Tutorial on Wave Digital Filters

David Yeh

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University

CCRMA DSP Seminar January 25, 2008

Outline

-

Introduction

- Motivation
- Classical Network Theory
(2) Wave Digital Formulation
- Wave Digital One-Ports Derivation
- Wave Digital Adaptors
- Nonlinearity
(3) Summary
- Examples
- Conclusions

4. Appendix

- Scattering Junction Derivations
- Mechanical Impedance Analogues

Outline

(9) Introduction

- Motivation
- Classical Network Theory
(2) Wave Digital Formulation
- Wave Digital One-Ports Derivation
- Wave Digital Adaptors
- Nonlinearity
(3) Summary
- Examples
- Conclusions
(4) Appendix
- Scattering Junction Derivations
- Mechanical Impedance Analogues

Wave digital filters model circuits used for filtering. Overview

- Fettweis (1986), Wave Digital Filters: Theory and Practice.
- Wave Digital Filters (WDF) mimic structure of classical filter networks.
- Low sensitivity to component variation.
- Use wave variable representation to break delay free loop.
- WDF adaptors have low sensitivity to coefficient quantization.
- Direct form with second order section biquads are also robust
- Transfer function abstracts relationship between component and filter state
- WDF provides direct one-to-one mapping from physical component to filter state variable

Wave digital filters model circuits used for filtering Applications

- Modeling physical systems with equivalent circuits.
- Piano hammer mass spring interaction
- Generally an ODE solver
- Element-wise discretization and connection strategy
- Real time model of loudspeaker driver with nonlinearity
- Multidimensional WDF solves PDEs
- Ideal for interfacing with digital waveguides (DWG).

Outline

(9) Introduction

- Motivation
- Classical Network Theory
(2) Wave Digital Formulation
- Wave Digital One-Ports Derivation
- Wave Digital Adaptors
- Nonlinearity
(3) Summary
- Examples
- Conclusions

4) Appendix

- Scattering Junction Derivations
- Mechanical Impedance Analogues

Classical Network Theory

- Describe a circuit in terms of voltages (across) and current (thru) variables
- General N -port network described by V and I of each port
- Impedance or admittance matrix relates V and I
$\cdot\left(\begin{array}{c}V_{1} \\ V_{2} \\ \vdots \\ V_{N}\end{array}\right)=\underbrace{\left(\begin{array}{cccc}Z_{11} & Z_{12} & \cdots & Z_{1 N} \\ Z_{21} & \ddots & & Z_{2 N} \\ \vdots & & & \vdots \\ Z_{N 1} & \cdots & & Z_{N N}\end{array}\right)}_{\mathbf{Z}}\left(\begin{array}{c}I_{1} \\ I_{2} \\ \vdots \\ I_{N}\end{array}\right)$

Classical Network Theory

Element-wise discretization for digital computation

- For example, use Bilinear transform

$$
s=\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}
$$

- Capacitor: $Z(s)=\frac{1}{s C}$

$$
\begin{gathered}
Z\left(z^{-1}\right)=\frac{T}{2 C} \frac{1+z^{-1}}{1-z^{-1}}=\frac{V\left(z^{-1}\right)}{I\left(z^{-1}\right)} \\
v[n]=\frac{T}{2 C}(i[n]+i[n-1])+v[n-1]
\end{gathered}
$$

- $\mathrm{v}[\mathrm{n}]$ depends instantaneously on $\mathrm{i}[\mathrm{n}]$ with $R_{0}=\frac{T}{2 C}$
- This causes problems when trying to make a signal processing algorithm
- Can also solve for solution using a matrix inverse (what SPICE does).

Classical Network Theory

Wave variable substitution and scattering

$$
\begin{array}{ll}
A=V+R I & V=\frac{A+B}{2} \\
B=V-R I & I=\frac{A-B}{2 R}
\end{array}
$$

- Variable substitution from V and $/$ to incident and reflected waves, A and B
- An N-port gives an $N \times N$ scattering matrix
- Allows use of scattering concept of waves

Classical Network Theory

Two port is commonly used in microwave electronics to characterize amplifiers

- Input port (1) and output port (2)

$$
\binom{V_{1}}{V_{2}}=\left(\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right)\binom{I_{1}}{I_{2}}
$$

- Scattering matrix \mathbf{S} determines reflected wave b_{n} as a linear combination of N incident waves a_{1}, \ldots, a_{n}
- Guts of the circuit abstracted away into \mathbf{S} or \mathbf{Z} matrix

Outline

(1)

Introduction

- Motivation
- Classical Network Theory
(2) Wave Digital Formulation
- Wave Digital One-Ports Derivation
- Wave Digital Adaptors
- NonlinearitySummary
- Examples
- ConclusionsAppendix
- Scattering Junction Derivations
- Mechanical Impedance Analogues

Wave Digital Elements

Basic one port elements

- Work with voltage wave variables b and a. Substitute into Kirchhoff circuit equations and solve for b as a function of as.
- Wave reflectance between two impedances is well known

$$
\rho=\frac{b}{a}=\frac{R_{2}-R_{1}}{R_{2}+R_{1}}
$$

- Define a port impedance R_{p}
- Input wave comes from port and reflects off the element's impedances.
- Resistor $Z_{R}=R, \rho_{R}(s)=\frac{1-R_{\rho} / R}{1+R_{\rho} / R}$
- Capacitor $Z_{C}=\frac{1}{s C}, \rho_{C}(s)=\frac{1-R_{p} C s}{1+R_{p} C s}$
- Inductor $Z_{L}=s L, \rho_{L}(s)=\frac{s-R_{p} / L}{s+R_{p} L}$

Wave Digital Elements
 Discretize the capacitor by bilinear transform

- Plug in bilinear transform

$$
\begin{gathered}
\frac{b_{n}}{a_{n}}=\frac{1-R_{p} C \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}}{1+R_{p} C \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}} \\
\left(1+R_{p} C \frac{2}{T}\right) b[n]+\left(1-R_{p} C \frac{2}{T}\right) b[n-1]= \\
\left(1-R_{p} C \frac{2}{T}\right) a[n]+\left(1+R_{p} C \frac{2}{T}\right) a[n-1]
\end{gathered}
$$

- Choose R_{p} to eliminate depedence of $b[n]$ on $a[n]$, e.g., $R_{p}=\frac{T}{2 C}$, resulting in:

$$
b[n]=a[n-1]
$$

- Note that chosen R_{p} exactly the instantaneous resistance of the capacitor when discretized by the bilinear transform

Wave Digital Elements

- T-port. Port resistance can be chosen to perfectly match element resistance to eliminate instantaneous reflection and avoid delay-free loop.
- l-port. If port is not matched, $b[n]$ depends on $a[n]$ instantaneously. R_{p} can be chosen as any positive value.
- Short circuit

$$
b[n]=-a[n]
$$

- Open circuit $b[n]=a[n]$
- Voltage source of voltage V $b[n]=-a[n]+2 V$
- Current source of current I $b[n]=a[n]-2 R_{p} I$

Wave Digital Elements

One port summary for voltage waves

Element	Port Resistance	Reflected wave
Resistor	$R_{p}=R$	$b[n]=0$
Capacitor	$R_{p}=\frac{T}{2 C}$	$b[n]=a[n-1]$
Inductor	$R_{p}=\frac{2 L}{T}$	$b[n]=-a[n-1]$
Short circuit	R_{p}	$b[n]=-a[n]$
Open circuit	R_{p}	$b[n]=a[n]$
Voltage source V_{s}	R_{p}	$b[n]=-a[n]+2 V_{s}$
Current source I_{S}	R_{p}	$b[n]=a[n]+2 R_{p} I_{s}$
Terminated V_{s}	$R_{p}=R_{s}$	$b[n]=V_{s}$
Terminated I_{s}	$R_{p}=R_{s}$	$b[n]=R_{p} I_{s}$
$I_{S} \uparrow \xi R_{S}$	$\mathrm{v}_{\mathrm{s}} \stackrel{+}{+}$	

Wave Digital Elements

One port summary for current waves. Signs are flipped for some reflectances.

Element	Port Resistance	Reflected wave
Resistor	$R_{p}=R$	$b[n]=0$
Capacitor	$R_{p}=\frac{T}{2 C}$	$b[n]=-a[n-1]$
Inductor	$R_{p}=\frac{2 L}{T}$	$b[n]=a[n-1]$
Short circuit	R_{p}	$b[n]=a[n]$
Open circuit	R_{p}	$b[n]=-a[n]$
Voltage source V_{s}	R_{p}	$b[n]=a[n]+2 V_{s}$
Current source I_{S}	R_{p}	$b[n]=-a[n]+2 R_{p} I_{s}$
Terminated V_{s}	$R_{p}=R_{s}$	$b[n]=V_{s}$
Terminated I_{S}	$R_{p}=R_{s}$	$b[n]=R_{p} I_{s}$
$I_{S} \uparrow \xi R_{S}$	$\mathrm{v}_{\mathrm{s}} \xlongequal[+]{+}$	\sum_{s}

Wave Digital Elements

- Series
- Parallel
- Transformer
- Unit element

Outline

(1)

Introduction

- Motivation
- Classical Network Theory
(2) Wave Digital Formulation
- Wave Digital One-Ports Derivation
- Wave Digital Adaptors
- Nonlinearity
(3) Summary
- Examples
- Conclusions

4. Appendix

- Scattering Junction Derivations
- Mechanical Impedance Analogues

Adaptors
 Adaptors perform the signal processing calculations

- Treat connection of N circuit elements as an N -port
- Derive scattering junction from Kirchhoff's circuit laws and port impedances determined by the attached element
- Scattering matrix is $N \times N$
- Parallel and series connections can be simplified to linear complexity
- Signal flow diagrams to reduce number of multiply or add units
- Dependent port - one coefficient can be implied,
- Reflection free port - match impedance to eliminate reflection

Two-Port Parallel Adaptor

$$
\begin{gathered}
b_{1}=a_{2}+\gamma\left(a_{2}-a_{1}\right) \\
b_{2}=a_{1}+\gamma\left(a_{2}-a_{1}\right) \\
\gamma=\left(R_{1}-R_{2}\right) /\left(R_{1}+R_{2}\right)
\end{gathered}
$$

N-Port Parallel Adaptor

- G_{ν} are the port conductances

$$
G_{n}=G_{1}+G_{2}+\cdots+G_{n-1}, G_{\nu}=1 / R_{\nu}
$$

- Find scattering parameters

$$
\gamma_{\nu}=\frac{G_{\nu}}{G_{n}}, \nu=1 \text { to } n-1
$$

- Note γ sum to 2

$$
\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n}=2
$$

- Use intermediate variable to find reflected waves

$$
\begin{aligned}
& a_{o}=\gamma_{1} a_{1}+\gamma_{2} a_{2}+\cdots+\gamma_{n} a_{n} \\
& b_{\nu}=a_{o}-a_{\nu}
\end{aligned}
$$

Parallel Adaptor

with port n reflection free (RFP)

- G_{ν} are the port conductances
- R_{n} is set equal to equivalent resistance looking at all the other ports (their Rs in parallel) to make port n RFP

$$
\begin{aligned}
& G_{n}=G_{1}+G_{2}+\cdots+G_{n-1}, G_{\nu}=1 / R_{\nu} \\
& \gamma_{n}=1 \\
& \gamma_{1}+\gamma_{2}+\cdots+\gamma_{n-1}=1 \\
& \gamma_{\nu}=\frac{G_{\nu}}{G_{n}}, \nu=1 \text { to } n-1 \\
& b_{n}=\gamma_{1} a_{1}+\gamma_{2} a_{2}+\cdots+\gamma_{n-1} a_{n-1}, \quad \text { RFP } \\
& b_{\nu}=b_{n}+a_{n}-a_{\nu}
\end{aligned}
$$

Series Adaptor

with port n dependent

- R_{ν} are the port resitances.
- Find scattering parameters

$$
\gamma_{\nu}=\frac{2 R_{\nu}}{R_{1}+R_{2}+\cdots+R_{n}}
$$

- Note scattering parameters sum to 2

$$
\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n}=2
$$

- Use intermediate variable to find reflected waves

$$
\begin{aligned}
& a_{o}=a_{1}+a_{2}+\cdots+a_{n} \\
& b_{\nu}=a_{\nu}-\gamma_{\nu} a_{0}
\end{aligned}
$$

Series Adaptor
 with port n reflection free (RFP)

- R_{ν} are the port resitances
- R_{n} is set equal to equivalent resistance looking at all the other ports (their Rs in series) to make port n RFP

$$
\begin{aligned}
& R_{n}=R_{1}+R_{2}+\cdots+R_{n-1} \\
& \gamma_{n}=1 \\
& \gamma_{1}+\gamma_{2}+\cdots+\gamma_{n-1}=1 \\
& \gamma_{\nu}=\frac{R_{\nu}}{R_{n}}, \nu=1 \text { to } n-1 \\
& b_{n}=-\left(a_{1}+a_{2}+\cdots+a_{n-1}\right), \quad \text { RFP } \\
& b_{\nu}=a_{\nu}-\gamma_{\nu}\left(a_{n}-b_{n}\right)
\end{aligned}
$$

Adaptors
 Dependent ports

- Adaptors have property of low coefficient sensitivity, e.g., coefficients can be rounded or quantized.
- Dependent ports take advantage of property that γ s sum to two.
- Use this fact along with quantization to ensure that adaptor is (pseudo-)passive.

Connection Strategy

Parameter updates

- Parameter updates propagate from leaf through its parents to the root
- Each adaptor's RFP must be recalculated when a child's port resistance changes
- Parameter update is more complicated than solving the Kirchhoff's equations directly, where the parameters are just values in the resistance matrix.

Connection Strategy

Avoid delay-free loops with adaptors connected as a tree

- Sarti et. al., Binary Connection Tree - implement WDF with three-port adaptors
- Karjalainen, BlockCompiler - describe WDF in text, produces efficient C code
- Scheduling to compute scattering
- Directed tree with RFP of each node connected to the parent
- Label each node (a, b, c, ...)
- Label downward going signals d by node and port number
- Label upward going signals u by node
- Start from leaves, calculate all u going up the tree
- Then start from root, calculate all d going down the tree

Connection Strategy
 Automatic generation of WDF tree structure

- SPQR tree algorithms find biconnected and triconnected graphs (Fränken, Ochs, and Ochs, 2005. Generation of Wave Digital Structures for Networks Containing Multiport Elements.)
- Q nodes are one ports
- S and P nodes are Series and Parallel adaptors
- R nodes are triconnected elements
- Implemented with similarity transform of $N \times N$ scattering matrix into two-port adaptors (Meerkötter and Fränken, Digital Realization of Connection Networks by Voltage-Wave Two-Port Adaptors"
- Includes bridge connections and higher order connections
- Implemented in WDInt package for Matlab (http://www-nth.uni-paderborn.de/wdint/index.html)

WDF Interconnections

More about the R nodes

- For example, bridge connection
- higher order triconnections also common
- N-port scattering junction
- can be reduced to implementation by two port adaptors using similarity transform - keeps robust properties for quantization
- reduces operations for filtering vs scatter matrix
- In general parameter update is complicated

R-Nodes

Other strategies: $Y-\Delta \Delta-Y$ transformations

- Circuit analysis technique to replace triconnected impedances with equivalents that can be connected in series or parallel.
- Must discretize general impedances, no longer correspondence between prototype circuit element and WDF element

R-Nodes

Example: Guitar amplifier tone stack with input and output loading

Tone Stack

Formulate blocks compatabile with scattering

- Observe that tone stack is a specific two-port
- Direct implementation of a 2-port scattering matrix
- Or convert into an equivalent circuit with impedances and use adaptors
- Tabulate the scattering parameters or impedances as they vary with parameter changes

Outline

Introduction

- Motivation
- Classical Network Theory
(2) Wave Digital Formulation
- Wave Digital One-Ports Derivation
- Wave Digital Adaptors
- NonlinearitySummary
- Examples
- Conclusions
(4) Appendix
- Scattering Junction Derivations
- Mechanical Impedance Analogues

Nonlinearity

Literature

- Meerkötter and Scholz (1989), Digital Simulation of Nonlinear Circuits by Wave Digital Filter Principles.
- Sarti and De Poli (1999), Toward Nonlinear Wave Digital Filters.
- Karjalainen and Pakarinen (2006), Wave Digital Simulation of Vacuum-Tube Amplifier
- Petrausch and Rabenstein (2004), Wave Digital Filters with Multiple Nonlinearities
- Either conceive as nonlinear resistor or dependent source
- Introduces an I-port, may lead to delay-free loops
- DFL must be solved as a system of equations in wave variables

Nonlinear Conductance

Meerkötter and Scholz (1989).

- Current is a nonlinear function of voltage, $i=i(v)$
- In wave variables

$$
\begin{aligned}
& a=f(v)=v+R_{p} i(v) \\
& b=g(v)=v-R_{p} i(v)
\end{aligned}
$$

- Substituting wave variables into Kirchhoff variable definition of nonlinear resistance and solving for $b(a)$

$$
b=b(a)=g\left(f^{-1}(a)\right)
$$

- f^{-1} must exist
- Port resistance R_{p} can be chosen arbitrarily within constraints that $f(v)$ be invertible
- Instantaneous dependence exists regardless of R_{p}

Extension to nonlinear reactances

Nonlinear Capacitor. Sarti and De Poli (1999).

Capacitor/Mutator
Use a "mutator" to integrate the Kirchhoff variable so that the nonlinear reactance can be defined in terms of wave variables.

Voltage-current

- Define wave variable such that port resistance can be an impedance.

$$
\begin{aligned}
& A(s)=V(s)+R(s) I(s) \\
& B(s)=V(s)-R(s) I(s)
\end{aligned}
$$

- Recall that standard wave definitions for a one port such as a capacitor are

$$
\begin{aligned}
& A_{1}=V_{1}+R_{1} l_{1} \\
& B_{1}=V_{1}-R_{1} l_{1}
\end{aligned}
$$

Extension to nonlinear reactances

Nonlinear Capacitor. Sarti and De Poli (1999).

For the capacitor with the usual single resistive port, define a second port across the capacitor with its port impedance $R(s)=\frac{1}{s C}$

$$
\begin{aligned}
& A_{2}(s)=V_{2}(s)+\frac{1}{s C} I_{2}(s) \\
& B_{2}(s)=V_{2}(s)-\frac{1}{s C} I_{2}(s)
\end{aligned}
$$

This looks like the usual wave variable definitions if $I(s)$ is replaced by its integral $Q(s)$, charge, and port impedance $R_{2}=1 / C$.

$$
\begin{aligned}
A_{2}(s) & =V_{2}(s)+\frac{1}{C} Q(s) \\
B_{2}(s) & =V_{2}(s)-\frac{1}{C} Q(s)
\end{aligned}
$$

A_{2} and B_{2} can be substituted into the definition of a generic nonlinear capacitance $Q=f(V)=C(V) \cdot V$ to find the nonlinear "reflection" as it is done for the nonlinear resistor. R_{2} can be chosen rather arbitrarily as before.

Extension to nonlinear reactances

Voltage-current to voltage-charge wave conversion (Felderhoff 1996).

Compute scattering relations between the resistive and the integrated port using two relations: consistency of voltage for the two ports $V_{1}=V_{2}$, and $I_{1}+I_{2}=0$ across junction.

$$
\begin{gather*}
V=\frac{A_{1}+B_{1}}{2}=\frac{A_{2}+B_{2}}{2} \tag{1}\\
I_{1}=\frac{A_{1}-B_{1}}{2 R_{1}}=-\frac{A_{2}-B_{2}}{2 R(S)}=-\frac{A_{2}-B_{2}}{2 \frac{1}{S C}} \tag{2}
\end{gather*}
$$

bilinear transform $s \rightarrow z$

$$
\begin{gathered}
\frac{A_{1}-B_{1}}{R_{1}}=-\frac{A_{2}-B_{2}}{\frac{1}{C} \frac{T}{2} \frac{1+z^{-1}}{1-z^{-1}}} \\
\left(1+z^{-1}\right)\left(A_{1}-B_{1}\right)=-\frac{2}{T} C R_{1}\left(1-z^{-1}\right)\left(A_{2}-B_{2}\right) \\
\left(A_{1}+z^{-1} A_{1}-B_{1}-z^{-1} B_{1}\right)=-\frac{2}{T} C R_{1}\left(A_{2}-z^{-1} A_{2}-B_{2}+z^{-1} B_{2}\right) \\
a_{1}[n]+a_{1}[n-1]-b_{1}[n]-b_{1}[n-1]=-\frac{2}{T} C R_{1}\left(a_{2}[n]-a_{2}[n-1]-b_{2}[n]+b_{2}[n-1]\right) \\
\text { substitute } b_{2}=a_{1}+b_{1}-a_{2} \text { using (1) } \\
a_{1}[n]+a_{1}[n-1]-b_{1}[n]-b_{1}[n-1]=-\frac{2}{T} C R_{1}\left(a_{2}[n]-a_{2}[n-1]\right. \\
\left.\quad-\left(a_{1}[n]+b_{1}[n]-a_{2}[n]\right)+a_{1}[n-1]+b_{1}[n-1]-a_{2}[n-1]\right)
\end{gathered}
$$

Extension to nonlinear reactances

Voltage-current to voltage-charge wave conversion.

Capacitor/Mutator
Set $R_{1}=T /(2 C)$ to eliminate reflection at port 1.

$$
a_{1}[n-1]-b_{1}[n]=-a_{2}[n]+a_{2}[n-1]
$$

Resulting scattering junction (or mutator according to Sarti and De Poli) converts between voltage-current and voltage-charge waves:

$$
\begin{aligned}
& b_{2}=a_{1}+\left(a_{1}[n-1]-a_{2}[n-1]\right) \\
& b_{1}=a_{2}+\left(a_{1}[n-1]-a_{2}[n-1]\right)
\end{aligned}
$$

Port resistance for new mutated waves corresponding to voltage and charge is $R_{2}=\frac{1}{C}$.
Port resistance for usual waves corresponding to voltage and current is $R_{1}=\frac{T}{2 C}=\frac{T}{2} R_{2}$.

Outline

(1) Introduction

- Motivation
- Classical Network Theory
(2) Wave Digital Formulation
- Wave Digital One-Ports Derivation
- Wave Digital Adaptors
- Nonlinearity
(3) Summary
- Examples
- Conclusions

4. Appendix

- Scattering Junction Derivations
- Mechanical Impedance Analogues

Parametrized Linear Circuit Example

Volume pot with bright switch

Output is voltage over $R_{v}, V_{o}=\frac{\left(d_{1} S+u_{R t}\right)}{2}$ $R_{V}=R_{\text {pot }}(\mathrm{vol}), R_{t}=R_{\text {pot }}(1-\mathrm{vol})$. Changes in vol require recomputation of γ 's starting from bottom of tree. Use RFP to allow open circuit when C is disconnected.

$$
\begin{aligned}
& u_{R v}=u_{R t}=0, \quad u_{V}=V \\
& u_{S}=-\left(u_{R v}+u_{V}\right) \\
& u_{P}=\gamma_{1 P} u_{R t}+\gamma_{2 P} u_{S} \\
& u_{C}=d_{P}[n-1] \\
& d_{P}=u_{P}+\gamma_{P}\left(u_{C}-u_{P}\right) \\
& d_{C}=u_{C}+\gamma_{P}\left(u_{C}-u_{P}\right), \quad \text { or } \quad d_{C}=u_{P} \\
& d_{1 P}=u_{P}+d_{C}-u_{R t}, \quad \text { don't care } \\
& d_{2 P}=u_{P}+d_{C}-u_{S} \\
& d_{1 S}=u_{R v}-\gamma_{1 S}\left(d_{2 P}-u_{S}\right), \quad \text { output value } \\
& d_{2 S}=u_{V}-\gamma_{2 S}\left(d_{2 P}-u_{S}\right), \quad \text { don't care }
\end{aligned}
$$

Nonlinear Circuit Example

Diode clipper

- Diode clipper circuit found in guitar distortion pedals
- Treat diodes together as single nonlinear one-port
$I(V)=2 I_{s} \sinh \left(V / V_{d}\right)$
Solve for $b(a), \frac{a-b}{2 R_{p}}=2 I_{s} \sinh \left(\frac{a+b}{2 V_{d}}\right)$
- Isolate nonlinearity at root of tree
- Incorporate resistor into voltage source

Nonlinear Circuit Example

Diode clipper: Computational algorithm

$$
\begin{aligned}
& u_{V}=V, \quad u_{C h}=d_{2 S}[n-1] \\
& \left.u_{S}=-\left(u_{V}+u_{C h}\right), \quad u_{C l}=d_{2 P}[n-1]\right) \\
& u_{P}=\gamma_{1 P} u_{S}+\gamma_{2 P} u_{C l} \\
& d_{D}=f\left(u_{P}\right), \quad \text { nonlinear function } \\
& d_{1 P}=u_{P}+d_{D}-u_{S} \\
& d_{2 P}=u_{P}+d_{D}-u_{C l} \\
& d_{1 S}=u_{V}-\gamma_{1 S}\left(d_{1 P}-u_{S}\right), \quad \text { don't care } \\
& d_{2 S}=u_{C h}-\gamma_{2 S}\left(d_{1 P}-u_{S}\right)
\end{aligned}
$$

Nonlinear Musical Acoustics Example
 WDF hammer and nonlinear felt

- Draw mass/spring/waveguide system in terms of equivalent circuits
- Waveguides look like resistors to the lumped hammer. Waves enter lumped junction directly.
- WDF result in tree like structures with adaptors/scattering junctions at the nodes, and elements at the leaves.
- The root of the tree allowed to have instantaneous reflections
- Nonlinearity gives instantaneous reflection,

To left and right waveguides WDF handles only 1 nonlinearity naturally.

- Compression ($d=\frac{u_{n \mid}-d_{n \mid}}{2 R_{n \mid}}$ from next slide) must ≥ 0, otherwise hammer is not in contact.

Nonlinear Musical Acoustics Example

Computations
$v_{1}^{+}, v_{2}^{-} \quad$ from waveguides
$u_{S}=-\left(v_{1}^{+}+v_{2}^{-}\right)$
$u_{m}=d_{1 P}[n-1]$
$u_{P}=\gamma_{1 p} u_{m}+\gamma_{2 p} u_{S}$
$u_{n I}=u_{P}+\left(u_{P}[n-1]-d_{n I}[n-1]\right)$
$d_{n \mid}$: solve $\left\{\frac{u_{n \mid}+d_{n \mid}}{2}=k\left(\frac{u_{n \mid}-d_{n \mid}}{2 R_{n \mid}}\right)^{\gamma}\right\}$
$d_{k}=d_{n l}+\left(u_{P}[n-1]-d_{n l}[n-1]\right)$
$d_{1 P}=u_{P}+d_{k}-u_{m}$

$d_{2 P}=u_{P}+d_{k}-u_{S}$
$v_{1}^{-}=v_{1}^{+}-\gamma_{1 s}\left(d_{2 P}-u_{S}\right)$
$v_{2}^{+}=v_{2}^{-}-\gamma_{2 S}\left(d_{2 P}-u_{S}\right)$

Outline

(1) Introduction

- Motivation
- Classical Network Theory
(2) Wave Digital Formulation
- Wave Digital One-Ports Derivation
- Wave Digital Adaptors
- Nonlinearity
(3) Summary
- Examples
- Conclusions
(4) Appendix
- Scattering Junction Derivations
- Mechanical Impedance Analogues

Observations

- Scattering formulation works well with DWG - DWG looks like resistor in WDF
- For a standalone simulation of nonlinear circuits, may not be the best choice
- More difficult for parameter update than direct solving
- Root node is special - easy to implement nonlinearity or parameter changes
- May be able to design circuits without bridge connections that have equivalent transfer function

Summary

- Wave digital formulation uses matched (reflection-free) ports to eliminate reflections and avoid delay-free loops
- Elements are connected in tree structure with reflection-free ports connected to the parent node.
- Useful for building up a model component-wise.

Outline

(1) Introduction

- Motivation
- Classical Network Theory
(2) Wave Digital Formulation
- Wave Digital One-Ports Derivation
- Wave Digital Adaptors
- Nonlinearity
(3) Summary
- Examples
- Conclusions
(4) Appendix
- Scattering Junction Derivations
- Mechanical Impedance Analogues

Two-port adaptor reflectance and transmittance

N-port parallel adaptor

N-port series adaptor

Capacitor

Inductor

Outline

Introduction

- Motivation
- Classical Network TheoryWave Digital Formulation
- Wave Digital One-Ports Derivation
- Wave Digital Adaptors
- Nonlinearity
(3)

Summary

- Examples
- Conclusions
(4) Appendix
- Scattering Junction Derivations
- Mechanical Impedance Analogues

Mechanical Impedance Analogues from Music 420

The following mechanical examples are taken from:
"Lumped Elements, One-Ports, and Passive Impedances", by Julius O. Smith III, (From Lecture Overheads, Music 420). http://ccrma.stanford.edu/ jos/OnePorts/ http://ccrma.stanford.edu/~jos/OnePorts/ Copyright © 2007-02-22 by Julius O. Smith III

Dashpot

Ideal dashpot characterized by a constant impedance μ

- Dynamic friction law
$f(t) \approx \mu \boldsymbol{v}(t) \quad$ "Ohm'sLaw" (Force $=$ Friction_coefficient \times Velocity $)$
- Impedance

$$
R_{\mu}(s) \triangleq \mu \geq 0
$$

- Dashpot = gain for force input and velocity output
- Electrical analogue: Resistor $R=\mu$
- More generally, losses due to friction are
- frequency dependent
- hysteretic

Mass

Ideal mass of m kilograms sliding on a frictionless surface

- Newton's 2nd Law

$$
f(t)=m a(t) \triangleq m \dot{v}(t) \triangleq m \ddot{x}(t)(\text { Force }=\text { Mass } \times \text { Acceleration })
$$

- Differentiation Theorem

$$
F(s)=m[s V(s)-v(0)]=m s V(s)
$$

for Laplace Transform when $v(0)=0$.

- Impedance

$$
R_{m}(s) \triangleq \frac{F(s)}{V(s)}=m s
$$

Mass

"Black Box" Description

- Admittance

$$
\Gamma_{m}(s) \triangleq \frac{1}{R_{m}(s)}=\frac{1}{m s}
$$

- Impulse Response (unit-momentum input)

$$
\gamma_{m}(t) \triangleq \mathcal{L}^{-1}\left\{\Gamma_{m}(s)\right\}=\frac{1}{m} u(t)
$$

- Frequency Response

$$
\Gamma_{m}(j \omega)=\frac{1}{m j \omega}
$$

- Mass admittance = Integrator (for force input, velocity output)
- Electrical analogue: Inductor $L=m$.

Spring (Hooke's Law)

Ideal spring

- Hooke's law

$$
f(t)=k x(t) \triangleq k \int_{0}^{t} v(\tau) d \tau(\text { Force }=\text { Stiffness } \times \text { Displacement })
$$

- Impedance

$$
R_{k}(s) \triangleq \frac{F(s)}{V(s)}=\frac{k}{s}
$$

- Frequency Response

$$
\Gamma_{k}(j \omega)=\frac{j \omega}{k}
$$

- Spring = differentiator (force input, velocity output)
- Velocity $v(t)=$ "compression velocity"
- Electrical analogue: Capacitor $C=1 / k$ (1/stiffness = "compliance")

Series Connection of One-Ports

- Series Impedances Sum:

$$
R(s)=R_{1}(s)+R_{2}(s)
$$

- Admittance:

$$
\Gamma(s)=\frac{1}{\frac{1}{\Gamma_{1}(s)}+\frac{1}{\Gamma_{2}(s)}}=\frac{\Gamma_{1} \Gamma_{2}}{\Gamma_{1}+\Gamma_{2}}
$$

- Physical Reasoning:
- Common Velocity \Rightarrow Series connection
- Summing Forces \Rightarrow Series connection

Parallel Combination of One-Ports

$F(s)=F_{1}(s)=F_{2}(s)$

- Parallel Admittances Sum

$$
\Gamma(s)=\Gamma_{1}(s)+\Gamma_{2}(s)
$$

- Impedance:

$$
R(s)=\frac{1}{\frac{1}{R_{1}(s)}+\frac{1}{R_{2}(s)}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

or, for EEs, $R=R_{1} \| R_{2}$

- Physical Reasoning:
- Common Force \Rightarrow Parallel connection
- Summing Velocities \Rightarrow Parallel connection

Mass-Spring-Wall (Series)

Physical Diagram:

Electrical Equivalent Circuit:

Spring-Mass (Parallel)

Physical Diagram:

Electrical Equivalent Circuit:

