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Cylinder with Conical Cap
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• Cylinder open or closed on left side

• Otherwise closed

• Obviously passive physically

• Hard to show! [R(s) and T (s) are unstable]

Scattering Filters at the Cylinder-Cone Junction

Wave impedance at frequency ω rad/sec in a converging
cone:

Zξ(jω) =
ρc

S(ξ)
·

jω

jω − c/ξ
(converging cone impedance)
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where

ξ = distance to the apex of the cone

S(ξ) = cross-sectional area of cone

ρc = wave impedance in open air

In the limit as ξ → ∞,

Z∞(jω) =
ρc

S
(cylindrical tube impedance)

Reflectance of the conical cap, seen from cylinder :

R(s) = −
c/ξ

c/ξ − 2s

Transmittance to the right:

T (s) = 1 +R(s) = −
2s

c/ξ − 2s

• R(s) and T (s) are first-order transfer functions, each
having a single real pole at s = c/(2ξ) ⇒ unstable

• R(s) and T (s) identical from left and right given no
wavefront area discontinuity.
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Reflectance of the Conical Cap

• Let tξ
∆
= ξ/c denote the time to propagate across the

length of the cone in one direction

• Reflectance of complete (lossless) cone is −1 for
pressure waves
(reflects like an open-ended cylinder)

• Round-trip transfer function from cone entrance to
tip and back is

Rtξ(s)
∆
= −e−2stξ = e−stξ(−1)e−stξ

(reflectance seen inside the cone)

Reflectance of Conical Cap Seen from Cylinder

From the figure, we can derive the conical cap reflectance
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to be

RJ(s) =
R(s) + 2R(s)Rtξ(s) +Rtξ(s)

1−R(s)Rtξ(s)

=
1 + (1 + 2stξ)Rtξ(s)

2stξ − 1−Rtξ(s)

=
1− (1 + 2stξ)e

−2stξ

2stξ − 1 + e−2stξ

∆
=

N(s)

D(s)

For very large tξ, the conical cap reflectance approaches
RJ = −e−2stξ which coincides with the impedance of a
length ξ = ctξ open-end cylinder, as expected.

Stability Proof Outline

• A transfer function RJ(s) = N(s)/D(s) is stable if
there are no poles in the right-half s plane. That is,
for each zero si of D(s), we must have re {si} ≤ 0. If
this can be shown, along with |RJ(jω)| ≤ 1, then the
reflectance RJ is shown to be passive.

• We must also study the system zeros (roots of N(s))
in order to determine if there are any pole-zero
cancellations (common factors in D(s) and N(s)).
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• Since re {stξ} ≥ 0 if and only if re {s} ≥ 0, for
tξ > 0, we may set tξ = 1 without loss of generality.
Thus, we need only study the roots of

N(s) = 1− e−2s − 2se−2s

D(s) = 2s− 1 + e−2s

If this system is stable, we have stability also for all
tξ > 0.

• Since e−2s is not a rational function of s, the
reflectance RJ(s) may have infinitely many poles and
zeros.

Stability Proof

First consider the roots of the denominator

D(s) = 2s− 1 + e−2s.

At any pole (solution s of D(s) = 0), we must have

s =
1− e−2s

2
To obtain separate equations for the real and imaginary
parts, take the real and imaginary parts of
D(σ + jω) = 0 to get

re {D(s)} = (2σ − 1) + e−2σ cos(2ω) = 0

im {D(s)} = 2ω − e−2σ sin(2ω) = 0
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Both of these equations must hold at any pole of the
reflectance. For stability, we further require σ ≤ 0.
Defining τ = 2σ and ν = 2ω, we obtain the simpler
conditions

eτ(1− τ ) = cos(ν)

eτ =
sin(ν)

ν
For any poles of RJ(s) on the jω axis, we have τ = 0,
and the second equation reduces to sinc(ν) = 1. It is well
known that the sinc function is less than 1 in magnitude
at all ν except ν = 0. Therefore, this relation can hold
only at ω = ν = 0, and so

Any right-half-plane poles occur at ω = 0.

Stability Proof, continued

The same argument can be extended to the entire
right-half plane as follows. Going back to

sin(ν)

ν
= eτ ,

since |sin(ν)/ν| ≤ 1 for all real ν, and since |eτ | > 1 for
τ > 0, this equation clearly has no solutions in the
right-half plane. Therefore,

Any right-half-plane poles occur at s = 0.
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A Pole at DC

Since both of the conditions

eτ(1− τ ) = cos(ν)

eτ =
sin(ν)

ν
are clearly satisfied for τ = ν = 0, we see that there is in
fact a pole in the reflectance at dc (s = 0), provided it is
not canceled by a zero at dc in the numerator N(s).

The Left-Half Plane

In the left-half plane, there are many potential poles:

• The first of the two equations

eτ(1− τ ) = cos(ν)

has infinitely many solutions for each τ < 0, since the
elementary inequality 1− τ ≤ e−τ implies

eτ(1− τ ) < eτe−τ = 1

• The second equation,

eτ =
sin(ν)

ν
has an increasing number of solutions as τ grows
more and more negative.
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• As τ → −∞, the number of solutions becomes
infinite
and are given by the zeros of sin(ν)

• At τ → −∞, the solutions of the other equation
converge to the zeros of cos(ν)

• Thus, the solutions of

eτ(1− τ ) = cos(ν)

eτ =
sin(ν)

ν

may not necessarily occur together for τ < 0, as they
must.

Poles at s=0

We know from the foregoing that the denominator of the
cone reflectance has at least one root at s = 0. We now
investigate the “dc behavior” more thoroughly.

• A hasty analysis based on the reflection and
transmission filters (see figure) might conclude that
the reflectance of the conical cap converges to −1 at
dc, since R(0) = −1 and T (0) = 0. However, this is
incorrect.
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• Instead, it is necessary to take the limit as ω → 0 of
the complete conical cap reflectance RJ(s):

RJ(s) =
1− e−2s − 2se−2s

2s− 1 + e−2s

We already discovered a root at s = 0 in the
denominator in the context of the preceding stability
proof. However, note that the numerator also goes to
zero at s = 0. This indicates a pole-zero cancellation
at dc.

• To find the reflectance at dc, we may use L’Hospital’s
rule to obtain

RJ(0) = lim
s→0

N ′(s)

D′(s)
= lim

s→0

4se−2s

2− 2e−2s

and once again the limit is an indeterminate 0/0 form.

• We apply L’Hospital’s rule again to obtain

RJ(0) = lim
s→0

N ′′(s)

D′′(s)
= lim

s→0

(4− 8s)e−2s

4e−2s
= +1

Thus, two poles and zeros cancel at dc, and the dc
reflectance is +1, not −1 as an analysis based only on
the scattering filters would indicate.

• From a physical point of view, it makes more sense
that the cone should “look like” a simple rigid
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termination of the cylinder at dc, since its length
becomes vanishingly small compared with the
wavelength in the limit.

• Another method of showing this result is to form a
Taylor series expansion of the numerator and
denominator:

N(s) = 2s2 −
8s3

3
+ 2s4 + · · ·

D(s) = 2s2 −
4s3

3
+
2s4

3
+ · · ·

Both series begin with the term 2s2 which means
both the numerator and denominator have two roots
at s = 0. Hence, again the conclusion is two
pole-zero cancellations at dc.

• The series for the conical cap reflectance is

RJ(s) = 1−
2s

3
+
2s2

9
−

4s3

135
−

2s4

405
+ · · ·

which approaches +1 as s → 0.
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