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ABSTRACT
The market for digital modeling guitar amplifiers requires that the
digital models behave like the physical prototypes. A component
of the iconic Fender Bassman guitar amplifier, the tone stack cir-
cuit, filters the sound of the electric guitar in a unique and complex
way. The controls are not orthogonal, resulting in complicated fil-
ter coefficient trajectories as the controls are varied. Because of its
electrical simplicity, the tone stack is analyzed symbolically in this
work, and digital filter coefficients are derived in closed form. Ad-
hering to the technique of virtual analog, this procedure results in a
filter that responds to user controls in exactly the same way as the
analog prototype. The general expressions for the continuous-time
and discrete-time filter coefficients are given, and the frequency re-
sponses are compared for the component values of the Fender ’59
Bassman. These expressions are useful implementation and veri-
fication of implementations such as the wave digital filter.

1. INTRODUCTION

1.1. Motivation

The guitar amplifier is an essential component of the electric gui-
tar sound, and often musicians collect several amplifiers for their
tonal qualities despite the space they occupy. As digital signal pro-
cessors (DSP) continue to improve in performance, there is great
interest in replacing expensive and bulky vacuum tube guitar amp-
lifiers with more flexible and portable digital models. A digital
model of a guitar amplifier allows a variety of sounds associated
with different amplifiers to be selected from a single amplifier unit.
One company, Line 6 bases its main product line upon this con-
cept, and other companies such as Roland (Boss), Korg (Vox),
Harman International (Digitech) have competing products.

Most commercially viable digital guitar processing products
use simplified models of the distortion and filters to reduce DSP
power consumption and reduce manufacturing costs. The distor-
tion is typically a nonlinear transfer curve, accompanied by digital
filtering that is manually tuned to match the sound of a famous
guitar amplifier.

With no pressure to produce a commercially successful prod-
uct, this research takes a different approach. The goal of this re-
search is to see how accurate a sound can be achieved through care-
ful physical modeling of the vacuum tube amplifier and to provide
a physical basis for the digital model and parameters. Because the
tone stack is a passive, linear component, it is a straightforward
starting point.

1.2. Properties of the tone stack

Commonly found in many guitar amplifiers, especially those that
derive from the Fender design, the tone stack filters the signal of
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Figure 1: Tone stack circuit with component values.

the guitar in a unique and non-ideal way. The user can adjust Tre-
ble, Middle, and Bass controls to modify the gain of the respective
frequency bands. However, these controls are not orthogonal, and
changing some controls affects the other bands in a complex way.

The full Bassman schematic can be easily found online [1] and
in guitar amplifier books. While other guitar amplifiers may vary
slightly, in the Bassman type designs, the tone stack is found af-
ter the preamplifier stages and before the phase splitter. In good
designs, the tone stack is preceded by a cathode follower to buffer
the input and reduce variations in frequency response due to loa-
ding. Typically this presents a 1kΩ load to the input and the phase
splitter stage presents a 1MΩ load to the output.

The Fender ’59 Bassman tone stack circuit is shown in Fig.
1. The Treble, Middle, and Bass knobs are potentiometers, which
have been modeled here as parameterized resistors. The Treble and
Middle controls use linear potentiometers, while the Bass control
uses a logarithmic taper potentiometer. In this paper, t and m cor-
respond to the Treble and Middle controls and range in value from
[0, 1]. The Bass control, l, also ranges from [0, 1], but is swept
logarithmically.
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1.3. Related work

Fender Musical Instruments has a patent to simulate various tone
stacks using an active analog filter and an interpolation scheme to
extract the filter coefficients [2]. Line 6 also models the behavior
of the Bassman tone stack as indicated in the BassPODxt manual.
However, their implementation is proprietary knowledge. An open
source guitar effects plug-in suite for Linux, CAPS [3], uses shelv-
ing filters instead of the tone stack.

Previous works have analyzed the tone stack using numeri-
cal circuit analysis techniques. This involves setting up the nodal
equations as a matrix and inverting it or performing Gaussian eli-
mination to find the solution. For example, the Tone Stack Calcu-
lator from Duncan Amps will plot the frequency response of vari-
ous tone stacks given the control settings [4]. Kuehnel in his book
analyzed the mesh equations of the tone stack, using low frequency
and high frequency circuit approximations [5]. He also compares
these simplified equations to the numerical solutions solved by in-
verting the matrix of the mesh equations. While the approxima-
tions make the circuit analysis more tractable, they do not reduce
the order of the equations and do not make the discretization of the
filter any easier.

Because the tone stack is a third-order passive network of re-
sistors and capacitors (RC), its filter coefficients can be derived
and modeled exactly in the digital domain as shown later. The
approach taken here is to find the continuous time transfer func-
tion of the circuit analytically and to discretize this by the bilinear
transformation. This provides a means of updating the digital filter
coefficients based upon changes to the tone controls.

The passive filter circuit also is suited to implementation as
a wave digital filter (WDF)[6]. This approach can easily model
standard components such as inductors, capacitors, and resistors.
The analytical form derived here can be used for comparison with
and verification of the WDF implementation.

2. DISCRETIZATION PROCEDURE

2.1. Symbolic Circuit Analysis

Because this is a relatively simple circuit, it is amenable to ex-
act symbolic analysis by mathematical Computer Aided Design
(CAD) software such as Mathematica (Wolfram Research, Inc.,
Champaign, IL). The filter coefficients can thus be found without
any approximations. Performing symbolic nodal analysis on this
circuit yields the following input/output transfer function H(s) =
Vo(s)/Vi(s), where Vo is the output and Vi is the input as in Fig. 1.

H(s) =
b1s + b2s

2 + b3s
3

a0 + a1s + a2s2 + a3s3
, (1)
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2
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2
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2
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2
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where t is the Treble (or “top”) control, l is the Bass (or “low”)
control, and m is the “middle” control.

2.2. Verification with SPICE circuit simulation

To verify the correctness of this expression, Figs. 2 and 3 com-
pare the frequency response with the result from the AC analysis
of SPICE1 simulation at the settings t = m = l = 0.5. The plots
show an exact match, verifying that Eqn. 1 is a complete and exact
expression for the transfer function of the tone stack. SPICE simu-
lation also determined that the frequency response was unaffected
by the typical loading of 1kΩ at the input and 1MΩ at the output.

2.3. Discretization by Bilinear Transform

The continuous time transfer function was discretized by the bilin-
ear transformation. Substituting s = c 1−z−1

1+z−1 in (1) using Mathe-
matica yields

H(z) =
B0 + B1z

−1 + B2z
−2 + B3z

−3

A0 + A1z−1 + A2z−2 + A3z−3
(2)

where

B0 = −b1c− b2c
2 − b3c

3,

B1 = −b1c + b2c
2 + 3b3c

3,

B2 = b1c + b2c
2 − 3b3c

3,

B3 = b1c− b2c
2 + b3c

3,

A0 = −a0 − a1c− a2c
2 − a3c

3,

A1 = −3a0 − a1c + a2c
2 + 3a3c

3,

A2 = −3a0 + a1c + a2c
2 − 3a3c

3,

A3 = −a0 + a1c− a2c
2 + a3c

3 .

1http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
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Figure 2: Comparison of magnitude response between analytical
expression and SPICE for t = l = m = 0.5.
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Figure 3: Comparison of phase response between analytical ex-
pression and SPICE for t = l = m = 0.5.

We used c = 2/T , which is ideal for frequencies close to DC.

3. ANALYSIS OF RESULTS

3.1. Comparison of continuous- and discrete- time responses

Figs. 4–6 show the discrete- and continuous-time transfer func-
tions compared for various settings of t, m, and l. Each figure
shows a different setting of l, and each sub-figure shows a diffe-
rent setting of m. In each plot, the treble control, t, was swept
from 0.0001 to 0.5 to 0.9999 and can be distinguished by the cor-
responding increase in high frequency response.

The discretized filter used a sampling frequency of 44.1 kHz
as typical for audio systems. The plots for fs = 44.1 kHz show
an excellent match through 10 kHz. The discrete and continuous
plots are practically indistinguishable, with some deviations at the
higher frequencies, as expected with the bilinear transform.

Because commercial guitar processing units use a lower samp-
ling rate for cost savings, Figs. 7–9 show the same plots as above
with fs reduced to 20 kHz. These curves deviate slightly more
from H(s) at high frequencies, but exhibit the same trends as be-
fore.

The errors, defined as the difference between the dB values
of H(s) and H(z) at each frequency, are plotted in Fig. 10 for
fs = 20 kHz and fs = 44.1 kHz (abbreviated as 44k) for the
settings of t, m, and l that give the worst case results. The error is
only meaningful for frequencies up through fs/2.

The curves for t = 0.5, m = 0, b = 1 are characteristic of
tone settings that give a high pass response and have error within
0.5 dB for both cases of fs.
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Figure 4: Comparison of filter magnitude response between origi-
nal and discretized (fs = 44.1 kHz) filters, l = 0.
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Figure 5: Comparison of filter magnitude response between origi-
nal and discretized (fs = 44.1 kHz) filters, l = 0.1.
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Figure 6: Comparison of filter magnitude response between origi-
nal and discretized (fs = 44.1 kHz) filters, l = 1.
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Figure 7: Comparison of filter magnitude response between origi-
nal and discretized (fs = 20 kHz) filters, l = 0.
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Figure 8: Comparison of filter magnitude response between origi-
nal and discretized (fs = 20 kHz) filters, l = 0.1.
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Figure 9: Comparison of filter magnitude response between origi-
nal and discretized (fs = 20 kHz) filters, l = 1.
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Figure 10: Error as difference between dB values of H(s) and
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The curves for t = 0, m = 0, b = 1 are characteristic of set-
tings that give a low pass response and exhibit a rapidly increasing
error as frequency increases because the bilinear transform maps
the null at infinite frequency to fs/2. The error rises to 3 dB at
roughly 6 kHz for fs = 20 kHz, and at 13 kHz for fs = 44.1
kHz. Because of the low pass nature of these responses, the er-
rors occur at frequencies where the magnitude is at least 10-20 dB
lower than its peak value, making them perceptually less salient.
Also, given that the frequency response of a typical guitar speaker
is from 100 Hz to 6000 Hz, the deviations at higher frequencies
would be inconsequential.

3.2. Implications of system poles and zeros for filter imple-
mentation

The plots exhibit the complex dependence of the frequency re-
sponse upon the tone controls. The most obvious effect is that
changes in the Middle control also affect the treble response. The
analytical form of the transfer function provides a way to find the
poles and zeros of the system as the settings are varied and gives
insight into how the filter could be simplified to facilitate the im-
plementation while maintaining accuracy.

Note that the tone stack is an entirely passive circuit composed
of resistors and capacitors. This implies that the three poles of this
system are all real. There is a zero at DC, leaving a pair of zeros
that may be complex depending on the control settings. This also
implies that the tone stack cannot be a resonant circuit although
the pair of imaginary zeros can set up an anti-resonance as evident
in the notch seen in the frequency response plots.

Also note from Eqn. (1) that none of the coefficients of the
denominator depends on the treble control, t. The treble control
therefore does not control the modes of the circuit but only adjusts
the position of the zeros. This circuit can be decomposed into a
weighted sum of terms that correspond to each mode by the partial
fraction expansion. From this perspective, the treble control only
affects the weighting of the different modes, but not the pole lo-
cation of each mode. The poles are controlled exclusively by the
bass and middle knobs.

This insight suggests possible alternate filter topologies. Ins-
tead of implementing the filter directly as a single third-order fil-
ter, one could equivalently use series and parallel combinations of

lower order filters. Understanding the poles and zeros of the sys-
tem, one could make simplifying assumptions, ignoring terms that
have little impact on the locations of the poles and zeros.

One implementation would be to find the partial fraction ex-
pansion of the transfer function using the expression given and
precompute the poles, residues, and direct terms based upon the
three-dimensional input space of the tone controls. These terms
can be interpolated in the input space and used in the parallel filter
structure that arises from the partial fraction expansion.

The existence of an analytical expression for the poles and
zeros also informs the choice of c in the bilinear transform. The
analytical expression allows the computation of frequency domain
features such as local maxima or anti-resonance notches to be
matched in the discrete-time domain.

4. CONCLUSIONS

This work shows that the Fender tone stack can be parameterized
exactly in the discrete-time domain and that the bilinear transform
provides an outstanding frequency mapping for reasonable samp-
ling rates. The transfer function for the physical tone stack was
found as a function of its control parameters and component va-
lues using symbolic math software. This analysis provides a for-
mula for updating the digital tone stack coefficients in a way that
exactly emulates the physical circuit. The symbolic form of the
transfer function also allows easy determination of the poles and
zeros of the system and guides the design of a filter with simplified
coefficients.

Further work remains to factor the expression for the tone
stack frequency response and find a structure with simpler expres-
sions for updating the filter. One possible implementation is the
wave digital filter. A real-time implementation of the tone stack is
also in progress.
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