Chapter 1

Partial Differential
Equations in Musical
Acoustics

At one level, the study of musical acoustics is the study of physics, and in par-
ticular, continuum mechanics. Taking this point of view, a musical instrument,
which is always a solid object of a given geometry encompassing and surrounded
by air, and driven by some exciting mechanism, can be fully described by sets
partial differential equations, which are statements of basic conservation laws,
accompanied by appropriate boundary conditions. In theory, then, a computer
simulation which calculates the radiated sound field from an instrument can be
performed, in much the same way the the flow and pressure fields around an
airfoil are calculated, by brute force. This is, however, easier said than done,
and, even if done, prohibitively expensive from a computational point of view'.

The game, then, if one is interested in musical sound synthesis in something
approaching real time (and this is becoming a possibility for some of the al-
gorithms presented in the next chapter) is to make as many simplifications as
possibility without sacrificing the salient qualities of the instrument vibration
itself. Among these simplifications will be assumptions of linearity and reduced
dimensionality, which are often well-justified and lead to simplified PDEs—as
it turns out, this set of useful PDEs for musical sound synthesis is in fact fairly
small. That being said, we will not spend much time justifying these equa-
tions from a physical point of view, but will simply take these very commonly-
encountered forms as a point of departure for a discussion of numerical methods
(see Chapter ??7). A reader interested in the physical underpinnings of these
forms is referred to one of the many comprehensive texts on the subject [].

For some unknown reason, electrical engineers have often been entrusted
with the solemn duty of squeezing musical sounds out of computers. But PDEs
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2CHAPTER 1. PARTIAL DIFFERENTIAL EQUATIONS IN MUSICAL ACOUSTICS

and numerical methods, while familiar to mechanical engineers and applied
mathematicians, are not usually covered in an electrical engineering curricu-
lum. This is unfortunate, because the basic concepts, techniques and tools will
be very familiar to anyone with a knowledge of digital or analog filter design,
Fourier and Laplace transforms, DFTs and z-transforms, linear system theory,
and basic complex analysis—in other words, an electrical engineer! Those who
have studied more advanced topics such as linear system theory, matrix analy-
sis, Fourier optics and digital image processing will find their effort paying off
unexpected dividends when it comes to the material we are about to present,
in this chapter and the next.

1.1 PDESs in One Spatial Dimension

For many of the key components of musical instruments (namely strings, acous-
tic tubes and thin bars), vibration wavelengths are long compared to all but one
spatial dimension (though sometimes, as for a brass instrument, this dimension
is curved). In these cases, it is advantageous to reduce the PDE description of
the motion to an equation in one spatial variable z and a time variable ¢. All
the PDEs which arise are variations or elaborations on a couple of key forms.

1.1.1 The Wave Equation

The single most important PDE in all of musical acoustics is the one-dimensional
wave equation, which is written as
2 2

ou _ 02@ (1.1)

ot2 Ox?
Here, t € R is a time variable, z € R is a spatial variable, and ¢ is known as the
wave speed. u(x,t) is the unknown or dependent variable which we wish to solve
for, and the key characteristic of (?7?) is that it possesses wave-like solutions, as
we will see shortly.

Equation (1.1) is a useful first approximation to the vibration of many sys-
tems which appear frequently in musical acoustics. For instance, u(z,t) could be
the transverse displacement or velocity, or force of a violin or piano string under
tension, or the longitudinal displacement of an ideal stiff bar, or the longitudinal
volume velocity or pressure in a thin, straight cylindrical acoustic tube such as
certain woodwind and brass instrument, and to a rougher approximation, the
human vocal tract. (It also can be used to describe one-dimensional electro-
magnetic waves, or voltage and current waves on a transmission line, which are
perhaps more familiar to electrical engineers.) The value of ¢ depends, always,
on two properties of (or conditions on) the material under consideration, as-
sumed constant. One of these constants will always be the mass density p, and
the other will always be the stiffness. It is useful to recall, from the treatment
of coupled mass-spring systems in elementary physics, that these are the are
the two “dual” properties that a system must possess in order for oscillations
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to occur. For a string, ¢ = 1/T/p, where T is the tension applied to the string,
in Newtons (giving rise to stiffness). For a bar, ¢ = y/E/p, where E is Young’s
modulus, a property of the material from which the bar is constructed. For
an acoustic tube, ¢ = /K /p, where K is the bulk modulus of air. Note that
speed always increases as stiffness is increases (i.e., the medium reacts faster to
perturbations), and decreases as mass is increased (i.e., the medium becomes
more inertial).

System Interpretation

It is important to keep in mind that the one-dimensional wave equation, second
order in both the time and space variables, is always derived from a first-order set
of equations which can be related more directly to definitions of basic quantities
and conservation equations. For the string, the generating system is

u  of
TR (1.22)
af v

for u, the transverse velocity of the string, and f(z,t), the vertical force. Taking
a time derivative of the first equation and a space derivative of the second, and
eliminating terms gives (1.1). A wave equation in force f follows by performing
the dual set of manipulations. It is sometimes useful to have access to this
more fundamental form, in case certain variations are to be introduced. If, for
instance, our string were to have a varying mass density p(z), it is not clear
whether a form such as (1.1) exists; indeed, the first-order system tells us the
answer (see Problem 77).

The D’Alembert Solution

Though in general, it is impossible to obtain explicit solutions for PDEs (and
indeed, methods for obtaining approximate numerical solutions are the subject
of this chapter), the one-dimensional wave equation does in fact yield explicit
solutions. It is useful to first rewrite the wave equation in the form

0 0 0 0

Then, defining the new variables w and v by
w=t+cz v=t—cz (1.4)
the wave equation can be rewritten as

8%u _
Oowdv

(1.5)
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It should be clear that integrating twice, once with respect to w, and then with
respect to v introduces two arbitrary functions in w and v,

uw(w,v) = f(w) + g(v) (1.6)
and thus, transforming back to the variables z and ¢,
u(z,t) = f(x + ct) + gz — ct) (1.7)

A few comments are in order at this point. First, note that u(z,t) is a sum
of two functional forms, or waves of arbitrary shape. We are justified in calling
them waves, because one moves to the right at a speed ¢, the other to the left
at the same speed; the shapes travel without any deformation.

The above traveling wave decomposition forms the basis for digital waveguide
methods.

1.1.2 The Wave Equation with Loss

The above model of wave propagation is very crude; waves travel unattenuated
for all time. Real physical systems always exhibit some form of loss, which may
be internal to the medium itself (through, e.g., viscoelastic or thermal effects),
or perhaps through transfer to the surroundings (i.e., radiation). A simple
“resistive” model of loss can be obtained by adding a first time derivative term
to (1.1), giving
2 2

Ou _ 02% - 2b16—“ (1.8)

ot2 Ox? ot
The loss parameter by is assumed to be positive here; for by = 0, the wave
equation is recovered.

In this case, there is no traveling wave solution; the resulting motion of the
medium is much more complicated. In fact, there is no longer a single “speed”
associated with the motion of the medium, though it is possible to show, at
least, that disturbances travel at bounded speeds—see §?7. (It is possible,
however, to modify this equation slightly so that traveling wave type solutions
again reappear—see Problem ??. The lossy traveling wave model is also quite
useful from the point of view of digital waveguide synthesis.)

1.1.3 The Ideal Beam Equation

A very different, but nonetheless physical type of motion is governed by the
Euler-Bernoulli or ideal beam equation

0%u 0*u

—— = K (1.9)

ot? ox*
Here, u is the transverse displacement of the beam, and & is a stiffness param-
eter; this equation models transverse vibrations on a thin stiff bar, where the
restoring force is supplied by the rigidity of the bar, instead of tension, as in a
string.
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In contrast to the wave equation, neither the lossy wave equation nor the
ideal bar equation possesses a simple traveling wave solution. We will return to
the analysis of these PDEs in detail in the following sections.

1.2 Frequency domain analysis

Many useful PDE models in musical acoustics have the special property that
they are invariant under shifts in space or time; that is, the system behaves the
same “here and now” as it did “then and over there.” What is more, they are
linear: if u; and us are solutions, then so is any linear combination au; + Sus.
This linear shift-invariant property is exhibited by systems (1.1), (1.8) and (1.9).
(If, in the wave equation, ¢ were dependent on z or t, the equation would be
linear but not shift-invariant, and if ¢ were dependent on w, it would not be
linear.) As it turns out, this property leads to a much-simplified analysis in the
frequency domain.

1.2.1 Spatial Fourier Transforms

Let us first define the spatial Fourier transform of a function u(z,t) by

a(p,t) = \/%7 /_oo u(z,t)e” P2 dg (1.10)

Here 8, assumed real, is the wave number, corresponding to a component of
wavelength 27/8. The transform is inverted by

1 *° ;
u(z,t) = — (B, t)ed 1.11
@)= o= [ a(p.neap (111)
Parseval’s relation holds for such a transform pair, denoted here as u +— 4,
ie.,

/jo lu(z, 8)[2dz = /jo (8, 1)2dB (1.12)

Transforms of Spatial Differential Operators

Taking the gth spatial derivative of the inverse transform definition (1.11) gives

Otu _ / " (i8)ra(s, e as (1.13)

or1 |

provided that u(z,t) is sufficiently differentiable. In other words,
o

ox4

As is the case for the analysis of electric circuits, or lumped mechanical
systems, the interest in working in the transform domain derives precisely from
the identification of differential operators with algebraic operators.

— (if)"% (1.14)



6CHAPTER 1. PARTIAL DIFFERENTIAL EQUATIONS IN MUSICAL ACOUSTICS

1.2.2 Fourier Transforms of PDEs

Suppose we now take the Fourier transform of the wave equation (1.1). Keeping
in mind the transforming rule (1.14) for spatial derivatives, we obtain

%4
ot?
This is no more than a second-order linear ordinary differential equation (ODE)
in the variable 4(8,t); in fact, for a fixed value of 8, it describes a simple

harmonic oscillator (SHQO), of angular frequency w = ¢f3.
The transform of the lossy wave equation is

824 . B
Sp = OBt (1.16)

which is, again, a second-order ODE, corresponding, now, to a damped harmonic
oscillator.
The transform of the ideal beam equation is
0%
ot?

which is again a SHO; the frequency, however, is now given by w = k2.

= —cf% (1.15)

= —K2f* (1.17)

1.2.3 Characteristic Polynomials

All the Fourier-transformed PDEs discussed above are of the form

0%a o

— +2 - =0 1.18

o+ 2(0) 5+ a() (118
for some polynomial functions p(3) and ¢(8) (here, real-valued). As mentioned
previously, these are simply linear, constant-coefficient second-order ODEs, as

can easily be seen by suppressing the explicit dependence on . The familiar
general solution will be of the form

W(B,t) = ay (B)e*+ P +a_(B)e*- Pt (1.19)

for two numbers s (8) and s_(8) which are the solutions (assumed distinct, for
the moment) to the characteristic polynomial equation

s +2p(B)s + q(B) = 0 (1.20)

which is obtained by inserting a trial solution of the form 4 = e® into (1.18).
The roots can be written explicitly as

s+(8) = —p(B) + VP*(B) — a(B) (1.21)

As seen from (1.19), the real parts of the roots si will control the growth
or decay of the solution, and the imaginary parts affect the phase only. We will
write, in general,

s+(8) = 0+(B) + iwx(B) (1.22)
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The two arbitrary functions a4 (8) and a_() can be written in terms of the
Fourier transforms of the initial data as

L s=(0)a(8,0) - 25
S_ — S84

a+(B) = (1.23)
Frequency domain analysis is useful in the context of PDE analysis for ex-
actly the same reasons that they are used in the analysis of linear and shift-
invariant lumped mechanical and electrical systems—differential equations are
transformed into algebraic equations (generally polynomial). The analysis can
thus be simplified, but only to a point. As it turns out, the algebraic equations
are nonlinear, and often, the stability analysis for a PDE system is reduced to
an attempt to say specific things about the roots of these algebraic equations.

1.2.4 Well-posedness

The roots of the characteristic equation play an important role in determining
whether the system in question behaves physically; after all, we can write down
any PDE we want, but there is no guarantee that it describes the behavior of a
real system. One property that an initial-value problem should have is known
as well-posedness; though we can’t fully define this property here, it can be
described as a requirement that the solution of the PDE grow no faster than
exponentially. This condition has implications for the existence and uniqueness
of solutions; it should be true that the solution to a differential equation varies
in a reasonable way with the initial values provided to it. Of course, for musical
instrument modeling, this condition is somewhat overly technical, and is fact not
strong enough; we would generally want a condition that solutions be damped,
or at least non-increasing (that is, acoustic musical instruments are passive).
But well-posedness is a good starting point for such a discussion.

First, consider the Fourier transformed solution (??), and, to simplify mat-
ters, suppose that we have chosen the initial conditions such that a_(3) = 0;
this then implies that ay(8) = 4(8,0) (as can be easily checked). We then have

a(B,t) = a(B,0)e*+ ! = 4 (B, 0)e7+ (Plele+ O (1.24)

This simplifying assumption essentially reduces the problem to first-order. Sup-
pose now that there is a number o3 such that o (8) < o%. Then, we have

[a(B,1)| = [a(B,0)]e”™ " < Ja(B, 0)|e”+* (1.25)

and, squaring and integrating over £,

[ raopds <eit [ a0 pas (1.26)
Parseval’s relation gives the bound
/ lu(a, ) 2dz < e"jrt/ lu(z, 0)[2dz (1.27)
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so the size of the solution (in an L? norm) is bounded in terms of the size of
the initial condition. It should be clear that a similar bound on o_(f) is also
necessary for well-posedness. Actually, for musical applications, we would want
the stronger condition that

o1(8) <ot <0 (1.28)

which corresponds, roughly speaking, to passivity—the “energy” of the system
at any time t > 0 is less than that it had at ¢t = 0.

The above analysis is very crude, in several ways, but it does give a general
indication of the utility of spectral analysis; it is a direct extension of Laplace-
type analysis of lumped systems, where stability is typically characterized in
terms of system pole locations s. Here, the pole locations s are functions s(8)
of wavenumber, and what requirements we make for well-posedness, or passiv-
ity need to hold over all wavenumbers. What have we neglected? First, we
have simplified the analysis of the second-order problem by eliminating one of
the two solutions; if both are retained, the analysis is more complex, but a
boundedness condition on the two roots of the characteristic equation is neces-
sary and sufficient for well-posedness. Second, we have examined a pure initial
value problem (i.e., the spatial domain is unbounded); a complete analysis of
the well-posedness of solutions to the equation must take such conditions into
account.

1.2.5 Dispersion Relations and Phase Velocity

Besides gross information regarding well-posedness, the characteristic polyno-
mial for a PDE also supplies us with finer information, from which we can say
a good deal about how solutions evolve.

First, note that another way of obtaining the dispersion relation is by simply
assuming a “plane-wave” solution of the form

u(z,t) = est+ibe (1.29)

Though this is a short-cut, it can be justified by an appeal to Fourier and
Laplace theory—any solution can be expanded in terms of such exponentials,
and, by linearity, it is sufficient to examine any single component in isolation.
Let’s look again at the solutions to the
Let us now apply these transforms to the three equations discussed in §?77?,
beginning with the wave equation (??), first under steady state conditions, and
assuming no spatial boundaries. After Fourier transforming, we obtain
0%
ot?
This is no more than a second-order linear ordinary differential equation (ODE)
in the variable §(8,t); in fact, it is a harmonic oscillator. Now, applying the
Laplace transorm, we obtain

s =—cp% => (s> + 2B g =0 (1.31)
~———

= —2B% (1.30)
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The quantity P(s, ) defined above is known as the symbol for (77).
It is worth noting that we could have obtained the same equation by, instead
of Fourier and Laplace transforming, simply assuming a solution of the form

y(z,t) = estHibe (1.32)

Thus, we can think of (??) as describing the behavior of a solution to the wave
equation at the single frequency pair (s, ). In particular, as we shall see shortly,
(?7) tells us exactly what the relationship between s and g must be for such a
solution to exist.

We can see that unless P(s,) = 0, then this equation has only the trivial
solution § = 0. P(s, 8) = 0 defines what is known as the characteristic equation
for the wave equation, namely

s = —c2p? (1.33)

Obviously, since 3 is real, then s must be purely imaginary, and writing s = jw,
we obtain the following dispersion relations:

w = +cf (1.34)

It is important that there are two dispersion relations; as we will see shortly,
these can be associated directly with the left- and right-traveling waves men-
tioned in §??. Notice also that because s = jw is purely imaginary, a solution
y(z,t) = e/t+iBe is “undamped”, i.e., |y(z,t)] = 1. A purely imaginary s
reflects the losslessness of a system such as the wave equation.

For the bar equation, the analysis is very similar; after Fourier and Laplace
transforming (or, equivalently, assuming a solution y = e**+757)  we obtain the
characteristic equation

2+ K264 =0 (1.35)

from which it is obvious that s must again purely imaginary for a solution to
exist. We obtain the dispersion relations

w = +xp? (1.36)

For the lossy wave equation, the situation is a bit different. Applying the
same analysis as before, we get the characteristic equation

s+ 2bis+c*B2 =0 (1.37)

Here, it is no longer true that s is purely imaginary. In fact, the solutions are

sy = —by 4/ — 2B (1.38)

Supposing that s = 0 + jw, there are now two different regimes, depending on
the value of the wavenumber 3. If || > |b1|/c, then

o= —b w=+4/c2p% - b2 (1.39)
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This is the regime of normal damped wave propagation. We note two things
here. First,
wa +cp for|B| >> |bi|/c (1.40)

or, in other words, if damping is small, the dispersion relation is not appreciably
different from what it is in the lossless case. Second, for a solution y(z,t) =
esttiBT e have

ly(z,b)] = [7H57| = |e”] = e~ (1.41)

Thus for by > 0, the solution is damped, independently of frequency or wavenum-
ber. Such loss is called, naturally, frequency independent. (For an examination
of a system exhibiting frequency-dependent loss, turn to §27.)

The other propagation regime, i.e., for |3| < |bi|/c, we have

o= —by £4/b3 —c2/3? w=0 (1.42)

Thus below a certain “cutoff” wavenumber |8.| = |b1|/c, we have non-oscillatory
solutions. If

1.2.6 Phase Velocity

Let’s return to the dispersion relations for the wave equation,

w(f) = b (1.43)

As we mentioned in the last section, the dispersion relation can be obtained by
inserting a solution of the form y(z,t) = 1752 into the PDE itself, and setting
the symbol P(s,8) = 0. Now that we have obtained these solutions, let us go
back and look at what these test solutions look like. We have

y(:z:,t) — ejw(ﬁ)t—l—jﬂz — ejﬂ(z:tct) (144)

It should be obvious that these solutions are nothing more than a pair of trav-
eling waves, of the form of (??). They travel at speed c.
What about the ideal bar equation? The dispersion relations are now

w(B) = kB> (1.45)
and our test solutions y(z,t) = e**t75% will thus be

y(z,t) = W PtHiBe — cibleLes(H)t) (1.46)

where we have defined the phase velocity cs(5) by

w(B)
cp(B) = ITI = |xB| (1.47)
The phase velocity has the interpretation of a propagation speed which is de-
pendant on the wavenumber; for the wave equation, the phase velocity is simply
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¢ = ¢, and is independent of the wavenumber. The implication is that if a bar
is deformed an then released at time ¢t = 0, the deformation will propagate, but
the various spatial frequency components of the deformation travel at different
speeds, and the deformation’s shape must therefore become distorted or disperse
as time progresses. Thus wave propagation in an ideal bar is called dispersive.
As we can see, the phase velocity increases linearly with the wavenumber, so
that short wavelengths travel faster than long wavelengths.

1.3 Boundary Conditions

So far, we have looked at PDEs defined over the domain z € R; this is obviously
not the case for any musical instrument

1.3.1 Boundary Conditions for the Wave Equation
1.3.2 Boundary Conditions for the Ideal Beam Equation

1.4 PDEs in higher dimensions

Certain musical instruments employ vibrating elements which cannot be reduced
to a simple description in one spatial dimension. We will focus, in this section,
on PDEs in two spatial Cartesian coordinates,  and y. Drum membranes, and
stiff plates such as cymbals and gongs, as well as the piano soundboard are
the most important examples of objects requiring such a treatment; . Simple
solutions to two-dimensional PDEs are even more hard to come by than in 1D,
both due to the inherent properties of higher-dimensional equations (the 2D
wave equation, for instance, possesses no simple traveling-wave solution), and
the many new geometrical possibilities.

1.4.1 The 2D Wave Equation and the Ideal Plate Equation

The 1D wave equation (??) can be generalized in a straightforward way to 2D:

Pu _ oy v e 1.4

W =c u = w + 0—:[/2 ( . 8)
c is again the wave speed (we will justify calling it this in the next section), and
u(z,y,t) is the dependent variable to be solved for. If w is the transverse dis-
placement of a membrane of mass density p and under uniform applied tension
T, the wave speed is given by ¢ = /T /p, just as for the ideal string.

It is important to note the spatial shift-invariance of this equation, which
allows, as in 1D, convenient spectral analysis techniques to be employed. This
shift-invariance is, however, contingent on the use of Cartesian coordinates,
and is otherwise lost—this is worth keeping in mind if the geometry of the
system to be modeled does not conform to rectilinear coordinates (and indeed,
in musical applications, few do). Even in Cartesian coordinates, however, there
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is no change of variables which can be employed to give a D’Alembert type
traveling-wave solution; there is no simplified description of the motion of such
a system.

Similarly, the ideal beam equation may be generalized to 2D as

0%u

ot2
This equation describes the transverse motion of a thin flat plate. The stiffness
parameter & is given by

= —k*Viu vt £ v2v? (1.49)

K= (1.50)

where p is the mass density, A is the thickness, E is Young’s modulus, and v is
another material parameter known as Poisson’s ratio.

Both the wave equation and the plate equation are second order in the time

variable, and thus require two initial conditions, u(z,y,0) and w.

1.4.2 Spectral Analysis in 2D

As we mentioned earlier, both the 2D wave equation and the plate equation are
linear and shift-invariant, and are thus amenable to Fourier analysis.

The Spatial Fourier Transform in 2D

The Fourier Transform in 2D of a function u(x,y,t) is defined by

T S e .
ﬁ(ﬂzn@yat):ﬂ/ / u(z,y, t)e” Bee+Bub) drdy (1.51)

The two transform variables, 8, and 3, both have the dimension of a wavenum-
ber, and are best interpreted as the components of a vector wavenumber § =
[Bz, By], which defines the direction of a single sinusoidal component of the form
e B2 +Byy) | The function 4(B;,By,t) is thus an expansion of u(z,y,t) into a
sum of such directional sinusoids. The wavelength of any single such component
will be 27/|8|. The transform can be inverted by

1 RaR e )
u(@,y,t) = o— / / W(Be, By, t)e Pt s, g, (1.52)
27‘- —0oQ —0o0
Parseval’s relation holds for the transform pair v ¢— 4 in 2D as well.

Spatial Differential Operators in the Transform Domain

The operators V2 and V* transform according to
V2 o— —|BP (1.53)
vt o— 8! (1.54)

Notice that the transforms of these operators depend only on the magnitude
of the vector wavenumber, and not its individual components. That is, they
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depend only on the wavelength and not direction. When such operators appear
in a PDE, they immediately signal isotropic behavior (i.e., motion which is in-
dependent of direction). Isotropy is a characteristic peculiar to systems in more
than one spatial dimension; while the wave equation and the plate equation,
as we have presented them, possess this properties, there are important exam-
ples of musical instrument components which are not isotropic (the wood grain
effects in a piano soundboard, for instance, lead to such behavior).

1.4.3
1.5 Problems

Consider the first-order system (1.2), describing the transverse motion of a vi-
brating string, in a single plane of polarization. Suppose the linear mass den-
sity p is a smooth function of z, and derive a single second-order equation in
v. Derive another in f. What are possible sources of spatial variation in (a)
longitudinal vibration in bars and (b) acoustic tubes? Give examples of each
type of variation in 1D musical acoustics.

As we have seen, when a loss term is introduced to the wave equation, in
(??7), wave propagation is dispersive. This is not always the case, however.
Consider the same equation with an extra term,

0%u 0%u ou
5 02@ - 2bla — bu (1.55)

(a) Find the characteristic equation for this PDE, and solve for the roots
s5+(8). What are the real and imaginary parts of these roots? What can you
deduce about the loss and dispersion characteristics of solutions to this equa-
tion?

(b) Introduce a new variable w(z,t) = u(z,t)e’'?, and rewrite the PDE
above in terms of w. Find a general solution w(z, t) in terms of traveling waves,
and then write the general solution u(z,t). How would you characterize this
solution?

The equation above corresponds to “distortionless” wave propagation on
an electrical transmission line. A discrete-time and space analogue exists; see
Problem ?? in the next chapter.

Consider the system defined by

P?u  ,0%u 0% Ou O3u
— === —K'=— +2bj— — 2b5—+ 1.56
T Rl TR T (1.56)
where bl > 0, b3 75 0.
(a) Write down the characteristic polynomial for this PDE, neglecting initial
and boundary conditions (it will be an equation in s and 3).
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(b) It is tedious to solve for the roots of this polynomial (in s) directly. How
many roots s(3) will there be? Given that the polynomial coefficients are real,
what can you say about the roots? What is the behavior of the roots of this
equation in the limit as # becomes large, for b3 > 0, and b3 < 07 Is the system
well-posed?

(c¢) Optional: numerically solve for the roots of this equation over 0 < 8 <
100. Characterize the real and imaginary parts of the roots (are they positive,
negative, dependent on 37).

(d) Suppose the term 2b3%372‘ is replaced by 2b2%, for some by > 0. Write
down a characteristic polynomial for this system, and solve for the roots s(5)
explicitly. Is this system well-posed?



