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ABSTRACT

We introduce a system that explicitly models onsets of sinusoidal
signal components. To do this, the system uses time reassignment
data to detect probable onsets. When an onset is detected, the re-
assigned data is used to estimate the precise location in time of the
original onset, allowing synthesis of corresponding output. This is
advantageous over conventional time reassignment which implic-
itly smears onsets. We demonstrate the efficacy of our system on
synthetic and real test signals with sudden onsets.

1. INTRODUCTION

In signal processing for speech and music, the accurate modeling
of sinusoidal and quasi-sinusoidal onsets is of great importance.
Such onsets may occur when a voiced speech sound begins, a note
is struck on a piano, or a choir sings a new pitch. This problem has
received attention in the context of sinusoidal modeling [1, 2], a
fundamentally important speech and music signal representation.

Historically, sinusoidal modeling has used frequency compo-
nents parametrized by their frequency, amplitude, and sometimes
phase. The traditional model has been expanded to include non-
sinusoidal parameters such as bandlimited noise [3]. Such parame-
ters are conventionally limited in time resolution by the frame rate
and frame length of the short time Fourier transform (STFT) front
end to the system.

Note onsets (and other events such as drum hits) require a
representation with finer time resolution in order for synthesized
outputs to sound psychoacoustically convincing. Transient model-
ing and time-frequency reassignment have partially met this need.
Transients have been modeled in a variety of ways, including as
time domain “peaks” detected as residual frequency domain os-
cillations [4], transform coded bandlimited time domain wave-
forms [5], and overlap-added residual time domain waveforms [6].
When onsets occur in input to these systems, they are implicitly
modeled within the transient frameworks noted, or as a combina-
tion of transients, noise, and sinusoids.

Time-frequency reassignment [7] (see also [8] for an in-depth
theoretical and historical review tracing back to [9]) may also pro-
vide a better framework for modeling onsets. This approach al-
lows energy in one STFT frame to be reassigned to its local center
of mass in time-frequency space, rather than to the fixed spectro-
gram grid. This produces greater time and frequency resolution in
sinusoidal modeling parameter estimation than that dictated by the
frame rate and frequency bin spacing. In [10], reassigned spec-
trogram data is used to more accurately model onsets. When the
system detects an onset, it uses a parameter pruning technique to
reduce the onset smearing that occurs in the time-frequency reas-

signed representation (which is itself already reducing the smear-
ing of the conventional spectrogram). The authors point out that
using accurate sinusoidal onset parameters allows a more consis-
tent model than transient modeling.

Presently, we consider a further step towards accurate onset
modeling using time reassignment data. In section two, we dis-
cuss this data specifically, reviewing how it may be understood as
the center of time-mass of a signal component in time-frequency
space. In section three, we introduce a model that uses time re-
assigned data to accurately estimate the time and amplitude of a
sinusoidal signal onset. In section four, we apply the algorithm to
several test signals and show that the system more accurately mod-
els onsets than do other systems. We conclude with a summary and
brief discussion of future work.

2. TIME-FREQUENCY REASSIGNMENT

Time frequency reassignment, which has been used to model on-
sets more accurately, may be understood as finding the center of
mass for a given point in time frequency space. Consider a spec-
trogram at a frame corresponding to time � and frequency bin

�
.

That bin’s magnitude is conventionally plotted at a specific place
on a spectrogram. However, most of the energy in bin

�
at frame� for example may actually have occurred later in the frame than

the center of the frame. And, for an example of the dual case, the
frequency content of the signal may have been at a slightly higher
frequency than that occupied by bin

�
. We could then say that the

local center of time-frequency mass for the spectrogram point in
frame � at bin

�
was higher in frequency and later in time. Visu-

ally, this would appear higher and to the right on a conventional
(default Matlab) spectrogram plot.

It may be shown [7, 8] that for a signal ��� ��� , respective time��
	�� 
and frequency

�� 	��  reassigned locations are estimated relative
to their original locations

� 
and � 	 on the spectrogram grid as���	��  � � �������������� 	��  �! ��� 	�� " � �#� 	��  " $ (1)�� 	��  � � 	&%(' ����) �#� 	��  �  ��� 	�� " � �#� 	��  " $ (2)

where � ��� 	��  represents the conventional STFT obtained using
time domain window * , ��) �#� 	��  represents the STFT obtained
when windowing ��� ��� with the time derivative of the window * ,� �+�#� 	��  represents the STFT obtained when the window * is mul-
tiplied by the time variable

�
, and  indicates a complex conjugate.

Presently we are concerned specifically with the time reas-
signed data points

���	�� 
in the case of a sinusoidal onset. When



a step-function style onset of a sinusoidal component occurs dur-
ing the middle of a frame, its center of mass in time will be shifted
towards future time. (In an analogous fashion, when a sinusoid
“turns off,” the center of mass of that bin with respect to time will
be earlier in the frame.) As an introductory example, consider a
step function onset of a sinusoid, such as that seen in figure 1.
Consider a spectrogram analysis where a rectangular window of
length 10 and hop size 4 is used. Let the onset occur such that the
first nonzero sample is at sample 10 of a 10 point frame. There,
the center of mass will be at sample 10. In the next frame cen-
tered 4 samples later, this same onset occurs at sample 6 of a 10
point frame. Hence, the center of mass for that frame will be at
sample 8. If we use conventional time reassignment to relocate the
frame mass at sample 8, we have a significant data representation
problem: the onset occurs at sample 6, not sample 8. (Also, the
amount of mass will be much greater in the second frame than the
first, because more of the onset and thus more energy is contained
in the second frame.) Similar problems exist as subsequent frames
cover more and more of the onset signal.

However, it is a necessary consequence of the onset that the
pattern of future time reassignments occurs. In the next section,
we introduce a model that exploits this fact to selectively and ex-
plicitly model onsets.
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Fig. 1. Sinusoidal test signal and its envelope.

3. EXPLICIT ONSET MODEL AND PARAMETER
ESTIMATION

Considering onset cases such as in the previous section’s exam-
ple, we propose the explicit onset model, which treats patterns of
repeated future assignments as being indicative of a step-function
style onset. When an onset is detected this way, we backsolve for
the onset location and amplitude that creates the center of mass
data revealed by the time reassignment data. To ensure reliability
of the estimates, we employ a heuristic measuring consistency be-
tween the data generated by frames containing the supposed onset.

To backsolve for the onset time and amplitude given the time
reassignment data, we use a table lookup method. To create the ta-
ble, we synthesize onset signals (one at each possible sample in the
window) under the time window * used in the system, and record
their respective centers of mass in time as determined by time re-
assignment. Then, when a possible onset is detected, we can look
up the nearest time reassigned data to estimate an onset time to
the nearest time domain sample. Because the system operates in a
Fourier space, only one table is needed for all frequencies.

The following outlines how we apply the model and heuristic.

1. Apply spectrogram and time reassignment analysis to an
input signal, where the frame hop size is ������� � , � is the
length of the window, and ���	� .

2. When � ��

future reassignments in a row are found for

a particular frequency bin, consider a potential onset to be
detected.

3. For each of the � reassignments into the future, use table
lookup to estimate the location in time of the onset.

4. Determine if the standard deviation of the � onset time es-
timates (in absolute time units) is below a threshold �� .

(a) If so, consider the data to indicate an onset, and use
the explicit onset estimates as the detected envelope
function of the sinusoid. (Optionally, use the mean
of the onset estimates as the onset time, setting the
envelope to zero before the onset.)

(b) If not, use conventional time-frequency reassignment
to represent the data.
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Fig. 2. Sinusoidal test signal: original envelope and detected en-
velopes.

4. RESULTS AND DISCUSSION

We now apply this model to a variety of test signals with onsets.
We begin with the original signal in figure 1, a sinusoid of fre-



quency 416 Hz assuming a sampling rate of 8192 Hz. We use a
Hann window of length � �������

and a hop size of � � � ��� �
(so � � � ). Figure 2 shows the original envelope of the sinusoid,
and the estimation of the amplitude parameters thereof using (1)
conventional sinusoidal modeling parameter estimation (“SMS”)
(2) time reassignment and (3) the explicit onset model. For the ex-
plicit onset model, we show all of the time-reassigned points rather
than their mean time value. It is clear from the figure that the ex-
plicit onset model better fits the original data than the other models.
We note that this is true even if a pruning technique such as in [10]
were applied to the time-frequency reassigned data shown.

100 200 300 400 500 600

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (samples)

m
a

g
n

it
u

d
e

sinusoid
envelope

Fig. 3. Linear onset sinusoidal test signal and envelope.

We also applied our model and the others to signals with an
abrupt linear onset. A signal whose onset occurs linearly over 160
samples is shown in figure 3. We tested our model on a set of such
signals to investigate how far we can strain the step-function style
onset assumption before our model becomes suboptimal. The ta-
ble below shows our results. In the first column, we show the
amount of time given for the linear onset to occur in the test sig-
nal. The second column shows the standard deviation in time onset
estimates generated by our system. The remaining three columns
show the mean squared error, in samples, of each of the three mod-
els. Because the amplitude data comes from the spectrogram and
is consistent across all three models, we calculate these errors rel-
ative to where in time the detected amplitudes actually occur on
the input signal envelope. (This also allows us to consider sepa-
rately any interpolation used later in resynthesis techniques.) We
see that our model is more accurate than the others even when the
linear onset time exceeds the hop size of 64 samples. Importantly,
we also see that standard deviations in the onset estimates greater
than 41 samples (for this setup) tend to indicate that the explicit
onset model is not appropriate. We thus select �  = 41 samples in
our algorithm. To show what happens to our model at the break-
ing point (for the 160 sample linear onset case), we include the
envelope parameter estimates in figure 4.

onset dur. �	��
� ������� ������� ����
�
1 0 8553 6250 4293
16 1.64 7248 4933 3477
32 4.97 6112 3803 2722
64 13.59 7355 5413 3803

128 26.28 6325 4673 4463
160 40.24 4421 2780 2529
192 45.24 5534 4091 4267
256 65.59 4919 3635 4213
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Fig. 4. Linear onset sinusoidal test signal: original envelope and
detected envelopes.

We also apply our system to a real world glockenspiel signal.
In figure 5, we show the signal with the various systems’ envelopes
for the largest amplitude sinusoid detected. (The negative ampli-
tude signal values are cropped for plot clarity.) We see that the
explicit onset model traces the envelope of the signal most closely.
All three envelopes are below the maximum of the signal because
the signal contains multiple sinusoidal components.

For output, any standard sinusoidal synthesis technique may
be used given the parameters detected using our system, provided
that the sharp envelope characteristics of the onsets are preserved
as appropriate.

5. SUMMARY AND FUTURE DIRECTIONS

We have presented a system that uses time reassignment data to de-
tect step-function style onsets and estimate their location in time.
We specified a heuristic based on data consistency for use in the
system, and provided data showing improved modeling of syn-
thetic and real onsets. Our model incurs little additional compu-
tational expense relative to time-frequency reassignment, via its
table lookup and consistency test. The technique discussed here
also applies to the “turn-off” of sinusoidal components, though
the post-masking phenomenon (see, e.g. [11]) makes such detec-
tion less psychoacoustically necessary in many applications. The
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Fig. 5. Glockenspiel test signal with various model envelopes

theory and application remain identical to that presented above,
with the time axis reversed.

In future work, we will consider expansions to the onset model,
employing psychoacoustic criteria to determine the accuracy re-
quired.
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