NDES

200 4

NONLINEAR DYNAMICS OF COCHLEAR INFORMATION
PROCESSING

A. Kern and R. Stoop

Institute of Neuroinformatics,
Swiss Federal Institute of Technology Ziirich,
Zdirich, Switzerland
e-mail: albert@ini.phys.ethz.ch
WWW: http://www.stoop.net/group

Abstract— The nonlinear amplification process in
the mammalian cochlea gives rise to a variety of phe-
nomena, which manifest as two-tone suppression and
combination tone generation. These nonlinear effects
show that, besides mere mechanical-to-neural trans-
duction, the cochlea performs significant information
processing on a biophysical, pre-neural level. As non-
linear cochlear processing is a precondition for suc-
cessful feature extraction at higher neural stages, its
profound understanding is of interest for the design
of intelligent acoustic sensors. In this contribution,
we provide a thorough explanation of suppression and
combination tone generation, where we rely on Hopf-
type cochlear amplifiers. The underlying cochlear
model can be implemented as an electronic circuit.

I. INTRODUCTION

The first theory of the mammalian hearing organ,
the fluid-filled cochlea, was put forward by H.L.F.
Helmholtz in 1863 [1]. Based on anatomical in-
vestigations, Helmholtz proposed that each segment
of the basilar membrane (BM), which separates the
cochlear fluid, acts as a tuned oscillator. A sound
of given frequency thus ellicits maximum oscillations
at a specific location in the cochlea (characteristic
place), so that the cochlea acts as a spatial Fourier an-
alyzer (tonotopic principle). Mechano-sensitive cells
on the BM then transduce the mechanical vibrations
into neural signals. In 1928, the tonotopic princi-
ple has been verified experimentally by von Békésy
[2]. In contrast to Helmholtz® original theory, how-
ever, the tonotopic principle is correctly deduced from
the exponentially decaying transversal BM stiffhess
E(z) = Epexp(—axz), by applying linear hydro-
dynamical theory [3], [4]. Cochlear hydrodynamics
has also been described in terms of electronic circuit
analogs [5].

In the early 1970s, increasing evidence was fur-
nished that the cochlear response is strongly nonlin-

ear [6], which was in stark contrast to the preva-
lent linear theory. With the detection of otoacous-
tic emissions [7] it became clear that a nonlinear
force-generating mechanism must be present in the
cochlea. In 1985, the outer hair cells (OHC), which
reside on the BM, have been identified as the source
of this mechanical amplification, and as the origin of
cochlear nonlinearity [8]. This discovery has trig-
gered intensive research in the following two decades
[9]. In particular, it has been shown that a degener-
ation of OHC causes cochlear hearing loss. In this
case, even the use of sophisticated hearing aids of-
ten results only in partial improvement of auditory
performance; especially the capability for auditory
scene analysis frequently remains severely hampered.
It thus follows that, in addition to mechano-to-neural
transduction, the cochlea performs significant infor-
mation processing by means of the nonlinear amplifi-
cation mechanism. Cochlear information processing
applies mainly to the frequency domain, while pro-
cessing of time information is performed on the neural
level.

For two nonlinear phenomena — two-tone suppres-
sion and combination tone (CT) generation — there ex-
ist ample physiological measurements. Both phenom-
ena arise if two tones are applied simultaneously to the
ear. In the case of suppression, the BM response to a
single tone of frequency f1, is reduced (suppressed)
in the presence of a second tone of frequency fs. Evi-
dently, the suppressive effect of the f1-and fo-tones is
mutual. Combination tones (distortion products) with
frequencies for = nf1 + mfa (n, m € Z) are gener-
ated by the nonlinear interaction between the two fre-
guency components. Due to the structural properties
of the cochlea, only the frequencies 2f; — f, and (to a
lesser extent) fo — f1 (fo > f1) are able to propagate
to their respective characteristic places.

In this contribution, we give a detailed explana-
tion for the observed nonlinear phenomena, based
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on nonlinear dynamical systems theory. Specifically,
the cochlear amplification mechanism is described in
terms of oscillators undergoing a Hopf bifurcation
(Hopf oscillators). By this approach, the experimental
observations can be explained by a variation of the ef-
fective Hopf bifurcation parameter in the presence of
a second tone.

Il. THE HOPF COCHLEA MODEL

Recently, it has been shown [10] that the basic char-
acteristics of hearing can be explained from the math-
ematical properties of the driven Hopf oscillator,

= (u+iw)z — |22z + F(t), z2()e€C, ()

where wyq is the natural frequency of the oscillation,
u € R denotes the bifurcation parameter, and F'(t) =
Fe™t s an external periodic forcing with frequency
w. In the absence of external forcing, (1) describes
the generic differential equation displaying a Hopf
bifurcation. For an input F'(¢), z(t) can be consid-
ered as the amplified signal. The steady-state solu-
tion for periodic forcings is obtained by the ansatz
z(t) = Re™'t which leads to a cubic equation in
R?,

F? =R° — 2uR" + [1)® + (w — wo)’]R%.  (2)

Assuming w = wo and g < 0, for F < [u|*?,
the response is linear, R ~ —F/u. If F 2 |u|3/?,
the RS-term becomes dominant, and the compressive
nonlinear regime is entered, R ~ F1/3, with the am-
plification gain decreasing like F~2/3. For w # w,
R ~ F/\/u?+ (w— w.)?, and the response is al-
ways linear. If ;4 > 0, stable limit-cycles emerge,
which explains the generation of otoacoustic emis-
sions.

The fact that the properties of (2) explain the ob-
served characteristics of hearing — linear BM response
for weak stimuli (5 30 dB SPL), and a compressive
nonlinearity for moderately intense responses — moti-
vated the development of a Hopf-type cochlea model
(for details see [11]). From energy-balance arguments
[12], the cochlea differential equation,

Oe(z,w) e(z,w) [0v(z,w)

S0z u(zw) oz +d@,w)
a(z,e(r,w),w)

3

v(z,w) @)
was derived. e(z,w) denotes the one-dimensional en-
ergy density of the cochlear fluid, v(z,w) is the group
velocity of the BM traveling wave, d(z,w) encom-
passes viscous losses, and a(-) denotes the nonlinear
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Fig. 1. Frequency response at fi xed location on BM. (a)
Hopf cochlea model, Egs. (2-4). (c) Experimental mea-
surements [13].

active amplification by OHC. Based on cochlear bio-
physics (see [11])

a(eaxaw) = L(R( \% 06(37,(,0)))2, 4

where L and ¢ are constants, and R(-) is determined
by (2). The connection between the cochlea model
and experimentally measured BM response A is
given by the relation A(z,w) = (2e(z,w)/E(x))/?
(E(z) = Ey exp(—ax) denotes the BM stiffness).

The frequency response of the cochlea model (mea-
sured at fixed location on BM) displays remarkable
coincidence with experimental measurements (Fig. 1).
Optimal responses are obtained if feedforward cou-
plings between the Hopf amplifiers are taken into ac-
count [11]. In the following analysis, however, we use
the simpler version of the model (Fig. 1a).

I11. NONLINEAR COCHLEAR SIGNAL
PROCESSING

In the presence of a tone consisting of two frequen-
cies, the driving term of (1) reads

F(t) — Fleiw1t+i1/)2+F26iw2t+i’lﬁ1 +FCT6iwCTt+i1Z)CT’
(®)
where we allow for phases v of the two frequency
components, F, > 0, and wy, = 2nf, k = {1,2}.
When CT responses at frequency wer = 2wi — wo
(wg > wq) are generated at a certain site on the BM,
these constitute a component of the input to Hopf os-
cillators at neighboring BM locations. For the Hopf
cochlea model, the last term in (5) must therefore be
considered.
The steady-state solution of (1) is obtained from the
Fourier series ansatz

z(t)

— Rleiw1t+i¢1 + R2eiw2t+i¢2

(6)
+ RCTeiwcTtJriqbcT + Z Rjeiw]'t+i¢j .
J

The third term denotes the propagating combination
tone with frequency wer = 2w — wo (we > wy), and
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the sum includes all higer-order contributions w;
nw1 + mwe, {n,m} € Z2\ {2,-1}.

After some calculations, the response to frequen-
cies wi, wo IS Obtained as

Fl? = R2_2/1'eff,kRé

+ [wlspp + (wr —wo)’]R;,  (7)

where k = {1,2} and j # k. These equations can
be interpreted as single Hopf equations with effective
bifurcation parameters porrr = p — 2RJ2. (cf. Eq.
(2) and note that i < 0). Since the small-signal gain
is given by 1/|pesr|, it becomes evident that the sup-
pressive effect in the presence of a second tone is cap-
tured by a shift of the effective bifurcation parameter
away from the bifurcation point.
The response at wer is obtained in the same way,

FZr + R{R3 — 2R} RyFor cos(2¢1 — ¢2 + Yor)
= REr — 2pcfrorRer

+ [wssor + (woer — wo)’1RE (8)

If comparing (8) with (7), three points attract our at-
tention. First, we note from the emergence of an effec-
tive bifurcation parameter piesr,cr = p—2(RZ+ R3),
that suppression plays a crucial role in CT generation.
Secondly, the term R} R3 expresses CT generation in
the absence of external driving, For. From the dis-
cussion in Sec. 11, it is seen that the CT response is
given by Ror ~ R2Ry/u, if RZRy < |u|3/? (assum-
ing wer = wp). If Ry is kept fixed and R; is in-
creased, we thus assume a 2 dB/dB increase of Rcor.
As a third point, we observe that the presence of an
external driving For at frequency wer not only gives
rise to the term F(%T. In addition, a phase-dependent
term is induced, where ¢, (k = 1, 2) denote the phase
differences between Ry, and the driving force,

WE — Wo
p— Ri(RE — 2R?

¢ = arctan

7 Yer, J#£k.
9)

For a single Hopf oscillator, the CT response is eas-
ily computed from (8) and (9). In the cochlea model,
however, the phase 1 is determined by the cochlear
hydrodynamic wave. The computation of the cos-
term in (8) thus becomes difficult, but fortunately, its
contribution to CT generation can be neglected for the
following arguments. Firstly, if f1 and f are not too
close, either For or R? R, dominate on the left hand
side of (8), so that the cos-term always remains small.
This has been verified by numerical simulations for
the frequencies used. Secondly, the interaction with
the hydrodynamic wave causes rapid changes of ¢ o1
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Fig. 2. Two-tone suppression: a) Model response: sup-
pressor intensity increases from 10 dB to 110 dB in
steps of 10 dB. The 10, 20, and 30 dB lines coincide.
b) Experimental measurements [15].

along the BM, so that the contributions by the phases
are effectively averaged out.

The Hopf model response for a two-frequeny tone
is obtained by resolving a system of three differential
equations of the form (3). This provides the energy
densities e; and ecr. As Ry and Ror must be sub-
stituted in (4), these equations are coupled by Egs. (7)
and (8) [14].

A. Two-Tone Suppression

In two-tone suppression experiments, the response
to one tone (the test tone) is measured in the pres-
ence of a suppressor tone (indexing by ¢ and s). The
test-tone input-output function obtained by the Hopf
cochlea model, determined for increasing suppressor
intensity, shows nearly perfect agreement with exper-
imental measurements (Fig. 2). In this representation,
the BM response at characteristic place (the location
of maximum BM response, cf. Fig. 1) is plotted as
a function of sound intensity. For suppressor levels
I, below 40 dB (top curve in Fig. 2) we recognize
the strong compressive nonlinearity which is char-
acteristic for the single-frequency cochlear response.
For I, Z 40 dB (dashed line in Fig. 2a), the small-
signal gain of the test tone becomes significantly re-
duced, with constant separations between the curves.
If I, > 70 dB (dashed-dotted line), these are reduced
by a factor of about 1/3.

The Hopf cochlea model provides an explanation
for these observations. Since the small-signal re-
sponse of the test tone is given by Ry = Fi/|pess4l,
and pespe = p — 2R2, we conclude that suppressive
effects become appreciable if y.r; deviates signifi-
cantly from g, which is the case if F; ~ Ry 2, /|-
The spacing between the curves reflects the compres-
sive nonlinearity of the suppressor response, R. For
I, < 70 dB, Ry ~ F;/R? ~ F;/I;, which ex-
plains the constant spacings between the curves in
Fig. 2. If the suppressor enters the compressive non-
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Fig. 3. Combination tone generation: BM response at
characteristic place for a tone with frequency f =
2f1 — fo, as a functon of f;-intensity. a) Model re-
sponse (curves for f» = 60,70,80 dB; f1 = 930 Hz,
f2 = 1000 Hz, f2/f1 = 1.05). b) Experimental mea-
surements [16] (f2/f1 = 1.1).

linear regime, Rf ~ Ff/3 ~ 151/3 holds, which leads
to a reduction of the spacing by 1/3. It is remarkable
that the same effect is observed in the experiment.

B. Combination Tones

CT measurements are performed in a variety of ex-
perimental settings [16]. We restrict our analysis to
the situation where the CT response is measured as a
function of the intensity of the fi-component, while
the level of the fo-component is kept fixed (Fig. 3).
We observe a close agreement of the model results
with the experimental measurements.

An explanation of Fig. 3 is again provided by the
Hopf cochlea model. At the increasing branches of the
curves, the slope is exactly 2 dB/dB, as was predicted
from Eg. (8). The role of suppression is twofold:
For low fi-levels, suppression of the CT stems ex-
clusively from the fo-component. This explains the
decrease of the CT response upon increase of the fo-
level (while fi-intensity remains fixed), which is ob-
served when CT responses at different curves are read
off for fixed fi-intensity. For the same reason, the
2 dB/dB-slope remains unaffected: From Eq. (8) fol-
lows For =~ RQR%/'LLef‘ﬂCT ~ R%, as peff,CcT is
only a function of Ry for small fi-intensities. Since
peff,or = p — 2(R? + R3), the contribution of the
f1-component to suppression becomes significant if
Ry g R,, which is the case when the intensity of the
f1-component exceeds the fs-level. This explains the
decrease of the CT response for large f1-intensities.

IVV. CONCLUSION

In the preceeding section we have demonstrated
that the Hopf cochlea model provides an successful
description of cochlear nonlinear phenomena. The
role of suppression in cochlear information process-
ing consists in the reduction of the response to small-
amplitude signals (which can be considered as noise).
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This leads to a pattern-sharpening effect, analog to the
increase in resolution of neural receptive fields, which
is achieved by lateral or surround inhibition. The role
of combination tones is less clear. Possibly, they may
help in signal identification (scene analysis) if several
signals of comparable magnitude are present; if the
signal intensities differ, the combination tone is read-
ily suppressed. CT generation sometimes plays a role
in music — the phenomenon has been described for the
first time by the violinist Tartini in 1714,

For the design of intelligent acoustic devices, which
perform signal identification and scene analysis tasks,
a profound understanding of the nonlinear phenom-
ena in mammalian hearing may provide helpful. For
example, if a speech recognition system is endowed
with a simple cochlea model as a front end, its perfor-
mance increases significantly [17]. We therefore ex-
pect that the Hopf approach to cochlear modeling will
be of great benefit for developping sound-processing
devices. Hopf oscillators can be implemented as elec-
tronic circuits [18].

REFERENCES

[1] H.L.F. Helmholtz, Die Lehre von den Tonempfi ndungen als
physiologische Grundlage fiir die Theorie der Musik (Vieweg,
Braunschweig, 1863).

[2] G.von B ek’esy, Phys. Z. 29, 793 (1928).

[3] O.F. Ranke, Die Gleichrichter-Resonanztheorie (Lehman,
M‘unchen, 1931).

[4] B.P. Peterson and L.C. Bogert, J. Acoust. Soc. Am. 22, 369
(1950).

[5] R.L. Wegel and C.E. Lane, Physical Review 23, 266 (1924).

[6] W.S. Rhode, J. Acoust. Soc. Am. 49, 1218 (1971).

[7] D.T. Kemp, J. Acoust. Soc. Am. 64, 1386 (1978).

[8] W.E. Brownell, C.R. Bader, D. Bertrand, and Y. de Rib-
aupierre, Science 227, 194 (1985).

[9] W.E. Brownell, A.A. Spector, R.M. Raphael, and A.S. Popel,
Annu. Rev. Biomed. Eng. 3, 169 (2001).

[10] V.M. Eguiluz, M. Ospeck, Y. Choe, A.J. Hudspeth, M.O.
Magnasco, Phys. Rev. Lett. 84, 5232 (2000).

[11] A. Kern and R. Stoop, Phys. Rev. Lett. 91, 128101 (2003).

[12] G.B. Whitham, Linear and Nonlinear Waves (Interscience
Publishers, New York, 1999).

[13] M.A. Ruggero, Curr. Opin. Neurobiol. 2, 449 (1992).

[14] For the model, it is assumed that the wave propagation along
the cochlea can be described by linear hydrodynamic theory.
The energy densities associated with the different frequency
components (e1, ez and ecr) are therefore exclusively cou-
pled through the active process (term a(-) in (3)).

[15] M.A. Ruggero, L. Robles, N.C. Rich, J. Neurophysiol. 68,
1087 (1992).

[16] L. Robles, M.A. Ruggero, and N.C. Rich, J. Neurophysiol.
77,2385 (1997).

[17] J. Tchorz and B. Kollmeier, J. Acoust. Soc. Am. 106, 2040
(1999).

[18] J.-J. van der Vyver, A. Kern, and R. Stoop, In: Proc. of
the IEEE European Conference on Circuit Theory and Design
(ECCTD) vol. 111, 285 (2003).

193





