MUS420 Supplement
Stability Proof for a Cylindrical Bore with Conical Cap

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)
$\frac{\text { Department of Music, Stanford University }}{}$
Stanford, California 94305
February 5, 2019

Outline

- Cylinder with Conical Cap
- Scattering Filters at the Cylinder-Cone Junction
- Reflectance of the Conical Cap
- Reflectance of Conical Cap Seen from Cylinder
- Stability Proof
- Poles at DC
where

$$
\begin{aligned}
\xi & =\text { distance to the apex of the cone } \\
S(\xi) & =\text { cross-sectional area of cone } \\
\rho c & =\text { wave impedance in open air }
\end{aligned}
$$

In the limit as $\xi \rightarrow \infty$,

$$
Z_{\infty}(j \omega)=\frac{\rho c}{S} \quad \text { (cylindrical tube impedance) }
$$

Reflectance of the conical cap, seen from cylinder:

$$
R(s)=-\frac{c / \xi}{c / \xi-2 s}
$$

Transmittance to the right:

$$
T(s)=1+R(s)=-\frac{2 s}{c / \xi-2 s}
$$

- $R(s)$ and $T(s)$ are first-order transfer functions, each having a single real pole at $s=c /(2 \xi) \Rightarrow$ unstable
- $R(s)$ and $T(s)$ identical from left and right given no wavefront area discontinuity.
a)

b)

- Cylinder open or closed on left side
- Otherwise closed
- Obviously passive physically
- Hard to show! [$R(s)$ and $T(s)$ are unstable]

Scattering Filters at the Cylinder-Cone Junction

Wave impedance at frequency $\omega \mathrm{rad} / \mathrm{sec}$ in a converging cone:
$Z_{\xi}(j \omega)=\frac{\rho c}{S(\xi)} \cdot \frac{j \omega}{j \omega-c / \xi} \quad$ (converging cone impedance)
2

Reflectance of the Conical Cap

- Let $t_{\xi} \triangleq \xi / c$ denote the time to propagate across the length of the cone in one direction
- Reflectance of complete (lossless) cone is -1 for pressure waves
(reflects like an open-ended cylinder)
- Round-trip transfer function from cone entrance to tip and back is

$$
R_{t_{\xi}}(s) \triangleq-e^{-2 s t_{\xi}}=e^{-s t_{\xi}}(-1) e^{-s t_{\xi}}
$$

(reflectance seen inside the cone)

Reflectance of Conical Cap Seen from Cylinder

From the figure, we can derive the conical cap reflectance
to be

$$
\begin{aligned}
R_{J}(s) & =\frac{R(s)+2 R(s) R_{t_{\xi}}(s)+R_{t_{\xi}}(s)}{1-R(s) R_{t_{\xi}}(s)} \\
& =\frac{1+\left(1+2 s t_{\xi}\right) R_{t_{\xi}}(s)}{2 s t_{\xi}-1-R_{t_{\xi}}(s)} \\
& =\frac{1-\left(1+2 s t_{\xi}\right) e^{-2 s t_{\xi}}}{2 s t_{\xi}-1+e^{-2 s t_{\xi}}} \\
& \triangleq \frac{N(s)}{D(s)}
\end{aligned}
$$

For very large t_{ξ}, the conical cap reflectance approaches $R_{J}=-e^{-2 s t_{\xi}}$ which coincides with the impedance of a length $\xi=c t_{\xi}$ open-end cylinder, as expected.

Stability Proof Outline

- A transfer function $R_{J}(s)=N(s) / D(s)$ is stable if there are no poles in the right-half s plane. That is, for each zero s_{i} of $D(s)$, we must have re $\left\{s_{i}\right\} \leq 0$. If this can be shown, along with $\left|R_{J}(j \omega)\right| \leq 1$, then the reflectance R_{J} is shown to be passive.
- We must also study the system zeros (roots of $N(s)$) in order to determine if there are any pole-zero cancellations (common factors in $D(s)$ and $N(s)$).

Both of these equations must hold at any pole of the reflectance. For stability, we further require $\sigma \leq 0$.
Defining $\tau=2 \sigma$ and $\nu=2 \omega$, we obtain the simpler conditions

$$
\begin{aligned}
e^{\tau}(1-\tau) & =\cos (\nu) \\
e^{\tau} & =\frac{\sin (\nu)}{\nu}
\end{aligned}
$$

For any poles of $R_{J}(s)$ on the $j \omega$ axis, we have $\tau=0$, and the second equation reduces to $\operatorname{sinc}(\nu)=1$. It is well known that the sinc function is less than 1 in magnitude at all ν except $\nu=0$. Therefore, this relation can hold only at $\omega=\nu=0$, and so

Any right-half-plane poles occur at $\omega=0$.
Stability Proof, continued

The same argument can be extended to the entire right-half plane as follows. Going back to

$$
\frac{\sin (\nu)}{\nu}=e^{\tau}
$$

since $|\sin (\nu) / \nu| \leq 1$ for all real ν, and since $\left|e^{\tau}\right|>1$ for $\tau>0$, this equation clearly has no solutions in the right-half plane. Therefore,

Any right-half-plane poles occur at $s=0$.

- Since re $\left\{s t_{\xi}\right\} \geq 0$ if and only if re $\{s\} \geq 0$, for $t_{\xi}>0$, we may set $t_{\xi}=1$ without loss of generality. Thus, we need only study the roots of

$$
\begin{aligned}
& N(s)=1-e^{-2 s}-2 s e^{-2 s} \\
& D(s)=2 s-1+e^{-2 s}
\end{aligned}
$$

If this system is stable, we have stability also for all $t_{\xi}>0$.

- Since $e^{-2 s}$ is not a rational function of s, the reflectance $R_{J}(s)$ may have infinitely many poles and zeros.

Stability Proof

First consider the roots of the denominator

$$
D(s)=2 s-1+e^{-2 s}
$$

At any pole (solution s of $D(s)=0$), we must have

$$
s=\frac{1-e^{-2 s}}{2}
$$

To obtain separate equations for the real and imaginary parts, take the real and imaginary parts of $D(\sigma+j \omega)=0$ to get

$$
\begin{aligned}
\operatorname{re}\{D(s)\} & =(2 \sigma-1)+e^{-2 \sigma} \cos (2 \omega)=0 \\
\operatorname{im}\{D(s)\} & =2 \omega-e^{-2 \sigma} \sin (2 \omega)=0
\end{aligned}
$$

6

A Pole at DC

Since both of the conditions

$$
\begin{aligned}
e^{\tau}(1-\tau) & =\cos (\nu) \\
e^{\tau} & =\frac{\sin (\nu)}{\nu}
\end{aligned}
$$

are clearly satisfied for $\tau=\nu=0$, we see that there is in fact a pole in the reflectance at dc $(s=0)$, provided it is not canceled by a zero at dc in the numerator $N(s)$.

The Left-Half Plane

In the left-half plane, there are many potential poles:

- The first of the two equations

$$
e^{\tau}(1-\tau)=\cos (\nu)
$$

has infinitely many solutions for each $\tau<0$, since the elementary inequality $1-\tau \leq e^{-\tau}$ implies

$$
e^{\tau}(1-\tau)<e^{\tau} e^{-\tau}=1
$$

- The second equation,

$$
e^{\tau}=\frac{\sin (\nu)}{\nu}
$$

has an increasing number of solutions as τ grows more and more negative.

- As $\tau \rightarrow-\infty$, the number of solutions becomes infinite
and are given by the zeros of $\sin (\nu)$
- At $\tau \rightarrow-\infty$, the solutions of the other equation converge to the zeros of $\cos (\nu)$
- Thus, the solutions of

$$
\begin{aligned}
e^{\tau}(1-\tau) & =\cos (\nu) \\
e^{\tau} & =\frac{\sin (\nu)}{\nu}
\end{aligned}
$$

may not necessarily occur together for $\tau<0$, as they must.

Poles at $\mathrm{s}=0$

We know from the foregoing that the denominator of the cone reflectance has at least one root at $s=0$. We now investigate the "dc behavior" more thoroughly.

- A hasty analysis based on the reflection and transmission filters (see figure) might conclude that the reflectance of the conical cap converges to -1 at dc , since $R(0)=-1$ and $T(0)=0$. However, this is incorrect.
- Instead, it is necessary to take the limit as $\omega \rightarrow 0$ of the complete conical cap reflectance $R_{J}(s)$:

$$
R_{J}(s)=\frac{1-e^{-2 s}-2 s e^{-2 s}}{2 s-1+e^{-2 s}}
$$

We already discovered a root at $s=0$ in the denominator in the context of the preceding stability proof. However, note that the numerator also goes to zero at $s=0$. This indicates a pole-zero cancellation at dc.

- To find the reflectance at dc, we may use L'Hospital's rule to obtain

$$
R_{J}(0)=\lim _{s \rightarrow 0} \frac{N^{\prime}(s)}{D^{\prime}(s)}=\lim _{s \rightarrow 0} \frac{4 s e^{-2 s}}{2-2 e^{-2 s}}
$$

and once again the limit is an indeterminate $0 / 0$ form.

- We apply L'Hospital's rule again to obtain

$$
R_{J}(0)=\lim _{s \rightarrow 0} \frac{N^{\prime \prime}(s)}{D^{\prime \prime}(s)}=\lim _{s \rightarrow 0} \frac{(4-8 s) e^{-2 s}}{4 e^{-2 s}}=+1
$$

Thus, two poles and zeros cancel at dc, and the dc reflectance is +1 , not -1 as an analysis based only on the scattering filters would indicate.

- From a physical point of view, it makes more sense that the cone should "look like" a simple rigid

10
termination of the cylinder at dc, since its length becomes vanishingly small compared with the wavelength in the limit.

- Another method of showing this result is to form a Taylor series expansion of the numerator and denominator:

$$
\begin{aligned}
& N(s)=2 s^{2}-\frac{8 s^{3}}{3}+2 s^{4}+\cdots \\
& D(s)=2 s^{2}-\frac{4 s^{3}}{3}+\frac{2 s^{4}}{3}+\cdots
\end{aligned}
$$

Both series begin with the term $2 s^{2}$ which means both the numerator and denominator have two roots at $s=0$. Hence, again the conclusion is two pole-zero cancellations at dc.

- The series for the conical cap reflectance is

$$
R_{J}(s)=1-\frac{2 s}{3}+\frac{2 s^{2}}{9}-\frac{4 s^{3}}{135}-\frac{2 s^{4}}{405}+\cdots
$$

which approaches +1 as $s \rightarrow 0$.

