Tutorial on Wave Digital Filters

David Yeh

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University

CCRMA DSP Seminar January 25, 2008

- Introduction
 - Motivation
 - Classical Network Theory
- Wave Digital Formulation
 - Wave Digital One-Ports Derivation
 - Wave Digital Adaptors
 - Nonlinearity
- Summary
 - Examples
 - Conclusions
- 4 Appendix
 - Scattering Junction Derivations
 - Mechanical Impedance Analogues

- Introduction
 - Motivation
 - Classical Network Theory
- Wave Digital Formulation
 - Wave Digital One-Ports Derivation
 - Wave Digital Adaptors
 - Nonlinearity
- Summary
 - Examples
 - Conclusions
- Appendix
 - Scattering Junction Derivations
 - Mechanical Impedance Analogues

Overview

- Fettweis (1986), Wave Digital Filters: Theory and Practice.
- Wave Digital Filters (WDF) mimic structure of classical filter networks.
 - Low sensitivity to component variation.
- Use wave variable representation to break delay free loop.
- WDF adaptors have low sensitivity to coefficient quantization.
 - Direct form with second order section biquads are also robust
 - Transfer function abstracts relationship between component and filter state
 - WDF provides direct one-to-one mapping from physical component to filter state variable

Wave digital filters model circuits used for filtering

- Modeling physical systems with equivalent circuits.
 - Piano hammer mass spring interaction
 - Generally an ODE solver
 - Element-wise discretization and connection strategy
 - Real time model of loudspeaker driver with nonlinearity
 - Multidimensional WDF solves PDEs
- Ideal for interfacing with digital waveguides (DWG).

- Introduction
 - Motivation
 - Classical Network Theory
- Wave Digital Formulation
 - Wave Digital One-Ports Derivation
 - Wave Digital Adaptors
 - Nonlinearity
- Summary
 - Examples
 - Conclusions
- Appendix
 - Scattering Junction Derivations
 - Mechanical Impedance Analogues

Classical Network Theory N-port linear system

- Describe a circuit in terms of voltages (across) and current (thru) variables
- General N-port network described by V and I of each port
- Impedance or admittance matrix relates V and I

$$\bullet \begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_N \end{pmatrix} = \underbrace{\begin{pmatrix} Z_{11} & Z_{12} & \dots & Z_{1N} \\ Z_{21} & \ddots & & Z_{2N} \\ \vdots & & & \vdots \\ Z_{N1} & \dots & & Z_{NN} \end{pmatrix}}_{\mathbf{Z}} \begin{pmatrix} I_1 \\ I_2 \\ \vdots \\ I_N \end{pmatrix}$$

Classical Network Theory

Element-wise discretization for digital computation

 For example, use Bilinear transform $s = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}$

• Capacitor: $Z(s) = \frac{1}{sC}$

$$Z(z^{-1}) = \frac{T}{2C} \frac{1 + z^{-1}}{1 - z^{-1}} = \frac{V(z^{-1})}{I(z^{-1})}$$

$$v[n] = \frac{T}{2C}(i[n] + i[n-1]) + v[n-1]$$

- v[n] depends instantaneously on i[n] with $R_0 = \frac{T}{2C}$
- This causes problems when trying to make a signal processing algorithm
- Can also solve for solution using a matrix inverse (what SPICE does).

$$A = V + RI$$
 $V = \frac{A+B}{2}$ $B = V - RI$ $I = \frac{A-B}{2R}$

- Variable substitution from V and I to incident and reflected waves. A and B
- An N-port gives an N × N scattering matrix
- Allows use of scattering concept of waves

Classical Network Theory

Two port is commonly used in microwave electronics to characterize amplifiers

- Input port (1) and output port (2)
- Represent as scattering matrix and wave variables

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix}$$

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

- Scattering matrix **S** determines reflected wave b_n as a linear combination of N incident waves a_1, \ldots, a_n
- Guts of the circuit abstracted away into S or Z matrix

- Introduction
 - Motivation
 - Classical Network Theory
- Wave Digital Formulation
 - Wave Digital One-Ports Derivation
 - Wave Digital Adaptors
 - Nonlinearity
- Summary
 - Examples
 - Conclusions
- Appendix
 - Scattering Junction Derivations
 - Mechanical Impedance Analogues

Basic one port elements

as.

Work with voltage wave variables b and a. Substitute into Kirchhoff circuit equations and solve for b as a function of

Wave reflectance between two impedances is well known

$$\rho = \frac{b}{a} = \frac{R_2 - R_1}{R_2 + R_1}$$

- Define a port impedance R_p
- Input wave comes from port and reflects off the element's impedances.
 - Resistor $Z_R = R$, $\rho_R(s) = \frac{1 R_p / R}{1 + R_0 / R}$
 - Capacitor $Z_C = \frac{1}{sC}$, $\rho_C(s) = \frac{1 R_p Cs}{1 + R_n Cs}$
 - Inductor $Z_L = sL$, $\rho_L(s) = \frac{s R_p/L}{s + R_pL}$

Wave Digital Elements Discretize the capacitor by bilinear transform

Plug in bilinear transform

$$\frac{b_n}{a_n} = \frac{1 - R_p C_T^2 \frac{1 - z^{-1}}{1 + z^{-1}}}{1 + R_p C_T^2 \frac{1 - z^{-1}}{1 + z^{-1}}}$$

$$(1 + R_p C_T^2)b[n] + (1 - R_p C_T^2)b[n-1] = (1 - R_p C_T^2)a[n] + (1 + R_p C_T^2)a[n-1]$$

• Choose R_p to eliminate depedence of b[n] on a[n], e.g., $R_p = \frac{T}{2C}$, resulting in:

$$b[n] = a[n-1]$$

 Note that chosen R_p exactly the instantaneous resistance of the capacitor when discretized by the bilinear transform

T-ports and I-ports

- *T-port.* Port resistance can be chosen to perfectly match element resistance to eliminate instantaneous reflection and avoid delay-free loop.
- I-port. If port is not matched, b[n] depends on a[n] instantaneously. R_p can be chosen as any positive value.
 - Short circuit b[n] = -a[n]
 - Open circuit b[n] = a[n]
 - Voltage source of voltage V b[n] = -a[n] + 2V
 - Current source of current I $b[n] = a[n] - 2R_nI$

Element	Port Resistance	Reflected wave
Resistor	$R_p = R$	b[n] = 0
Capacitor	$R_p = \frac{T}{2C}$	b[n] = a[n-1]
Inductor	$R_p = \frac{\bar{2}\bar{L}}{T}$	b[n] = -a[n-1]
Short circuit	R_p	b[n] = -a[n]
Open circuit	R_p	b[n] = a[n]
Voltage source V_s	R_p	$b[n] = -a[n] + 2V_s$
Current source I _s	R_p	$b[n] = a[n] + 2R_p I_s$
Terminated V _s	$R_{p}=R_{s}$	$b[n] = V_s$
Terminated I _s	$R_p = R_s$	$b[n] = R_p I_s$

Wave Digital Elements

One port summary for current waves. Signs are flipped for some reflectances.

Element	Port Resistance	Reflected wave
Resistor	$R_p = R$	b[n] = 0
Capacitor	$R_p = rac{T}{2C}$ $R_p = rac{2L}{T}$	b[n] = -a[n-1]
Inductor	$R_p = \frac{\overline{2}L}{T}$	b[n] = a[n-1]
Short circuit	R_p	b[n] = a[n]
Open circuit	R_{p}	b[n] = -a[n]
Voltage source V_s	R_{p}	$b[n] = a[n] + 2V_s$
Current source I _s	R_{p}	$b[n] = -a[n] + 2R_pI_s$
Terminated V_s	$R_p=R_s$	$b[n] = V_s$
Terminated I _s	$R_p = R_s$	$b[n] = R_p I_s$

Wave Digital Elements Two ports

- Series
- Parallel
- Transformer
- Unit element

- Introduction
 - Motivation
 - Classical Network Theory
- Wave Digital Formulation
 - Wave Digital One-Ports Derivation
 - Wave Digital Adaptors
 - Nonlinearity
- Summary
 - Examples
 - Conclusions
- Appendix
 - Scattering Junction Derivations
 - Mechanical Impedance Analogues

Adaptors perform the signal processing calculations

- Treat connection of N circuit elements as an N-port
- Derive scattering junction from Kirchhoff's circuit laws and port impedances determined by the attached element
- Scattering matrix is N × N
- Parallel and series connections can be simplified to linear complexity
- Signal flow diagrams to reduce number of multiply or add units
 - Dependent port one coefficient can be implied.
 - Reflection free port match impedance to eliminate reflection

Two-Port Parallel Adaptor

$$b_1 = a_2 + \gamma(a_2 - a_1)$$

$$b_2 = a_1 + \gamma(a_2 - a_1)$$

$$\gamma = (R_1 - R_2)/(R_1 + R_2)$$

N-Port Parallel Adaptor

• G_{ν} are the port conductances

$$G_n = G_1 + G_2 + \cdots + G_{n-1}, G_{\nu} = 1/R_{\nu}$$

Find scattering parameters

$$\gamma_{\nu} = \frac{G_{\nu}}{G_{n}}, \nu = 1 \text{ to } n-1$$

Note γ sum to 2

$$\gamma_1 + \gamma_2 + \cdots + \gamma_n = 2$$

Use intermediate variable to find reflected waves

$$a_0 = \gamma_1 a_1 + \gamma_2 a_2 + \cdots + \gamma_n a_n$$

 $b_{\nu} = a_0 - a_{\nu}$

- G_{ν} are the port conductances
- R_n is set equal to equivalent resistance looking at all the other ports (their Rs in parallel) to make port n RFP

$$G_n = G_1 + G_2 + \dots + G_{n-1}, G_{\nu} = 1/R_{\nu}$$

 $\gamma_n = 1$
 $\gamma_1 + \gamma_2 + \dots + \gamma_{n-1} = 1$
 $\gamma_{\nu} = \frac{G_{\nu}}{G_n}, \nu = 1 \text{ to } n-1$
 $b_n = \gamma_1 a_1 + \gamma_2 a_2 + \dots + \gamma_{n-1} a_{n-1}, \quad \text{RFP}$
 $b_{\nu} = b_n + a_n - a_{\nu}$

- R_i, are the port resitances.
- Find scattering parameters

$$\gamma_{\nu} = \frac{2R_{\nu}}{R_1 + R_2 + \dots + R_n}$$

Note scattering parameters sum to 2

$$\gamma_1 + \gamma_2 + \cdots + \gamma_n = 2$$

Use intermediate variable to find reflected waves

$$a_0 = a_1 + a_2 + \cdots + a_n$$

 $b_{\nu} = a_{\nu} - \gamma_{\nu} a_0$

- R_{ν} are the port resitances
- R_n is set equal to equivalent resistance looking at all the other ports (their Rs in series) to make port n RFP

$$R_n = R_1 + R_2 + \dots + R_{n-1}$$

 $\gamma_n = 1$
 $\gamma_1 + \gamma_2 + \dots + \gamma_{n-1} = 1$
 $\gamma_{\nu} = \frac{R_{\nu}}{R_n}, \nu = 1 \text{ to } n - 1$
 $b_n = -(a_1 + a_2 + \dots + a_{n-1}), \quad \text{RFP}$
 $b_{\nu} = a_{\nu} - \gamma_{\nu}(a_n - b_n)$

- Adaptors have property of low coefficient sensitivity, e.g., coefficients can be rounded or quantized.
- Dependent ports take advantage of property that γ s sum to two.
- Use this fact along with quantization to ensure that adaptor is (pseudo-)passive.

Connection Strategy Parameter updates

- Parameter updates propagate from leaf through its parents to the root
- Each adaptor's RFP must be recalculated when a child's port resistance changes
- Parameter update is more complicated than solving the Kirchhoff's equations directly, where the parameters are just values in the resistance matrix.

Avoid delay-free loops with adaptors connected as a tree

- Sarti et. al., Binary Connection Tree implement WDF with three-port adaptors
- Karjalainen, BlockCompiler describe WDF in text, produces efficient C code
- Scheduling to compute scattering
 - Directed tree with RFP of each node connected to the parent
 - Label each node (a, b, c, ...)
 - Label downward going signals d by node and port number
 - Label upward going signals *u* by node
 - Start from leaves, calculate all u going up the tree
 - Then start from root, calculate all d going down the tree

Connection Strategy

Automatic generation of WDF tree structure

- SPQR tree algorithms find biconnected and triconnected graphs (Fränken, Ochs, and Ochs, 2005. Generation of Wave Digital Structures for Networks Containing Multiport Elements.)
- Q nodes are one ports
- S and P nodes are Series and Parallel adaptors
- R nodes are triconnected elements
 - Implemented with similarity transform of N × N scattering matrix into two-port adaptors (Meerkötter and Fränken, Digital Realization of Connection Networks by Voltage-Wave Two-Port Adaptors"
 - Includes bridge connections and higher order connections
- Implemented in WDInt package for Matlab (http://www-nth.uni-paderborn.de/wdint/index.html)

- For example, bridge connection
- higher order triconnections also common
- N-port scattering junction
 - can be reduced to implementation by two port adaptors using similarity transform - keeps robust properties for quantization
 - reduces operations for filtering vs scatter matrix
- In general parameter update is complicated

Other strategies: $Y - \Delta \Delta - Y$ transformations

- Circuit analysis technique to replace triconnected impedances with equivalents that can be connected in series or parallel.
- Must discretize general impedances, no longer correspondence between prototype circuit element and WDF element

Example: Guitar amplifier tone stack with input and output loading

Formulate blocks compatabile with scattering

- Observe that tone stack is a specific two-port
- Direct implementation of a 2-port scattering matrix
- Or convert into an equivalent circuit with impedances and use adaptors
- Tabulate the scattering parameters or impedances as they vary with parameter changes

- Introduction
 - Motivation
 - Classical Network Theory
- Wave Digital Formulation
 - Wave Digital One-Ports Derivation
 - Wave Digital Adaptors
 - Nonlinearity
- 3 Summary
 - Examples
 - Conclusions
- Appendix
 - Scattering Junction Derivations
 - Mechanical Impedance Analogues

- Meerkötter and Scholz (1989), Digital Simulation of Nonlinear Circuits by Wave Digital Filter Principles.
- Sarti and De Poli (1999), Toward Nonlinear Wave Digital Filters.
- Karjalainen and Pakarinen (2006), Wave Digital Simulation of Vacuum-Tube Amplifier
- Petrausch and Rabenstein (2004), Wave Digital Filters with Multiple Nonlinearities
- Either conceive as nonlinear resistor or dependent source
- Introduces an I-port, may lead to delay-free loops
- DFL must be solved as a system of equations in wave variables

Nonlinear Conductance

Meerkötter and Scholz (1989).

- Current is a nonlinear function of voltage, i = i(v)
- In wave variables

$$a = f(v) = v + R_p i(v)$$

$$b = g(v) = v - R_p i(v)$$

 Substituting wave variables into Kirchhoff variable definition of nonlinear resistance and solving for b(a)

$$b = b(a) = g(f^{-1}(a))$$

- f^{-1} must exist
- Port resistance R_p can be chosen arbitrarily within constraints that f(v) be invertible
- Instantaneous dependence exists regardless of R_p

Extension to nonlinear reactances

Nonlinear Capacitor. Sarti and De Poli (1999).

Use a "mutator" to integrate the Kirchhoff variable so that the nonlinear reactance can be defined in terms of wave variables.

Voltage-current

Voltage-charge

 Define wave variable such that port resistance can be an impedance.

$$A(s) = V(s) + R(s)I(s)$$

$$B(s) = V(s) - R(s)I(s)$$

Recall that standard wave definitions for a one port such as a capacitor are

$$A_1 = V_1 + R_1 I_1$$

 $B_1 = V_1 - R_1 I_1$

Nonlinear Capacitor. Sarti and De Poli (1999).

For the capacitor with the usual single resistive port, define a second port across the capacitor with its port impedance $R(s) = \frac{1}{sC}$

$$A_2(s) = V_2(s) + \frac{1}{sC}I_2(s)$$

 $B_2(s) = V_2(s) - \frac{1}{sC}I_2(s)$

This looks like the usual wave variable definitions if I(s) is replaced by its integral Q(s), charge, and port impedance $R_2 = 1/C$.

$$A_2(s) = V_2(s) + \frac{1}{C}Q(s)$$

 $B_2(s) = V_2(s) - \frac{1}{C}Q(s)$

 A_2 and B_2 can be substituted into the definition of a generic nonlinear capacitance $Q = f(V) = C(V) \cdot V$ to find the nonlinear "reflection" as it is done for the nonlinear resistor. R_2 can be chosen rather arbitrarily as before.

Extension to nonlinear reactances

Voltage-current to voltage-charge wave conversion (Felderhoff 1996).

Compute scattering relations between the resistive and the integrated port using two relations: consistency of voltage for the two ports $V_1 = V_2$, and $I_1 + I_2 = 0$ across junction .

$$V = \frac{A_1 + B_1}{2} = \frac{A_2 + B_2}{2} \tag{1}$$

$$I_1 = \frac{A_1 - B_1}{2R_1} = -\frac{A_2 - B_2}{2R(s)} = -\frac{A_2 - B_2}{2\frac{1}{sC}}$$
 (2)

bilinear transform $s \rightarrow z$

substitute $b_2 = a_1 + b_1 - a_2$ using (1)

$$\frac{A_1 - B_1}{R_1} = -\frac{A_2 - B_2}{\frac{1}{C} \frac{T}{2} \frac{1 + z^{-1}}{1 - z^{-1}}}$$

$$(1 + z^{-1})(A_1 - B_1) = -\frac{2}{T} CR_1 (1 - z^{-1})(A_2 - B_2)$$

$$(A_1 + z^{-1}A_1 - B_1 - z^{-1}B_1) = -\frac{2}{T} CR_1 (A_2 - z^{-1}A_2 - B_2 + z^{-1}B_2)$$

$$a_1[n] + a_1[n - 1] - b_1[n] - b_1[n - 1] = -\frac{2}{T} CR_1 (a_2[n] - a_2[n - 1] - b_2[n] + b_2[n - 1])$$

$$a_{1}[n] + a_{1}[n-1] - b_{1}[n] - b_{1}[n-1] = -\frac{2}{T}CR_{1}(a_{2}[n] - a_{2}[n-1]) - (a_{1}[n] + b_{1}[n] - a_{2}[n]) + a_{1}[n-1] + b_{1}[n-1] - a_{2}[n-1])$$

Extension to nonlinear reactances

Voltage-current to voltage-charge wave conversion.

Set $R_1 = T/(2C)$ to eliminate reflection at port 1.

$$a_1[n-1] - b_1[n] = -a_2[n] + a_2[n-1]$$

Capacitor/Mutator R_2 b, b,

Voltage-current

Voltage-charge

Resulting scattering junction (or mutator according to Sarti and De Poli) converts between voltage-current and voltage-charge waves:

$$b_2 = a_1 + (a_1[n-1] - a_2[n-1])$$

$$b_1 = a_2 + (a_1[n-1] - a_2[n-1])$$

Port resistance for new mutated waves corresponding to voltage and charge is $R_2 = \frac{1}{C}$.

Port resistance for usual waves corresponding to voltage and current is $R_1 = \frac{7}{20} = \frac{7}{2}R_2$.

Outline

- Introduction
 - Motivation
 - Classical Network Theory
- Wave Digital Formulation
 - Wave Digital One-Ports Derivation
 - Wave Digital Adaptors
 - Nonlinearity
- Summary
 - Examples
 - Conclusions
- Appendix
 - Scattering Junction Derivations
 - Mechanical Impedance Analogues

Parametrized Linear Circuit Example

Volume pot with bright switch

Output is voltage over R_v , $V_o = \frac{(d_{1S} + u_{Rt})}{2}$ $R_V = R_{pot}(\text{vol}), R_t = R_{pot}(1 - \text{vol}).$ Changes in vol require recomputation of γ 's starting from bottom of tree. Use RFP to allow open circuit when C is disconnected.

$$\begin{split} u_{RV} &= u_{Rl} = 0, \qquad u_V = V \\ u_S &= -(u_{RV} + u_V) \\ u_P &= \gamma_{1P} u_{Rl} + \gamma_{2P} u_S \\ u_C &= d_P [n-1] \\ d_P &= u_P + \gamma_P (u_C - u_P) \\ d_C &= u_C + \gamma_P (u_C - u_P), \quad \text{or} \quad d_C = u_P \\ d_{1P} &= u_P + d_C - u_{Rl}, \quad \text{don't care} \\ d_{2P} &= u_P + d_C - u_S \\ d_{1S} &= u_{RV} - \gamma_{1S} (d_{2P} - u_S), \quad \text{output value} \\ d_{2S} &= u_V - \gamma_{2S} (d_{2P} - u_S), \quad \text{don't care} \end{split}$$

Nonlinear Circuit Example Diode clipper

- Diode clipper circuit found in guitar distortion pedals
- Treat diodes together as single nonlinear one-port

$$I(V) = 2I_{S} \sinh{(V/V_{d})}$$

Solve for $b(a)$, $\frac{a-b}{2R_{D}} = 2I_{S} \sinh{\left(\frac{a+b}{2V_{d}}\right)}$

- Isolate nonlinearity at root of tree
- Incorporate resistor into voltage source

Nonlinear Circuit Example Diode clipper: Computational algorithm

$$\begin{split} u_V &= V, & u_{Ch} = d_{2S}[n-1] \\ u_S &= -(u_V + u_{Ch}), & u_{Cl} = d_{2P}[n-1]) \\ u_P &= \gamma_1 P u_S + \gamma_2 P u_{Cl} \\ d_D &= f(u_P), & \text{nonlinear function} \\ d_{1P} &= u_P + d_D - u_S \\ d_{2P} &= u_P + d_D - u_{Cl} \\ d_{1S} &= u_V - \gamma_{1S}(d_{1P} - u_S), & \text{don't care} \\ d_{2S} &= u_{Ch} - \gamma_{2S}(d_{1P} - u_S) \end{split}$$

- Draw mass/spring/waveguide system in terms of equivalent circuits
- Waveguides look like resistors to the lumped hammer. Waves enter lumped junction directly.
- WDF result in tree like structures with adaptors/scattering junctions at the nodes, and elements at the leaves.
- The root of the tree allowed to have instantaneous reflections
- Nonlinearity gives instantaneous reflection, WDF handles only 1 nonlinearity naturally.
- Compression ($d = \frac{u_{nl} d_{nl}}{2R_{nl}}$ from next slide) must > 0, otherwise hammer is not in contact.

To left and right waveguides

Nonlinear Musical Acoustics Example Computations

$$\begin{split} &v_1^+, v_2^- & \text{ from waveguides} \\ &u_S = -(v_1^+ + v_2^-) \\ &u_m = d_{1P}[n-1] \\ &u_P = \gamma_{1P}u_m + \gamma_{2P}u_S \\ &u_{nl} = u_P + (u_P[n-1] - d_{nl}[n-1]) \\ &d_{nl} : & \text{ solve } \left\{ \frac{u_{nl} + d_{nl}}{2} = k \left(\frac{u_{nl} - d_{nl}}{2R_{nl}} \right)^{\gamma} \right\} \\ &d_k = d_{nl} + (u_P[n-1] - d_{nl}[n-1]) \\ &d_{1P} = u_P + d_k - u_m \\ &d_{2P} = u_P + d_k - u_S \\ &v_1^- = v_1^+ - \gamma_{1S}(d_{2P} - u_S) \\ &v_2^+ = v_2^- - \gamma_{2S}(d_{2P} - u_S) \end{split}$$

To left and right waveguides

Outline

- - Motivation
 - Classical Network Theory
- - Wave Digital One-Ports Derivation
 - Wave Digital Adaptors
 - Nonlinearity
- Summary
 - Examples
 - Conclusions
- - Scattering Junction Derivations
 - Mechanical Impedance Analogues

Observations

- Scattering formulation works well with DWG DWG looks like resistor in WDF
- For a standalone simulation of nonlinear circuits, may not be the best choice
- More difficult for parameter update than direct solving
- Root node is special easy to implement nonlinearity or parameter changes
- May be able to design circuits without bridge connections that have equivalent transfer function

Summary

- Wave digital formulation uses matched (reflection-free) ports to eliminate reflections and avoid delay-free loops
- Elements are connected in tree structure with reflection-free ports connected to the parent node.
- Useful for building up a model component-wise.

Outline

- Introduction
 - Motivation
 - Classical Network Theory
- Wave Digital Formulation
 - Wave Digital One-Ports Derivation
 - Wave Digital Adaptors
 - Nonlinearity
- Summary
 - Examples
 - Conclusions
- 4 Appendix
 - Scattering Junction Derivations
 - Mechanical Impedance Analogues

Two-port adaptor reflectance and transmittance

N-port parallel adaptor

N-port series adaptor

- Introduction
 - Motivation
 - Classical Network Theory
- Wave Digital Formulation
 - Wave Digital One-Ports Derivation
 - Wave Digital Adaptors
 - Nonlinearity
- Summary
 - Examples
 - Conclusions
- 4 Appendix
 - Scattering Junction Derivations
 - Mechanical Impedance Analogues

Mechanical Impedance Analogues from Music 420

The following mechanical examples are taken from: "Lumped Elements, One-Ports, and Passive Impedances", by Julius O. Smith III, (From Lecture Overheads, Music 420). http://ccrma.stanford.edu/jos/OnePorts/http://ccrma.stanford.edu/~jos/OnePorts/Copyright © 2007-02-22 by Julius O. Smith III

Dashpot

Ideal dashpot characterized by a constant impedance μ

Dynamic friction law

$$f(t) \approx \mu v(t)$$
 "Ohm'sLaw"(Force = Friction_coefficient×Velocity)

Impedance

$$R_{\mu}(s) \triangleq \mu \geq 0$$

- Dashpot = gain for force input and velocity output
- Electrical analogue: Resistor $R = \mu$
- More generally, losses due to friction are
 - frequency dependent
 - hysteretic

Mass

Ideal mass of *m* kilograms sliding on a frictionless surface

Newton's 2nd Law

$$f(t) = ma(t) \triangleq m\dot{v}(t) \triangleq m\ddot{x}(t)$$
(Force = Mass × Acceleration)

Differentiation Theorem

$$F(s) = m[sV(s) - v(0)] = msV(s)$$

for Laplace Transform when v(0) = 0.

Impedance

$$R_m(s) \triangleq \frac{F(s)}{V(s)} = ms$$

Mass

"Black Box" Description

Admittance

$$\Gamma_m(s) \triangleq \frac{1}{R_m(s)} = \frac{1}{ms}$$

 Impulse Response (unit-momentum input)

$$\gamma_m(t) \triangleq \mathcal{L}^{-1} \left\{ \Gamma_m(s) \right\} = \frac{1}{m} u(t)$$

Frequency Response

$$\Gamma_m(j\omega) = \frac{1}{mj\omega}$$

- Mass admittance = Integrator (for force input, velocity output)
- Electrical analogue: Inductor
 L = m.

Spring (Hooke's Law)

Ideal spring

Hooke's law

$$f(t) = kx(t) \triangleq k \int_0^t v(\tau)d\tau$$
 (Force = Stiffness × Displacement)

Impedance

$$R_k(s) \triangleq \frac{F(s)}{V(s)} = \frac{k}{s}$$

Frequency Response

$$\Gamma_k(j\omega) = \frac{j\omega}{k}$$

- Spring = differentiator (force input, velocity output)
- Velocity v(t) = "compression velocity"
- Electrical analogue: Capacitor C = 1/k (1/stiffness = "compliance")

Series Connection of One-Ports

Series Impedances Sum:

$$R(s) = R_1(s) + R_2(s)$$

Admittance:

$$\Gamma(s) = \frac{1}{\frac{1}{\Gamma_1(s)} + \frac{1}{\Gamma_2(s)}} = \frac{\Gamma_1 \Gamma_2}{\Gamma_1 + \Gamma_2}$$

- Physical Reasoning:
 - Common Velocity ⇒ Series connection
 - Summing Forces ⇒ Series connection

Parallel Combination of One-Ports

Parallel Admittances Sum

$$\Gamma(s) = \Gamma_1(s) + \Gamma_2(s)$$

Impedance:

$$R(s) = \frac{1}{\frac{1}{R_1(s)} + \frac{1}{R_2(s)}} = \frac{R_1 R_2}{R_1 + R_2}$$

or, for EEs, $R = R_1 || R_2$

- Physical Reasoning:
 - Common Force ⇒ Parallel connection
 - Summing Velocities ⇒ Parallel connection

Mass-Spring-Wall (Series)

$$f_{ext}(t) + f_m(t) + f_k(t) = 0$$

$$v_m(t) = v_k(t) \longrightarrow k$$

$$f_{ext}(t) \longleftarrow m \qquad f_k(t)$$

$$0 \qquad x(t) \longrightarrow$$

Physical Diagram:

Electrical Equivalent Circuit:

Spring-Mass (Parallel)

Physical Diagram:

Electrical Equivalent Circuit:

$$f_{\text{ext}}(t) \xrightarrow{V_{\underline{m}}(t)} V_{\underline{m}}(t)$$

$$f_{k}(t) \xrightarrow{f_{k}(t)} f_{k}(t) \xrightarrow{f_{k}(t)} f_{m}(t)$$