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ABSTRACT

This paper proposes to watermark parametric representa-
tions for synthetic audio. Our watermark system combines
quantization index modulation at the encoder and maximum
likelihood parameter estimation at the decoder. To guaran-
tee error-free data hiding under expected types of attacks,
knowledge of Fisher information and Cramér-Rao bounds
is applied to the system design. Experiments show that,
merely by quantizing the frequency of sinusoidal tones, one
can achieve 50b/s of data hiding that is robust to perceptu-
ally shaped additive attacks such as an MP3 compression.

1. INTRODUCTION

Synthetic audio has found various applications in recent
years. It is known that forward-looking audio coding stan-
dards, such as MPEG-4 structured audio [1], would allow
a coder to explore concise algorithmic representations for
sound synthesis. On the encoder side, this involves model
selection based on audio content, and estimation of a set
of parameters that best represent the signal. On the de-
coder side, a signal is parametrically synthesized. Inter-
estingly, although “synthetic” literally means “not natural”,
there have been examples of synthetic speech [2], music [3],
and random scenes [4] that sound very natural to human
ears.

One may be interested in watermarking the parameters
as well as the signal they generate, because parameters are
expensive — it often takes a lot of computation power and
human labor to obtain those that represent the signal well.
Therefore, this paper concentrates on the design of water-
marking schemes in the parameter space for audio synthe-
Ses.

Cox et al. [5] explicitly distinguishes between a water-
mark space and a signal space, and the former usually has a
much lower dimensionality than the latter. Inspired by their
work, this paper formulates an audio synthesis as a map-
ping from the watermark space to the signal space. Further-
more, if we model an attack in terms of its covariance in
the signal space, its influences in the watermark space can
be evaluated through an inverse mapping. It turns out that
the distortion the attack causes in the watermark space has

a Cramér-Rao bound (CRB), which implies that the quan-
tization step sizes of an index modulation [6] watermark-
ing scheme are similarly bounded below. Consequently, the
achievable data hiding rate region is bounded above by the
decoder’s performance on parameter estimation. The closer
it approaches the CRB, the higher the data hiding rate al-
lowed.

The organization of this paper is as follows. Section 2
reviews Fisher information and the CRB, and gives a ge-
ometric interpretation for the case of parameter estimation
in the presence of additive white Gaussian noise (AWGN).
Section 3 proposes a parameter-space watermark system.
Section 4 documents and discusses experiments on water-
marking parameters for sinusoidal modeling synthesis sub-
ject to perceptually shaped attacks. Finally, future direc-
tions and conclusions are stated.

Symbols | Meanings

Yy Un Signals in the time-domain. n is used as
the time index consistently.

s Synthetic signal indexed by a set of pa-
rameters 6

6 Estimate of 6

y Vector enumeration (y1, Y2, ---, Yn)

y ~ f(y) | Random variable with a distribution f(y)

N(m,X) | Thenormaldistribution with mean m and
covariance matrix X

Table 1. Notation

2. THEORY

2.1. Fisher Information and the CRB

Suppose that we are interested in estimating a single scalar
parameter 6 from the observation of a vector random vari-
able y ~ f(y;8). Fisher Information J(0) is defined as
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and it can be interpreted as the amount of information about
a parameter that can be extracted from an observation. This



can be explained by the Cramér-Rao inequality [7],
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where T' denotes an arbitrary unbiased parameter estima-
tor. The inequality states that the expected mean square
error of any unbiased estimator is bounded below by the
CRB, which is defined as the reciprocal of Fisher informa-
tion. However, there is no guarantee that a CRB-achieving
estimator exists in general. Nevertheless, it can be shown
[8] that if it exists, the estimator is a maximum likelihood
(ML) estimator.
Also, the Cramér-Rao inequality can be generalized to a
matrix version for the estimation of multiple parameters,
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where X is the covariance matrix of the estimation error,

Olnf Oln
and J;;(6) = Ef(y;0) [ Boif 39jf]'

2.2. CRB for the estimation of audio synthesis parame-
tersunder Gaussian attacks

A synthesisis defined as a mapping from a parameter space
(61,05, ...,0K) to a signal spaces? = (s, ss,...,5n). If
a synthesized signal s? is subject to a Gaussian attack u ~
N(0,X), we have
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where y = s? + u is the noisy observation. It can be shown
[9] that the Fisher information is given by

J(6) = (Vs)T271(Vs) 4)

where (Vs); = % may be called the sensitivity vectors.
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Fig. 1. Geometric interpretation of sinusoidal synthesis and
AWGN attacks

To illustrate the concepts described above, Fig. 1 shows
a geometric interpretation for the case when the synthesis

is a single-tone sinusoidal model and the attack is AWGN
un ~ N(0,02%). Here, the synthesis is a diffeomorphism
from the unit circle [0, 2] to a curve s¥ in the signal space.
At each frequency w, the attack is characterized by an V-
dimensional ball of rms radius ¢ around s“. The ball blurs
the resolution along Vs, and the frequency error it causes
may be approximated in the least squares sense. Define v =
dwZ= such that v - (u— v) = 0. Then, solving the pseudo-
inverse problem, we have
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Interestingly, by comparing equations (4) and (5), it can be
verified that,
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J(w)
in this special case. In other words, we can see Fig. 1 as a
valid interpretation of Fisher information and CRB.
The next section describes a parameter-space audio wa-
termarking system, in which the step sizes of the quantiza-
tion codebooks are carefully chosen according to the CRB.
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3. EMBEDDING AND DECODING ALGORITHMS
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Fig. 2. System block diagram

Fig. 2 shows a generic parameter watermarking system
for synthesized audio. On the encoder side, quantization
index modulation (QIM) [6] is used to hide a message W
in the parameter space. Watermarked parameters &' are
then fed into a synthesizer to generate an audio signal s?,
which is subject to additive attack u,,. Upon reception of the
distorted signal y,,, the decoder first estimates the parame-
ters 6, and then uses minimum distance decoding to find a
ML candidate message W. An error occurs by definition if
W #W.

There are two constraints on the selection of quantiza-
tion step sizes. Let d; denote the minimum distance along
the 4th parameter dimension between lattice points (See Fig.
3). First of all, the perceptual distortion D, (s ||s?i+d:)
should not be noticeable to human ears. Secondly, d; should
be large enough so that, under an attack, the decoder can still
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Fig. 3. Parameter-space quantization index modulation

distinguish a lattice point from its neighbors. Although this
second constraint on d; depends on the actual performance
of the parameter estimation on the decoder side, we know
from the inequality (2) that we need

d; > (a/Jis(0)) (6)

for robust data hiding, where a: > 1 controls the probability
of error when we requantize to a d; grid in the presence of
noise.

Therefore, in practice, the encoder decides how much
attack it would tolerate, and chooses quantization steps that
satisfy the abovementioned constraints. Then, the decoder
identifies the attack statistics and uses the best possible pa-
rameter estimator, which hopefully approaches the CRB.

4. EXPERIMENTSAND DISCUSSIONS

We present here experiments on single frequency QIM and
ML frequency estimation to illustrate how the proposed wa-
termarking system works. In particular, we intend the sys-
tem to be robust against MP3 attacks. In this section, the
synthesis is assumed to be a single tone sinusoidal model
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4.1. CRB computation and frequency estimation under
per ceptually shaped attacks

For a sinusoid of a given frequency, we simulate the sit-
uation when the attack is additive Gaussian and spectrally
shaped to the elementwise maximum of the following func-
tions,

e A two-slope approximation [10] of the spreading
function, which has the following form,

Sleft =27 dB/Bark;

e
MEN T ) 27 + —0.37 % (T — 40)

if I' < 40;
otherwise,

where Siefe and Sqigne are the two slopes in units of
dB/Bark, T" is the magnitude in dB of the masker tone.

e A -80dB fixed SNR white noise floor.
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Fig. 4. Frequency estimation performances under psychoa-
coustically masked attacks

e A global hearing threshold function, which is above
-80dB at low and high frequencies.

We implement a two-step ML frequency estimator and
compare its performances with the CRB. The first step of
the estimation is based on peak interpolation of the win-
dowed Fourier transform. For each of 0.01s Hann win-
dowed frame, a factor-8 zeropadding is used for calculat-
ing the Fourier transform. Then, the magnitude peak is es-
timated by parabolic interpolation. The interpolated peak
frequency is regarded as a rough estimation, and the sec-
ond step is a brute-force gradient descent search for ML
frequency starting from the rough estimate. The step size of
the gradient descent is set as 1/(2+/J(w)). The sampling
rate is 16kHz.

Fig. 4 shows the simulation results. The horizontal axis
shows the frequency of the sinusoid, and the vertical axis
shows the root mean square frequency estimation error. For
each run, the frequency is set to be the center frequency of
a bark band. The plot is obtained from an average over 20
runs. At low and middle range frequencies, the performance
of the coherent ML estimator significantly outperforms the
non-coherent parabolic magnitude interpolation. However,
when the masker sinusoid has a high frequency, the im-
provement is marginal because the attack is more spectrally
flat, based on the two-slope approximation of the spreading
function.

Finally, we are aware that, in this plot, the estimation
error at high frequencies lies below the CRB. It could pos-
sibly be due to that the estimator is biased, but this is not
clear to us yet.



4.2. Frequency QIM against MP3 attacks

Nevertheless, the frequency estimator looks accurate and ro-
bust enough against perceptually shaped attacks in simula-
tions. In a more realistic test, we implement frequency QIM
with two equally spaced lattices. The quantization step size
dis set as 1 or 2 Hz. In our informal listening tests, fre-
quency quantization of such step sizes does not cause sig-
nificant perceptual distortion to our test signal, which is a
simple tune widely used as cell phone ringers. A commer-
cially available MP3 attack is inserted between the encoder
and the decoder. The MP3 attack compresses the signal to
9-12 kbps. The two-step frequency estimator is used at the
decoder. The experiment results are summarized in Table 2,
where the first column shows the quantization step size d,
the second column shows the attempted data hiding rate R,
and the third column shows the bit error rate P, as results.
All the error rates are obtained over an average of 2200 at-
tempts.

d R P,

2Hz 50 b/s 0.14%
1Hz 50 b/s 3.73%
2Hz 100 b/s 5.59%

Table 2. Data hiding rates of frequency QIM under MP3
attacks

5. FUTURE DIRECTIONS

So far, we have proposed a generic audio parameter-space
watermarking system, but only experimented with single
parameter syntheses using simple sinusoidal models. In the
future, we would like to extend the current work to the wa-
termarking of multiple parameters that are used for various
types of syntheses. We expect challenges on both the encod-
ing and the decoding sides due to the much richer geometry
of the synthesis mappings. In particular, we are interested
to see if QIM on a curved parameter space is still straight-
forward. Also, it may also be nontrivial to design a gradient
descent ML estimator on a curved manifold in the signal
space.

6. CONCLUSION AND SUMMARY

This paper focuses on watermarking parametric representa-
tions for synthetic audio signals. The proposed system uses
parameter-space quantization index modulation at the en-
coder and maximum-likelihood estimation at the decoder.
The quantization step size has to be large enough so that the
parameter estimator can distinguish between lattice points
blurred by attacks; but not so large that there is distor-
tion noticeable to human ears. The system is tested on the

case of watermarking the frequency parameter of a sinu-
soidal synthesis subject to MP3 attacks, and the results show
that 50b/s of reliable and imperceptible data hiding can be
achieved.
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