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Undergraduate Experience

- University of Miami-FL
= B.M. Music Engineering Technology, 2007
- B.S. Electrical Engineering — Audio Emphasis, 2007
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Graduate Experience

= Center for Computer Research in Music and Acoustics, Stanford University
= M.A. Music, Science, & Technology, 2008
= MS.S. Electrical Engineering - Machine Learning Emphasis, 2011
Ph.D. Computer-Based Music Theory and Acoustics, 2014
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Inflection Point & PhD Thesis

\ Sound Source Separation Editor
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Content-Based Audio & Music Processing

ONE-SHOT PARAMETRIC AUDIO PRODUCTION STYLE TRANSFER
WITH APPLICATION TO FREQUENCY EQUALIZATION

Stylianos I. Mimilakis**

“ Fraunhofer-IDN
 Adobe Researq
? University of Illinois at Urbana-Champaign, I

ABSTRACT

Audio production is a difficult process for many people, and
properly manipulating sound to achieve a certain effect is non-
trivial. In this paper, we present a method that facilitates this
process by inferring appropriate audio effect parameters in
order to make an input recording sound similar to an unrelated
reference recording. We frame our work as a form of para-
metric style transfer that, by design, leverages existing audio
production semantics and manipulation algorithms, avoiding
several issues that have plagued audio style transfer algorithms
in the past. To demonstrate our approach, we consider the
task of controlling a parametric, four-band infinite impulse
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DIFFERENTIABLE SIGNAL PROCESSING WITH BLACK-BOX AUDIO EFFECTS

Marco A. Martinez Ramirez***
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Paris Smaragdis"

# Adobe Research, USA
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ABSTRACT

We present a data-driven approach to automate audio signal pro-
cessing by incorporating stateful third-party, audio effects as layers
within a deep neural network. We then train a deep encoder to ana-
lyze input audio and control effect parameters to perform the desired
signal manipulation, requiring only input-target paired audio data as
supervision. To train our network with non-differentiable black-box
effects layers, we use a fast, parallel stochastic gradient approxima-
tion scheme within a standard auto differentiation graph, yielding

efficient end-to-end backpropagation. We demonstrate the power of

our approach with three separate automatic audio production appli-
cations: tube amplifier emulation, automatic removal of breaths and
pops from voice recordings, and automatic music mastering. We
validate our results with a subjective listening test, showing our ap-
proach not only can enable new automatic audio effects tasks, but
can yield results comparable to a specialized, state-of-the-art com-
mercial solution for music mastering.
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"Auto-DSP: Learning to Optimize Acoustic Echo Cancellers."

AUTO-DSP: LEARNING TO OPTIMIZE ACOUSTIC ECHO CANCELLERS

Jonah Casebeer*
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ABSTRACT

Adaptive filtering algorithms are commonplace in signal process-
ing and have wide-ranging applications from single-channel denois-
ing to multi-channel acoustic echo cancellation and adaptive beam-
forming. Such algorithms typically operate via specialized online,
iterative optimization methods and have achieved tremendous suc-
cess, but require expert knowledge, are slow to develop, and are
difficult to customize. In our work, we present a new method to au-
tomatically learn adaptive filtering update rules directly from data.
To do so, we frame adaptive filtering as a differentiable operator
and train a learned optimizer to output a gradient descent-based up-
date rule from data via backpropagation through time. We demon-
strate our general approach on an acoustic echo cancellation task
(single-talk with noise) and show that we can learn high-performing
adaptive filters for a variety of common linear and non-linear mul-
tidelayed block frequency domain filter architectures. We also find
that our learned update rules exhibit fast convergence, can optimize
in the presence of nonlinearities, and are robust to acoustic scene
changes despite never encountering any during training.
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Figure 1: A learned optimizer, go, updates the adaptive filter fy
in an online fashion. The optimizer parameters ¢ are meta-learned
directly from data and do not use any external labels. The dashed
curved line denotes adaptation during training, but not inference.

time, do not have matching training and testing steps, and/or do
not directly learn adaptive filter update rules end-to-end.

J. Casebeer, N. J. Bryan P. Smaragdis,
WASPAA, 2021
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s Signal Processing Still Useful?

1940

Imagenet classification with deep convolutional neural networks

Acoustic modeling using deep belief networks
2000 2012 Today

"Signal processing is the future”

Probably Claude Shannon ©

“Let's prosper together”
Nervous DSP engineers

“DSP still the future” “Deep nets are the future”
Probably most EE folks Academia + industry
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Signal Processing & Deep Learning
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Option 1: Replace Signal Processing with Deep Learning
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- Better versions of traditional algorithms (fit to data)
= Achieve previously unachievable tasks
- Emulate existing algorithms (e.g. analog hardware, software algorithms, etc.)



Option 2: Integrate Deep Learning into Signal Processing
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- Inductive bias and expert knowledge

= Faster, less complex, easier to implement
= More robust and generalizable

= More interpretable



Two Strategies



Signal Processing for Feature Extraction
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Signal Processing for Feature Extraction
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Signal Processors with Deep Control

Neural network
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Applications

= Speech synthesis

= Automatic multi-track mixing

- Remove breaths from voice recording
= Emulate guitar distortion

= Automatic music mastering

= Optimal adaptive filters

= Automatic podcast production

= Learned optimization algorithms

= Music source separation



Remove Breaths

M. Martinez, O. Wang, P. Smaragdis, and N. J. Bryan, “Differentiable Signal Processing with Black-box Audio Effects”, ICASSP, 2021.



Guitar Distortion

Task 1: Remove breaths and voice pops

M. Martinez, O. Wang, P. Smaragdis, and N. J. Bryan, “Differentiable Signal Processing with Black-box Audio Effects”, ICASSP, 2021.



Music Mastering

M. Martinez, O. Wang, P. Smaragdis, and N. J. Bryan, “Differentiable Signal Processing with Black-box Audio Effects”, ICASSP, 2021.



Optimizing Acoustic Echo Cancellation
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J. Casebeer, N.J. Bryan, and P. Smaragdis, “Auto-DSP: Learning to Optimize Acoustic Echo Cancellers”, WASPAA, 2021.



Why is this Interesting?

= Train a neural network to use audio FX/signal processors
= Benefits
- Adaptive, signal-dependent signal processors
= Tune signal processors to data
Harder to mess up audio quality

Estimate interpretable control parameters



Interpretable Al

- Blending deep learning with known algorithms let's us understand
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Applications for ISMIR

Music mastering Guitar/FX modeling Voice processing Music separation Music generation
& transcription & co-creation




Let's Dive Deeper

= Basic setup
= Advanced setups

= Future
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Basic Setup



Must Be Differentiable

= Neural networks are trained using an algorithm called backpropagation
= All operations performed by the network must be differentiable and have a gradient

1 TensorFlow




Methods

= Neural architecture processor
= Auto-Diff signal processor



Neural Architecture Processor

/ Neural architecture
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\ Neural “latent space”

= Mimic existing algorithms end-to-end with no interpretable control
- Example: Emulate analog music recording equipment

M. Martinez, et al.. Deep learning for black-box modeling of audio effects, Applied Sciences, 2020.



Auto-Diff Signal Processor

Signal processor in auto-diff framework
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= Implement signal processing algorithms using differentiable operators
- Example: Speech synthesis & dereverberation

Engel et al,, “DDSP: differentiable digital signal processing”, ICLR, 2020.



Training
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Unprocessed Input Processed Output

Only need input/output pairs. No parameter labels!




Methods

= Neural architecture processor
= Auto-diff signal processor

= Neural clone

= Neural proxy

No gradients special required!



Neural Clone

Learn to control
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Decoder
\ Clone of signal processor

1 Clone, existing signal processor for decoder
> Train encoder to control
- Example: automatic mixing of multi-track audio

Steinmetz et al. "Auto. multitrack mixing with a differentiable mixing console of neural audio effects”, ICASSP, 2021.



Neural Proxy

Neural architecture during backprop
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1 Clone existing signal processor for decoder
> Train encoder to control the clone

3 Only use clone for training control, but use real processor for inference
Example: Optimally tune image processing pipeline

Tseng et al, "Hyperparameter opt. in black-box image processing using differentiable proxies”, SIGGRAPH, 2019.



Two-5tep Training

Unprocessed Input

| Signal Processor
Decoder

Processed Output

Unprocessed Input

Encoder
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Methods

= Neural architecture processor

= Auto-diff signal processor

= Neural clone

= Neural proxy

= Numerical gradient approximation

No gradients special required!

Use third-party audio plugins!




Numerical Gradient Approximation

/ Neural architecture
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= Signal processor as black-box function
= Use numerical gradient approx. within auto-diff
- Example: Use existing tools to remove breaths, master music, emulate guitar

M. Martinez, O. Wang, P. Smaragdis, and N. J. Bryan, “Differentiable Signal Processing with Black-box Audio Effects”, ICASSP, 2021.



One-5Step Training

0__ Signal Processor |

Processed Output

Unprocessed Input

Only need input/output pairs. No parameter labels!

Works with third-party plugins and more!




Recap

= Use neural networks to control signal processing algorithms is powerful
= Many different strategies for differentiable signal processing, not just one
= Each strategy offers unique benefits and trade-offs

= Research area is wide open for exploration



Advanced Setups



Recent and Current Work

T 1 Encoder  boo-emeooe- | Signal Processor | Y

Decoder

= Train stateful signal processors
- Train signal processors that are online optimization algorithms

J. Casebeer, N. J. Bryan, and P. Smaragdis, “Auto-DSP: Learning to Optimize Acoustic Echo Cancellers”, WASPAA, 2021.



Adaptive Filters

Noise reduction

= De-reverberation
= Source separation
- Beamforming

= Echo Cancellation

"Auto-DSP: Learning to Optimize Acoustic Echo Cancellers."
J. Casebeer, N. J. Bryan P. Smaragdis, WASPAA, 2021

AUTO-DSP: LEARNING TO OPTIMIZE ACOUSTIC ECHO CANCELLERS

Jonah Casebeer* Nicholas J. Bryan® Paris Smaragdis®
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ABSTRACT

Adaptive filtering algorithms are commonplace in signal process-
ing and have wide-ranging applications from single-channel denois-
ing to multi-channel acoustic echo cancellation and adaptive beam-
forming. Such algorithms typically operate via specialized online,
iterative optimization methods and have achieved tremendous suc-
cess, but require expert knowledge, are slow to develop, and are
difficult to customize. In our work, we present a new method to au-
tomatically learn adaptive filtering update rules directly from data.
To do so, we frame adaptive filtering as a differentiable operator
and train a learned optimizer to output a gradient descent-based up-
date rule from data via backpropagation through time. We demon-
strate our general approach on an acoustic echo cancellation task
(single-talk with noise) and show that we can learn high-performing
adaptive filters for a variety of common linear and non-linear mul-
tidelayed block frequency domain filter architectures. We also find
that our learned update rules exhibit fast convergence, can optimize
in the presence of nonlinearities, and are robust to acoustic scene
changes despite never encountering any during training.
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Figure 1: A learned optimizer, g¢, updates the adaptive filter fs
in an online fashion. The optimizer parameters ¢ are meta-learned
directly from data and do not use any external labels. The dashed
curved line denotes adaptation during training, but not inference.

time, do not have matching training and testing steps, and/or do
not directly learn adaptive filter update rules end-to-end.
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Future



Applications for ISMIR

Music mastering Guitar/FX modeling Voice processing Music separation Music generation
& transcription & co-creation




Music Separation & Transcription

Music separation
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Music Generation
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Conclusions

= Controlling signal processing algorithms with deep learning is powerful!
= Many methods for differentiable signal processing

= Research area has many unsolved problems!

= Many music signal processing applications for WiMIR, ISMIR, and beyond!

|
ﬂ Nicholas J. Bryan | Adobe Research Thank you!
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