
Design Specification

For

Paranoia

U-S-E
CS169 – Software Engineering

Oct 28 2003

Prepared by:

BERDAHL,EDGAR
CHUNG,SANG

GONG,GARY
LE,TAM

LEE, JOON YUL
LI, SHENG

MOZAFFARIAN,BEHRAD
MURRAY,JASON

NGUYEN, HIEP
SHKOLNIKOV,YURIY

2

Table of Contents
Table of Contents...2
1. Introduction..3

1.1 Abstract..3
1.2 Revisons to Functionality Specification..3
1.3 Project Schedule...4

2. Project Description...5
2.1 Platforms and Software Tools ...5
2.2 Interaction of Main Objects ..6
2.3 Objects and Methods..7
2.4 JPEG Stegonography Methods and Algorythms ..24
2.5 GIF Stegonography Methods and Algorythms ...30
2.6 Walkthrough Flowcharts ...36
2.7 Security Features ...39

3. Project Process...40
3.1 Code Review ...40
3.2 Module Testing..41
3.3 Integration Testing...49

Appendix A: Glossary..50
Appendix B: JPEG Examples and Parameters...51

3

1 INTRODUCTION
1.1 ABSTRACT

Paranoia allows an average user to securely transfer text messages by hiding them in a digital
image file. A combination of steganography and encryption algorithms provides a strong backbone
for Paranoia’s security. Paranoia features innovative techniques for hiding text in a digital image file
or even using it as a key to the encryption.

1.2 REVISIONS TO THE FUNCTIONALITY
SPECIFICATION

• Our group would like to clarify its commitment to produce images “visibly similar to the original
images”. In the case of JPEG images, we will attempt to achieve this goal by only making slight
alterations to the luminance coefficients. This will increase the likelihood the output will retain
its visual similarity. In the case of GIF images, increasing the color map on GIF images is an
option at this point.
However, we cannot not guarantee the user that any image will store any given text and maintain
its visual similarity. Our help file will describe the types of files that are ideal for our
steganography process.

• For every image, the stegonagraphic capacity will be calculated and compared to the volume
of text data to be stored. If the volume of that data exceeds the capacity the user will not be able
to use that image to store the text. The user will always be able to repeat the process with another
image file if the initial results are unsatisfactory or cannot be completed.

• Due to the different stenography methods for different file formats, the ‘Save As’ function on the
‘File Menu’ will allow the user to change the name and/or location of the file but not the format.
Otherwise the ‘Save As’ function could possibly change the appearance of the image while
converting between file formats.

4

1.3 SCHEDULE AND MILESTONES

1.3.1 GUI Group – Gong, Li, Murray, Shkolnikov
10/23 Revise data structures
10/25 Start Coding
11/1 Done Coding
11/5 Modular Testing
11/10 Begin Integration Testing

1.3.2 Security Group – Le, Nguyen
10/23 Revise data structures
10/25 Start Coding
10/28 Dummy class for JPEG & GIF people
11/5 Done Coding
11/7 Modular Testing
11/10 Begin Integration Testing

1.3.3 JPEG Group – Berdahl, Lee
10/26 JPEG files can be opened and the contents properly interpreted. JPEG files can be

opened, converted to a BufferedImage and then saved in a new file.
11/2 Information can be embedded in and extracted from grayscale JPEG files.
11/7 The module will work with color JPEG files, even though the information will only

be hidden in the luminance values. Modular testing.
11/10 Begin Integration Testing.

1.3.4 GIF Group – Chung, Mozaffarian
10/30 Open GIF file, convert into BufferedImage , read or write something from it, extract

and modify RGB values
11/3 Create internal data structures for colormap [], neighbormap [], and pixelmap [].
11/7 Write out GIF file with the GIF 89a standard. Modular testing.
11/10 Begin Integration Testing.

5

2 PROJECT DESCRIPTION
2.1 PLATFORMS AND SOFTWARE TOOLS

Paranoia will be developed using the Java Development Kit (JDK) 1.4.2. Any device that can
support a Java Virtual Machine for JDK 1.4.2, along with the necessary memory and disk storage
space will be able to execute our application.

For construction of the GUI we would like to use JBuilder by Borland.

Revision and code management will be done using CVS.

Furthermore, in order to aid in the final documentation process, we will comment our code
such that it can be parsed by JavaDoc. For more information see, http://java.sun.com/j2se/javadoc/.

http://java.sun.com/j2se/javadoc/

6

2.2 INTERACTION OF MAIN OBJECTS
The project team will split into four groups. Each group will work on one of the major

objects in our implementation. Here is a general overview of how these objects interact.

GUI : The graphical user interface.

StegoSecurity : A package of compression, encryption and bit placement algorithms used in
conjunction with our steganography.

GifStegoImage and JpegStegoImage: Packages that handle steganography for particular file formats.

GUI

text, key,
image

StegoSecurity

text, key

Passes in the
text and the

key image or
key text.

Recover text
from

decoding

Passes in the
source image for
decoding or the
target image for

encoding

Receives a file
handle for the

image resulting
from encoding

Receives info about
how many bits can be
hidden, or bit being
retrieved from an

image.

Passes in bits
processed from
the text, and the
location in which

to store them.

GenericStegoImage
(abstract class)

GifStego

Image

JpegStego

Image

USER

7

2.3 OBJECTS AND METHODS

Class GUI

java.lang.Object
 Huffman

All Implemented Interfaces:
none
Direct Known Subclasses:
none

public class GUI
extends Jframe
implements WindowConstants, Accessible, RootPaneContainer

 The GUI has a menubar and is separated into 4 parts.

User Panel

Walk Through Panel

Target Panel

Image Bar

 The GUI will contain a StegoSecurity object, and will instantiate GifStegoImage and
JpegStegoImage objects as needed to encode and decode images. User will respond to all of the
user’s events and set the progress bar to visible when an encryption process is started.

8

Field Summary

integer WalkThroughState
 Contains information regarding the current state of the walkthrough.

JFrameprogressPopUp
 A dialog box for the progress bar.

JProgressBarcodingProgress
 Shows the user the status of the coding process.

User Panel

JPaneluserPanel
 The main panel of the application contains a text tab and an image tab as
described below.

JTabbedPaneuserTabStrip
 This strip contains the text box for entering the user’s text and an image box
to display the result image.

JTextPaneuserText
 This is the main text area into which the user types the text to be hidden
within an image. In the case of extracting text from an image, the text would be
loaded into this same tab.

BufferedImageresultImage
 This tab is also located within the main panel. Its sole purpose is to display an
image, which has been produced as a result of embedding text within another
image.

Target Panel

JPaneltargetPanel
 The target panel contains the source and target images as well as buttons for
loading them.

JTabbedPanekeyTabStrip
 This strip contains the key image and a text box for entering the key
manually.

BufferedImagekeyImage
 This is the image that will be used a key.

JTextFieldkeyText
 This text box will be where users can manually enter keys.

JButton loadKey
 This button will load the image, related to the currently selected thumbnail in
the image bar, into the key image.

9

BufferedImagetargetImage
 This is the image that will be used the target for encoding or source for
decoding.

JButton loadKey
 This button will load the image, related to the currently selected thumbnail in
the image bar, into the target image.

Walkthrough Panel

JPanelwalkthroughPanel
 This panel contains the necessary components to perform the user
walkthrough.

JButton nextButton
 This button will initially have caption “Encode” which will change to “Next”
as the user begins/follows the walkthrough.

JButton backButton
 This button will initially have caption “Decode” which will change to “Back”
as the user begins/follows the walkthrough.

JButton cancelButton
 This button will initially have caption “Cancel” which will be greyed out until
the user starts the walkthrough.

JTextPanewalkthroughInfo
 This box will contain instructions to the user on what steps to perform next.

 Image Bar

ImageBarimageBar
 A scrollable pane with thumbnail images.

Constructor Summary

GUI()
 Instantiates, adds, and sets listeners for all interactive components. Instantiates StegoSecurity
object and JProgressBar dialog.

Method/Menu Summary

void walkThrough (integer step)
 Will process integers indicating the button presses by the user and update the
walkthrough button captions and the information text displayed.

File Menu

 Start Over: Frees current work so user can restart without any loaded documents,
or work in progress.

10

 Open Text: This menu item simply opens a file dialog, which allows the user to
open a text file into the main text box.

 Save Text: Allows user to save the text in the main text box; usable if text is
present in main text box.

 Save Text As…: Allows user to save the text in the main text pane as a different file
than what is was opened from.

 Open Image: Opens an image into the Target/Source Image Pane, which can be
used to extract text from or to embed text into.

 Save Image: Allows user to save generated Image with embedded text, located in
main image box;

 Save Image As…: Allows user to save generated Image with a different file name
than it already has.

Edit Menu

 Cut: Removes the selected text from the document and puts it into the clipboard,
replacing previous clipboard contents.

 Copy: Puts the selected text into the clipboard, replacing previous clipboard
contents.

 Paste: Inserts the text on the clipboard into the document, beginning from the
current position of the cursor.

Tools Menu

 Embed text: Embeds the text in the Main Panel into the selected image in the
Target.

 Extract text: Extracts text from an image and displays it in the Main Panel. Click.

 Open image key: Opens a file browser to select an image to use as a key. When the
user selects an image, it will appear in the Key Pane.

 Open text key: Opens a file browser to select a text file to use as a key. When the
user selects a text file, its contents will appear in the Key Pane.

 Save text key: Saves the text key in the Key Pane by opening a file browser to
select a location to save the text file. It is usable when text has been entered in the
Key Pane.

 Submenu: Tools à Options
Encryption ON/OFF:

Help Menu

 Help: Links the user to HTML help documents.

11

Class ImageBar

java.lang.Object
 ImageBar

All Implemented Interfaces:
none
Direct Known Subclasses:
none

public class ImageBar
extends JPanel
implements Accessible

 A scrollable pane with thumbnail images.

It uses a smaller class:

//A placeholder object for thumbnail images. We need this because an Image cannot be directly
added to a Container, but a JPanel can.
 Thumbnail extends Jpanel

// Holds the thumbnail.
// Image thumbnail;
// Holds the image's filename.
// String fileName;

// Overrides the JComponent method for painting the component.
// void paintComponent(Graphics g)
// use g.drawImage() to draw the thumbnail, with this object as
// the ImageObserver

// Outlines the image with a border to indicate that it is selected.
void selectImage();

// Removes the border from an image when it is deselected.
void deselectImage();

12

Field Summary

String directory
 Current directory for browsing images.

Thumbnail currentThumbnail
 Currently selected thumbnail.

Constructor Summary

GUI()
 Instantiates, adds, and sets listeners for all interactive components. Instantiates StegoSecurity
object and JProgressBar dialog.

13

Method Summary

Component getComponent()
 Returns the Component for this image bar, so that it can be added to the main
pane.

void changeDirectory(String pathName)
 Changes current directory to pathName and repaints the imagebar.

// clear the image bar
// open pathName directory
// for each file in the directory:
// if file is GIF or JPEG
// call addThumbnail(file)

void clearImageBar()
 Removes all thumbnails from the image bar.

void addThumbnail(String fileName)
 Adds a thumbnail-sized image to the ImageBar.

// if fileName is a JPEG
// create a FileInputStream object for fileName
// create a JPEGImageDecoder object from the input stream
// create an Image object from the image decoder
// scale the image to fit the image bar
// create a Thumbnail for the image
// register a MouseListener with the Thumbnail
// add the thumbnail to the JScrollPane imageBar
// adjust the preferredSize of the JScrollPane to
// accommodate the new thumbnail
// else if fileName is a GIF
// similar to JPEG case above

 void setSelectedThumbnail(Thumbnail t)
 Changes the currently selected thumbnail.

 Thumbnail getSelectedThumbnail()
 Returns the currently selected thumbnail.

14

Class StegoSecurity

java.lang.Object
 StegoSecurity

All Implemented Interfaces:
none
Direct Known Subclasses:
none

public class StegoSecurity
extends
implements

 This class works with the following three modules:

Huffman class
cipher class
Md5 class (standard java class)

Field Summary

Cipher cipherFunction
 A class with encryption and decryption functions.

Random randomLocations
 Generate random location of pixels/blocks.

Random randomBits
 Generate random bits.

byte[] cipherText
 Storing the cipherText in here, plainText isn't stored.

hashtable oldRandomLocations
 Storing the random numbers that have been generated to make sure there’s no
repeat.

byte[] encryptionKey
 Generated when setKey is invoked.

bool encryptionStatus;
 Encryption on/off.

long randomNumber
 Generate a long pseudo-random number for any use.

15

Constructor Summary

Security (progressBar, canceled);

Method Summary

bool isEncryptionOn();
 Get encryption status.

void turnOnEncryption();
 Turn Encryption On.

void turnOffEncryption();
 Turn Encryption Off.

 void setKey(BufferedImage key);
 Set key.

void setKey(String key);
 Set key.

byte[] getKeyHash()
 Return the hashed value of the key, could be used to check if key is set returns NULL
if key is not set.

void setPlainText(String text)
 Feed the plain text for decryption, key must be set first.

 String getPlainText();
 Throw 1 exception that could mean any of the following data is corrupted, wrong
key, image has no data hidden.

 void setMaxCapacity(long max);
 Set the maximum capacity (max # of bits that can be hidden).

 long getNextLocation()
 Return the next location: where the next bit should be hidden given a number in this
range, the cordination of the pixel or the block should be easily obtained. There will be no
repeated output.

 void locationReset();
 Reset to start from the beginning of the random sequence.

 byte getRandomBit()
 Return a 0 or a 1 pseudo-randomly for JPEG algorithm.

 void randomBitReset()
 Reset the random bit stream to the beginning.

16

long getCipherLength()
 Return the entire length in BITs of the cipherText, including the first 24 bits that are
used to store this length will throw exception if one of the first 24 bit is undefined.

void setBit(byte bit,long location);
 Set the bit of the ciphertext, use in decoding location is the bit position in the whole
ciphertext.

byte getBit(long location);
 Get the bit of the ciphertext, use in encoding location is the bit position in the whole
ciphertext.

Class Huffman

java.lang.Object
 Huffman

All Implemented Interfaces:
none
Direct Known Subclasses:
none

public class Huffman
extends
implements

 A static class that provides compression features.

 The Huffman algorithm builds the tree T corresponding to the optimal code in a bottom-up
manner. C is a set of n characters and each character c belongs to C is an object with a defined
frequency f[c] . Q is a priority queue, keyed on f , is used to identify the two least-frequent objects to
merge together. The result of the merger of two objects is a new object whose frequency is the sum
of the frequencies of the two objects that were merged.

 Two smaller classes are used:

// an entry is an object that contains a character, its frequency,
// and the form it will be represented in 0's and 1's. (called codeword)
class Entry {
char symbol; //example: character "t"
double freq; //frequency is: 0.235
String codeword; //codeword is: 0101

17

// store data used as input and output for the Hufman class
class HuffmanData {

HuffmanData(long bitlength, byte[] data);
public:
long bitlength; //length of the data in bit
byte[] data; //the actual data (could be compressed or uncompressed)
}

Field Summary

Constructor Summary

Method Summary

 HuffmanDatazip(String plaintext);
 return compressed text .

String unzip(HuffmanData);
 return normal text .

Class Cipher

java.lang.Object
 Cipher

All Implemented Interfaces:
none
Direct Known Subclasses:
none

public class Cipher
extends
implements

 A static class that provides two functions for encryption and decryption using AES algorithm;
at least 128-bit strong.

18

Field Summary

Constructor Summary

Method Summary

 byte[] encrypt(byte[] key, String plainText);
 Return cipherText encrypted using key.

String decrypt(byte[] key, byte[] cipherText);
 Return normal text decrypted using key.

interface GenericStegoImage

java.lang.Object
 GenericStegoImage

All Implemented Interfaces:
none
Direct Known Subclasses:
GifStegoImage, JpegStegoImage

public interface GenericStegoImage
extends
implements

Interface GenericStegoImage

This object is created and persists throughout the entire lifetime of the ‘Paranoia’
application. The parameters are passed to the specific method calls except a handle to detect the
ProcessCancelledException .

19

Exceptions .

Errors may occur under certain circumstances. In order to handle them as gracefully as possible,
exceptions will be used. Often the exception will be thrown by an image or security class. Such
exceptions will be caught by the GUI class. The GUI will then present the user with a window
explaining what has happened.

- TooMuchInformationException (not within the capacity)

- NumberOfColorsException (too few, too many, other)

- ImageSizeException (image too small, too large, other)

- Invalid Key (unexpected format)

- ProcessCancelledException (user clicking on the cancel button)

- InvalidFormat (non-complying image format)

- Other Security reasons

Field Summary

long location; // hot spot in raster image

byte bitValue // hot item

Image Target // target image or encrypted image

Image keyImage; // image to be hashed for key

String keyText; // text key

long capacity; // max bits that can be hidden in the image

Constructor Summary

 void GenericStegoImage(void);

20

Method Summary

fileHandle encode(Image target, stegoSecurity S);
 Encode method is invoked with 4 parameters to initialize the security module
and eventually to write out the embedded image. Target refers to the image used to
hide textual information. Key can be either an image or string, and StegoSecurity
module handles them accordingly. Text refers to the plain text. Security refers to the
StegoSecurity class instantiated in GUI. This method writes encrypted, compressed
and bit-placed information to the target image and returns the file handle of the
produced image.

1. Calculate the Capacity with the dimension of the target image given –
Format Specific

2. Initialize the security module - Pass off (Text, Key, Capacity) to security
module

3. Get the final cipherlength in bytes from security module (this number is
used to calculated the number of iteration) – getCipherLength()

* important to notice that cipherlength actually refers to the size of the
ciphertext + 3 bytes (header portion representing the size of the ciphertext)

4. Iteration for (index = 0; I < (cipherlength * 8); index++)

i. bitValue = getBit(index) – get a bit from the security

ii. location = getNextLocation() – location to modify the bit

iii. writeBit(bitValue, location) – Format Specific

Save the file and return the file handle back to the GUI

fileHandle decode(Image source, stegoSecurity S);
 Decode method is invoked with 3 parameters to again initialize the security
module and eventually to extract the plain text. Target refers to the image that
contains embedded text. Key can be either an image or string. Security refers to the
StegoSecurity class instantiated in GUI. When job is completed, method returns
decrypted, uncompressed, and assembled plain text.

1. Calculate the Capacity with the dimension of the encrypted image –
Format Specific

2. Initialize the security module - Pass off (Key, Capacity) to security
module

21

3. First 3 bytes contain the size of the ciphertext. (Purpose of the first
iteration is to obtain the size of the hidden text. 3 bytes = 24 bits)

Iteration for (index = 0; index < 24; index++)

 i. location = getNextLocation() – location to fetch the bit

 ii. bitvalue = extractBit(location) – Format Specific

 iii. setBit(bitvalue, index) – passes fetch bit to security
module

4. cipherlength = getCipherLength() – from the 3 bytes passed, size can be
decrypted from the security module and be returned to Codec module

5. From the cipherlength subtract 3 which was used as the header to contain
the size of the length of text only.

Iteration for (index = 0; index < ((cipherlength – 3) * 8); index++)

 i. location = getNextLocation() – location to fetch the bit

 ii. bitvalue = extractBit(location) – Format Specific

 iii. setBit(bitvalue, index)

6. text = getPlainText()

7. Pass text to GUI to be displayed.

22

class GifStego

java.lang.Object
 GenericStegoImage

GifStego

All Implemented Interfaces:
none
Direct Known Subclasses:
none

public class GifStego
extends
implements GenericStegoImage

 A class that implements steganography for GIF files.

Field Summary

int colorMap[]
 Colors in a given image in java’s TYPE_INT_ARGB format.

int neighborMap[]
 Closest matching color’s index that has different least significant bit from
referencing index.

byte redValue[][]
 Red component of the color.

byte greenValue[][]
 Green component of the color.

byte blueValue[][]
 Blue component of the color.

byte alphaValue[][]
 Alpha component of the color.

int pixelMap[][]
 Two-dimensional array, dimension of the image.

BufferedImageb
 Interface to the GIF reading and writing libraries.

Constructor Summary

 void GifStego(void);

Method Summary

see GenericStegoImage

23

class JpegStego

java.lang.Object
 GenericStegoImage

JpegStego

All Implemented Interfaces:
none
Direct Known Subclasses:
none

public class JpegStego
extends
implements GenericStegoImage

 A class that implements steganography for JPEG files.

Field Summary

BufferedImageb
 Interface to the JPEG reading and writing libraries.

float bf[][]
 For the internal high-precision representation.

StegoTablest
 To help represent the stego-tables.

Constructor Summary

 void JpegStego(void);

Method Summary

see GenericStegoImage

24

2.4 JPEG Steganography and Algorithms
JPEG/JFIF Format:

Strictly speaking, JPEG refers only to a family of compression algorithms; it does not refer to a
specific image file format. The JPEG committee was prevented from defining a file format by turf
wars within the international standards organizations. JFIF has emerged as the de-facto standard on
Internet, and is what is most commonly meant by "a JPEG file". Most JFIF readers are also capable
of handling some not-quite-JFIF-legal variant formats.1

JPEG/JFIF works by extracting coefficients describing 8x8 pixel blocks and then compressing these
coefficients. The blocks can be revealed by saving a JPEG of a gradient pattern with the lowest
possible compression quality. The blocks, which start in the upper left-hand corner, are shown in
Fig. J.1. Partial blocks will be included on the right and lower edges if the dimensions are not
divisible by 8 pixels.

Fig. J.1. Left: gradient with high quality compression
Right: gradient with low quality compression

Encoding:

A flowchart describing typical JPEG encoding is shown below in Fig. J.2.
1) The input is a BufferedImage object, which contains a ColorModel and a matrix representing

the image with pointers aimed at indices of the ColorModel. The RGB values of the
uncompressed input image are converted into three components: one luminance component
and two chrominance components (YUV). The luminance component is considered more
important.

2) The image is separated into 8x8 pixel blocks starting from the upper left-hand corner (see Fig.
J.1).

3) The component signals for each 8x8 block are transformed into the frequency domain by
using the two-dimensional discrete cosine transform (DCT). This transformation is similar to
the two-dimensional fast Fourier transformation, except that the coefficients are real instead
of complex. The perceptually most important information is contained in the first
coefficients, and the later coefficients are generally small (redundance reduction).

4) While the coefficients closest to 0 are eliminated, the remaining coefficients are quantized

- 1 JPEG/JFIF FAQ: http://www.faqs.org/faqs/jpeg-faq/

http://www.faqs.org/faqs/jpeg-faq/

25

using various degrees of accuracy (irrelevance reduction). This can be modified by changing
the quantization tables. The DC luminance coefficients are the most important and are
quantized with the most accuracy.

5) Finally, the quantized coefficients are compressed using a Huffman encoder.

Fig. J.2. JPEG/JFIF encoding scheme

Since the DC luminance coefficients are quantized with the most accuracy, we will hide the
information inside them. We will simply shift the values up or down by certain amounts into areas
that are defined as being 0’s and 1’s. While this could be implemented by modifying the code of a
JPEG encoder manually, we will simply modify the image beforehand so that the DC luminance
coefficients will correspond to those that we seek. This method is possible and not especially
processor intensive because the DC luminance coefficient corresponds to the average luminance
values for each 8x8 block. It works as follows:

1) Convert the RGB signals for the image into YUV using the following formula. Store the result
in a temporary float[][] to reduce quantization effects that occur before the compression
itself.

 2

2) Add a small amount of white zero-mean Gaussian noise with standard deviation σ to reduce
blocking effects. An appropriate value for σ will be determined empirically during the
implementation stage.

2 Taken from „ Operation of the JPEG Algorithm“
http://www.ctie.monash.edu.au/emerge/multimedia/jpeg/impl03.htm

http://www.ctie.monash.edu.au/emerge/multimedia/jpeg/impl03.htm

26

3) Carry out a small amount of preprocessing to reduce the likelihood of the rare cases described
in step 6. Shift the values of the input f(x,y) to a compacted version f'(x,y).

f'(x,y) = p + f(x,y) (128 – p) / 128

4) Determine which blocks should be modified according to the bit-placement algorithm.

5) Cycle through all of those blocks. Call the current one block B, and call b the bit that is
supposed to be transmitted with block B.

6) Calculate the average value ya of the luminance signal Y for block B.

7) Find the target average value yt for the luminance signal for block B using the stego-table
shown in Fig. J.3. The target value is the value in the middle of the region closest to ya that is
labeled with the bit b. The target value will get changed slightly during compression because
JPEG/JFIF is a lossy format.

8) Shift the luminance values for block B by adding yt - ya to them. (As long as p < k, there are
rare cases in which this will not work due to the fact that certain pixels have luminance
values that are bunched up near the edges of the luminance spectrum. That is, they would get
shifted out of the valid range [0 255]. In those cases, a new target value yt will be chosen,
which is further from the boundaries. Then step 8 will be repeated.)

9) Convert the YUV signals back into RGB signals using the inverse of the transformation above
in step 3. (The inverse transformation exists because the matrix is invertible.)

3

Fig. J.3. Simple stego-table with k = 20, where k is the width of each region.

Finally, we can simply save the image using the default JPEG encoder for Java called
javax.imageio.plugins.jpeg. A block diagram for the combined processes is shown in Fig. J.4.

Fig. J.4. JPEG/JFIF encoding scheme for steganography

3 p. 7 of Lee and Chen.

27

To make it more difficult to detect the presence of embedded data, the bit-values along the top of the
stego-table will actually be randomized as shown in Fig. J.5. The randomization of the location of
the 1’s and 0’s will simply cause a histogram of the resulting DC coefficients to look more random.
If the values were simply pseudorandom, then it would be possible to get multiple consecutive 0’s or
1’s, so 0’s will simply be expanded into 01’s and 1’s expanded into 10’s. So that the same bits will
be used for decoding, these k random bits that are dependent on the key will be received from the
StegoSecurity object, where k will be empirically determined such to criteria that will be mentioned
later. Therefore, no DC coefficients will be changed by more than 3k/2 before compression.

Fig. J.5. Randomized stego-table.

Possible Extensions:

• Multiple stego-tables could be used to make it more difficult to detect steganography on the output
file using statistical analysis. Table i = 0 would be as shown above, and tables i = 1 to p – 1 would be
the same except shifted to the right by i indices. As each bit is extracted or embedded, a table to use
would be chosen via pseudorandom numbers returned by the StegoSecurity object. This method
would ensure that a histogram of the DC coefficients would look be approximately evenly
distributed.

• Information could be stored in the chrominance as well as the luminance coefficients. The
compression quality might have to be quite high for this to work properly.

• Changing the averages of the 8x8 blocks could be carried out not only using additive techniques
but also multiplicative techniques depending on the variance of the block. Additive (uniform)
techniques are better for larger variances, while multiplicative (proportional) techniques are better
for smaller variances.4

• By traversing through the bits to change sequentially in terms of the image dimensions x and y
instead of in terms of the encoding order, it would be possible in some circumstances to choose
slightly better entries in the stego-table minimizing the total change of the image. 5

Decoding:

The decoding scheme is much simpler than encoding. The averages of the luminance of the 8x8
blocks just need to be calculated and converted back to bits while paying attention to the current
stego-table and encoding order.

4 p. 10 of Lee and Chen.
5 p. 9 of Lee and Chen.

28

Useful References:

• JPEG/JFIF FAQ: http://www.faqs.org/faqs/jpeg-faq/
• Yeuan-Kuen Lee and Ling-Hwei Chen. „Secure Error-Free Steganography for JPEG Images.“
Dept. Of Computer and Information Science, National Chiao Tung University, 1001 Ta Hsueh Rd.,
Hsinchu 30050, Taiwan, R.O.C.

Proof of JPEG Concept:

MATLAB was used to implement a simplified version of the algorithm explained above. 4096
random bits were hidden in „lena.jpg“ using the following settings. The compression quality is
maximum, and a relatively large number of regions in the stego-table z ≈ floor(255/k) are used.

z: # of entries in the stego-table Compression Quality
81 100

Input Image

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

DC Coefficients Before Steno

10 20 30 40 50 60

10

20

30

40

50

60

DC Coefficients After Steno

10 20 30 40 50 60

10

20

30

40

50

60

Output Image

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

Numeric results:
BER Size of resulting JPEG file SNR in dB

0 162 kB 37

http://www.faqs.org/faqs/jpeg-faq/

29

The bit error rate (BER) is good—that is, all of the bits were extracted properly. The signal-to-noise
ratio (SNR) seems fairly good, even though it is also limited due to JPEG compression, while the
size of the resulting JPEG file is rather large. Most importantly, the output image looks just like the
input image when compared by the human eye. For more examples, see Appendix A: JPEG
Examples and Parameters.

NOTE: Although we calculated SNR measurements with MATLAB, our final program will
probably not carry out such an analysis, since its performance is limited in comparison with
subjective tests.

30

2.5 GIF STEGANOGRAPHY AND
ALGORYTHMS

GIF Format:

GIF (graphics interchange format) files have become very widely used on the Internet. GIF became
popular because it used Lempel-Ziv-Welch (LZW)6 data compression, thus, fairly large images
could therefore be downloaded in a reasonable amount of time, even with very slow modems.

An image is structured as a grid of cells, called pixels (picture elements). Each pixel has a color,
which is represented in GIF as RGB-triple. Each color component is 8-bit long, so there are 2^(3*8)
= 2^24, or about 16.7 million possible colors. This would quickly increase file size, so GIF uses
compression.

The first kind of compression that GIF uses is called a colormap . Instead of allowing the image to
contain all 16 million colors, GIF restricts the image to a maximum of, say, any 256 out of the 16
million (the number of colors in the colormap can be varied). Thus, while there is no loss of richness
of possible colors, no more than 256 distinct colors can be used simultaneously. The second kind of
compression that GIF includes is a sophisticated variation of run-length coding of mentioned LZW.

Simple Encoding and Decoding Algorithm:7

Based on these alternatives, we chose to embed the data into the pixels. Here we present an
algorithm used by EZ Stego. The colormap is first sorted by luminance, so that neighboring palette
entries are near to each other in the color space. We run the following algorithm for each pixel that
is selected for embedding by the bit placement module.

Encoding
1) Find the index of the pixel's RGB color in the sorted palette.
2) Get one bit from the input file. Replace the least significant bit of the index.
3) Find the new RGB color that the index now points to in the sorted palette.
4) Find the index of the new RGB color in the original palette.
5) Change the pixel to the index of the new RGB color.

Decoding
The least significant bit of the index came from the input file. Write it to the output file.
Optional interlaced

Sample Images

6 On June 20, 2003, the United States patent on the LZW algorithm expired.
7 Implentation of EzStego: http://www.stego.com/

http://www.stego.com/

31

The EZ Stego solution works with varying degree of success, depending on the input image. To
illustrate how one image can be a better input than another, here are shown two images with their
respective luminance-ordered palettes. Figures 1 and 2 show the image “Fox” and its palette;
Figures 3 and 4 show image “Madrill” and its palette. Both “Fox”, with 240x320 pixels, and
“Madrill”, with 512x512 pixels were truncated to 256 colors. We can clearly see that the luminance-
ordered palette of “Fox” contains visibly fewer and less severe discontinuities in color than that of
“Madrill”. Therefore, if EZ Stego would be used in this case, there would be a much greater chance
of failure with “Madrill” than with “Fox”.

Analysis:

During the process of mapping 3-dimensional RGB colors to one-dimensional luminance rendered
colormap , this may lead to visible color discontinuity among the colors that have same luminance
yet so far away in the color spectrum. Since luminance is mere sum of three RGB values, luminance
ordering does not guarantee the visibly similarity.

32

Improvement over Simple Algorithm:8
For each pixel to contain the data, the set of the closest colors is calculated. This is done by
calculating the Euclidian distance between the color of the pixel from each colormap entry and
sorting the result. The distance between colors (R1, G1, B1) and (R2, G2, B2) is

222)21()21()21(BBGGRR −+−+−

For each data bit to be embedded, we know the pixel where it will be embedded. We first have to
check whether embedding the data will actually change the LSB. In the best case, it will not be
changed, so we will not have to do anything. Otherwise, we start to search for the closest color till
we find a match between the bit to be encoded and the parity of the color. The parity of the color is
defined as R+G+B mod 2. Once the color is found, the index for the pixel is changed to point to the
new color.

Since this match making step has to be repeated for each bit modification. GIFStegoImage will
perform a batch job of creating NeighborMap [] . Based on the LSB of the colormap index,
NeighborMap [] will contain closest matching color that has different LSB. Thus GIFStegoImage

only need to reference NeighborMap [] for each replacement.

Description of the following flowchart:
1. GUI passes BufferedImage to GIFStegoImage .
2. In GIFStegoImage , pixelmap is formed by extracting each int rgb value in corresponding

index in the 2 dimensional array called pixelmap [][].
3. From the pixelmap [][], colormap is generated by passing through and adding countered

new colors to colormap [].
4. Extracting and applying each red, green and blue color to Euclidean distance formula to find

matching color that has different least significant bit of colormap indexes and store them to
neighormap [].

5. Using colormap [],neighormap [], and pixelmap [][] to write out a file in GIF 89a standard
format.

8 “A new Steganographic Method for Palette Based Images”: http://www.ws.binghamton.edu/fridrich/Research/pics99.ps

http://www.ws.binghamton.edu/fridrich/Research/pics99.ps

33

Flowchart of image processing by GIFEncoder

Java’s representation of RGB colors
- TYPE_INT_RGB : 8 bit RGB color components packed to an integer pixel without

alpha
- TYPE_INT_ARGB : 8 bit RGB color components packed to an integer pixel with alpha
- TYPE_INT_ARGB_PRE : 8 bit RGB color components packed to an integer pixel with

alpha. The color in the image is pre-multiplied with alpha

GUI

BufferedImage

GIFStegoImage

int colormap[]

int
neighbor map[]

int
pixelmap[][]

GIF file

34

Useful methods:
Class BufferedImage

- setRGB(int x, int y, int rgb) : sets a pixel in specified RGB value
- getRGB(int x, int y) : returns a pixel of RGB integer

Structure of GIF Format:
• Header – 6 bytes
• Logical Screen Descriptor (dimension, background) – 7 bytes

 • Global Color table – 768 bytes
• Image Descriptor – 10 bytes
• Optional Local Color Table – 768 bytes
• Graphic Control Extension – 10 bytes
• Data Block – dependent on the dimension and compression

Possible Extensions:

If the image has significantly fewer colors than 256, the change of the pixel’s colors may be visibly
detectable. There are a few things that can be done regarding this issue.

- Adding more colors to the colormap. Based on the colors already in the colormap, plus on
the pixels chosen to contain data, we can decide what colors are needed more than others,
and add those colors to the colormap. This complicates things because we have to create a
histogram showing which colors are needed more than others. This also requires
manipulating the colormap, in order to insert the colors in the correct places.

- Substituting colors from the colormap as needed. Based on the pixels chosen to contain data,
we can determine that some colors are under-represented in the colormap, and that may
impair the visual similarity of the resulting image. If some other group of similar colors is
well-represented, and visual similarity will not be impaired by decreasing the size of that
group, we may choose to do so. Then, we will add the more needed colors. This option also
complicates our task, since we will have to calculate the statistics of how much one color is
needed compared to another.

- Analyzing the neighboring pixels. We may want to look at the colors of the neighboring
pixels, before changing the value of a given pixel. This may be useful in the areas of uniform
color.

- Possible addition of noise or randomness in adding colors to colormap
- Adding a color assurance by checking the mean distance. If the distance exceeds the

predetermined limit, different remedying method can be applied.

We have decided to first implement the simple scheme, without adding or deleting colors from the
colormap. The extensions given above will be optional, and they will be done only after the basic
scheme is implemented.

35

Useful References:
GIF image format: http://ptolemy.eecs.berkeley.edu/eecs20/sidebars/images/gif.html
EZ Stego: http://www.stego.com/howto.html
Steganography using color map shuffle:
http://www.darkside.com.au/gifshuffle/description.html
A new Steganographic Method for Palette Based Images:
http://www.ws.binghamton.edu/fridrich/Research/pics99.ps

http://ptolemy.eecs.berkeley.edu/eecs20/sidebars/images/gif.html
http://www.stego.com/howto.html
http://www.darkside.com.au/gifshuffle/description.html
http://www.ws.binghamton.edu/fridrich/Research/pics99.ps

36

2.6 THE USER WALKTHROUGH
A portion of the main GUI is devoted to the user walkthrough. This walkthrough will lead

first time users through the process of Encoding and Decoding images and in its final step initiate the
Encoding/Decoding of the users text. The user may prepare for and perform encoding and decoding
at any time without the use of the walkthrough.

Consult the following flow chart and corresponding description of states to understand the
Walkthrough process.

Figure 1. Flowchart for the walkthrough

The box below explains how each state will be described. Each has a unique state number
and three buttons, some of which may be grayed out from time to time.

State n: Button1 (f1) Button2 (f2) Button3 (f3)

n is the index of the state being described. Button1, Button2, and Button3 are
the names of the top, middle, and bottom buttons, respectively. f1, f2, and f3
describe the following states if the button is clicked, respectively. If the
value is gray, then the button should be grayed out and thus unclick able.
Text similar to the text in this area should show up on the right side of the
walkthrough in a text box.

Text in the Courier font consists of general notes about the state. Users
should not be able to see this text in the real walkthrough slides.

The following boxes detail each state.

37

State 1: Embed (2) Extract (10) Cancel (gray)

This Walk-through can help you learn how to use Paranoia. Please select a
process: Embed means hide text within a picture, and Extract means extract
hidden text from a picture. You can return to this slide at any time by
clicking on Cancel, and you can reset everything by selecting Start Over
from the File menu.

This is the initial state of the walkthrough when the program is originally
loaded and after “File|Start Over” has been chosen. Once the walkthrough
knows which process is to be carried out, it can offer hints.

State 2: Next (3) Back (1) Cancel (1)

Choose an image to use as a key by selecting it on the image bar below, and
clicking the load button on the Key Image pane. Other people will be able to
extract the text from the picture if they use the same Key Image. If you want
to use an image from another directory, you can use Set Image Directory
from the Tools menu.

The simplest technique for loading a key is described.

State 3: Next (4) Back (2) Cancel (1)

Please pick out the Target Image that you would like to hide the text in
selecting it on the image bar and clicking the load button on the
Target/Source Image pain. Again, for images from another directory, select
Set Image Directory from the Tools menu.

The simplest technique for loading a target image is described.

State 4: Embed (5) Back (3) Cancel (1)

Enter text into the text box on the Text tab of the main panel. You can also
paste text from the clipboard with the Paste command in the Edit menu, or
you can choose Open Text from the File menu. When you are done, click
the Next button to hide the text in the source image.

The user is instructed to input text, using combinations of three different
methods: typing, pasting, and importing.

If the text cannot be embedded for some reason, an appropriate dialog will
appear informing the user what he or she can do to alleviate the problem.

38

State 5: Next (0) Back (4) Cancel (1)

Click on the Image tab on the main panel to see the resulting image. If you
are satisfied with its appearance, choose Save Image or Save Image As…
from the File menu.

After viewing the image, the user saves it if satisfied. Otherwise, he or she
can click cancel. After Save or Save As… is selected, the Back and Cancel
buttons should preferably be grayed out.

State 10: Next (11) Back (1) Cancel (1)

Choose an image to use as a key by selecting it on the image bar below, and
clicking the load button on the Key Image pane. If you want to use an image
from another directory, you can use Set Image Directory from the Tools
menu.

The simplest technique for loading a key is described.

State 11: Extract Text (12) Back (11) Cancel (1)

Please pick out the image from which the hidden text should be extracted.
Selecting it on the image bar and click the load button on the Target/Source
Image pane. Again, for images from another directory, select Set Image
Directory from the Tools menu.

The simplest technique for loading a source image is described.

State 12: Next (0) Back (12) Cancel (1)

The text can be exported to another application via the clipboard by
selecting Copy from the Edit menu. Alternatively, the text can also be
exported to a text file by selecting Save Text from the File menu. Otherwise
the text can be read as it stands by the eyes it was intended for!

The user is instructed how the extracted text can be exported.

State 0: Next (gray) Back (gray) Cancel (gray)

To Embed or Extract again, select Start Over from the File menu.

After a process has been completed, the walkthrough is at an end. All of the
walkthrough buttons are grayed out, until it is restarted by choosing Start
Over.

39

2.7 SECURITY FEATURES
Paranoia will employ several security mechanisms that ensure the confidentiality and integrity of

messages being hidden into photos:

• Because each bit of the message to be hidden is stored in one pixel (or one 8x8 block in case

of JPEG) of the photo, this application generates a pseudo-random selection of which pixels

are used to store these bits. This selection is based on a key extracted from a key image

chosen by the user. Since hiding messages into photos are very likely to produce minor

changes, this random selection of pixels helps make the destination image even more

indistinguishable from the original image.

• Because scrambling pixel selection alone is not proven to have any strong encrypting effect,

messages are compressed and then encrypted using Advance Encryption Standard, with 128-

bit keys generated from the key image. The compression helps hide more text in to an image

and enhance the encryption by reducing the amount of data to be encrypted and the repetition

of bit patterns. As of now, there are no known methods of breaking this encryption standard,

except for exhaustively searching through 2127 possible key values. The efforts spent to break

this encryption far outweigh the importance of these hidden messages. Thus, we can consider

this application secured.

• Paranoia also guarantees the integrity of the messages by performing Cyclic Redundancy

Check on messages after they are decrypted and decompressed.

40

3 PROJECT PROCCES
3.1 CODE REVIEW:

We will have meetings where we’ll do the following checking:

• The review will be an oral presentation of a portion of each subgroup’s code.
• Each subgroup chooses the portions to be reviewed based on which portions they want to get

the most input from people in the group.
• The code to be reviewed should have been compiled to remove obvious bugs in the code.

Some simple testing may be appropriate before reviewing.
• Each subgroup is responsible to distribute a copy of the code to be reviewed some time in

advance of the review.
• All subgroups will talk to each other checking if they all follow agreements on interfaces,

which were agreed in the early time of design phase.

Coding Standard:
Comments:
• We expect there are reasonable amount of comments in the codes. Each file and each
function should have a comment at the start, explaining what the code does. Each document’s
comment is set inside the comment delimiters /**...*/ . Code should be as self-
documenting as much as possible.
• Variable names are self-explained, otherwise comment on it as needed. Comments are
necessary to explain complex code/algorithm.

Naming Conventions:
• Class names should be nouns, in mixed case with the first letter of each internal word
capitalized.
• Methods should be verbs, in mixed case with the first letter lowercase, with the first letter
of each internal word capitalized.
• The names of variables declared class constants should be all uppercase with words
separated by underscores.
• Except for variables, all instance, class, and class constants are in mixed case with a
lowercase first letter. Internal words start with capital letters.

In short, we will apply Java coding standard to our codes. The reference can be found here:
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

Project Management:
We also use CVS to manage our codes because it allows multiple people to edit files at the

same time. This feature helps us when we want to code on different machines without worrying
about transferring the source code between machines manually. CVS also guarantees that we won't
be using old versions of files.

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

41

3.2 MODULE TESTING

Overall testing strategy

Once working on our main modules, we will unit test each module. Once each module had been
thoroughly and successfully tested, we will start integrating the modules one by one and test them
working together (integration tests). Once interoperability of the modules has been tested, we will
do system testing on the entire program. If a need of incorporation of a new feature or module
should arise, then we will repeat the entire testing process.

Unit Testing

For all the main units of the application (GIF steganography, JPEG steganography, image to key
conversion, compression, and user interfaces) unit testing is conducted. Unit testing involves white
box testing – testing with access to the internals of the software – generally with full access to the
unit code. In most cases it involves an input that will be provided for each component tested and an
expected output that is calculated beforehand to check if the module is functioning correctly. If the
given input to a module results in an output that does not match the expected output, the module will
be checked for possible coding errors. Instead of development of test harnesses involving design of
drivers (input stimulus generators) and monitors (output behavior verifiers), the JUnit testing
framework will be utilized to provide drivers and monitors. However, given the specificity of the
application, some function output will have to be checked by a human being. (For instance, to see
whether the original image and the container image with hidden text appear similar to a human eye).

42

3.2.1 GUI TESTING
Testing User Interface
Test1: Opening / saving file

Test Approach
Through File -> Open Text (Image), File->Save Text (Image), etc. try to open file, save file, open
non-existing file.

Goal
Check if we can open the files or allowed format only (pure text, GIF, and JPEG). Check that the
application consistently handles numerous exceptions such as absence of a file, saving file in a folder
where a file with the same file name already exists, trying to open a file with valid file extension but
of invalid format (i.e. rename a PDF file extension to TXT and try to open the file), try to open a file
of a size exceeding the application’s size limitations, etc.

Scope
This test is applied to Open Text, Open Image, Save Text, Save Text As, Save Image, Save Image
As… in File Menu; Open Image Key, Save Text Key, Open Text Key of Tools Menu, and the Image
Bar (all the possible places where file open is required).

Test2: Setting test

Test Approach
Set Image Folder via Tools -> Options -> Set Image Directory
Toggle Encryption On/ Off

Goal
Check if The Application Keeps the Image Directory Settings. Check if the application correctly
“memorizes” Encryption Settings.

Scope
This test applied to Tools -> Options Menu of GUI

Test3: Image bar functionality

Test Approach
Copy some images in the image directory set through Tools->Options Set Image Directory.
Click on the next and previous buttons on the Image Bar.

Goal
To make sure the image bar functions according to the specifications. Only valid images get loaded
to the image bar. No exception is thrown if the image directory contains other files (not image files),
the files that pretend to be images (i.e. have image file extension, but are not in the correct format).
To make sure that we can move to other images (not shown on the bar) by clicking Next and Prev.

43

Scope
This test applies to Image Bar part of the GUI only

Test4: Switching tabs

Test Approach
Click to different tabs in the GUI of the application to switch between the text tab and image tab.

Goal
Make sure that when the tab is clicked, the view switches to other tab window

Scope
This test is applied to Main Panel (where there are Text and Image Tab for Text to be hidden and
container image) and to Key Pane (where there are Text Tab and Image Tab for Text or Image Keys)

Test5: Responding to click events

Test Approach
Either use JUnit or write proprietary drivers and monitors to check how the buttons and menu items
respond to user clicks or button presses.

Goal
To test if all the components correctly respond to user clicks or button presses.

Scope
This test applies to all of the Menu items (Excluding Help) not mentioned previously in the
document and to Encode, Decode, and Load Image buttons.

Test6: Cut, copy, and paste

Test Approach
Copy, Cut, and Paste passages of text to and from all the GUI text containers.

Goal
To make sure that Copy, Cut, and Paste functions are correctly implemented.

Scope
This test is to be applied to the Text Box on the Key Pane and the Text Box on the Main Panel.

Test7: Loading help

Test Approach
Open Help Topics in a system default browser by clicking Help Topics item from Help Menu.
Open About window by clicking about from Help Menu.

44

Goal
To test that Help Topics loads correctly to a system browser and About window is viewable to a user

Scope
Help Menu. Limitations: The application uses a default browser, so the correct functionality of Help
Topics clicking depends on the correct settings and functionality of a system browser.

45

3.2.2 SECURITY TESTING
Encryption Unit
Test 1: Long plaintext

Approach:
Convert text files of size 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5 Mb in size.

Goal:
To test how well this unit deals with large file sizes. Does it throw exceptions appropriately?
(induce errors such as invalid keys, corrupt data.) Does it throw an exception when the cancel
button is clicked.

Scope:
This test is applied to the function that converts plain text into ciphertext.

Image to Key Conversion Unit
Test 1: Deterministic conversion

Test Approach
Take a pool of 100 images (different color set, size, and detail intensity) and convert each of
these images to text key 100 times.

Goal
Check if every time we convert an image to a text key, we obtain the identical text key.

Scope
This test is applied to the function that takes an image and returns the text key representing an
image.

Test 2: Variation in keys produced

Test Approach
Generate keys from 100 different images and compare the keys produced to see if they have
acceptable amount of variation.

Goal:
To measure the obscurity ramifications of using hashed images for keys

Scope:
This test is applied to the function that takes an image and returns the text key representing an
image.
Test 3: Large key image

Approach:
Convert images of size 1, 5, 10, 15, 20 Mb in size.

46

Convert images of size 1, 5, 10, 15, 20 Mb in size.

Goal:
To test how well this unit deals with large file sizes. Does it throw exceptions appropriately?
(induce errors such as invalid keys, corrupt data.) Does it throw exception when the cancel button
is clicked.

Scope:
This test is applied to the function that takes an image and returns the text key representing an
image.

Huffman Unit
Test1: Compression / Decompression (Extractability)

Test Approach
Take 100 passages of text of different size, compress and decompress them.

Goal
Check if every time after we compress a passage of text we can decompress it. Make sure that the
text we receive after decompression is 100% identical to the text that was compressed

Scope
This test is applied to the function that takes a passage of text and returns the text that is a
compressed version of the text fed to the function.

47

3.2.3 GIF AND JPEG TESTING
GIF

Due to the licensing issue, Java does not provide built-in GIF encoder, thus we must provide
our own encoder. The GifStegoImage module must be broken down to 4 sub-modules. The first
module constructs colormap and neighboring colormap from the BufferedImage . The second
module handles the actual manipulation of the color in bit levels. The third module writes out the
file in standard GIF format. The fourth module assures visual similarity and statistical soundness.
While it will be easy to visually inspect the output images to determine if they have been visibly
changed, it will be difficult to determine whether or not the method is statistically undetectable. We
will do some testing on our own but will rely chiefly on the batch method implemented by the GUI
group to try encoding hundreds of images at once in search of rare errors.

JPEG
While it will be easy to visually inspect the output images to determine if they have been

visibly changed, it will be difficult to determine whether or not the method is statistically
undetectable. This somewhat dubious claim is made in the paper by Lee and Chen; however, it
seems hard to believe that the method is truly undetectable, and it would be hard for us to measure
without asking all of the security experts in the world to try breaking it. We will try to at least
produce some histograms of the luminance values using MATLAB to show that the output images
do not look suspicious.

Furthermore, the hardest part about testing the JpegStegoImage module will be ensuring that the bit
error rate (BER) is zero. We will do some testing on our own but will rely chiefly on the batch
method implemented by the GUI group to try encoding hundreds of images at once in search of rare
errors.

48

GIF and JPEG steganography unit tests
Test 1: Bit error rate zero

Test Approach (Part 1)
100 container images, 100 key images (the images are of different size, color set, and detail
intensity) and 100 passages of text of different size will be fed to a GIF steganography function
for testing encryption / decryption9 function.

Test Approach (Part 2)
100 container images (the images are of different size, color set, and detail intensity), 100 text
keys of different size and 100 passages of text of different size will be fed to a GIF steganograpy
function for testing encryption / decryption10 function.

Goal
To make sure that after hiding the text in an image it could be successfully extracted and the
extracted text 100% identical to the text to be encoded.

Test 2: minimal picture distortion

Test Approach
Test 1 and Test 2 are performed on the smaller subset (on the scale of 10) of container, key
images and text passages. A human being visually compares the empty container image and the
container image containing text

Goal
To make sure that after hiding the text in an image, the image does not appear much different to a
human eye.

Scope
The tests will be applied to:
1 . GIF and JPEG steganography functions that take a key (an image or a text), a container image
and a text to hide and hide the text in a container image.
2. GIF and JPEG steganography functions that take a container image with hidden text and a key
(either in the form of an image or text) and extract the hidden text from the container image.

9 Here encryption and decryption means steganographic text hiding.
10 Again encryption and decryption means steganographic text hiding.

49

3.3 INTEGRATION TESTING
Integration testing will be conducted after the integration the main units of the application described
above. Integration testing should focus on ensuring that combining the parts of the application into
larger units maintains the correct behavior; it should also ensure that the interfaces between the units
are implemented correctly and that the new units' behavior is compatible with the behavior of the
lower level units.

Integration Tests
Integration Test 1

Test Approach
We test the new module with test1 and test2 of GIF and JPEG steganography unit section
combined with test1 of compression unit section. Instead of supplying text to be encoded to GIF
and JPEG functions directly, through integration these functions are supplied with the
compressed text.

Goal
To make sure that after text is compressed and hidden to images it could be extracted from
images and uncompressed, i.e. to ensure that the modules interoperate correctly

Schedule:
After integrating text compression unit with GIF and JPEG steganography functions
Integration Test 2

Test Approach
We test the new module with test1 and test2 of GIF and JPEG steganography unit section
combined with test1 of compression unit section and combined with test 1 of image to key
conversion unit. Instead of supplying text to be encoded to GIF and JPEG functions and key to
be used to encode text directly, through integration these functions are supplied with the
compressed text and the key converted from key images.

Goal
To make sure that after text is compressed and hidden to images it could be extracted from
images and uncompressed, i.e. to ensure that the modules interoperate correctly.

Schedule
After integrating text compression unit with GIF and JPEG steganography functions, and with the
function that converts key images into text

50

Appendix A: GLOSSARY
Key Image

An image used by Paranoia to generate keys used to implement its security features. This
image is not altered in the process.

Source Image
An image, which is believed to contain hidden text. It is indistinguishable from a regular
image, until an Extraction is preformed.

Target Image
An image from which the user would like to produce a copy, or output image, which looks
similar and contains hidden text.

Output Image
An image which has had text embedded into it, and can be exported or save to the user’s hard
drive.

Keys
The input to Paranoia's security algorithms. They are in one of three forms; and image, a text
string or an internal default key used if the user does not supply one.

Pane / Panel
An area of the screen pertaining to a particular control or button.

Extract
The process of finding and recovering text hidden in an image file.

Embed
The process of hiding text in an image file.

51

Appendix B: JPEG Examples and Parameters

The following test shows that there is a lower limit on z (and thus an upper limit on k). As will be
shown, if z is too small, then the user will be able to notice the presence of steganography by simply
viewing the output image.

z: # of entries in the stego-table Compression Quality
21 100

Input Image

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

DC Coefficients Before Steno

10 20 30 40 50 60

10

20

30

40

50

60

DC Coefficients After Steno

10 20 30 40 50 60

10

20

30

40

50

60

Output Image

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

Numeric results:
BER Size of resulting JPEG file SNR in dB

0 162 kB 26

Here the output image looks rather bad because the stego-table contained too few entries. Thus, the
DC coefficients had to be shifted further and introduce blocking effects. This also explains why the
SNR is worse. Finally, the resulting file is just as big as before in the JPEG section of the design
document because the same output compression level was used.

52

The following example shows what can go wrong if the compression quality is too low. While the
paper from Lee and Chen purports that the technique works down to a compression quality of 25,
our implementation in MATLAB began to break down around 40. This difference is probably due to
some of the prototyping shortcuts that we took.

z: # of entries in the stego-table Compression Quality
81 30

Input Image

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

DC Coefficients Before Steno

10 20 30 40 50 60

10

20

30

40

50

60

DC Coefficients After Steno

10 20 30 40 50 60

10

20

30

40

50

60

Output Image

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

Numeric results:
BER Size of resulting JPEG file SNR in dB
0.15 15 kB 28

In this case, the output image looks good despite the small size of the JPEG file because the stego-
table contained a medium number of entries. However, the compression rate was so low that it
caused on average, 15 out of 100 bits to be extracted (and therefore also embedded) incorrectly. This
shows that we need to be careful about not compressing too much, even though the output may
appear correct when viewed with a program such as Photoshop.

In fact, when using Java, we can probably get bit error rates (BER’s) always equal to zero because
we can set the quantization levels used by Java for encoding the DC coefficients of the blocks.
Setting the quantization levels to unusual values may however arouse suspicion.

53

The following tests were performed using many different compression levels and number of entries z
in the stego-tables.

NOTE: The number of entries in the stego-tables z means the same thing as the number of
quantization levels in the plots below.

For our application, we need a bit error rate equal to zero, so we need to choose the parameters such
that they are on the right-half side of the plot.

0

2

4
6

8
10

12

0

2
4

6
8

10
12

14

16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Proportional to compression rate

Bit Error Rates

Proportional to number of quantization levels

For the especially curious reader: due to problems with indices on 3D plots in MATLAB, the indices
here are only roughly proportional to the actual values used in the tests. The real values
corresponding the vertices shown above and on the plot on the next page are given below:

Number of quantization levels (z):
 5 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

Compression quality (c):
 5 10 20 30 40 50 60 70 80 90 100

54

The signal-to-noise ratio (SNR) is an objective measure that is not always directly correlated with
the subjective measure of whether or not the input and output images can be distinguished by the
eye. However, very low SNR’s indicate very high amounts of noise, so we need to avoid SNR’s that
are very low. If follows that neither of the paramters should be chosen to be particularly small.

0

2

4

6

8

10

12

0

2
4

6

8

10
12

14

16
5

10

15

20

25

30

35

40

45

Proportional to compression rate

Signal-to-Noise Ratios (SNR)

Proportional to number of quantization levels

Thus, a good guide for a compression rate would be 80% while using about 60 or 50 quantization
levels. That implies, that z ≈ 55.

