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Abstract

In this paper, a novel approach based on human percep-
tion for automatic chord recognition from the raw audio data
is proposed. To this end, templates of summary autocorrela-
tion function (SACF) for 24 major/minor chords are first gen-
erated from the synthetic tones. The SACF of the input audio
is then obtained over time and correlated with the 24 template
SACFs to give the ratings for each chord. A chord with the
maximum correlation is recognized as the chord of input au-
dio. The results show the proposed method outperforms the
traditional methods which use as feature set Chromagram or
Pitch Class Profile (PCP).

1 Introduction

A musical chord can be defined as a set of simultaneous
tones, and succession of chords over time, or chord progres-
sion, forms a core of harmony in a piece of music. Hence
analyzing the overall harmonic structure of a musical piece
often starts with labeling every chord in it. This is a diffi-
cult and tedious task even for experienced listeners with the
scores at hand. Automation of chord labeling thus can be very
useful for those who want to do harmonic analysis of music.
Once the harmonic content of a piece is known, it can be fur-
ther used for higher-level structural analysis. It also can be
a good mid-level representation of musical signals for such
applications as music segmentation, music similarity identifi-
cation, and audio thumbnailing. For these reasons and others,
automatic chord recognition has recently attracted a number
of researchers in a Music Information Retrieval society.

A chromagram or a Pitch Class Profile has been the choice

of the feature set in automatic chord recognition or key ex-
traction since Fujishima introduced it (Fujishima 1999). Per-
ception of musical pitch has two dimensions - height and
chroma. Pitch height moves vertically in octaves telling
which octave a note belongs to. On the other hand, chroma
tells where it stands in relation to others within an octave. A
chromagram or a pitch class profile is a 12-dimensional vec-
tor representation of a chroma, which represents the relative
intensity in each of twelve semitones in a chromatic scale.
Since a chord is composed of a set of tones, and its label is
only determined by the position of those tones in a chroma,
regardless of their heights, chromagram seems to be an ideal
feature to represent a musical chord.

There are some variations to obtain a 12-bin chromagram,
but it usually follows the following steps. First, the DFT of
the input signal X(k) is computed, and the constant Q trans-
form XCQ is calculated from X(k), which uses a logarith-
mically spaced frequencies to reflect the frequency resolution
of the human ear (Brown 1990). The frequency resolution of
the constant Q transform follows that of the equal-tempered
scale, and thus the kth spectral component is defined as

fk = (21/B)kfmin,

where fk varies from fmin to an upper frequency, both
of which are set by the user, and B is the number of bins
in the constant Q transform. Once XCQ(k) is computed, a
chromagram vector CH can be easily obtained as:

CH(b) =
M−1
∑

m=0

∣

∣XCQ(b + mB)
∣

∣,

where b = 1, 2, · · · , B is the chromagram bin index, and
M is the number of octaves spanned in the constant Q spec-
trum. For chord recognition, only B = 12 is needed, but



B = 24 or B = 36 is also used for pre-processing like fine
tuning.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work on this field; Section 3 starts by
stating the problems in the previous work caused by choosing
the chromagram as the feature set, and provides a solution by
suggesting a different feature vector called Summary Auto-
correlation Function (SACF). In Section 4, the comparison of
the two methods with real recording examples as well as a
test signal is presented, followed by discussions. In section
5, conclusions are made and directions for future work are
suggested.

2 Related Work

A chromagram or a pitch class profile (PCP) based fea-
tures have been almost exclusively used as a front end to
the chord recognition or key extraction systems from the
audio recordings. Fujishima developed a realtime chord
recognition system, where he derived a 12-dimensional pitch
class profile from the DFT of the audio signal, and per-
formed pattern matching using the binary chord type tem-
plates (Fujishima 1999). Gomez and Herrera proposed a sys-
tem that automatically extracts from audio recordings tonal
metadata such as chord, key, scale and cadence information
(Gomez and Herrera 2004). They used as the feature vector,
a Harmonic Pitch Class Profile (HPCP), which is based on
Fujishima’s PCP, and correlated it with a chord or key model
adapted from Krumhansl’s cognitive study. Similarly, Pauws
used the maximum-key profile correlation algorithm to ex-
tract key from the raw audio data, where he averaged the chro-
magram features over variable-length fragments at various lo-
cations, and correlate them with the 24 major/minor key pro-
file vectors derived by Krumhansl and Kessler (Pauws 2004).
Harte and Sandler used a 36-bin chromagram to find the tun-
ing value of the input audio using the distribution of peak po-
sitions, and then derived a 12-bin, semitone-quantized chro-
magram to be correlated with the binary chord templates
(Harte and Sandler 2005).

Sheh and Ellis proposed a statistical learning method
for chord segmentation and recognition, where they used
the hidden Markov models (HMMs) trained by the
Expectation-Maximization (EM) algorithm, and treated the
chord labels as hidden values within the EM framework
(Sheh and Ellis 2003). Bello and Pickens also used the
HMMs with the EM algorithm, but they incorporated musi-
cal knowledge into the models by defining a state transition
matrix based on the key distance in a circle of fifths, and by
avoiding random initialization of a mean vector and a covari-
ance matrix of observation distribution, which was modeled
by a single Gaussian (Bello and Pickens 2005). In addition,

in training the model for parameter estimation, they selec-
tively update the parameters of interest on the assumption that
a chord template or distribution is almost universal, thus dis-
allowing adjustment of distribution parameters.

In the following section, we state the problems with the
chromagram-based approaches in chord/key estimation ap-
plication, and propose a novel method which uses the auto-
correlation function in place of the chromagram.

3 Chord Recognition Using Autocor-
relation

All of the aforementioned work on chord recog-
nition or key extraction, while the details of the al-
gorithms may vary, have one thing in common - they
all use a chromagram as the feature vector. To iden-
tify a chord, some use a template matching algorithm
(Fujishima 1999; Gomez and Herrera 2004; Pauws 2004;
Harte and Sandler 2005), whereas others use a prob-
abilistic model such as HMMs (Sheh and Ellis 2003;
Bello and Pickens 2005), but the front end to the recognition
systems is always the 12-dimensional chromagram. This
may cause serious problems, particularly when used with the
template matching algorithm.

3.1 Problems with Chroma-based Approach

In chord recognition systems with a template matching al-
gorithm, templates of chord profiles are first generated. For
example, since a C major triad comprises of three notes C
(root), E (third), and G (fifth), the template for a C major
triad is [1,0,0,0,1,0,0,1,0,0,0,0], and for a G major triad, it
will be [0,0,1,0,1,0,0,0,1,0,0,1], where the template labeling
is [C,C#,D,D#,E,F,F#,G,G#,A,A#,B]. As can be seen in these
examples, every template in 12 major triads will be just a
shifted version of the other, and for the minor triad, it will
be the same as the major triad with its third shifted by one to
the left; e.g., [1,0,0,1,0,0,0,1,0,0,0,0] is a C minor triad tem-
plate. Templates for augmented, diminished, or 7th chords
can be defined in a similar way. This kind of template match-
ing may cause a lot of confusion to the recognition systems
especially for noisy input signals. Furthermore, when a real
acoustic instrument play a note, it not only produces a tone at
its fundamental frequency, but also produces many partials,
some of which have frequencies that are harmonics of another
note. Therefore, when three notes are played simultaneously,
as in a triad, there will be a number of partials at pitch classes
other than those of the notes, and some of them will overlap
as well. Hence templates of all-or-none type described above
are not suitable to represent chords played by the real world
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Figure 1: Chromagram of a test C major triad with 2nd inver-
sion and binary templates for C major and E minor triads

instruments. This can be even more problematic particularly
when the chord is inverted; i.e, when the third note (1st inver-
sion) or the fifth note (2nd inversion) in a triad forms a bass
note instead of the root note. Figure 1 shows a snapshot of the
chromagram of a C major triad with 2nd inversion, played by
a cello (G4), a flute (C5), and a trumpet (e5), which are ex-
cerpted from the McGill sample CDs. As can be seen in the
figure, even if the instruments are just playing notes in a C
major triad, all 12 bins in the chromagram have some energy
because of the harmonics they produce. Overlaid are two bi-
nary templates for a C major triad (dashed line with circle)
and for an E minor triad (dotted line with asterisk). Since
12th bin for pitch class B contains quite a lot of energy due to
harmonics, an E minor triad template will have higher corre-
lation with the input chromagram vector than a C major triad
template. Figure 2 shows the correlation result with all 24
binary templates.

3.2 Summary Autocorrelation Function

Autocorrelation analysis has long been used to explore
the theory of pitch perception in that a periodic signal is
found to have peaks at multiples of its period in an auto-
correlation function. Licklider proposed a duplex theory of
pitch perception where the frequency analysis is done in the
cochlea by means of auditory filter banks, and the autocor-
relation analysis is performed by the neural part of the sys-
tem (Licklider 1951). Based on Licklider’s model, Meddis
and Hewitt proposed another time-domain pitch perception
model, where they introduced a Summary Autocorrelation
Function (SACF) to explain a number of phenomena seen
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Figure 2: Correlation with 24 major/minor triads using chro-
magram

in pitch perception experiments such as the missing funda-
mental, ambiguous pitch, pitch shift of equally spaced, inhar-
monic components, and so on (Meddis and Hewitt 1991).

One of advantages of time-domain pitch perception mod-
els such as Meddis and Hewitt’s is they can easily explain
a periodicity pitch or a missing fundamental. This is a phe-
nomenon that human can perceive a pitch of the fundamental
from the upper harmonics even if the fundamental is missing.
For example, if there are tones at 400, 600, 800, 1000 Hz, the
perceived pitch is 200 Hz. While no spectral component ex-
ists at the fundamental frequency in the Fourier transform,
a strong peak is found in the autocorrelation function, the
inverse of which corresponds to the fundamental frequency.
This perception of a missing fundamental coded by human
auditory mechanism plays a very important role in chord per-
ception. This helps us recognizing chords with inversions as
the same chords as the one in root position. It is shown in
the same example describe above - C major triad with 2nd in-
version. Figure 3 illustrates the SACF of the same test chord
(solid line).

In Figure 3, the SACF has three peaks at time lags whose
inverses correspond to G4 (392 Hz), C5 (523.2 Hz), and E5
(659.2 Hz) as indicated. However, it has strongest peak at 130
Hz corresponding to the root note of the chord (C3).

3.3 Implementation

First, the SACF templates of 24 major/minor triads were
generated from the synthetic tones. Following the technique
that Krumhansl used in her experiments for quantifying har-
monic hierarchies, each triad consisted of 15 sine waves over
the entire five-octave range, with 5 components for each of
the three chord tones. From these synthetic audio files, the
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Figure 3: SACF of a test C major triad with 2nd inversion and
SACF templates for C major and E minor triads

SACF templates of 24 major/minor triads were computed
once and for all. In Figure 3, the SACF template of the C
major triad is overlaid in dashed line, and that of the E mi-
nor triad in dotted line. For each frame of the input audio,
the SACF of the same length and properties as those of the
templates was generated, and it is correlated with all of the
24 templates resulting in ratings for 24 triads. The chord with
maximum correlation is recognized as the chord in the au-
dio file. Figure 4 shows the correlation result for the same C
major triad example with 2nd inversion used above.
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Figure 4: Correlation with 24 major/minor triads using SACF

For evaluation with the real audio recording examples,
they were downsampled to 11025Hz, and a Hamming win-
dow of length 8192 samples and a hopsize of 1024 samples

were used for both the chromagram and the SACF calcula-
tion. For the SACF calculation, 16-channel ERB filterbank
was used, and the maximum time lag was 1024 samples,
which corresponds to the size of the SACF feature vector.

4 Experimental Results and Discus-
sions

Figure 5 compares the results of the frame-level chord
recognition from the real recording Another Crossroads by
Michael Chapman. Dashed line with circles represents iden-
tified chords using a pattern matching algorithm using the
chromagram as the feature set and the binary chord templates.
Without any pre-processing or post-processing, the results
look very noisy, and have many recognition errors. On the
other hand, chord recognition using the SACF in solid line
with x’s shows great improvement in performance. Not only
there is much less error in chord labeling, but also it detects
the chord changes very accurately. Vertical lines represent the
ground truth chord boundaries with chord names.

A simple lowpass filtering across a number of frames in
the chromagram or in the SACF can improve results since
transient and noisy signals such as percussion sounds can ob-
scure harmonic contents of the signal. Figure 6 displays a
smoothed version of chord recognition task. This reduces er-
rors quite a lot, but an SACF-based method still outperforms
a chromagram-based method.

As illustrated in the above example, the SACF features
showed a better performance than the conventional chroma-
gram in a chord recognition task using the template match-
ing algorithm. This improvement in performance can be ex-
plained from the perspective of neurobiological study. Tramo
et al. found, using physiological, psychoacoustic, and neu-
rological methods, that harmonic perception is governed by
properties of the auditory system, which include the capacity
of peripheral auditory neurons to encode temporal regularities
in acoustic fine structure of signals (?). This is essentially the
same information that an autocorrelation function contains .

5 Conclusions

The Summary Autocorrelation Function was proposed as
a feature vector to be used as an front end to the chord
recognition system with a pattern matching algorithm. The
ACF has long been used for pitch identification or pitch
perception, and the Summary ACF has been proven by
(Meddis and Hewitt 1991) to explain many phenomena ob-
served in pitch perception experiments. Experimental re-
sults show that the SACF outperforms the chromagram in
real recording examples. This can be explained partly by
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Figure 5: Frame-level recognition with real recording example (Another Crossroads by Michael Chapman)
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Figure 6: Smoothed over 11 frames with the same example (Another Crossroads by Michael Chapman)

a strong peak seen in the SACF at the missing fundamen-
tal, which plays an important role in chord perception, es-
pecially in major chords. The disadvantage of the SACF is
its high dimensionality. In the experiments, the vector size
of the SACF was 1024 compared with 12 in the chroma
vector. This can be a serious problem if we are to use the
SACF in machine learning models such as the HMMs or the
SVMs, whose performance can be degraded by far if the fea-
ture size is too big. There are techniques to reduce the di-
mension of vector like the PCA or the SVD, and we may
use them for our application. Another drawback with the
SACF is that it is computationally expensive. The SACF pro-
posed by (Meddis and Hewitt 1991) used 128 auditory chan-
nels. In the present paper, it was reduced down to 16 chan-
nels without a big loss in performance. It can be further re-

duced using a 2-channel model proposed by Tolonen and Kar-
jalainen (Tolonen and Karjalainen 2000) where they used just
two channels (below and above 1 kHz) for multipitch estima-
tion. Possible future work may involve improving these two
drawbacks.
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