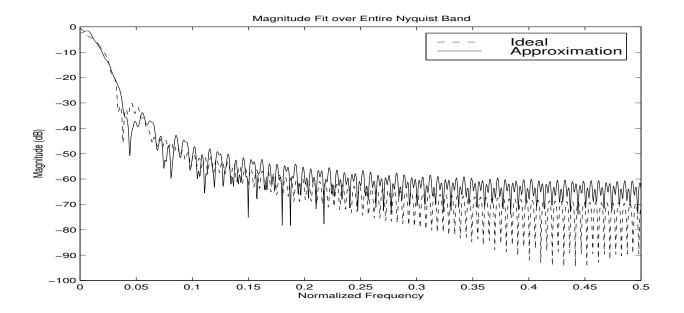
Exp2-S3 Impulse Response Fit



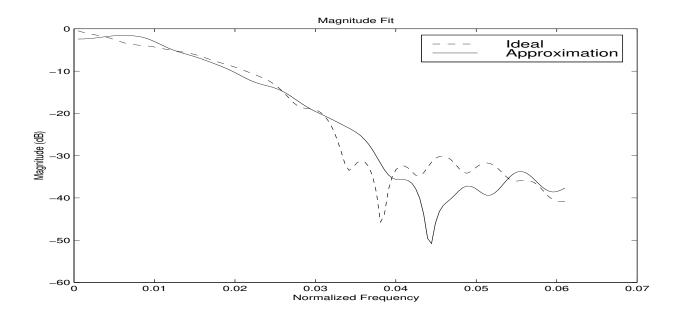
Exp2-S3 Phase Response Fit



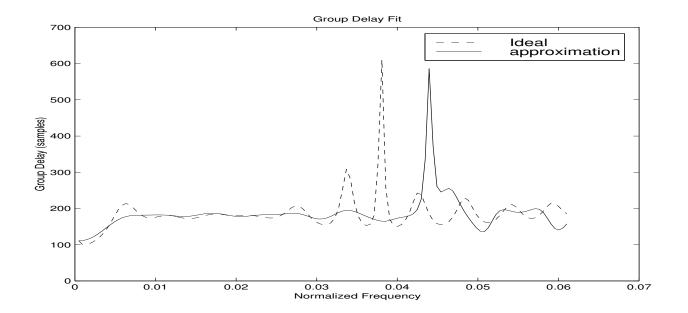
Exp2-S3 Amplitude Response Fit



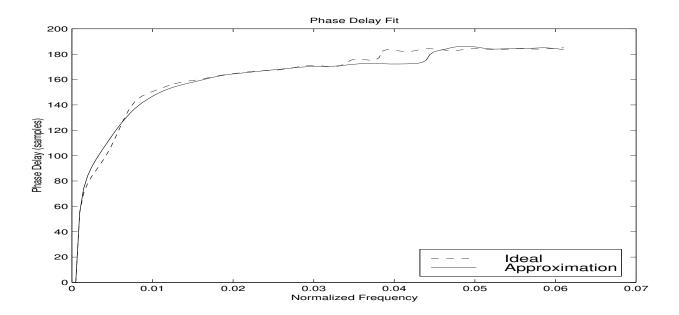
Exp2-S3 Low-Frequency Zoom



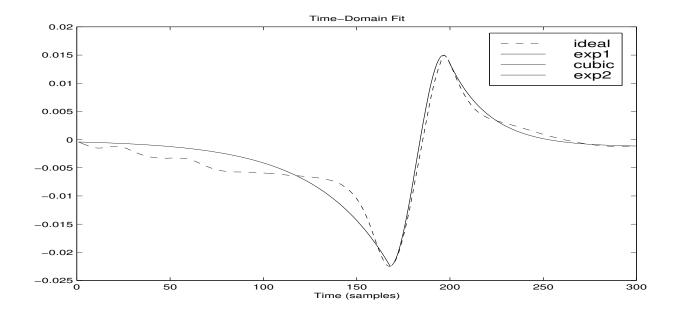
Exp2-S3 Group Delay Fit



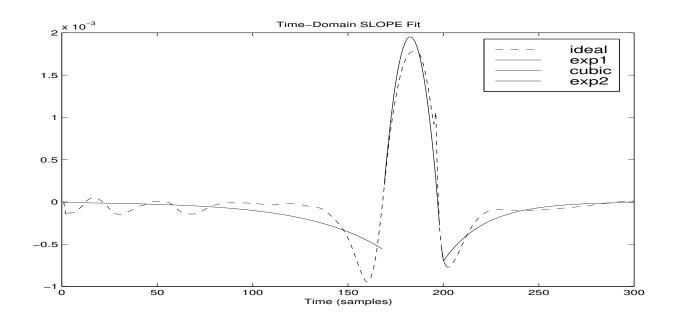
Exp2-S3 Phase Delay Fit



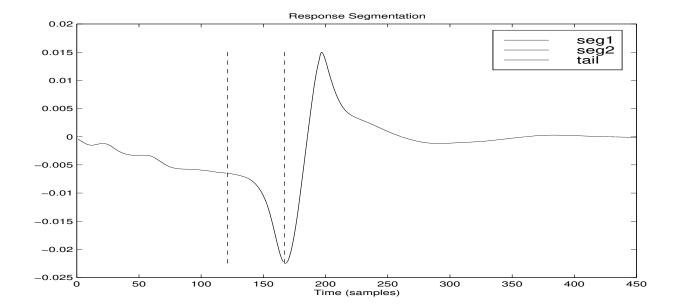
Exp2-S3 Impulse Response Fit



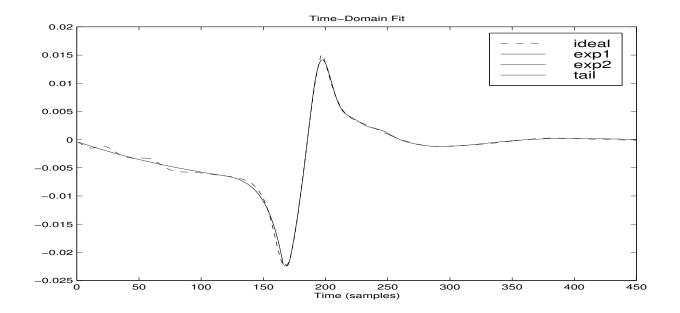
Exp2-S3 Slope Fit



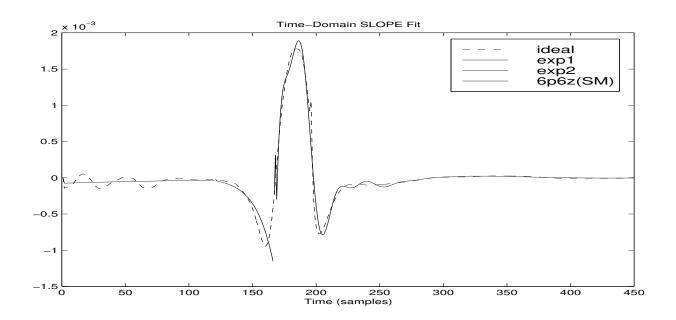
Two Exponentials Followed by a 6th-Order IIR Filter Designed by Steiglitz McBride Algorithm (Exp2-SM6)



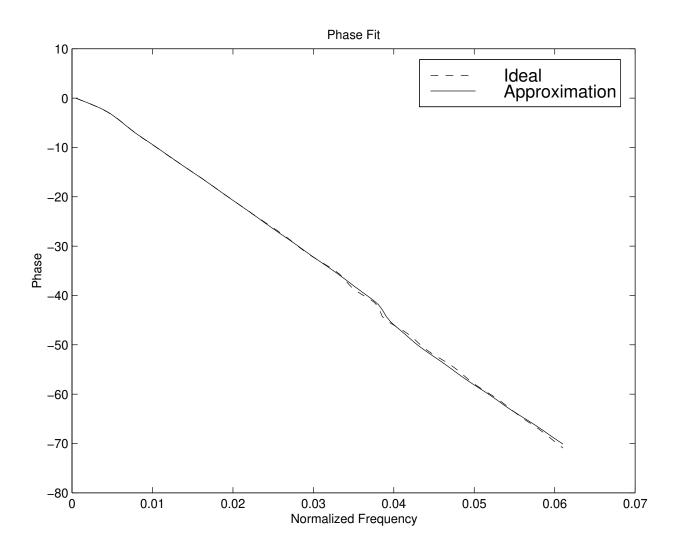
Exp2-SM6 Impulse Response Fit



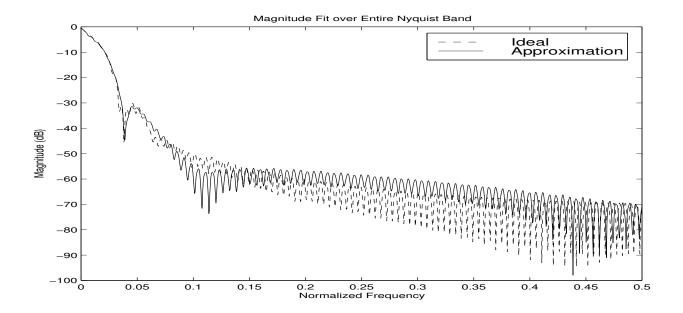
Exp2-SM6 Slope Fit



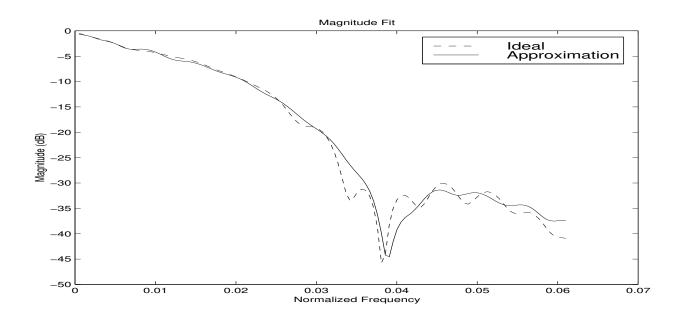
Exp2-SM6 Phase Response Fit



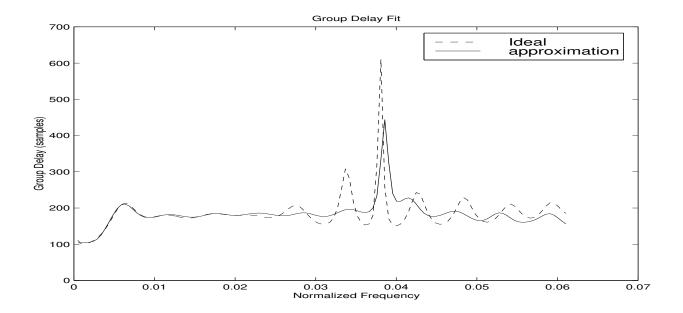
Exp2-SM6 Amplitude Response Fit



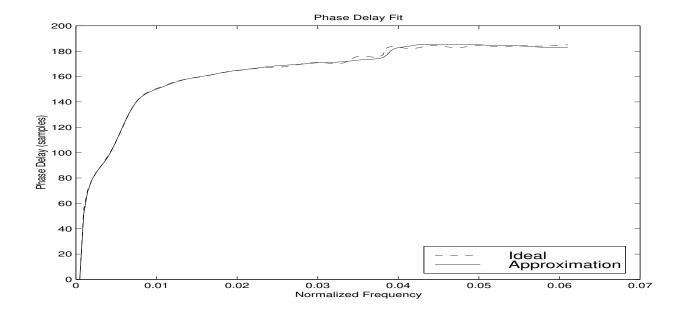
Exp2-SM6 Low-Frequency Zoom



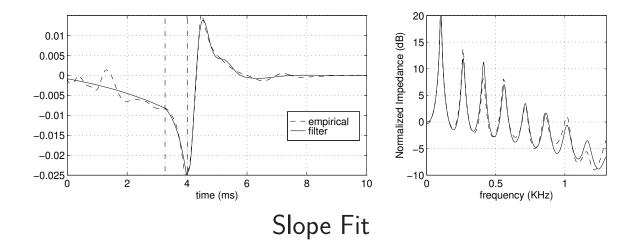
Exp2-SM6 Group Delay Fit



Exp2-SM6 Phase Delay Fit

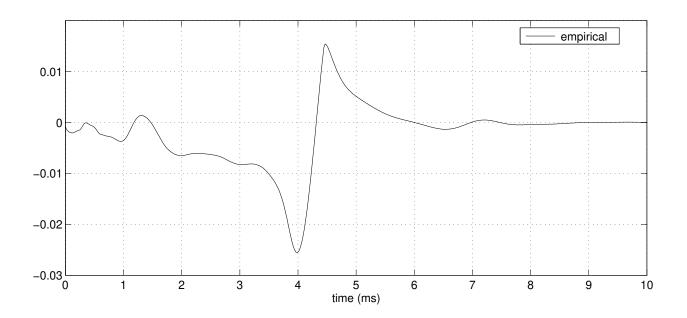


Results for Measured Trumpet Data Using Two Offset Exponentials and Two Biquads

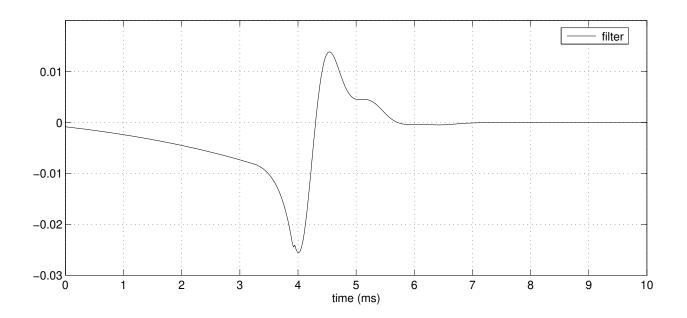


- Bell model filter complexity comparable to order 8+ IIR
- Offset exponentials were fit using fmins() in Matlab
- Two biquads were fit as a single fourth-order filter using the Steiglitz-McBride algorithm (stmcb() in Matlab)

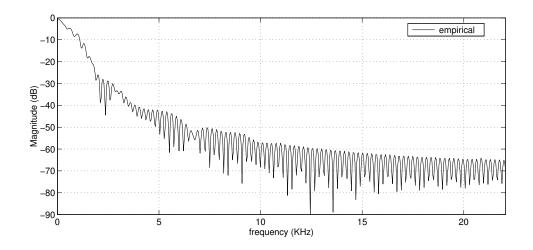
Measured Trumpet Bell Impulse Response



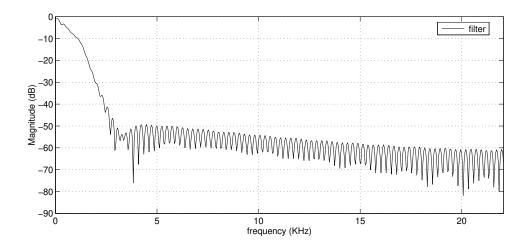
TIIR Trumpet Bell Impulse Response



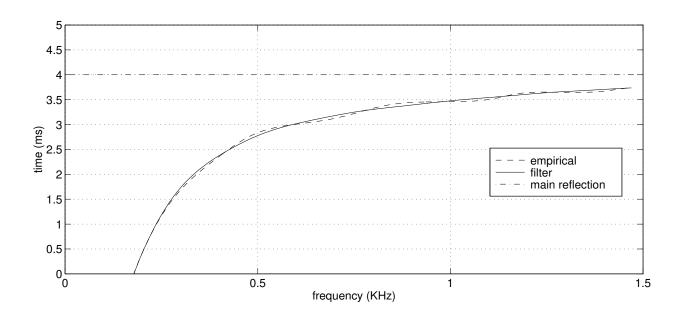
Measured Trumpet Bell Amplitude Response



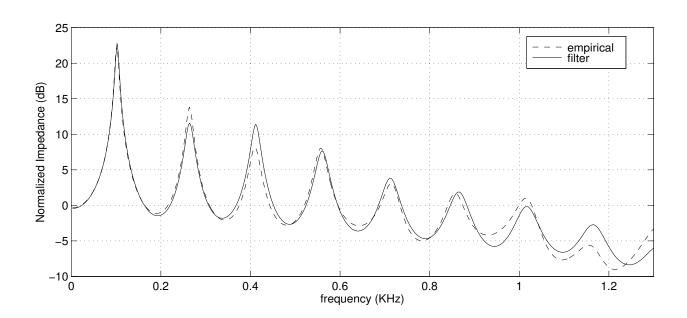
TIIR Trumpet Bell Amplitude Response



Trumpet Bell Phase Delay Fit



Input Impedance of Complete Bore + Bell Model

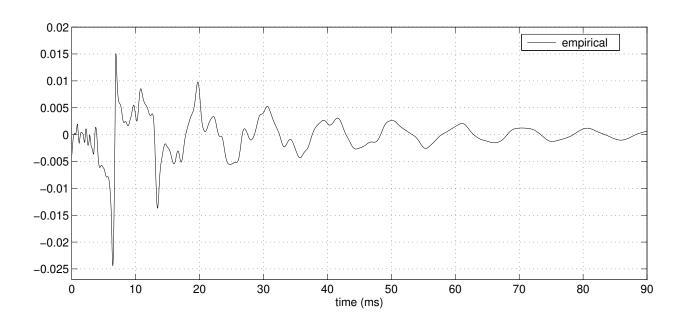


Comparison to Measurements

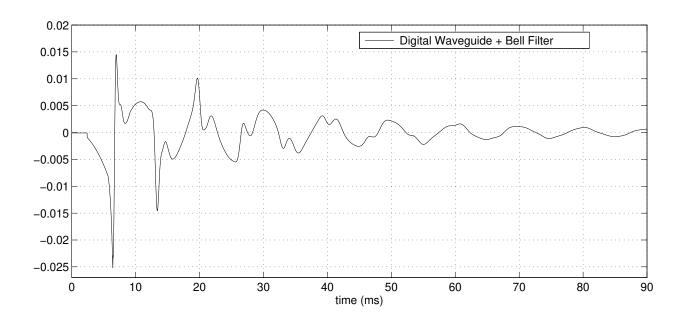
The next two pages of plots compare the *measured* impulse response with that produced by the final digital waveguide model consisting of a trumpet bore + bell (but no mouthpiece).

- Comparison 1: two offset exponentials and two biquads to model the bell impulse response
- Comparison 2: two offset exponentials and three biquads to model the bell impulse response

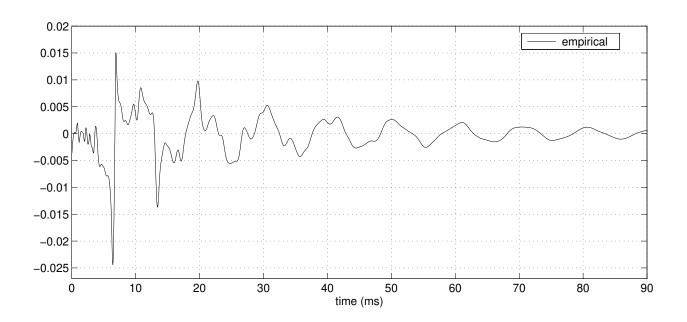
Measured Impulse Response



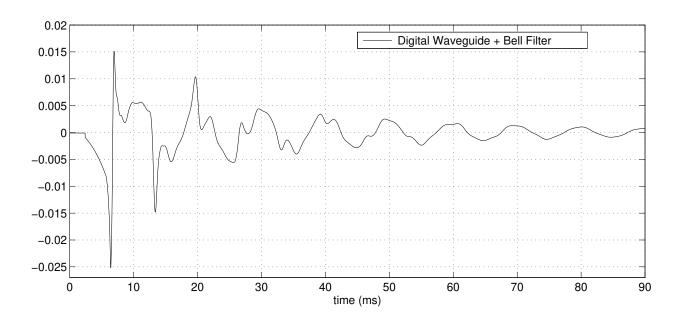
Synthesized Impulse Response, Order 4 Tail



Measured Impulse Response



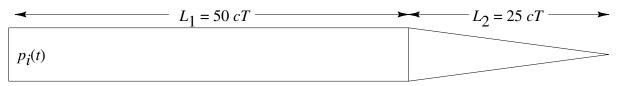
Synthesized Impulse Response, Order 6 Tail



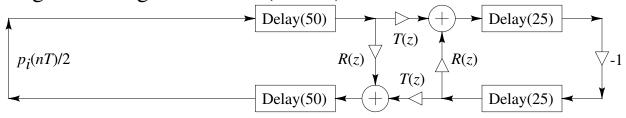
Piecewise Conical Acoustic Tube Modeling

Simple Example: Cylinder with Conical Cap

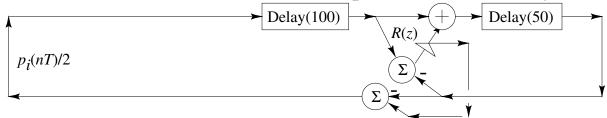
Physical Outline of Cylinder and Cone:



Digital Waveguide Model (DWM) for Pressure Waves:



Reduced DWM for Maximum Computational Efficiency:



where

$$R(z) = \left(\frac{1}{99}\right) \left(\frac{1+z^{-1}}{1-\frac{101}{99}z^{-1}}\right)$$

$$T(z) = \left(\frac{100}{99}\right) \left(\frac{1-z^{-1}}{1-\frac{101}{99}z^{-1}}\right) = 1 + R(z)$$

- **Problem:** Reflection filter R(z) and transmission filter T(z) are unstable (pole at z=101/99)
- Overall system is passive ⇒ unstable pole is canceled

Implementation Idea

Apply TIIR "alternate and reset" idea to the unstable conical subsystem

- \bullet Cone is not truly FIR $\Rightarrow t_{60}$ replaces FIR length
- When cylinder is closed-ended, cone traveling-wave components increase without bound \Rightarrow must switch out and reset the entire cone assembly (scattering-junction filter R(z) and cone's entire delay line)
- According to simulations thus far, cylinder waves are well behaved and do not need to be reset (no general proof yet)

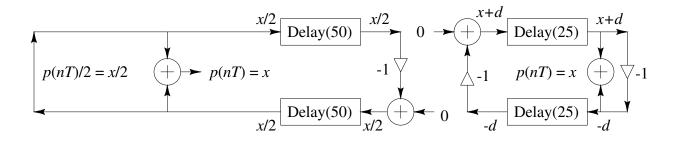
Basic Principle

Periodically reset any subsystem containing a canceled unstable pole at intervals greater than or equal to the t_{60} for that subsystem

Interesting Paradox at DC

DC Steady State: Closed-End Cylinder





- R(1) = -1 (dc response of reflection filter inverts)
- T(1) = 0 (dc does not transmit through the junction)
- Physically obvious dc solution (constant pressure offset) is not possible in either the cone or the cylinder model!
- Simulated impulse responses agree with the literature
- A final constant dc offset is observed in the simulations

Solution to Paradox

- It turns out the reflection transfer function looking into the cone from the cylinder has two poles and two zeros at dc
- The dc poles and zeros cancel and leave a dc cone reflectance equal to +1 (the physically obvious answer)
- We can't just set the reflection filter to its dc equivalent to figure out the dc behavior of the overall model
- Instead, a more careful limit must be taken

In the s plane, the conical cap pressure reflectance, seen from the cylinder, can be derived to be

$$H(s) \stackrel{\Delta}{=} \frac{1 + R(s)(1 + 2st_x)}{2st_x - 1 - R(s)}$$

where t_x is the time (in seconds) to propagate across the cone, and

$$R(s) = -e^{-2st_x}$$

is the reflectance of the cone at its entrance. We have

$$\lim_{s \to 0} R(s) = -1$$
$$\lim_{s \to 0} H(s) = +1$$

Truncated Infinite Impulse Response (TIIR) Digital Filters

An FIR filter can be constructed as the difference of two IIR filters:

General FIR filter

- Coefficients: $\{h_0, \ldots, h_N\}$
- Implementation (convolution):

$$y(n) = (h * x)(n) = \sum_{m=0}^{N} h_m x(n-m)$$

• Transfer function:

$$H_{\text{FIR}}(z) \stackrel{\Delta}{=} h_0 + h_1 z^{-1} + \ldots + h_N z^{-N}$$
$$\stackrel{\Delta}{=} z^{-N} C(z),$$

where C(z) is the N-th degree polynomial in z formed by the h_k

General P-th order IIR filter

• Difference equation

$$y(n) = -\sum_{k=1}^{P} a_k y(n-k) + \sum_{\ell=0}^{P} b_{\ell} x(n-\ell)$$

Transfer function

$$H_{\text{IIR}}(z) \stackrel{\Delta}{=} \frac{b_0 + b_1 z^{-1} + \dots + b_P z^{-P}}{1 + a_1 z^{-1} + \dots + a_P z^{-P}}$$

$$\stackrel{\Delta}{=} \frac{b_0 z^P + b_1 z^{P-1} + \dots + b_P}{z^P + a_1 z^{P-1} + \dots + a_P}$$

$$\stackrel{\Delta}{=} \frac{B(z)}{A(z)}$$

$$\stackrel{\Delta}{=} h_0 + h_1 z^{-1} + h_2 z^{-2} + \dots,$$

where

$$A(z) \stackrel{\Delta}{=} z^P + a_1 z^{P-1} + \ldots + a_P \qquad \text{(monic)}$$

$$B(z) \stackrel{\Delta}{=} b_0 z^P + b_1 z^{P-1} + \ldots + b_P$$

TIIR Construction: A One-Pole Example

Consider an FIR filter having a truncated geometric sequence $\{h_0,h_0p,\ldots,h_0p^N\}$ as an impulse response. This filter has the same impulse response for the first N+1 terms as the one-pole IIR filter with transfer function

$$H_{\rm IIR}(z) = \frac{h_0}{1 - pz^{-1}}.$$

Subtracting off the tail of the impulse response gives

$$H_{\text{FIR}}(z) = h_0 + h_0 p z^{-1} + \dots + h_0 p^N z^{-N}$$

$$= \left\{ h_0 + h_0 p z^{-1} + \dots \right\}$$

$$- \left\{ h_0 p^{N+1} z^{-(N+1)} + h_0 p^{(N+2)} z^{-(N+2)} + \dots \right\}$$

$$= \frac{h_0}{1 - p z^{-1}} - p^{N+1} z^{-(N+1)} \frac{h_0}{1 - p z^{-1}}$$

$$= h_0 \frac{1 - p^{N+1} z^{-(N+1)}}{1 - p z^{-1}}$$

The time-domain recursion for this filter is

$$y[n] = \sum_{k=0}^{N} h_0 p^k x[n-k]$$

= $py[n-1] + h_0 (x[n] - p^{N+1}x[n-(N+1)])$

Complexity Notes

- ullet Direct FIR filter implementation requires N+1 multiplies and N adds
- ullet TIIR implementation requires 3 multiplies and 2 adds, independent of N
- No savings in memory

Note that there is a pole-zero cancellation in the TIIR transfer function

$$H(z) = h_0 \frac{1 - p^{N+1} z^{-(N+1)}}{1 - p z^{-1}} = h_0 + h_0 p z^{-1} + \dots + h_0 p^N z^{-N}$$

- ullet If |p| < 1, no problem since the canceled pole is stable
- If $|p| \ge 1$, imperfect pole-zero cancellation due to numerical rounding leads to exponentially growing round-off error

Basic Idea: Since the overall TIIR filter is FIR(N), alternate between two instances of each unstable one-pole, starting each new one from the zero state N samples before it is actually used. (Apparently first suggested by T. Fam at Asilomar-'87 for the case of distinct poles.)

Extension to Higher-Order TIIR Sequences

We can extend this idea from the one-pole case to any rational filter H(z)=B(z)/A(z). The general procedure is to find the "tail filter" $H_{\rm IIR}'(z)$ and subtract it off:

$$H_{\rm FIR}(z) = H_{\rm IIR}(z) - H'_{\rm IIR}(z)$$

Multiply $H_{\rm IIR}(z)$ by z^N to obtain

$$z^{N}H_{IIR}(z) = h_{0}z^{N} + \dots + h_{N-1}z + h_{N} + h_{N+1}z^{-1} + h_{N+2}z^{-2} + \dots$$

$$\stackrel{\Delta}{=} C(z) + H'_{IIR}(z)$$

$$= \frac{z^{N}B(z)}{A(z)} \stackrel{\Delta}{=} C(z) + \frac{B'(z)}{A(z)}$$

- B'(z) is the unique remainder after dividing $z^N B(z)$ by A(z) using "synthetic division" $(z^N B(z) \equiv B'(z) \pmod{A(z)})$
- ullet We may assume $\operatorname{Deg} \left\{ B'(z) \right\} = \operatorname{Deg} \left\{ A(z) \right\} 1$
- B'(z) gives us our desired "tail filter" for forming $H_{\rm FIR} = H_{\rm IIR} H'_{\rm IIR}$:

$$H'_{\rm IIR}(z) = \frac{B'(z)}{A(z)}$$

Higher-Order TIIR Filters

We have

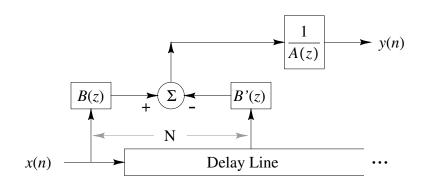
$$H_{\text{FIR}}(z) = H_{\text{IIR}}(z) - z^{-N} H'_{\text{IIR}}(z)$$

= $\frac{B(z) - z^{-N} B'(z)}{A(z)}$

The corresponding difference equation is

$$y[n] = -\sum_{k=1}^{P} a_k y[n-k] + \sum_{\ell=0}^{P} b_\ell x[n-\ell]$$
$$-\sum_{m=0}^{P-1} b'_m x[n-m-(N+1)]$$

Since the denominators of $H_{\rm IIR}(z)$ and $H'_{\rm IIR}(z)$ are the same, the *dynamics* (poles) can be shared:



Complexity and Storage-Cost

$$H_{\text{FIR}}(z) = \frac{B(z) - z^{-N}B'(z)}{A(z)}$$

 $N=\mathsf{FIR}$ order and let P=A(z) order (#poles)

- \bullet The computational cost of the general truncated P-th order IIR system is 3P+1 multiplies and 3P-2 adds, independent of N
- ullet Net computational savings is achieved when N>3P

Storage Requirements

- ullet P output samples for the IIR feedback dynamics A(z)
- N input samples of the FIR filter (main delay line)
- ullet P input samples for B(z) (normally in delay line)
- ullet P input samples for B'(z) (also possibly in delay line)

Thus, we need a total of at least N+P input delay samples, of which only 2P are accessed, and P output delay samples. This is between P and 2P more than a direct FIR implementation.

Example

We wish to truncate the impulse response of

$$H^{+}(z) = \frac{B^{+}(z)}{A^{+}(z)} = \frac{1}{1 - 1.9z^{-1} + 0.98z^{-2}}$$

after N=300 samples to obtain a length 301 FIR filter $H^+_{\rm FIR}(z)$

Steps:

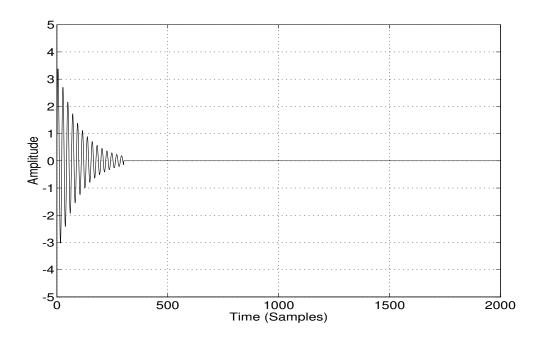
1. Perform synthetic division on $z^{300}B^+(z)$ by A(z) to obtain the remainder

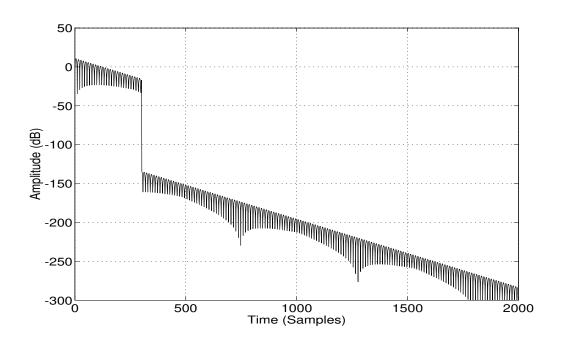
$$B'^{+}(z) = -0.162126z + 0.139770$$

2. Form the TIIR filter as

$$H_{\text{FIR}}^{+}(z) = \sum_{k=0}^{N} h_{k}^{+} z^{-k} = \frac{B^{+}(z) - z^{-N} B'^{+}(z)}{A^{+}(z)}$$
$$= \frac{1 + 0.162126 z^{-299} - 0.139770 z^{-300}}{1 - 1.9z^{-1} + 0.98z^{-2}}$$

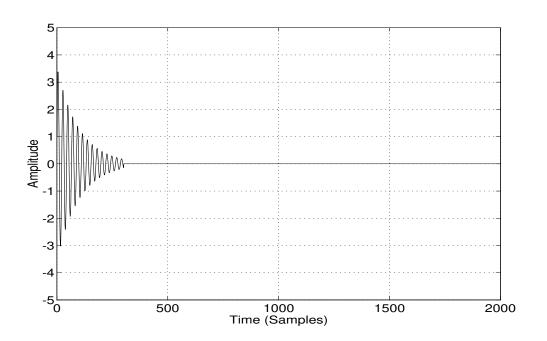
Impulse Response of TIIR Implementation Without Resets

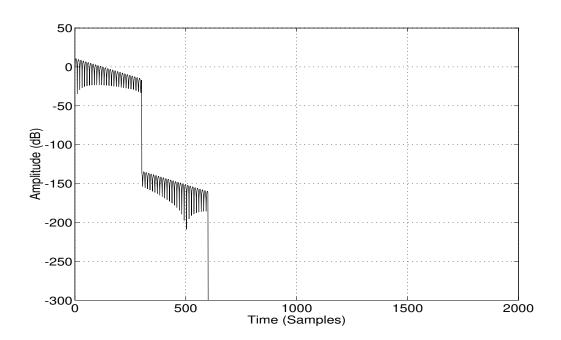




- \bullet At time n=301, the tail of the response is subtracted off, and the impulse-response magnitude drops by about 115 dB
- Due to quantization errors, there is a residual response
- Poles are all stable, so error decays

Impulse Response of TIIR Implementation With Resets





- \bullet Again, impulse-response tail is subtracted off at time n=301, giving around 115 dB attenuation
- Additionally, state variables are cleared every 300 samples
- ullet Residual response completely canceled at time n=600
- System has truly finite memory

Unstable Example

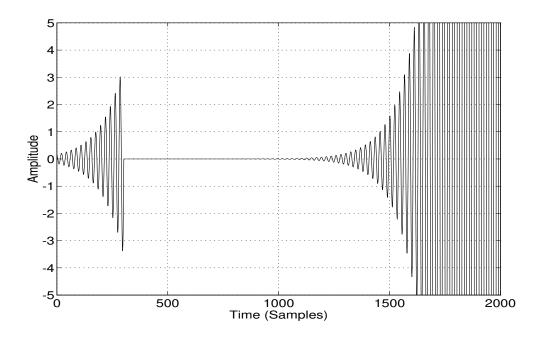
To form a linear phase TIIR filter based on the previous example, we need also the "flipped" impulse response generated by

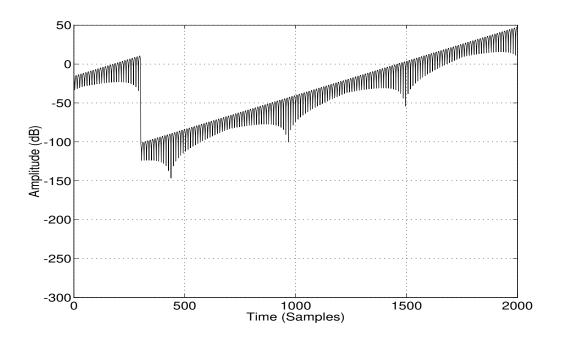
$$H_{\text{FIR}}^{-}(z) = \frac{-0.139770z^2 + 0.162126z - z^{-300}}{0.98z^2 - 1.9z + 1}$$
$$= \frac{-0.142622z^2 + 0.165435z - 1.020408z^{-300}}{z^2 - 1.938776z + 1.020408}$$

where the last equation is normalized by 0.98 to make the denominator monic.

This system has two unstable hidden modes.

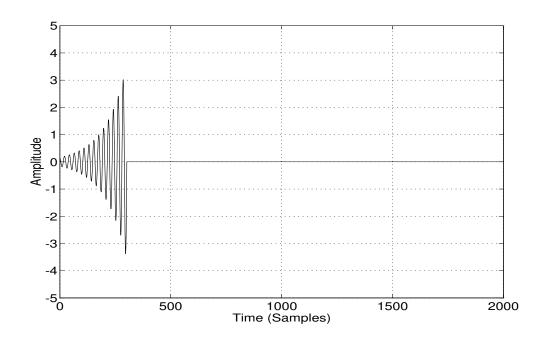
Impulse Response Without Resets

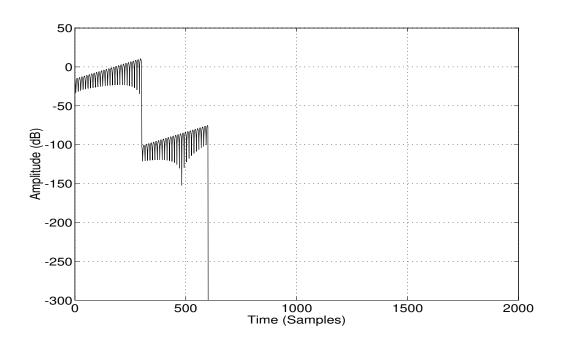




- Tail is canceled with about 125 dB attenuation
- Due to the unstable canceled poles, quantization noise grows without bound
- By time 1500 samples, the quantization noise dominates
- (Arithmetic = double-precision floating point with single-precision state variables)

Impulse Response of TIIR Implementation With Resets





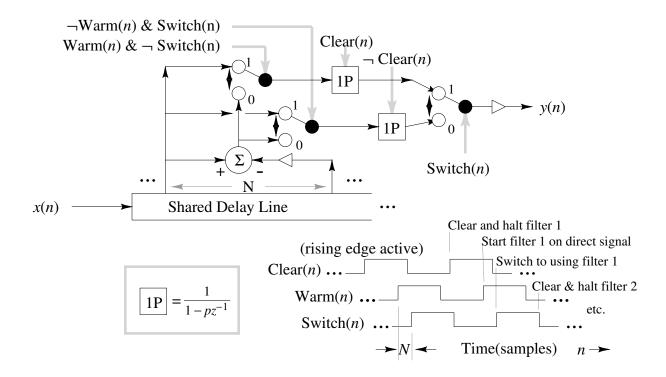
- State-variable resets zero-out the quantization noise before it becomes significant
- Overall system has truly finite memory

Synthetic Division Algorithm

Algorithm for performing synthetic division to generate the tail-canceling polynomial B'(z):

```
int i,j;
     double *w=(double *)malloc((P+1)*sizeof(double));
/*** load the numerator coefficients for B(z) ***/
     for(i=0;i<P+1;i++){
          w[i]=b[i];
     }
/*** do synthetic division ***/
     for(i=0; i<=N; i++){
          factor=w[0];
          for(j=0;j<P;j++){
               w[j]=w[j+1]+factor*a[j];
          }
          w[P]=0;
/**** The remainder after the i-th step is in w[0..(P-1)] ***
     }
/*** copy the result to the output array ***/
     for(i=0;i<P;i++) {</pre>
          bb[i]=w[i];
     }
```

A One-Pole (Almost) TIIR Filter



- Generates truncated exponentials or constants
- ullet Filter complexity on average pprox one pole
- Shared delay line
- Shared dynamics

Offset Exponentials

Use two one-pole TIIRs, to make an offset exponential:

$$h(n) = \begin{cases} ae^{cn} + b, & n = 0, 1, 2, \dots, N-1 \\ 0, & \text{otherwise} \end{cases}$$

- The constant portion b requires only one multiply (by b) since the pole for this TIIR filter is at z=1
- Resets for pure integrators are needed less often than for growing exponentials
- Using a cascade of digital integrators, any polynomial impulse response is possible
- A cubic-spline impulse response requires four integrators

