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Abstract

Extracting high-level information of musical attributes such as melody, harmony,

key, or rhythm from the raw waveform is a critical process in Music Information

Retrieval (MIR) systems. Using one or more of such features in a front end, one

can efficiently and effectively search, retrieve, and navigate through a large collection

of musical audio. Among those musical attributes, harmony is a key element in

Western tonal music. Harmony can be characterized by a set of rules stating how

simultaneously sounding (or inferred) tones create a single entity (commonly known as

a chord), how the elements of adjacent chords interact melodically, and how sequences

of chords relate to one another in a functional hierarchy. Patterns of chord changes

over time allow for the delineation of structural features such as phrases, sections and

movements. In addition to structural segmentation, harmony often plays a crucial

role in projecting emotion and mood. This dissertation focuses on two aspects of

harmony, chord labeling and chord progressions in diatonic functional tonal music.

Recognizing the musical chords from the raw audio is a challenging task. In this

dissertation, a system that accomplishes this goal using hidden Markov models is

described. In order to avoid the enormously time-consuming and laborious process of

manual annotation, which must be done in advance to provide the ground-truth to the

supervised learning models, symbolic data like MIDI files are used to obtain a large

amount of labeled training data. To this end, harmonic analysis is first performed on

noise-free symbolic data to obtain chord labels with precise time boundaries. In par-

allel, a sample-based synthesizer is used to create audio files from the same symbolic

files. The feature vectors extracted from synthesized audio are in perfect alignment

with the chord labels, and are used to train the models.

iv



Sufficient training data allows for key- or genre-specific models, where each model

is trained on music of specific key or genre to estimate key- or genre-dependent model

parameters. In other words, music of a certain key or genre reveals its own charac-

teristics reflected by chord progression, which result in the unique model parameters

represented by the transition probability matrix. In order to extract key or identify

genre, when the observation input sequence is given, the forward-backward or Baum-

Welch algorithm is used to efficiently compute the likelihood of the models, and the

model with the maximum likelihood gives key or genre information. Then the Viterbi

decoder is applied to the corresponding model to extract the optimal state path in a

maximum likelihood sense, which is identical to the frame-level chord sequence.

The experimental results show that the proposed system not only yields chord

recognition performance comparable to or better than other previously published

systems, but also provides additional information of key and/or genre without using

any other algorithms or feature sets for such tasks. It is also demonstrated that the

chord sequence with precise timing information can be successfully used to find cover

songs from audio and to detect musical phrase boundaries by recognizing the cadences

or harmonic closures.

This dissertation makes a substantial contribution to the music information re-

trieval community in many aspects. First, it presents a probabilistic framework that

combines two closely related musical tasks — chord recognition and key extraction

from audio — and achieves state-of-the-art performance in both applications. Sec-

ond, it suggests a solution to a bottleneck problem in machine learning approaches

by demonstrating the method of automatically generating a large amount of labeled

training data from symbolic music documents. This will help free researchers of la-

borious task of manual annotation. Third, it makes use of more efficient and robust

feature vector called tonal centroid and proves, via a thorough quantitative evalu-

ation, that it consistently outperforms the conventional chroma feature, which was

almost exclusively used by other algorithms. Fourth, it demonstrates that the basic

model can easily be extended to key- or genre-specific models, not only to improve

chord recognition but also to estimate key or genre. Lastly, it demonstrates the use-

fulness of recognized chord sequence in several practical applications such as cover
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song finding and structural music segmentation.
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Chapter 1

Introduction

This dissertation discusses automatically extracting harmonic content — musical key

and chords — from the raw audio waveform. This work proposes a novel approach

that performs simultaneously two tasks — i.e., chord recognition and key estimation

— from real recordings using a machine learning model trained on synthesized audio.

This work also demonstrates several potential applications that use as a front end

harmonic descriptions derived from the system. This chapter serves as an introduc-

tion presenting the fundamental ideas on which this thesis was based and written,

which include the current research efforts in the field of music information retrieval,

the motivation and goals of this work, potential applications, and how this thesis is

organized.

1.1 Music Information Retrieval

Information retrieval (IR) is a field of science that deals with the representation, stor-

age, organization of, and access to information items [2]. Likewise, music information

retrieval (MIR) deals with the representation, storage, organization of, and access to

music information items. This is best described with an example by Downie [21]:

Imagine a world where you walk up to a computer and sing the

song fragment that has been plaguing you since breakfast. The

1
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computer accepts your off-key singing, corrects your request, and

promptly suggests to you that “Camptown Races” is the cause of

your irritation. You confirm the computer’s suggestion by listen-

ing to one of the many MP3 files it has found. Satisfied, you

kindly decline the offer to retrieve all extant versions of the song,

including a recently released Italian rap rendition and an orches-

tral score featuring a bagpipe duet.

Music information retrieval is an interdisciplinary science, whose disciplines in-

clude information science, library science, computer science, electrical and computer

engineering, musicology, music theory, psychology, cognitive science, to name a few.

The problems in MIR are also multifaceted, due to the intricacies inherent in the

representation of music information. Downie defines seven facets which play a variety

of roles in defining the MIR domain — pitch, temporal, harmonic, timbral, editorial,

textual, and bibliographic facets [21]. These facets are not mutually exclusive but

interact with each other, making the problems more perplexing.

Finding more efficient and effective ways to search and retrieve music is attracting

increasing number of researchers both from academia and industries as it becomes

possible to have thousands of audio files in a hand-held device such as portable music

players or even in cellular phones. Furthermore, the distribution of music is also

changing from offline to online: more and more people are now buying music from

the web1, where more than tens of millions of songs are available. Therefore, users

need to manage and organize their large collection of music in a more sophisticated

way, and the content providers need to provide the users with an efficient way to find

music they want.

1.2 Motivation

People have been using the meta-data, almost exclusively, as a front end to search,

retrieve and organize through a large collection of music in their computer or on the

1As of 2/23/2006, more than 1,000,000,000 songs were downloaded from iTunes only,
which is an online music store by Apple Computer [67].
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Internet. Meta-data, sometimes called tags, are textual representations that describe

data, to facilitate the understanding, organization and management. In the music do-

main, meta-data may include the title of a piece, the name of an artist or a composer,

the name of a performer, or the musical genre. An example is “Eight Days A Week

(song title)” by “Beatles (artist, composer)”, which belongs to “rock (genre)” music.

Another example is “Piano Sonata No. 14 in C♯ minor, Op. 27 (title)” by “Beethoven

(composer)”, performed by “Glenn Gould (performer),” which is “classical (genre)”

music.

These textual descriptions of music are very compact and therefore extremely

efficient for search and retrieval, especially when there are a great number of items

to be searched. However, the textual meta-data is far from being ideal in many

situations. First of all, their usage is limited in that all the required information must

be previously prepared — i.e., someone has to manually enter the corresponding

information — or the search is bound to fail. This is likely to happen especially

when new songs are released.2 Second, the user must know exactly what the query

is, which might not be always the case: he/she might not be able to recall the name

of a song or an artist. Third, they might not be as effective in particular tasks. For

instance, imagine a situation where a user wants to find musically similar songs to

his/her favorite ones using the meta-data only. Chances are the returned items may

not be similar at all because there is very little correspondence between the distance

in a meta-data space and the distance in a musical space.

It is not too difficult to infer the cause of the problems described above: a piece

of music is a whole entity, and music listening is an experience that requires a set of

hierarchical processes from low-level, auditory perception to high-level cognition, of-

ten including emotional processes. Therefore, it is almost impossible to fully describe

music with just a few words, although they may convey important and/or relevant

information about music. Meta-data may help us guess what it’s like but we can

truly comprehend the actual content only through listening experiences. This is why

content-based approaches in MIR attract researchers from diverse disciplines.

210,000 new albums are released and 100,000 works registered for copyright every year
as of 1999 [97].
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1.2.1 Content-based Approach

Recently, due to limitations and problems of the meta-data-driven approaches in mu-

sic information retrieval, a number of researchers are actively working on developing

systems based on content description of musical audio. Cambridge Online Dictionary

defines the word content as: the ideas that are contained in a piece of writing, a

speech or a film.3 Therefore, instead of describing music with only a few words such

as its title, composer, or artist, content-based methods try to find more meaningful

information implicitly conveyed in a piece of music by analyzing the audio itself.

It is nearly impossible to figure out from the raw audio the high-level ideas that the

composers tried to express via musical pieces. However, music is not written based on

random processes. There are rules and attributes in music to which most composers

conform when writing their music. This is especially true in Western tonal music.

Therefore, if we can extract these musical rules and/or attributes from audio that

the composers used in writing music, it is possible to correlate them with higher-level

semantic description of music — i.e., the ideas, thoughts or even emotional states

which the composers had in mind and tried to reflect through music they wrote. We

are not trying to say that the conventional meta-data like song title or genre are

useless; they are very useful and efficient in some tasks. However, these high-level

semantic descriptions obtained through content analysis give information far more

relevant to music itself, which can be obtained only through listening experience.

There are several attributes in Western tonal music, including melody, harmony,

key, rhythm or tempo. Each of these attributes has its unique role, and yet still

interacts with the others in a very controlled and sophisticated way. In the next

section, we explain why we believe harmony and key, among many attributes, are

particularly important in representing musical audio signals of tonal music where the

tonal organization is primarily diatonic.

3http://dictionary.cambridge.org
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1.2.2 Harmonic Description of Tonal Music

Harmony is one of the most important attributes of Western tonal music. The im-

portance of harmony in tonal music is emphasized by a number of treatises written

over the centuries. Ratner explains harmony in three different and yet closely related

contexts: harmonic sonorities, harmonic action and harmonic color [88].

Harmonic sonorities are about the stability/instability embodied in a set of simul-

taneously sounding notes (intervals, chords) and their contributions to the sense of

a key and to musical movement and arrival. Mutual relationships of tones and their

qualities and effects expressed by various intervals and chords constitute the basis of

harmony in Western tonal music.

Changes over time in these harmonic relationships — intervals, the sense of key,

stability/instability, chords — ensure the power, or harmonic action, to carry musical

movement forward. Like all action, harmonic action proceeds through a cycle of

departure, movement and arrival. Among a number of characteristic patterns and

formulas that realize this cycle, including melodic elaboration, rhythmic patterns of

chord change, voice leading and modulation, the cadential formula is by far the most

important. Two basic aspects of harmony embodied in the cadential formula — i.e.,

the movement-instability and the arrival-stability represented by the tritone4 and the

tonal center, respectively — create a clear sense of key, from which a small segment

of musical structure has taken.

While it was the most important role of harmony to create the organic, structurally

firm embodiment of key in the eighteenth century and in the early nineteenth century,

the element of color in harmony was exploited and became increasingly important as

composers sought to develop and enrich their sounds and textures, especially in the

late nineteenth century and in the twentieth century.

Among the three aspects of harmony described above, the description of harmonic

action in particular clearly suggests that we can infer a musical structure from har-

mony by detecting changes in local key or by finding the cadential formula. Further-

more, because a strong sense of key is created by some specific harmonic movement

4A tritone is also called an augmented fourth and is an interval that is composed of three
whole tones, e.g., C-F♯.
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or the cadential formula, it shouldn’t be difficult to infer a key once we figure out

how harmony progresses over time.

Other than analyzing the structure of music, harmonic description of tonal music

can be used as an efficient, robust front end in practical applications. For example,

when finding different versions of the same song (or so-called cover songs), harmonic

content remains largely preserved under severe acoustical variations due to changes

in tempo, dynamics and/or instrumentation, and therefore it can be a robust front

end in such application. Another potential application is recommendation or playlist

generation; i.e., use harmonic content to compute (dis)similarity between songs and

recommend only those that are harmonically similar to the user’s existing collection

of music.

1.2.3 Machine Learning in Music Applications

Machine learning is the study of computer algorithms that improve automatically

through experience [68]. There are a number of real-world applications that benefit

greatly from the machine learning techniques, including data mining, speech recogni-

tion, hand-writing recognition, and computer vision, to name a few. In MIR, many

systems also use machine learning algorithms to solve problems such as genre classi-

fication [96, 4, 5], instrument identification [99, 24] and key estimation [14, 73].

Speech recognition is one of many application areas for which machine learning

methods have made significant contributions. Research for the last 20 years shows

that among many machine learning models, HMMs are very successful for speech

recognition. A hidden Markov model [86] is an extension of a discrete Markov model,

in which the states are hidden in the sense that we can not directly observe the

underlying stochastic process, but can only observe it through another set of stochastic

processes. The more details about the HMMs are found in Appendix A.

Much progress in speech recognition has been made with gigantic databases of

labeled speech. Such a huge database not only enables researchers to build richer

models, but also allows them to estimate the model parameters precisely, resulting

in improved performance. However, there are very few such databases available for
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music. Furthermore, the acoustical variance in music is far greater than that in speech,

in terms of its frequency range, timbre due to different instrumentations, dynamics

and/or duration. Consider the huge acoustical differences among: a C major chord

in root position played by a piano, the same chord in first inversion played by a rock

band, and the same chord in second inversion played by a full orchestra. All of these

sounds must be transcribed as the same C major chord; this in turn means even more

data are needed to train the models so they generalize.5

However, it is very difficult to obtain a large set of training data for music, par-

ticularly for chord recognition. First of all, acquiring a large collection of music is

expensive. In addition, in order to obtain the ground-truth annotation, we need a

certain level of expertise in music theory or musicology to perform harmony analy-

sis. Furthermore, hand-labeling the chord boundaries in a number of recordings is

not only an extremely time consuming and tedious task, but also is subject to errors

made by humans. In the next section, we describe how we solve this bottleneck prob-

lem of acquiring a large amount of training data with minimal human labor by using

symbolic music documents.

1.2.4 Symbolic Music Documents

In this dissertation, we propose a method of automating the daunting task of pro-

viding the machine-learning models with labeled training data. To this end, we use

symbolic music documents, such as MIDI files, to generate chord names and precise

corresponding boundaries, as well as to create audio. Instead of a digitized audio

signal like a PCM waveform, MIDI files contain a set of event messages such as pitch,

velocity and note duration, along with clock signals from which we can synthesize

audio. Audio and chord-boundary information generated this way are in perfect

alignment, and we can use them to directly estimate the model parameters. The

overall process of training is illustrated in Figure 3.9.

The rationale behind the idea of using symbolic music files for automatic harmony

5A model is called generalized when it performs equally well on various kinds of inputs.
On the other hand, it is called overfitted if it performs well only on a particular input.
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Figure 1.1: Training the chord transcription system. Labels obtained through har-
mony analysis on symbolic music files and feature vectors extracted from audio syn-
thesized from the same symbolic data are used to train HMMs.
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analysis is that they contain noise-free pitch and on/offset time information of ev-

ery single note, from which musical chords are transcribed with more accuracy and

easiness than from real acoustic recordings. In addition, other information included

in symbolic music files, such as key, allow us to build richer models, like key-specific

models.

There are several advantages to this approach. First, a great number of symbolic

music files are freely available. Second, we do not need to manually annotate chord

boundaries with chord names to obtain training data. Third, we can generate as much

data as needed with the same symbolic files but with different musical attributes by

changing instrumentation, tempo or dynamics when synthesizing audio. This helps

avoid overfitting the models to a specific type of sound. Fourth, sufficient training

data enables us to build richer models so that we can include more chord types

such as a 7th, augmented or diminished. Lastly, by using a sample-based synthesis

technique, we can generate harmonically rich audio as in real acoustic recordings.

Although there may be noticeable differences in sonic quality between real acoustic

recording and synthesized audio, we do not believe that the lack of human touch,

which makes a typical MIDI performance dry, affects our training program. The fact

that our models trained on synthesized audio perform very well on real recordings

supports this hypothesis. In the next section we present the goals of the current work.

1.3 Goals

We present here the goals of this dissertation work.

1. Review and analyze related work on chord transcription and key finding. Present

not only technical perspectives such as audio signal processing and machine

learning algorithms, but also music theoretical/cognitive studies, which provide

fundamental background to current work.

2. Describe the system in complete detail, which includes: 1) feature extraction

from the raw audio; 2) building and training of the machine learning-models;
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3) recognition of chords and key from an unknown input; 4) and the further

extensions of the models.

3. Provide quantitative evaluation methods to measure the performance of the

system.

4. Perform thorough analysis of the experimental results and prove the state-of-

the-art performance, including robustness of our system using various types of

test audio.

5. Validate our main hypothesis — i.e., harmony is a very compact and robust mid-

level representation of musical audio — by using it as a front end to practical

applications.

6. Discuss the strength and weakness of the system and suggest the directions for

improvement.

In the next section, we describe several potential applications in which we use

harmonic content automatically extracted from audio.

1.4 Potential Applications

As aforementioned in Section 1.2.2, in Western tonal music, once we know musical

key and chord progression of a piece over time, it is possible to perform structural

analysis from which we can define themes, phrases or forms. Although other musical

properties like melody or rhythm are not irrelevant, harmonic progression has the

closest relationships with the musical structure. Finding structural boundaries in

musical audio is often referred to as structural music segmentation.

Once we find the structural boundaries, we can also group similar segments into a

cluster, such as a verse or chorus in popular music, by computing the (dis)similarity

between the segments. Then it is also possible to do music summarization by

finding the most repetitive segment, which in general is the most representative part

in most popular music.
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A sequence of chords and the timing of chord boundaries are also a compact and

robust mid-level representation of musical signals that can be used to find the cover

version(s) of the original recording, or cover song identification, as shown by Lee

[56] and by Bello [7]. Another similar application where chord sequence might be

useful is music similarity finding because a original-cover pair is an extreme case

of similar music.

We describe these applications in more detail and demonstrate the possibilities of

our approach with real-world examples in Chapter 6.

1.5 Organization

This dissertation continues with a scientific background in Chapter 2, where related

works are reviewed. In Chapter 3, we fully describe our chord recognition system,

including the feature set we use as a front end to the system, and the method of

obtaining the labeled training data. We also describe the procedure of building the

model, and present the experimental results. In Chapter 4, we propose the method

of extending our chord recognition model to key or genre-specific models to estimate

key or genre as well as to improve the chord recognition performance. In Chapter 5,

we present a more advanced model — discriminative HMMs — that uses a powerful

discriminative algorithm to compute the posterior distributions. In Chapter 6, we

demonstrate that we can use the chord sequence as a front end in applications such as

audio cover song identification, structural segmentation/clustering of musical audio,

and music summarization. Finally, in Chapter 7, we summarize our work and draw

conclusions, followed by directions for future work.



Chapter 2

Background

2.1 Introduction

In this chapter, we review previous research efforts on key extraction and chord recog-

nition, and on tonal description of musical audio, which are very closely related with

each other. In doing so, we first present related studies from the perspective of music

theory and cognition that serve as fundamental background to most computational

algorithms, including ours.

2.2 Tonality

Hyer explains the term tonality as:

A term first used by Choron in 1810 to describe the arrangement

of the dominant and subdominant above and below the tonic and

thus to differentiate the harmonic organization of modern mu-

sic (tonalité moderne) from that of earlier music (tonalité an-

tique). One of the main conceptual categories in Western musical

thought, the term most often refers to the orientation of melodies

and harmonies towards a referential (or tonic) pitch class. In the

12
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broadest possible sense, however, it refers to systematic arrange-

ments of pitch phenomena and relations between them [40].

According to Hyer, there are two main historical traditions of theoretical concep-

tualization about tonal music: the function theories of Rameau and Riemann on the

one hand and the scale-degree theories of Gottfried Weber and Schenker on the other.

The first tradition corresponds to the definition of tonality by Choron and the second

corresponds to that by Fétis, who places more emphasis on the order and the position

of pitches within a scale. However, in both traditions, tonal theories tend to concen-

trate on harmonic matter, virtually excluding all other musical phenomena such as

register, texture, instrumentation, dynamics etc. These features are considered only

to the extent that they articulate or bring out relations between harmonies.

We can describe tonality using two musical properties — key and harmony. A

key is a tonal center or a referential point upon which other musical phenomena such

as melody or harmony are arranged. Ratner states that the key is a comprehensive

and logical plan coordinated from the interplay of harmonic stability and instability

of intervals, which leads to a practical working relationship between tones [88]. There

are two basic modes in the key: major and minor mode. Therefore, key and mode

together define the relative spacing between pitch classes, centered on a specific pitch

class (tonic). When the two keys share the same tonal center (such as in C major and

C minor key), they have parallel major-minor relationship. On the other hand, if a

sequence of notes in the two keys have the same relative spacing but have different

tonal centers (such as in C major and A minor key), we refer to them as relative keys.

If a key is a tonal center that functions as a point of departure, reference en route

and arrival, it is harmony that carries musical movement forward and at the same

time control and focus movement [88]. A phase of harmonic movement or action

is created through a cycle of departure, movement and arrival, and each point of

arrival becomes in turn a new point of departure. This series of phases of harmonic

movement shape musical structure. Among many rules and patterns in realizing a

phase of harmonic movement, the cadential formula is the most important one. The

cadence or cadential formula is defined as:
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The conclusion to a phrase, movement or piece based on a rec-

ognizable melodic formula, harmonic progression or dissonance

resolution; the formula on which such a conclusion is based. The

cadence is the most effective way of establishing or affirming the

tonality — or, in its broadest sense, modality — of an entire

work or the smallest section thereof; it may be said to contain the

essence of the melodic (including rhythmic) and harmonic move-

ment, hence of the musical language, that characterizes the style

to which it belongs [89].

As is defined above, a cadence concludes a phrase or movement and is recognized

by a specific harmonic progression or melodic formula. Therefore, if we know key and

harmonic progression in tonal music, then we can identify cadences which indicate

phrase boundaries.

2.2.1 Perception/Cognition of Tonality

The scope of the current dissertation is bounded by recognition of chords/key of simple

diatonic music like pop or rock music. Furthermore, it does not include any sort of

music cognitive or music theoretical experiments/studies, which cover more general

and a broader range of Western tonal music. However, many computer algorithms

make use of findings by such music cognitive/theoretical studies to infer tonality

in Western tonal music, and we believe that presenting some landmark studies in

perception/cognition of tonal music will help better understand the computer models

as well.

There are many approaches to understand and model how humans perceive tonal

music from the perspectives of cognitive science and psychology. We describe some of

them here, but interested readers are advised to see Gómez [32] for a more complete

summary.

Krumhansl and her colleagues did extensive research to investigate and model the

relationship between musical attributes that are perceived and psychological experi-

ences corresponding musical attributes through empirical studies [49, 50, 52].
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Krumhansl and Shepard introduced the probe tone method to quantify the hi-

erarchy of stability within a major key context [52]. In this study, they observed

that when an “incomplete” scale is sounded, such as the successive tones C, D, E, F,

G, A, B, this creates strong expectations about the tone that is to follow. In their

experiments, they presented to the subjects two sequence of notes in a C major scale

— the ascending scale of C, D, E, F, G, A, B and the descending scale of C, B, A,

G, F, E, D — followed by the probe tone. The task of the subjects was to rate the

degree of how well the given probe tone completes a sequence of notes from 1 (very

bad) to 7 (very good). The probe tones were the equal-tempered semitones in the

chromatic scale ranging from middle C to the C an octave above (thus the 13 probe

tones total). From the results of the experiments, they found three distinct patterns

depending on the level of prior musical experience.

Based on the initial study, Krumhansl and Kessler extended their experiments to

minor-key contexts, resulting in two probe tone ratings, one for each key context [50].

Figure 2.1 shows the key profiles for a major and a minor key obtained from these

probetone ratings.

Using these key-profiles obtained from the probe-tone experiments, they calculated

the key-distances between the two arbitrary keys following the steps: 1) perform

circulative permutation on the two key-profiles (major and minor) to obtain 12 major

and 12 minor key-profiles, one for each pitch class; 2) compute correlations between

a pair of key-profiles for every possible pair. Figure 2.2 shows correlations between

a C major key-profile and all other major and minor key-profiles, and correlations

between a C minor key-profile and all other major and minor key-profiles.

They further extended their studies to investigate how the relation between a

chord and its abstract tonal center, or key, may be represented in a two-dimensional

map of the multidimensional scaling solution of the 24 major and minor keys. Figure

2.3 illustrates how the C major, A minor, and B diminished chords appear in the

spatial map of musical keys.

Krumhansl proposed a key-finding algorithm using the key-profiles and the max-

imum correlation analysis. She first computed the input vector I = d1, d2, · · · , d12,
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Figure 2.1: C major and C minor key-profiles obtained from the probe tone rating
experiments (from Krumhansl and Kessler [50]).

each dimension representing the tone duration in musical selection. She then com-

puted correlations between the input vector I and the probe tone profiles Ki, k =

1, 2, · · · , 24 for 24 keys. The output is a 24-dimensional vector, where each element

represents correlation between the input vector and each key. Using the 48 fugues of

Bach’s, Krumhansl and Schmuckler showed that their algorithm needs fewer number

of tones to find the correct key [51].

A series of studies and experiments done by Krumhansl and her collaborators

made significant contributions to understanding how listeners encode, organize, and
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Figure 2.2: Correlations between C major and all other key-profiles (top) and correla-
tions between C minor and all other key-profiles (bottom) calculated from the probe
tone ratings by Krumhansl and Kessler [50].

remember pitch patterns in music. Furthermore, although they approached the prob-

lems from the perspectives of cognitive science and psychology, they had a giant

impact on a number of computer algorithms that try to infer tonality from music,

both from symbolic music and from musical audio.

In the next section, we review computer systems that automatically identify mu-

sical key and/or chords from the real recordings.
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Figure 2.3: The relations between the C major, A minor and B diminished chords and
the 24 keys displayed in a 2-dimensional map of keys (from Krumhansl and Kessler
[50]).
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2.3 Computer Systems

In Western tonal music, key and chord are two closely-related attributes, as mentioned

above. Musical key defines a set of rules that harmony, as well as melody, abide by

in the course of musical development. Therefore, if a piece of Western tonal music is

in a certain key, we can predict not only the kind of chords that are most likely to

appear but also how they are going to progress over time. Conversely, analyzing the

chords and their pattern of progression also suggests key information.

Because musical key and chords have such close relatioships, computer systems for

key estimation and those for chord recognition are also alike. The biggest difference

lies in the scope of temporal dynamics — key is more a global attribute while chords

are much more local. That is, while key seldom changes (or never for many popular

music), chords changes even more frequently. This difference in temporal dynamics

has a great impact on building systems, particularly in machine learning approaches,

because it is much more difficult to obtain the training data for chord recognition

systems.

Most algorithms for key-finding and chord recognition from audio are divided into

two main stages: feature extraction and classification, as illustrated in Figure 2.4. In

the feature extraction stage, the computer system extracts appropriate feature vectors

from the raw audio because raw audio samples are redundant and not robust. The

feature vectors must satisfy the following conditions. First, the feature must be low

in dimension or the system will be computationally expensive. This is unacceptable

for real-time applications. Furthermore, high dimensionality is likely to cause a data

sparsity problem in statistical classifiers.

Second, the feature must be robust to the kinds of acoustical variations present

in music. That is to say, it must remain largely invariant no matter how the musical

acoustics vary unless the key or chord should change. For example, the features from

Bach’s Prelude in C major and The Beatles’ No Reply, which is also in the key of

C major, should be closer to each other in distance than to other keys. A similar

argument holds for chord recognition as well. Once suitable features are extracted

from the raw audio, the classification algorithms classify the given feature to the
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Figure 2.4: General overview of key estimation and chord recognition system.

correct chord or key.

While there is an almost unanimous agreement in the choice of the feature for

both key estimation and chord recognition, the classifiers are mainly divided into two

groups: some use a simple pattern matching algorithm based on pre-defined key or

chord templates, and others depend on more complex, sophisticated statistical learn-

ing algorithms. Therefore, in the following two sections, we sub-divide systems for

each task into two categories — template matching algorithms and machine learning

algorithms — and describe each algorithm in more detail.
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2.3.1 Key Estimation

Template Matching Approaches

Template matching techniques for key estimation use pre-defined key templates (e.g.,

Krumhansl’s key-profiles) for each key, and correlate them with the feature vector

computed from audio to find the key template that yields the maximum correlation

coefficient.

Pauws proposed a key extraction algorithm from audio based on human auditory

perception and music cognition, and evaluated his algorithm using 237 classical piano

sonatas [79]. He first computed a non-overlapping chromagram1 over six octaves from

A0 to A6 (27.5 Hz to 1760 Hz), and used it as input to the maximum-key profile corre-

lation (MKC) algorithm to estimate musical key. Chroma vector is a 12-dimensional

vector, each dimension representing the spectral energy in a chromatic scale. Because

it is not only based on the actual musical scale (i.e., equal-tempered scale2), but also

because of its computational efficiency and low dimensionality, chroma feature is a

common choice for key extraction and/or chord recognition.

In computing a chromagram, however, he went through several pre-processing

stages to obtain the harmonically compressed spectrum, including low-pass filtering,

enhancing spectral components to cancel out spurious peaks, logarithmic frequency

scaling, and the use of weighting function to model the human auditory sensitiv-

ity. After adding and normalizing the chromagrams over all frames, he applied the

maximum-key profile correlation (MKC) algorithm based on key profiles derived by

Krumhansl and Kessler [50]. The key profile yielding the maximum correlation value

out of 24 possible keys was recognized as the key of input musical audio. Using

237 classical piano sonatas as test data, his algorithm gave an accuracy of 75.1% by

counting only exact matches as correct. Including related keys — relative, dominant,

sub-dominant and parallel — as correct matches, the accuracy went up to 94.1%.

Based on the observation that the scale root note plays the foremost role in tonal

1A chromagram is a two-dimensional representation of chroma vectors, similar to a spec-
trogram.

2In the 12-tone equal-tempered scale, an octave is divided into 12 logarithmically equal
steps.
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Figure 2.5: Diagram of key detection method (from Zhu et al. [102]).

music, Zhu et al. proposed an approach to detect the scale root and the key from

audio [102]. They first extracted the pitch profile feature, similar to the chroma

feature, which characterizes the probability of the presence of particular tones in the

audio signal. In doing so, they performed four steps: (1) constant-Q transform of

the signal (CQT) to represent the signal in frequency domain; (2) the tuning pitch is

determined to correct mis-tuning of the music signal; (3) note partials are extracted

based on the energy of the CQT spectrum; (4) with the extracted note partial tracks, a

pitch profile feature is generated by a consonance filtering and pitch profiling process.

An overview of the system is shown in Figure 2.5.

A novel part of their algorithm is the key detection stage. From the pitch profile

feature generated using the processes described above, they first estimated the root

of the diatonic scale, whose structure they argued is much more salient and robust

than the structure of the key. They then conducted the key detection using both

the pitch profile feature and the estimated diatonic scale root. Using 60 pieces of

pop music and 12 pieces of classical music, the accuracy they obtained was 90% and

83.3%, respectively, arguing most errors were due to key modulation.

Most errors in these key-finding algorithms come from the confusion between

closely-related keys such as relative, dominant, sub-dominant or parallel. After careful
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examination of the source of most errors, Chuan and Chew proposed a fuzzy analysis

technique to extract more correct pitch classes, which improves the accuracy of key

finding [16, 17]. They also found that the source of this confusion was caused by noisy

detection of lower pitches, and by the biased raw frequency data.

Chuan and Chew’s fuzzy analysis technique to clarify pitch information from the

FFT has three steps: 1) clarify membership in the lower frequency range using knowl-

edge of the overtone series; 2) scale the FFT in pre-defined range to acknowledge the

presence of important pitches, or so called adaptive level weighting ; 3) refine pitch class

distribution by setting all normalized pitch class values 0.2 and below to zero, and 0.8

and above to one. They then applied Spiral Array Center of Effect Generator (CEG)

algorithm to determine the key. In the CEG algorithm, the key selection is done by a

nearest neighbor search in the Spiral Array space, which is a three-dimensional helical

representation of pitch relations [15].

Their evaluation with 410 classical music pieces shows an increase in accuracy

with their fuzzy analysis technique compared to a simple peak detection technique,

achieving a maximum correct rate of 75.25%. The test audio was all synthesized from

the MIDI files, and thus they failed to provide the results with real recordings.

While the previous algorithms used pre-defined key-profiles against which the

extracted feature was correlated, Van de Par et al. [98] used chromagrams extracted

from a collection of musical audio to train three key profiles for major and another

three for minor keys, respectively. The three trained key profiles are different in their

temporal weighting of information across the duration of each song. In other words,

one profile uses uniform weighing, another weighs more on the beginning, and the

third puts emphasis on the end of the song, respectively.

Once the key profiles have been trained, three chromagrams are extracted from

the test audio as well using the three temporal weighting functions. Each of these

extracted chromagrams is correlated with their respective key profiles, yielding three

correlation values that relate to the beginning, ending, and totality of the song.

Although an evaluation with the same database used by Pauws [79] (237 classical

piano pieces by Bach, Shostakovich, Brahms and Chopin) yields a very high rate of

98% correct classification, the test set was very small (2% or 5 pieces) compared with



CHAPTER 2. BACKGROUND 24

a large training data set (98% or 232 pieces). For a more reliable and complete test, a

k-fold cross validation with k = 10 or so would be more desirable. Furthermore, the

method of combining the results from the three different key profiles was empirical,

failing to provide logical grounds.

All key-finding algorithms described above find a single, global key from an entire

song, which is not true when there is key modulation. Furthermore, key modulation

is often the source of errors. Izmirli proposed a model for localized key finding from

audio using non-negative factorization for segmentation [76, 77]. He used the con-

ventional chroma vector as a feature. To compensate for possible mis-tuning present

in recordings, however, he applied an adaptive tuning algorithm before computing

a chromagram. He then performed non-negative factorization on the tuned chroma-

gram for segmentation based on tonal features to reveal the additive contributions of

tonal elements in a piece.

After segmenting the whole chromagram into sections with localized keys using

the NMF algorithm, he used a correlation method over the first segment to obtain the

global key of a piece. Using three different sets of test data (17 pop, 152 classical from

the Naxos set3 and 17 classical excerpts from Kostka and Payne [46]), he obtained

a performance of 87.0%, 84.1% and 97.1%, respectively for each test data set. His

algorithm also ranked first in the Audio Key Finding task in the MIREX 2005.4

Machine Learning Approaches

The key finding systems described so far use pre-defined key templates with which

the extracted feature from audio is correlated to find the closest key template. There-

fore, their performance is dependent on the choice of the templates, which are either

heuristically defined or based on the experimental data.

While these algorithms work fairly well, the pre-defined templates fail to represent

the actual organization of pitch classes in real music. Furthermore, it is very diffi-

cult to directly relate the low-level acoustical features such as chroma vector to the

3http://www.naxos.com
4Music Information Retrieval Evaluation eXchange (http://www.music-ir.org/

mirexwiki/index.php/Main Page).
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high-level feature obtained from cognitive studies. Therefore, researchers turn their

attentions to alternative approaches, where they learn the rules that may define the

key from the actual musical audio.

Chai and Vercoe presented a hidden Markov model-based approach to detect the

segmental boundaries determined by key changes in musical audio, and identified the

key in each segment [14]. They used the 24-dimensional chromagram as a front end

instead of the conventional 12-dimensional one. Key detection is composed of two

sequential stages. First, they estimate the key without differentiating by mode. For

instance, C major and A minor key are regarded as the same key without considering

its mode. This results in only 12 different keys for each pitch class. Second, after the

key is identified, they determine the mode. This two-stage approach is based on the

assumptions that they use diatonic scales, and relative modes share the same diatonic

scale.

Chai and Vercoe then built hidden Markov models (HMMs) for each task: 12-state

HMMs for key detection and 2-state HMMs for mode detection. In estimating the

model parameters, i.e., the initial state distribution, the state transition probability

distribution and the observation probability distribution, they used empirical values

based on music-theoretical knowledge, instead of learning from the training data.

Using 10 pieces of classical piano music, Chai and Vercoe evaluated their system

with three different measures, including recall, precision and label accuracy, with

promising results. Instead of using a simple pattern-matching algorithm, they chose

to use a more sophisticated, statistical approach to detect the key modulation as

well as extract the key. However, their estimation of model parameters, which is

the most important step in all statistical learning models, was 100% heuristic and

therefore fails to make a full use of powerful machine-learning algorithms. This is

probably due to lack of sufficient training data, which is usually obtained through a

extremely laborious process of manual annotation, and again supports our method of

using symbolic music files to generate a large amount of training data for free.

While the abovementioned model is in part knowledge-based, i.e., the model pa-

rameters are initialized based on music-theoretical knowledge, Peeters proposed a

key-finding system that is purely data-based [81, 80]: that is, no prior knowledge is
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encoded and the model parameters are learned from the data only. The advantages of

a machine-learning approach are, he argues: 1) it does not make assumptions about

the presence of harmonics of the pitch notes in chroma vectors; 2) it does not require

the choice of a specific key-profile such as Krumhansl, Temperley or Diatonic, etc.; 3)

it allows possible key modulation over time through the transition probabilities. He

also used HMMs with chroma features as a front end, and compared his model with

the ones based on cognitive models

Based on the chroma feature vectors and corresponding key labels, Peeters built

24 HMMs, one for each key. Due to different number of instances for each key, he

first trained only two models, a major and a minor mode model, and mapped the two

trained models to the various other key-note models, resulting in 24 major/minor key

models. This mapping is performed by circular permutation of observation distribu-

tion parameters, i.e., mean vectors and covariance matrices. The final key estimation

is done by computing the likelihood of each key model given an unknown chroma

sequence, and selecting a model with the maximum likelihood. Figure 2.6 shows an

overview of his key estimation system.

A comparison with the cognitive models based on Krumhansl’s key-profiles using

302 classical music excerpts shows that his model is outperformed in several different

measures, although the difference in performance is not significant. Particularly, the

confusion with closely-related keys was larger than the one in the cognitive model-

based approach. Counting the related keys as correct matches, the accuracy between

the two models is similar (94.9% for HMMs and 95.0% for cognitive models).

Although Peeters’ data-driven approach achieves lower scores than the template-

matching methods based on cognitive models, it is noteworthy that no prior musical

knowledge was used in his model, proving that the system could successfully learn

the characteristics of keys from the data. In his models, he used three to nine hidden

states and the meaning of the state remains unspecified. This is because he is not

interested in decoding the state path, but only interested in finding the key model

giving the maximum likelihood. If the states had musical meanings, such as chords,

however, the results might have been better because musical keys and chords are very

closely related. In addition, the optimal state path, which comes free when computing



CHAPTER 2. BACKGROUND 27

Figure 2.6: Overview of key estimation systems: based on cognitive models (thin
arrows) and on HMMs (thick arrows) (from Peeters [80, 81]).

the likelihood with Viterbi search, is identical to chord sequence. This is exactly how

our models accomplished chord recognition as well as key estimation at the same time,

as described in Chapter 4.

2.3.2 Chord Transcription

Identifying musical chords from raw audio is a challenging task and has recently

attracted the interest of many researchers in a music information retrieval society.

Key and chord are very closely related attributes of tonal music. Thus, recognizing

the chords and estimating the key from audio share some processes in common, from

feature extraction to classification as has already been shown in Figure 2.4.

Because musical chords have much shorter time span than a key has, as explained

in Section 2.3, the most prominent difference in a chord recognition task lies in its

evaluation. It is not too difficult nor laborious to have the ground truth data or labels

for key estimation, both for training and test, because one piece of music in general,
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especially in popular music, has only one key or a few at best, considering modula-

tion. On the other hand, chord progression, as the name suggests, is a very dynamic

property, and thus chord usually keeps changing over time. Therefore, in order to

evaluate the chord-recognition systems, we need ground truth which must have not

only the correct chord labels, but also have precise, corresponding boundaries. This

is why very few systems were systematically evaluated using a fairly large amount of

real recordings as test data.

Similar to key estimation systems, the chroma vector has been almost exclusively

used as a front end feature for chord recognition systems as well. What makes each

system unique is mostly dependent on the decision mechanism, or classifier, which

is divided into two main groups, similar to key estimation: template matching tech-

niques and machine learning techniques. In the following sections, both techniques

for chord recognition are reviewed in detail.

Template Matching Approaches

In template matching or pattern matching techniques, as in key estimation, chord

templates are first defined, either heuristically or based on cognitive studies. For

example, some systems use binary chord templates in which only pitch classes corre-

sponding to chord tones are set to ones and the others are set to zeros. Therefore,

if we denote 12 pitch classes from C, C♯, · · · , to B, the template for C major triad

is [1 0 0 0 1 0 0 1 0 0 0 0]. Other systems use the chord templates derived from the

cognitive studies.

Chord classification also follows the similar steps as in key estimation. That is,

the feature vector is first computed from audio, and then is correlated with the pre-

defined chord templates. Finally, the template yielding the maximum correlation is

recognized as the chord of an given input vector. However, because chords are more

locally defined than a key, the analysis must be more granular; i.e., chords must be

recognized every frame or every beat in order to detect when they change, which is

important in the course of musical development.

Fujishima proposed a real-time chord recognition system using a pitch class pro-

file (PCP) vector, which is almost identical to a chroma vector, as a front end [31].
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Fujishima described the technique of computing a 12-dimensional chroma vector from

the discrete Fourier transform (DFT) of the audio signal. He then used a correlation

method with pre-defined binary chord templates to identify a chord type. For exam-

ple, C major triad template is [1 0 0 0 1 0 0 1 0 0 0 0] and A minor triad template is [1

0 0 0 1 0 0 0 0 1 0 0], where the first bin corresponds to C, the second bin corresponds

to C♯, and so on. His system performed well on musical audio containing a single

instrument.

It is possible that musical instruments are slightly mis-tuned when they are

recorded. This mis-tuning may cause mis-recognition of chords. Harte and San-

dler used a quantized chromagram for automatic chord recognition to compensate for

possible mis-tuning which may be present in musical audio [36]. To this end, they first

computed a 36-bin chromagram, instead of a conventional 12-bin chromagram, which

has a resolution higher than a quarter-tone. They then applied the peak-picking al-

gorithm with interpolation to a 36-bin chromagram, and computed a histogram of

chroma peaks over the entire piece of music. From the peak histogram, they selected

a global tuning center, and used it to convert a 36-bin chromagram to a 12-bin chro-

magram by merging three chroma bins into one. For the task of chord identification,

each frame of the quantized chromagram is compared with a set of chord templates

and the closest match is then recorded as the chord estimate for that frame. The flow

diagram of the system is shown in Figure 2.7.

They defined 48 chord templates — triads of major, minor, diminished and aug-

mented for each pitch class — and used two full albums of Beatles (28 songs total)

for evaluation. The average frame-level accuracy they achieved was 62.4%.

Machine Learning Approaches

As in key estimation using the templates, chord recognition systems using the pre-

defined chord templates also are limited because the templates — either binary or

cognitive-based — don’t reflect appropriately the distributions of chroma vectors in

real music. For instance, the binary templates are far from the actual distribution

of pitch classes because almost all musical instruments produce harmonics of the

fundamental notes. Binary templates are only possible when pure sinusoids are used.
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Figure 2.7: Flow diagram of the chord recognition system using a quantized chroma-
gram (from Harte and Sandler [36]).

Using machine learning methods, however, we can understand the real-world char-

acteristics of chords — their progression and observation distribution — and therefore

can build the appropriate model from which we can infer chords for an unknown input.

Sheh and Ellis proposed a statistical learning method for chord segmentation and

recognition using the 24-bin pitch-class profile features as a front end [93]. They

used HMMs trained by the Expectation-Maximization (EM) algorithm, and treated

the chord labels as hidden values within the EM framework. This idea was a major

breakthrough in HMM-based chord recognition systems because by treating the chord

names as hidden states in HMMs, state transitions are identical to chord transitions or

chord progression. Furthermore, the optimal state path found by the Viterbi decoder

is the same as chord sequence.

When training the models, they used only the sequence of chord names, with-

out chord boundaries, as an input to the models, and applied the forward-backward

algorithm to estimate the model parameters. After estimating the model parame-

ters, Sheh and Ellis applied the Viterbi algorithm to either forcibly align or recognize
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these labels. In forced alignment observations are aligned to a composed HMM whose

transitions are dictated by a specific chord sequence, as in training i.e.; only the chord-

change times are being recovered, since the chord sequence is known. In recognition,

the HMM is unconstrained, in that any chord may follow any other, subject only to

the Markov constraints in the trained transition matrix.

Using 18 songs and 2 songs of Beatles’ as training and test data, respectively, the

frame-level accuracy they obtained is about 76% for segmentation and about 22% for

recognition. The poor performance for recognition may be due to insufficient training

data for a large set of classes (20 songs for 147 chord types). It is also possible that

the flat-start initialization of training data yields incorrect chord boundaries resulting

in poor parameter estimates.

Although the performance is no longer state-of-the-art, their work made signifi-

cant contributions in several aspects. First, no music theoretical or music cognitive

knowledge such as key-profiles is encoded in their system; it is purely data-based.

Second, they applied much of the speech recognition framework with minimal modifi-

cation, by making a direct analogy between the sequence of discrete, non-overlapping

chord symbols used to describe a piece of music, and the word sequence used to de-

scribe recorded speech. Third, they avoided the extremely time-consuming processes

of labeling the times of chord changes. Lastly, they showed quantitatively that the

chroma feature is superior to Mel-frequency cepstral coefficients (MFCCs), supporting

the hypothesis that chroma representation is ideal in chord recognition.

Paiement et al. proposed a probabilistic model for chord progression based on

graphical models [78]. In their model they designed a distributed representation for

chords such that Euclidean distances roughly correspond to psychoacoustic dissimi-

larities. They then derived estimated probabilities of chord substitutions from this

representation and used them to introduce smoothing in graphical models observing

chord progressions. Parameters in the graphical models are learned with the EM

algorithm and the classical Junction Tree algorithm is used for inference.

They used excerpts of 52 jazz standard to train the model and evaluated the model

on the same dataset to show that the tree models are slightly better than the HMM,

which was used as a benchmark. Although their model is not intended to recognize
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chords but to generate them, it is believed that the same model can be used as an

analysis tool for chord recognition as well.

Based on the observations that the initialization is critical when estimating the

model parameters, Bello and Pickens proposed a chord recognition system in which

some music theoretical knowledge is encoded [8]. They also use an HMM with chroma

features as a front end, which in essence is similar to what Sheh and Ellis presented

[93]. What is interesting in their approach is that they don’t use any training database

to train their model. Instead, their approach is knowledge-based ; that is, they incor-

porate musical knowledge into the models by defining a state transition matrix based

on the key distance in a circle of fifths, and avoid random initialization of a mean

vector and a covariance matrix of observation distribution. In addition, in train-

ing the model’s parameters, they selectively update the parameters of interest on

the assumption that a chord template or distribution is almost universal regardless

of the type of music, thus disallowing adjustment of distribution parameters. The

only parameter that is updated and estimated is a transition probability matrix —

they use EM algorithm to find the crude transition probability matrix for each input,

and use adaptation for final recognition. For example, Figure 2.8 shows the initial

state-transition distribution and those trained on specific inputs.

Bello and Pickens tested their system on Beatles’ two full albums that Harte

and Sandler used [36]. The frame-level accuracy is about 67%, and it increases up

to about 75% with beat-synchronous segmentation, which we believe is the state-

of-the-art performance. They focus on extracting from the raw waveform a robust

mid-level representation, however, and thus use a much smaller set of chord types (24

major/minor triads only) compared with 147 chord types defined by Sheh and Ellis

[93] or 48 chord types used by Harte and Sandler [36].

Their main contribution, they argue, is the creation of an effective mid-level repre-

sentation of musical audio, which in fact is the sequence of major/minor chords on the

beat level. They have shown that by incorporating the inherent musical knowledge

into machine learning models, the performance increases significantly.

Cabral et al. presented a chord recognition system using an extractor discovery

system (EDS) [12, 13]. EDS is a heuristic-based generic approach for automatically
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Figure 2.8: State-transition distribution A: (a) initialization of A using the circle of
fifths, (b) trained on Another Crossroads (M. Chapman), (c) trained on Eight days a
week (The Beatles), and (d) trained on Love me do (The Beatles). All axes represent
the 24 lexical chords (C→B then c→b). Adapted from Bello and Pickens [8].

extracting high-level musical descriptors from acoustic signals, based on genetic pro-

gramming. Given a database of audio signals with their associated perceptive values,

EDS is capable to generalize a descriptor. Such descriptor is built by running a genetic

search to find relevant signal processing features to match the description problem,

and then machine learning algorithms to combine those features into a general de-

scriptor model.

Although they avoid using the conventional chroma feature and try instead to se-

lect the optimal feature set for chord recognition using genetic algorithm and machine

learning techniques, the experiments with 1885 samples and 60 chord types shows the

EDS algorithm is outperformed by traditional approaches such as a PCP template

matching method or kNN (k-nearest neighbors) classifier.

In a musical chord detection system Maddage et al. presented a hierarchical

approach based on the analysis of tonal characteristics of musical audio [64]. They
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Figure 2.9: Two-layer hierarchical representation of a musical chord (from Maddage
et al. [64]).

first examined two different methods of representing tonal characteristics of musical

audio, i.e., pitch class profile (PCP) method and psycho-acoustical method, to find

out not only the fundamental frequency of music note but also its harmonics and sub-

harmonics contribute for detecting related chords. Then they modeled each chord

using a hierarchical approach, which is composed of two layers. In the first layer,

they build individual tonal characteristic model for each octave. The responses of

the individual models in the first layer are fed to the model in the second layer

to detect the chord. The models in the 1st layer are trained using 12-dimensional

PCP feature vectors which are constructed from individual octaves. The 2nd layer

model is trained with the vector representation of the 1st layer model responses. The

hierarchical model is illustrated in Figure 2.9.

For the dataset for training and test, they used more than 2000 synthesized sam-

ples for each chord as well as real-world samples extracted from 40 pieces of pop mu-

sic, and compared three different chord models — pitch class profile (PCP), psycho-

acoustical profile (PAP) and two-layer hierarchical model. The experimental results

show that the proposed two-layer hierarchical model consistently outperforms the

other two in both datasets — synthesized and real. The contribution of their work

is the demonstration that a hierarchical model based on the PCP from each octave

increases the performance in chord recognition.
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Figure 2.10: Overview of the automatic chord transcription system based on hypoth-
esis search (from Yoshioka et al. [101]).

Other Approaches

Yoshioka et al. presented an automatic chord-transcription system by first generating

hypotheses about tuples of chord symbols and chord boundaries, and evaluating the

hypotheses based on three cues: acoustic features, chord progression patterns and

bass sounds [101]. To this end, they first performed beat-analysis on raw audio to

detect the eighth-note level beat times of an input musical piece. Then, the hypothesis

searcher searches the most plausible hypothesis about a chord sequence and a key.

The search progresses every eighth-note level beat time from the beginning of the

input. Finally, the searcher outputs the obtained most plausible hypothesis. Figure

2.10 shows an overview of the system.

A conventional 12-dimensional chroma feature is used as a front end to the sys-

tem. Pre-defined chord progression patterns reduce the ambiguities of chord symbol-

identification results. Finally, using the bass sounds, they argue, improves the per-

formance of automatic chord transcription, because bass sounds are closely related to
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Figure 2.11: Network structure of Kansei model (from Onishi et al. [75]).

musical chords, especially in popular music. They tested their system on one-minute

excerpts from seven popular songs, and achieved 77% average accuracy.

Onishi et al. presented an interesting approach to map different chords to different

“Kansei” or emotion values using a neural network model that simulates a human

auditory system [75]. They used 19 frequency units in the input layer of the neural

network, each frequency corresponding to a musical tone between C and f♯, put

eight units in the hidden layer, and defined three Kansei values — “cheerfulness-

gloominess”, “thickness-thinness” and “stability-instability” — in the output layer as

illustrated in Figure 2.11.

Using 326 chords for training and 40 for testing, all synthesized using pure si-

nusoids, they could successfully map the chords to the corresponding Kansei values

or emotions. Although the purpose of the algorithm is not recognizing the chords,

and their experiment is limited in a sense they didn’t analyze the real recording but

used synthesized chords as an input, it is noteworthy in that they tried to extract

high-level emotional attributes from the audio.
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2.4 Summary

In this chapter, we have presented the scientific background on which this dissertation

work is largely based. We first presented music theoretical/cognitive studies that

address the relation between the perceived musical attributes and the corresponding

responses from the subjects in the context of tonal music. The findings from these

studies provide a fundamental background to a number of computational algorithms

for both key estimation and chord recognition. We then reviewed many different

approaches to tackle these challenging tasks, concentrating on those that deal with the

raw audio. With all the differences in background and implementation, we have found

that most algorithms are largely divided into two groups for both key estimation and

chord recognition — template matching algorithms and machine learning algorithms.

In template matching algorithms, the key/chord templates are first defined based

on music cognitive studies (or simple binary-types are used), and the features ex-

tracted from audio are compared against these templates to find the closest one in

distance. These methods are very efficient and don’t require the training data that

machine learning algorithms do. However, their performance is very much dependent

on the pre-defined templates or profiles, which may not be universal; they may vary

from genre to genre, for example. Furthermore, they don’t take into account one of

very important characteristics inherent in music — its temporal dynamics — which

makes music distinct from other forms of art like visual art. A template matching

approach doesn’t care about the progression of music over time. For example, in

case of chord recognition, when classifying the current feature frame, they make a

decision based on that frame only, not considering what preceded or will follow. Or

in key-finding algorithms, the chroma features are usually averaged to give a global

chroma vector, which is matched against the key profiles. This in turn means that

these algorithms will perform exactly the same even if a musical piece is in reverse

order or even randomized, which will probably not be defined as music any more.

We can take great advantage of this time-dependent attribute of music in analyzing

music.

On the other hand, machine-learning algorithms such as hidden Markov models
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depend on what happened previously in determining what is happening now. This

is crucial, in chord recognition in particular, because in Western tonal music, chords

progress based on a set of rules, and thus knowing the current chord significantly

helps decide what will follow. In addition, using machine-learning approaches, we

don’t need any prior knowledge such as key profiles. The model learns all the rules

from the data, if we build the model appropriately.

However, the biggest bottleneck problem in machine learning models is the prepa-

ration of the training data, on which the performance is heavily dependent. This

is even more problematic in supervised learning, where the training data must have

ground truth, which is provided by humans, involving a great amount of time and

labor. For instance, in order to train a chord-recognition model, we must hand-label

all the chords for a number of songs. This implies that we should perform harmony

analysis first to obtain chord names and find precise timing boundaries. This manual

annotation process can be extremely difficult and time-consuming even for experi-

enced musicians.

In the next chapter, we propose a novel and almost labor-free method of obtaining

a large amount of labeled training data to train hidden Markov models using symbolic

music files.



Chapter 3

System Description

3.1 Introduction

A system for automatically recognizing musical chords from raw waveforms involves

two stages, as shown in Figure 3.1. It must first extract the appropriate feature

vector from the raw audio samples. The extracted feature for the chord-recognition

task must satisfy these requirements: first, it must be low in dimension, particularly

when used in real-time applications or when there is not enough training data in

machine learning approaches; second, it must be robust to noise-like signals such

as percussive sounds or distorted guitar sounds because they don’t constitute chord

tones; finally, it must remain largely invariant under acoustical differences caused by

changes in tempo, melody, instrumentation, dynamics, and so on. This is because, for

example, a C major chord in root position played by a piano, the same chord in first

inversion played by a rock band, and the same chord in second inversion played by a

full orchestra, however their acoustical properties may vary, must all be transcribed

as the same C major chord.

Once the appropriate feature vector is extracted from the raw audio, it becomes

an input to the recognition system, where each feature vector is classified as a certain

chord. Some systems use a simple pattern matching algorithm for classification [31,

36, 55] while others use more sophisticated machine learning approaches [93, 8, 69,

59, 58, 60, 61, 57]. We use HMMs for chord classification because they represent a

39
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Figure 3.1: Two main stages in chord recognition systems.

probabilistic framework that not only provides the observation distribution of chords

for the given input vector, but also explains the progression of chords over time

through a Markov process.

A hidden Markov model [86] is an extension of a discrete Markov model, in which

the states are hidden in the sense that we can not directly observe the underlying

stochastic process, but can only observe it through another set of stochastic processes.

The three parameters that define an HMM are the observation probability distribu-

tion, the state transition probability distribution and the initial state distribution;

we can accurately estimate these parameters from the labeled training data. More
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details about an HMM are found in Appendix A.

Our system is based on the work of Sheh and Ellis and Bello and Pickens, in

that the states in the HMM represent chord types, and the optimal path, i.e., the

most probable chord sequence, is found in a maximum-likelihood sense. The most

prominent difference in our approach is, however, that we use labeled training data

from which model parameters can be directly estimated without using an EM algo-

rithm because each state in the HMM is treated as a single chord and therefore we

can learn the observation distribution for each chord and the chord-to-chord or state-

transition probabilities. In addition, we propose a method to automatically obtain

a large set of labeled training data, removing the problematic and time-consuming

task of manual annotation of precise chord boundaries with chord names. Finally, we

train our models on the data sets of different musical genres and investigate the effect

of each parameter set when various types of input are given. We also demonstrate

the robustness of the tonal centroid feature because it yields better performance than

the chroma feature when tested on different kinds of input.

In the following section, the procedure for obtaining the feature set from the raw

waveform will be described in more detail.

3.2 Feature Vector

As has been mentioned above, the raw audio samples are not appropriate to be used

as an input to the chord recognition system, which must make a decision as to which

chord type a given feature vector should be classified as. The feature should not

only be able to represent musical chords properly but also have low dimensionality.

The requirement for low dimensionality and computational efficiency is especially

important when a real-time implementation is needed, or when the number of training

samples is small in statistical learning methods. Furthermore, it must be robust to

non-harmonic noisy signals caused by sharp attacks or percussive sounds since they

don’t tell us about the chord tones.

We use two different types of feature vectors in our chord recognition system.

The first we use is the conventional 12-dimensional chroma feature. We use chroma
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feature not only because it is widely accepted for chord recognition, but also because

we try to compare our system with others just based on the classification algorithm.

As a second feature vector, we use tonal centroid which is a 6-dimensional vector

derived from a 12-dimensional chroma vector. In the following sections, we describe

each feature in more detail.

3.2.1 Chroma Vector

A chroma vector or a Pitch Class Profile (PCP) is the feature of choice in automatic

chord recognition or key extraction ever since it was introduced by Fujishima [31].

Perception of musical pitch involves two dimensions — height and chroma — often

described as the Pitch Helix. This is illustrated in Figure 3.2. Pitch height moves

vertically in octaves telling which octave a note belongs to. On the other hand,

chroma tells where a note stands in relation to others within an octave. A chroma or

a PCP feature is a 12-dimensional vector representation of a chroma, which represents

the relative intensity in each of twelve semitones in a chromatic scale. Since a chord

is composed of a set of tones, and its label is only determined by the position of

those tones in a chroma, regardless of their heights, chroma vectors appear to be

an ideal feature to represent a musical chord or a musical key. Fujishima developed

a real-time chord-recognition system, where he derived a 12-dimensional pitch class

profile from the discrete Fourier transform (DFT) of the audio signal, and performed

pattern matching using binary chord type templates [31].

There are some variations when computing a 12-bin chroma feature, but it usually

follows these steps. First, the DFT of the input signal X(k) is computed, and the

constant-Q transform XCQ is calculated from X(k), using a logarithmically spaced

frequencies to reflect the way a human perceives sound [11]. The frequency resolution

of the constant-Q transform follows that of the equal-tempered scale, which is also

logarithmically based, and the kth spectral component is defined as

fk = (21/B)kfmin, (3.1)
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Figure 3.2: The pitch helix and chroma representation. Note Bn+1 is an octave above
note Bn (from Harte and Sandler [36]).

where fk varies from fmin to an upper frequency, both of which are set by the user,

and B is the number of bins in an octave in the constant-Q transform.

Once XCQ(k) is computed, a chroma vector CH can be easily obtained as:

CH(b) =
M−1
∑

m=0

∣

∣XCQ(b+mB)
∣

∣, (3.2)

where b = 1, 2, · · · , B is the chroma bin index, and M is the number of octaves

spanned in the constant-Q spectrum. That is, all DFT bins are collapsed to create

a 12-dimensional vector without absolute frequency height, each bin representing

the spectral energy in each pitch class in a chromatic scale. Although a chromatic

scale has only 12 pitch classes (B = 12), B = 24 or B = 36 can also be used

to deal with finer tuning than a semitone. This fine tuning is especially useful when

compensating for possible mistuning present in audio. Figure 3.3 shows a chromagram
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Figure 3.3: 12-bin chromagram of an excerpt from Bach’s Prelude in C major per-
formed by Glenn Gould. Each chroma vector is computed every 185 millisecond.

example, where each chroma vector is horizontally concatenated over time to form a

2-dimensional representation like a spectrogram.

While the chroma feature not only appears to be ideal for both chord recognition

and key extraction but also is efficient because of its low dimensionality, the semitone

resolution might not be sufficient to fully describe the tonality present in musical

audio. Furthermore, a constant-Q transform assumes a fixed tuning frequency (e.g.

A4 = 440Hz), which is not always the case for all recordings.

Researchers therefore proposed various algorithms to compute different features

as an alternative to the conventional chroma feature. Gómez proposed a Harmonic

Pitch Class Profile (HPCP) with a few modifications on the pitch class profile (PCP)

[32]. First, she introduces a weight function in the feature computation. Second, she

considers the harmonics. Third, she uses a higher resolution in the HPCP bins, result-

ing in 36-dimensional feature vectors. She and her colleagues applied the proposed

HPCP vector successfully in applications such as audio cover song finding [33, 92] and

structural segmentation [74]. Lee used a summary autocorrelation function (SACF)

based on the human auditory model as a front end to template matching classifier to

recognize chords from audio [54]. Lee also proposed an enhanced pitch class profile or

EPCP vector for chord recognition [55], where he used a harmonic product spectrum

(HPS) computed from the STFT, before collapsing it down to a 12-dimensional vec-

tor, in order to suppress the effect of the harmonics of non-chord tones, which might
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cause confusion to the classifier.

3.2.2 Quantized Chromagram

The conventional chroma feature explained above can be problematic when a possible

mistuning is present in acoustic recordings. For instance, instruments may have been

slightly mis-tuned (e.g. A4 = 445 Hz) when recording a rock band. In such cases,

the resulting chroma feature obtained using the above formulas will not be precise,

and may cause mis-classification in the recognition system.

In order to avoid the mis-tuning problem, Harte and Sandler proposed a 12-bin

Quantized chromagram [36]. They first derived a 36-bin chromagram instead of a 12-

bin chromagram, which can detect a quartertone difference in the signal. They then

obtained the sinusoidal peak distribution from the Short-Time Fourier Transform

(STFT) frames for the whole piece of music, and determined how to group three

contiguous bins into one to generate a 12-bin quantized chromagram based on the

peak distribution. The overall flow of these processes is shown in Figure 3.4.

Figure 3.4: Computing the quantized chromagram (from Harte and Sandler [36]).

Figure 3.5 illustrates the tuning algorithm with an actual example. Figure 3.5(a) is

an original 36-bin chromagram. Figure 3.5(b) and Figure 3.5(c) show the distribution

and the histogram of peaks obtained from the 36-bin chromagram. Finally, Figure
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Figure 3.5: Tuning of Another Crossroads by Michael Chapman. (a) 36-bin chroma-
gram (b) Peak distribution (c) Peak histogram and (d) 12-bin tuned chromagram

3.5(d) shows a tuned, semitone-quantized chromagram.

3.2.3 Tonal Centroid

Based on the observation that close harmonic relations such as fifths and thirds appear

as small Euclidean distances in an interior space mapped from the 12-bin chroma

space, Harte et al. proposed a 6-dimensional feature vector called Tonal Centroid, and

used it to detect harmonic changes in musical audio [37]. It is based on the Harmonic

Network or Tonnetz, which is a planar representation of pitch relations where pitch

classes having close harmonic relations such as fifths, major/minor thirds have smaller

Euclidean distances on the plane as shown in Figure 3.6. The Harmonic Network is
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a theoretically infinite plane, but is wrapped to create a 3-D Hypertorus assuming

enharmonic and octave equivalence, and therefore there are just 12 chromatic pitch

classes. The Hypertorus is illustrated in Figure 3.7.

Figure 3.6: The Harmonic Network or Tonnetz. Arrows show the three circularities
inherent in the network assuming enharmonic and octave equivalence (from Harte et.
al [37]).

Figure 3.7: A projection showing how the 2-D Tonnetz wraps around the surface of
a 3-D Hypertorus. Spiral of fifths with pitch classes is shown as a helical line (from
Harte et. al [37]).

If we reference C as a pitch class 0, then we have 12 distinct points on the circle

of fifths from 0-7-2-9-· · · -10-5, and it wraps back to 0 or C (shown as a spiral line in

Figure 3.7). If we travel on the circle of minor thirds, however, we come back to a

referential point only after three steps as in 0-3-6-9-0. The circle of major thirds is

defined in a similar way. This is visualized in Figure 3.8. As shown in Figure 3.8, the

six dimensions are viewed as three coordinate pairs (x1, y1), (x2, y2), and (x3, y3).
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Figure 3.8: Visualizing the 6-D Tonal Space as three circles: fifths, minor thirds, and
major thirds from left to right. Numbers on the circles correspond to pitch classes and
represent nearest neighbors in each circle. Tonal Centroid for A major triad (pitch
class 9,1, and 4) is shown at point A (from Harte et. al [37]).

Using the aforementioned representation, a collection of pitches like chords is

described as a single point in the 6-D space. Harte et. al obtained a 6-D Tonal

Centroid vector by projecting a 12-bin tuned chroma vector onto the three circles in

the equal tempered Tonnetz described above. Mathematically, this is equivalent to

multiplying a a 12×1 chroma vector by a 6×12 linear transformation matrix Φ to

obtain a 6×1 tonal centroid vector. The 6×12 transformation matrix Φ represents

the basis in the 6-D tonal centroid space and is given as:

Φ = [φ0, φ1, · · · , φ11], (3.3)

where
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The values of r1, r2 and r3 are the radii of the three circles in Figure 3.8. Harte et.

al set these values to 1, 1 and 0.5, respectively to ensure that the distances between

pitch classes in the 6-D space correspond to our perception of harmonic relations

between pitches (i.e. that the fifth is the closest relation followed by the major third

then the minor third and so on)

By calculating the Euclidean distance between successive analysis frames of tonal

centroid vectors, they successfully detect harmonic changes such as chord boundaries

from musical audio.

We used the tonal centroid feature as well as the conventional 12-dimensional

chroma vector, and compared their performance. We hypothesize the tonal centroid

vector is more efficient because it has only 6 dimensions, and more robust because it

puts emphasis on the interval relations such as fifths, major/minor thirds, which are

key intervals that comprise most of musical chords in Western tonal music.

In the next section, we present a chord-recognition system using hidden Markov

models trained on synthesized audio.

3.3 Chord Recognition System

Our chord transcription system performs both symbolic and acoustic analysis of the

symbolic music files. We perform harmony analysis on symbolic data to automatically

obtain label files with chord names and precise time boundaries. In parallel, we

synthesize audio files from the same symbolic files using a sample-based synthesizer.

The audio files and the label files are in perfect synchronization, and we can use them
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to train our models. The overview of the training process is shown in Figure 3.9.

3.3.1 Obtaining Labeled Training Data

In order to estimate the model parameters in supervised learning, we need train-

ing data; namely, for chord recognition, audio files with corresponding labels that

annotate chord boundaries and chord names. As the amount of the training data

increases, the model can better generalize to various types of unseen input, result-

ing in better performance. The high performance in automatic speech recognition

is due to a gigantic amount of speech corpora accumulated over decades. However,

manual annotation of chord names and boundaries is very difficult and extremely

time-consuming. Previous work by Sheh and Ellis has just 0.72 hours of audio for

training their model, and the poor performance is probably explained by insufficient

training data.

We tackle this bottleneck problem using symbolic music documents like MIDI

files. That is, in order to automate the laborious process of manual annotation,

we use symbolic data to generate label files as well as to create audio data. We

hypothesize that this will produce adequate training data. Although there may be

noticeable differences in sonic quality between real acoustic recording and synthesized

audio, we do not believe that the lack of human touch, which makes a typical MIDI

performance dry, affects our training program.

To this end, we first convert a symbolic file to a format which can be used as an

input to a chord-analysis tool. The chord analyzer then performs harmony analysis

and outputs a file with root note information and note names from which we obtain

complete chord information (i.e., root and its sonority–major, minor or diminished

triad/seventh). We use sequence of chords as ground truth, or labels, when training

the HMMs.

To examine the model’s dependency on the training data, we choose two different

training data sets with different types of music. For the first parameter set, we use

765 classical symbolic music files as a training data set, which comprise 406 pieces

of solo keyboard music and 359 string quartets by J. S. Bach, Beethoven, Haydn,
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Figure 3.9: Training the chord transcription system. Labels obtained through har-
mony analysis on symbolic music files and feature vectors extracted from audio syn-
thesized from the same symbolic data are used to train HMMs.
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Mozart and other composers. All classical symbolic music files are in a Humdrum

data format from the Center for Computer Assisted Research in the Humanities at

Stanford University. Humdrum is a general-purpose software system intended to help

music researchers encode, manipulate and output a wide variety of musically-pertinent

representations [39]. These files are converted to a format that can be used in the

Melisma Music Analyzer, as well as to a MIDI format using the tools developed by

Craig Sapp.1

For the second training set, we use 158 MIDI files of Beatles available from http:

//www.mididb.com.

The audio data synthesized from these symbolic music files of the classical and

Beatles data set are 26.73 hours long or 517,945 feature frames, and 5.73 hours long

or 111,108 feature frames, respectively.

We perform harmony analysis to obtain chord labels using the Melisma Music

Analyzer developed by Sleator and Temperley [94]. Melisma performs harmony anal-

ysis on a piece of music represented by an event list and extracts information about

meter, harmony and key, and so on. We configure Melisma so that it outputs a chord

name every beat and use its output as ground truth. When building key-dependent

models, we take the beginning key as a home key for an entire piece.

Temperley tests the symbolic harmony-analysis program on a corpus of excerpts

and the 48 fugue subjects from the Well-Tempered Clavier ; Melisma harmony analysis

and key extraction yields an accuracy of 83.7% and 87.4%, respectively [95].

Figure 3.10 shows the normalized distributions of chords and keys extracted from

Melisma for each training set.

We synthesize the audio files using Timidity++ (Timidity++ is a free software

synthesizer and converts MIDI files into audio files in a WAVE format.2 It uses a

sample-based synthesis technique to create harmonically rich audio as in real record-

ings.) We use the GUS (Gravis Ultra Sound) sound font, which is used by Timidity,

to synthesize the MIDI files.3 The set of instruments we use to synthesize classical

music are piano, violin, viola and cello. When rendering Beatles’ MIDI files we use

1http://extras.humdrum.net
2http://timidity.sourceforge.net/
3http://www.gravis.com
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Figure 3.10: Chord and key distribution of classical (left) and Beatles (right) training
data.

electric piano, electric guitar, steal string guitar, electric bass and orchestral strings.

Our feature analysis from audio follows these steps. The raw audio is first down-

sampled to 11025 Hz; then 12-bin chroma features and 6-dimensional tonal centroid

features are extracted from it with the frame size of 8192 samples and the hop size of

2048 samples, which gives the frame rate of approximately 5.4 frames/second. The

frame-level chroma vectors or tonal centroid vectors are then used as input to the

HMMs along with the label files obtained above.
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3.3.2 Hidden Markov Model

We recognize chords using either 24-state (trained on Beatles music) or 36-state

HMMs (trained on classical music). Each state in our model represents a single

chord. The observation distribution is modeled by a single multivariate Gaussian—

in 12 dimensions for the chroma feature or in six dimensions for the tonal centroid

feature—defined by its mean vector µi and covariance matrix Σi, where i denotes ith

state. We assume the dimensions of the features are uncorrelated with each other, and

thus use a diagonal-covariance matrix.4 State transitions obey a first-order Markov

property; i.e., the future is independent of the past given the present state. In addi-

tion, we use an ergodic model since we allow every possible transition from chord to

chord, and yet the transition probabilities are learned.

In our model, we define 36 classes or chord types according to their sonorities

only—major, minor and diminished chords for each pitch class. We ignore the aug-

mented chords since they rarely appear in Western tonal music. We group triads and

seventh chords with the same sonority into the same category. For instance, we treat

E minor triad and E minor seventh chord as just E minor chord without differenti-

ating the triad and the seventh. Most pop or rock music, as in the Beatles, makes

use of only 24 major/minor chords, so for our experiments with popular music we

recognized only 24 chords, as done by Bello and Pickens [8].

With the labeled training data we obtain from the symbolic files, we first train our

models to estimate the model parameters. Once we learn the model parameters—

initial state probabilities, state transition probability matrix, and mean vector and

covariance matrix for each state—we recognize chords for an unknown input by ex-

tracting the feature vectors from the raw audio and applying the Viterbi [100, 30]

algorithm to the appropriate model to find the optimal path, i.e., chord sequence, in

a maximum likelihood sense.

4We tried full-covariance observation matrices, but our recognition was lower, suggesting
that we don’t have enough data.
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Figure 3.11: 36x36 transition probability matrices obtained from 765 pieces of classical
music and from 158 pieces of Beatles’ music. For viewing purpose, logarithm is taken
of the original matrices. Axes are labeled in the order of major, minor and diminished
chords. The right third of these matrices are mostly zero because these musical pieces
are unlikely to transition from a major or minor chord to a diminished chord, and
once in a diminished chord, the music is likely to transition to a major or minor chord
again.

3.3.3 Parameter Estimates

Figure 3.11 shows chord-to-chord transition probability matrices estimated from each

training data set. The transition matrices are strongly diagonal since a chord’s du-

ration is usually longer than the frame rate, and thus the state does not change for

several frames, which makes a transition probability to itself highest.

As further illustrated in Figure 3.12, however, the chord progressions observed in

the transition probabilities are rooted in music theory. The C major chord has the

largest probability of staying within the same state, i.e., within a C major chord,

because of faster frame rate than the rate of chord changes. But it has comparably

higher probabilities for making a transition to specific chords such as an F major,

G major, F minor or A minor chord than to others. F major and G major have

subdominant-tonic and dominant-tonic relationships with C major, respectively, and

transitions between them happen very often in Western tonal music. A C major
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Figure 3.12: Transition probabilities from C major chord estimated from classical and
from Beatles’ data. The X axis is labeled in the order of major, minor and diminished
chords.

chord is also a dominant chord of an F minor, and therefore a C major to F minor

transition is frequent as well. Finally, an A minor chord is a relative minor of the C

major chord, and a C-to-Am transition also occurs quite often. This tonic-dominant-

subdominant relationship is also shown in Figure 3.11 as off-diagonal lines with five

and seven semitone offsets with respect to their tonics.

Figure 3.13 shows the observation distribution parameters for chroma feature es-

timated from each training data set for a C major chord. On the left are the mean

chroma vector and diagonal covariance vector for an HMM trained on classical music,

and those for Beatles’ music are on the right. It is obvious, as expected, that they

both have three large peaks at chord tones or at C, E and G. In addition, we can also

see relatively large peaks at D and B, which come from the third harmonics of chord

tones G and E. Mean vectors and covariance matrices of tonal centroid feature are

also shown in Figure 3.14 for each data set.

Although we can estimate the model parameters for observation distribution for

each chord, the number of feature samples in training data not only varies to a

great degree from chord to chord but also is limited for some chords, as shown in
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Figure 3.13: Mean chroma vector and covariances for C major chord estimated from
classical and from Beatles’ data. Because we use diagonal covariance, the variances
are shown with “error” bars on each dimension.

the chord distributions in Figure 3.10. This is likely to cause class statistical errors

when estimating the mean vectors and covariance matrices from the available training

samples, which may lead to overfitting. We therefore transpose all the major chords

to a single major chord no tonal center or root information, and then estimate its

probability distribution.

For example, if we wish to estimate the parameters for the C major chord, we

downshift the chroma vectors of C♯ major chord by 1, those of D major chord by

2, · · · and those of B major chord by 11, respectively. We now have more feature

samples than we had for the original C major chord. Such a transposition method

is valid because in a 12-dimensional chroma representation, only the relative spacing

between pitch classes is important, not the absolute location. Similarly, we estimate

the distribution parameters for 12 minor and 12 diminished chords. This simple

transposition method increases the number of feature samples per class to give more

accurate parameter estimates. We use this method to obtain the distribution param-

eter estimates shown in Figure 3.13 and in Figure 3.14.
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Figure 3.14: Mean tonal centroid vector and covariances for C major chord esti-
mated from classical and from Beatles’ data. Because we use diagonal covariance,
the variances are shown with “error” bars on each dimension.

3.4 Experimental Results and Analysis

3.4.1 Evaluation

We test our models’ performance on two types of musical audio. First, we used Bach’s

keyboard piece (Prelude in C Major) and Haydn’s string quartet (Op.3, No.5: An-

dante, mm.1–46) as a test set of classical music. For these test data, the authors

perform harmony analysis to obtain the ground-truth annotation. For a more com-

plete test, we then test our models on the two whole albums of Beatles (CD1: Please

Please Me, CD2: Beatles For Sale) as done by Bello and Pickens [8]. Ground-truth

annotations are provided by Harte and Sandler at the Digital Music Center at the

University of London in Queen Mary.5 We reduce the class size from 36 to 24 by dis-

carding the 12 diminished chords for the Beatles’ test set since they rarely appear in

rock music. In computing frame-level scores, we only count exact matches as correct

recognition.

5http://www.elec.qmul.ac.uk/digitalmusic/
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Figure 3.15: Cross-evaluation between data-based and knowledge-based model.

We measure the performance of the models in several configurations. First, be-

cause we have two separate parameter sets trained on two different training data

sets (classical and Beatles), we perform tests for each parameter set to measure how

each model’s performance changes with training data. None of the symbolic files

corresponding to the test audio is included in the training data sets. Second, we

compare two feature sets—chroma feature and tonal centroid feature. Finally, we

perform cross-evaluation in order to fully investigate how our data-based model per-

forms compared with the knowledge-based model. Figure 3.15 illustrates how these

models are cross-evaluated.

Finally, we also compare two different features, namely the conventional 12-D

chroma feature and the 6-D tonal centroid feature.

3.4.2 Results and Discussion

Figure 3.16 shows the first 22 seconds of a 12-bin chromagram of Bach’s Prelude in

C Major as performed by Glenn Gould. Below the chromagram are the ground truth

and the chord recognition results using a C major key HMM trained on classical

symbolic music. As shown, chord boundaries, as well as chord names, are almost

identical to those of ground truth except that our system classifies the dominant

seventh chords as major chords with the same root, which are equivalent because of

our definition of chord classes (see Section 3.3.2).
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Figure 3.16: Frame-rate recognition results for Bach’s Prelude in C Major performed
by Glenn Gould. Below 12-bin chromagram are the ground truth and the recognition
result using a C major key HMM trained on classical symbolic music.

Table 3.1 shows the frame-level accuracy in percentage for all the test data for

various model parameters. In order to show that the data-based model performs

better than, or comparably to, the knowledge-based model, we include the frame-

rate results6 on the same Beatles’ test set by Bello and Pickens [8]. Because the

results of the knowledge-based model on the classical test data are not available,

however, we simulate them by combining the knowledge-based output distribution

parameters with the transition probabilities learned from our training data without

adaptation. We test this method on the Beatles’ test data; the difference in results

is less than 1% compared with the results of the original model [8], which uses fixed

output distribution parameters and adapts the transition probabilities for each input.

We therefore believe that the results on the classical data too are not significantly

different from what would be obtained with the original knowledge-based model.

The best result for each test material is in boldface. All the best results use a tonal

centroid vector and the model trained on the same kind of music. This is encouraging

in that the results are consistent with our expectations. If we take a closer look at

the numbers, however, we find a few items worthy of further discussions.

6Although they show higher accuracy with beat-synchronous analysis, we present here
frame-level accuracy for apple-to-apple comparison.
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Table 3.1: Test results for various model parameters (% correct)
Test Set

Model Training Set Feature Beatles Classical
CD1 CD2 Bach Haydn

Beatles Chroma 58.56 78.21 70.92 56.20
Data-based Tonal Centroid 66.89 83.87 75.03 69.07

Classical Chroma 51.82 78.77 88.31 67.69
Tonal Centroid 63.81 81.73 94.56 71.98

Knowledge-based N/A Chroma 58.96 74.78 83.40 69.37

First of all, we observe a strong dependence on the training set, especially with

classical test data. This is because the model parameters, i.e., observation distri-

bution and transition characteristics are different for the two distinct musical styles.

We noticed such a genre dependency in our earlier work [57]. We also find that the

model trained on classical data is more robust to the change in musical genre of the

test input. That is, the classical model performs equally well on both test sets while

the performance of the Beatles’ model drops sharply when a different style of music is

used as an input. We believe this is because the model trained only on Beatles’ music

fails to generalize; it fails because it is only trained on music by one specific artist and

the training data set is small. On the other hand, the classical model is trained on

a larger training data set by more than eight composers, and thus performs equally

well on both test data sets.

Second, we can see that the tonal centroid feature performs better than the chroma

feature. As we mentioned earlier, a possible explanation for this is because the tonal

centroid vector is obtained by projecting the 12-bin chroma vector only on specific

interval relations, like fifths and major/minor thirds; thus, it is more suitable and

robust for identifying musical chords since these interval relations define most chords

in Western tonal music.

Our results compare favorably with other state-of-the-art systems by Harte and

Sandler [36] and by Bello and Pickens [8]. Using the same Beatles’ test data set,

Harte and Sandler obtain frame-level accuracy of 53.9% and 70.8% for CD1 and

CD2, respectively. They define 48 different triads including augmented triads, and
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use a pattern matching algorithm for chord identification, followed by median filtering

for smoothing. Using the HMMs with 24 states for just major/minor chords, Bello

and Pickens’ knowledge-based system yields the performance of 68.55% and 81.54%

for CD1 and CD2, respectively, after they go through a pre-processing stage of beat

detection to perform a tactus-based analysis. Without a beat-synchronous analysis,

their accuracy drops down to 58.96% and 74.78% for each CD, as is shown in Table

3.1.

In computing the frame-level accuracy shown in Table 3.1, we count only exact

matches as correct. However, we believe it is more accurate to measure performance

with a tolerance of one frame. In other words, if a detected frame boundary or

its neighbor is equal to the ground truth, we classify it as a correct match. This

assumption is fair since the segment boundaries are generated by humans listening

to audio, and thus they are not razor sharp. Using this error metric, the accuracy

of our key-dependent tonal centroid models rises to 69.15% and 86.66% for Beatles’

CD1 and CD2, respectively.

3.5 Summary

In this chapter, we have described a HMM-based chord recognition system, and we

have demonstrated that symbolic music data, such as MIDI files, can be used to

train machine-learning models like HMMs, with a performance that matches the best

knowledge-based approach. The key idea behind our data-based approach was to use

automatic generation of labeled training data to free researchers from the laborious

task of manual annotation.

In order to accomplish this goal, we used symbolic data to generate label files,

as well as to synthesize audio files. The rationale behind this idea was that it is

far easier and more robust to perform harmony analysis on the symbolic data than

on the raw audio data since symbolic music files, such as MIDI, contain noise-free

pitch information. In addition, by using a sample-based synthesizer, we created audio

files that have harmonically rich spectra as in real acoustic recordings. This nearly

labor-free procedure to obtain labeled training data enabled us to build a generalized
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model, resulting in improved performance.

As feature vectors, we first used conventional 12-bin chroma vectors, which have

been successfully used by others in chord recognition. In addition, we tried another

feature vector called tonal centroid which yielded better performance.

Each state in our HMM was modeled by a multi-variate, single Gaussian com-

pletely represented by its mean vector and a diagonal covariance matrix. We defined

36 classes or chord types in our models, which include for each pitch class three dis-

tinct sonorities—major, minor and diminished. We treated seventh chords as their

corresponding root triads and disregarded augmented chords since they very rarely

appear in Western tonal music.

In order to examine the generality of our approach, we obtained two different

model parameters trained on two musically distinct data sets. Experiments with

various kinds of unseen test input, all real acoustic recordings, showed that there is

positive correlation between the test and the training data. In other words, the results

were better when the test and training data are of the same kind. This dependency

on the training set, however, was less significant when the size of the training set

was larger. This in turn suggests that we can generalize our model with even larger

amount of training data.

Bello and Pickens showed approximately an 8% performance increase using beat-

synchronous analysis. While there is some chance for increased errors if beat-tracking

is done incorrectly, we believe that this result is orthogonal to the arguments pre-

sented in this paper. Thus a state-of-the-art system for chord recognition should

combine the data-driven approach described here with tonal centroid features and

beat-synchronous analysis.

The one and only goal of the system described so far was chord recognition.

However, musical chord is closely related to a key in tonal music. Therefore, if we

know the key of a musical piece, we expect that certain chords will more likely appear

than the others, or we can infer a musical key by observing the progression of chords

over time. Furthermore, musical genre is also dependent on the use of chords and

their progression. For instance, rock music makes extensive use of I, IV and V chords,

and the most typical chord progression found in blues music is I-VI-I-V-I.
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In the next chapter, we present how we can extend the chord recognition system

described above to identify or provide information as to other musical attributes such

as key or genre and to improve chord recognition



Chapter 4

Extension

4.1 Introduction

In this chapter, we present two extensions of the HMM-based chord recognition system

described in Chapter 3 that increase chord recognition performance and provide other

useful information such as key or genre. The rationale behind these extensions —

key-dependent and genre-specific HMMs — is that musical chords are closely related

to key or genre, and therefore a priori information as to key or genre makes chord

recognition easier, especially when the feature vectors appear similar as in the related

chords such as a major-minor pair sharing the root note (C major and C minor) or

relative major-minor chords (C major and A minor). However, we don’t need to have

such prior information beforehand. In fact, by building key- or genre-specific models

and computing the likelihood of each model, we can estimate the key or identify the

genre of the input audio. Furthermore, we show that the selected key or genre model

outperforms the generic model described in the previous chapter.

65
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4.2 Key-dependent HMMs

4.2.1 System

In Western tonal music, a song’s key and chords are closely related; thus, knowing the

key of a piece provides valuable information about the chords as well. For instance, if

a musical piece is in the key of C major, then we can expect frequent appearances of

chords such as C major, F major and G major, which correspond to the tonic, sub-

dominant and dominant chord, respectively. On the other hand, F♯minor or A♭ major

chord will seldom appear, since neither has any harmonic function in a C major key.

Based on this close relationship between musical key and chords inherent in Western

tonal music, this thesis proposes key-dependent HMMs trained on synthesized audio

for chord recognition and key estimation [60, 61].

An important advantage of using symbolic music files is that other information,

such as the key or the tempo, comes for free. We therefore build key-dependent

models using the key information already contained in the symbolic data. We define

major/minor keys for each pitch class, resulting in 24 different HMMs. After building

24 key models, λk, 1 ≤ k ≤ 24, we simultaneously perform key estimation and chord

recognition of an unknown input as follows. First, given an acoustic input, we extract

the observation sequence O = {O1O2 · · ·OT} of appropriate feature. Then, we calcu-

late the model likelihoods for all 24 key-dependent models, P (O,Q|λk), 1 ≤ k ≤ 24
1. We then estimate the key by selecting the key model whose likelihood is highest,

i.e.,

k∗ = argmax
1≤k≤24

P (O,Q|λk). (4.1)

By using the Viterbi algorithm in Equation 4.1, however, we not only estimate

the key k∗, but we also obtain the optimal state path Q∗ = {Q1Q2 · · ·QT}, which is

an estimate of the frame-level chord sequence. This process is illustrated in Figure

1An algorithm for efficient computation of P (O,Q|λk), also known as Viterbi decoding,
is described in Appendix A.
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Figure 4.1: System for key estimation and chord recognition using key-dependent
models (K = 24).

4.1.

Although similar systems for key estimation were previously proposed by others

using the HMMs with chroma features as observation [81, 80], the one and only goal of

these systems was key estimation; the states in the HMMs had no musical meanings.

However, in our system, we treat the hidden states as chords, and therefore we also

identify the chord sequence by finding the optimal state path using a Viterbi decoder

when computing the likelihood of the key model.

4.2.2 Parameter Estimates

We use the same sets of training data we used in Chapter 3 (classical and the Beatles).

Figure 4.2 shows the distribution of 24 keys of the whole training data set. Because

we assume there is no key modulation within a piece, each musical piece is assigned

a single key. Therefore, it is not impossible that there are keys without any instances

or very few, if any, which might result in poor models. For example, there is only one

instance of A♭ minor key, while there are 174 pieces of music in the key of C major.

Such a discrepancy in the class size will result in statistical errors when estimating

the model parameters.

Therefore, in the same manner we estimate observation distribution parameters

for each chord, by transposing all the major[minor] chords to C major[minor] chord

and transposing back to all the other major (minor) chords, we also perform circular
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Figure 4.2: Key distribution of the training data (classical and the Beatles).

permutation for keys as well. That is, we transpose all major[minor] keys to a C

major[minor] key, estimate the parameters of a C major[minor] key model, and then

rotate them to obtain the parameters of other major[minor] keys. This helps us

fit more accurate models because we have more data. This circular permutation

approach was also used in the HMM-based key estimation algorithms by Peeters

[81, 80].

Figure 4.3 contrasts the transition probabilities from a C major chord for HMMs

based on C major and C minor keys for classical data. They share some general

properties like the high transition probability to the same chord, and the relatively

high probability to the harmonically close chords such as dominant (G) or subdom-

inant (F) chord. The most prominent distinction is found in the higher transition

probability to F minor chord in the C minor key HMM than in the C major key

HMM. This is because the fourth degree (F) or the subdominant degree is defined

as a minor chord in the C minor key context and therefore it is much more likely to

occur than in the C major key context where the fourth degree is defined as a major

chord. Similar distinctions are found in the Beatles’ training data set.
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Figure 4.3: Transition probabilities from a C major chord in C major key and in C
minor key HMM from classical data. The X axis is labeled in the order of major,
minor and diminished chords. Compare this to the generic model shown in Figure
3.12.

Such key-specific transition probability matrices help us make a correct decision,

particularly in situations where the observation feature vectors are ambiguous. For

example, those chords in relations such as relative major/minor pairs share two notes

in common, and thus their observation vectors look quite similar, which may cause

great confusion. Discriminating the transition probabilities even from the same chord

by using key-specific HMMs helps avoid mis-recognition caused by the confusion

described above.

Even with key-dependent HMMs, however, we use mean feature vectors and co-

variance matrices that are obtained from the universal, key-independent HMM be-

cause we believe the chord quality remains the same, independent of key context. For

instance, the sonic quality of a C major chord in C major key will be the same as

that of a C major chord in A minor key. What differs in each key is the distribution

of chords, as well as their transition probabilities.

Although changes in key within a piece of music, or modulations, are not rare
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in Western tonal music, we did not take them into account in building the models

because modulations occur mostly between harmonically closely-related keys such as

parallel, relative major/minor keys or those in fifth relation, and therefore don’t cause

significant alterations in chord distribution or progression characteristics.

4.2.3 Results and Discussion

We used the same evaluation setup as we did in Chapter 3, and made comparison with

the knowledge-based model. Table 4.1 shows the frame-level accuracy in percentage

for the Beatles test data for various model parameters. Results in parenthesis are

obtained using a key-dependent model; the best result for each test material is in

boldface. Comparison between a genric and a key-dependent model is also illustrated

in Figure 4.4.

Table 4.1: Test results for various model parameters (% correct). In parenthesis are
accuracies of key-dependent models.

Test Set
Model Training Set Feature Beatles

CD1 CD2
Beatles Chroma 58.56 (57.89) 78.21 (78.38)

Data-based Tonal Centroid 66.89 (67.50) 83.87 (85.24)
Classical Chroma 51.82 (52.46) 78.77 (79.35)

Tonal Centroid 63.81 (64.79) 81.73 (83.19)
Knowledge-based N/A Chroma 58.96 74.78

We observe the overall effect that a key-dependent model has on the performance.

Except for one case (chroma feature; Beatles CD1), we find that a key-dependent

model always increases performance. As mentioned in Section 4.2.1, chord progression

is based on the musical key; therefore, knowing the key helps determine which chord

is more likely to follow. Such an example is illustrated in Figure 4.5.

This Figure shows an excerpt of frame-level recognition results of the Beatles’ song

Eight Days A Week, which is in the key of D major. The results of the D major key

model are shown with circles, and those of a key-independent model are indicated

with x’s. We observe that a key-independent model makes a wrong transition from
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Figure 4.4: Comparison of a generic model with a key-dependent model. Model
numbers on the x-axis denote: 1) chroma, trained on Beatles; 2) tonal centroid,
trained on Beatles; 3) chroma, trained on classical; 4) tonal centroid, trained on
classical.

G major to D minor chord near 158 seconds while the D major key model correctly

switches to D major chord. As mentioned, D major and D minor chord have a parallel

major/minor relation. They share two chord tones—tonic and dominant or D and

A—which make the observation vector of those chords look similar, and thus causes

similar output probabilities. In the D major key, however, scale degree 1 or D is

a tonic center and is defined as a major chord, although it is possible to use a D

minor chord. Therefore, a D major chord occurs more often in D major key than

for example, in the C major or in the D minor key, resulting in higher transition

probability to it than to other chords. For the same reason, since a D minor chord

is rarely used in the D major key, it is less probable. This is clearly indicated in

Table 4.2, which shows transition probabilities learned from the data. As shown, a

transition from G major to D major chord is almost three times more likely in the

key-specific model than in the key-independent model, while a G major to D minor

chord transition is three times less likely.

We performed a quantitative evaluation on the key estimation algorithm. We

compared our results to manually-labeled ground truth for the Beatles’ test set [84].
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Figure 4.5: Frame-rate recognition results from Beatles’ Eight Days A Week. In circles
are the results of D major key model and in x’s are those of universal, key-independent
model. Ground-truth labels and boundaries are also shown.

Of all the 30 pieces (28 Beatles and 2 classical) in the test set, our system correctly

estimated 29 of them, achieving an accuracy of 97%. The only song our system mis-

recognized was A Taste of Honey, which is in the key of F♯ minor. Our algorithm

recognized it as a E major key instead, which is not a related key. One possible

explanation is that the extensive use of E, A and B major chords strongly implies the

key of E major because those chords form the most important functions in tonal har-

mony, namely tonic, subdominant and dominant of E major key. The 97% accuracy

for finding key from audio is very encouraging, although the test set was small.

We also tested our key estimation system on Bach’s Well Tempered Clavier I,

which consists of 24 preludes and fugues in each key. Using our algorithm, 41 out

of total 48 pieces were correctly identified, corresponding to 85.42% of accuracy. Six

of seven mis-recognized keys were related keys (five relative major-minor and one
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Table 4.2: Transition probabilities from G major to D major and D minor chord in
each model

Model Transition Probability
G:maj→D:maj G:maj→D:min

D major key (A) 0.0892 0.0018
Key-independent (B) 0.0332 0.0053

Ratio (A/B) 2.67 0.34

parallel major-minor). MIREX 2 scoring system assigns 1 point for correct keys, 0.5

for perfect fifth, 0.3 for relative keys and 0.2 for parallel keys. Using these scores,

our system achieves 88.96% for key estimation. Although the test set is small to

provide more complete results, these accuracies are similar to other state-of-the-art

key-finding systems.3

4.3 Genre-Specific HMMs

4.3.1 System

When our previous systems [60] were tested with various kinds of input, the chord

recognition performance was greatest when the input audio was of the same kind

as the training data set, suggesting the need to build genre-specific models. This

is because not only different instrumentations cause the feature vector to vary, but

also the chord progression, and thus the transition probabilities, are very different

from genre to genre. For example, blues music makes extensive use of I (tonic),

V (dominant) and IV (subdominant) chords, and therefore the transitions between

these chords are very frequent. Thus the state-transition probability matrix trained

on blues music will be different from those trained on other types of music.

The overall system shown in Figure 4.6 is almost identical to key-dependent HMMs

shown in Figure 4.1, except that key models are replaced with genre models. In

addition, while there are 24 fixed number of key models, the number of genres may

2Music Information Retrieval Evaluation eXchange. http://www.music-ir.org
3The best system in MIREX 2005 Audio Key Finding achieved 89.55% accuracy using

1,252 MIDI-synthesized audio files as a test set.



CHAPTER 4. EXTENSION 74

= optimal state path
= chord sequence

Observation:Acoustic
input

Feature
analysis

HMM 1

HMM 2

HMM G

O = O1O2 · · ·OT Q∗ = Q1Q2 · · ·QT

Pr(O, Q|λG)

Pr(O, Q|λ2)

...

Pr(O, Q|λ1)

(λ1)

(λ2)

(λG)

g∗ = argmaxg Pr(O, Q|λg)

Figure 4.6: Chord recognition system using genre-specific HMMs (G = 6).

Table 4.3: Online sources for MIDI files
Genre Online source

Keyboard http://www.classicalarchives.com

Chamber http://www.classicalarchives.com

Orchestral http://www.classicalarchives.com

Rock http://www.mididb.com

Jazz http://www.thejazzpage.de

Blues http://www.davebluesybrown.com

vary according to the training data.

4.3.2 Parameter Estimates

As has been described in Section 4.3.1, we build an HMM for each genre. While

the genre information is not explicitly contained in the symbolic music files, as is

the key information, most MIDI files are categorized by their genres, and we can use

them to obtain different training data sets by genres. We define six musical genres

including keyboard, chamber, orchestral, rock, jazz, and blues. Table 4.3 shows the

online sources where we acquired the MIDI files.

The total number of MIDI files and synthesized audio files used for training is

4,212, which correspond to 348.73 hours of audio or 6,758,416 feature vector frames.

Table 4.4 shows in more detail the data sets used to train each genre model.

Figure 4.7 shows the 36×36 transition probability matrices for rock, jazz, and
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Table 4.4: Training data sets for each genre model
Genre # of MIDI/Audio files # of frames Audio length (hours)

Keyboard 393 1,517,064 78.28
Chamber 702 1,224,209 63.17
Orchestral 319 1,528,796 78.89

Rock 1,046 1,070,752 55.25
Jazz 1,037 846,006 43.65
Blues 715 571,589 29.49
All 4,212 6,758,416 348.73

blues model after training. Although they are all strongly diagonal because the rate

at which chord changes is usually longer than the frame rate, we still can observe

the differences among them. For example, the blues model shows higher transition

probabilities between the tonic (I) and the dominant (V) or subdominant (IV) chord

than the other two models, which are the three chords almost exclusively used in

blues music. This is indicated by darker off-diagonal lines 5 or 7 semitones apart

from the main diagonal line. In addition, compared with the rock or blues model, we

find that the jazz model reveals more frequent transitions to the diminished chords,

as indicated by darker last third region, which are rarely found in rock or blues music

in general.

We also see the difference in the observation distribution for each genre, as shown

in Figure 4.8. Figure 4.8 displays the mean tonal centroid vectors and covariances of

C major chord in the keyboard, chamber, and in the orchestral model, respectively,

where the observation distribution of the chord was modeled by a single Gaussian.

We believe that using model parameters specific to each genre will increase the

chord recognition accuracy when the correct genre model is selected. The success of

this hypothesis will be described in Section 4.3.3.
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Figure 4.7: 36×36 transition probability matrices of rock (left), jazz (center), and
blues (right) model. For viewing purpose, logarithm was taken of the original matri-
ces. Axes are labeled in the order of major, minor, and diminished chords.

4.3.3 Experimental Results and Analysis

Evaluation

We tested our models’ performance on the two whole albums of Beatles (CD1: Please

Please Me, CD2: Beatles For Sale) as done by Bello and Pickens [8], each of which

contains 14 tracks. Ground-truth annotations were provided by Harte and Sandler

at the Digital Music Center at University of London in Queen Mary.4

In computing scores, we only counted exact matches as correct recognition. We

tolerated the errors at the chord boundaries by having a time margin of one frame,

which corresponds approximately to 0.19 second. This assumption is fair since the

segment boundaries were generated by human by listening to audio, which cannot be

razor sharp.

To examine the dependency of the test input on genres, we first compared the

each genre model’s performance on the same input material. In addition to 6 genre

models described in Table 4.4, we built a universal model without genre dependency

where all the data were used for training. This universal, genre-independent model

4http://www.elec.qmul.ac.uk/digitalmusic/
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Figure 4.8: Mean tonal centroid vectors and variances of C major chord in keyboard,
chamber, and orchestral model.

was to investigate the model’s performance when no prior genre information of the

test input is given.

Results and Discussion

Table 4.5 shows the frame-rate accuracy in percentage for each genre model when

tested using the Beatles music. A single Gaussian was used to model the output

probability distribution for each chord. The best results are shown in boldface.

From the results shown in Table 4.5, we notice a few things worthy of further

discussion. First of all, the performance on the Beatles music of the classical models —

keyboard, chamber, and orchestral model — is much worse than that of other models.

Second, the performance of the rock model came in 2nd out of all 7 models, following

the blues model. This is not surprising because even though the test material is

generally classified as rock music, rock music has its root in blues music. Particularly,

early rock music like The Beatles was greatly influenced by blues music. This supports
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Table 4.5: Test results for each model with major/minor/diminished chords (36 states,
% accuracy)

Model Beatles CD1 Beatles CD2 Total
Keyboard 38.674 73.106 55.890
Chamber 30.557 73.382 51.970
Orchestral 18.193 57.109 37.651

Rock 45.937 77.294 61.616
Jazz 43.523 76.220 59.872
Blues 48.483 79.598 64.041
All 24.837 68.804 46.821

Table 4.6: Test results for each model with major/minor chords only (24 states, %
accuracy)

Model Beatles CD1 Beatles CD2 Total
Keyboard 43.945 73.414 58.680
Chamber 43.094 79.593 61.344
Orchestral 37.238 77.133 57.186

Rock 60.041 84.289 72.165
Jazz 44.324 76.107 60.216
Blues 52.244 80.042 66.143
All 51.443 80.013 65.728

our hypothesis that the corresponding or similar genre model will increase the chord

recognition accuracy.

Knowing that the test material does not contain any diminished chords, we did

another experiment with the class size reduced down to just 24 major/minor chords

instead of full 36 chord types. The results are shown in Table 4.6.

With fewer chord types, we can observe that the recognition accuracy increased

by as much as 20% for some model. Furthermore, the rock model outperformed

all other models, again verifying our hypothesis on genre-dependency. This in turn

suggests that if the type of the input audio is given, we can adjust the class size of

the corresponding model to increase the accuracy. For example, we may use 36-state

HMMs for classical or jazz music where diminished chords are frequently used, but

use only 24 major/minor chord classes in case of rock or blues music, which rarely

uses diminished chords.
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Figure 4.9: Chord recognition performance of a 36-state universal model with the
number of mixtures as a variable (solid) overlaid with a 24-state rock model with one
mixture (dash-dot).

Finally, we investigated the universal, genre-independent model in further detail

to see the effect of the model complexity. This is because in practical situations, the

genre information of the input is unknown, and thus there is no choice but to use

a universal model. Although the results shown in Table 4.5 and Table 4.6 indicate

a general, genre-independent model performs worse than a genre-specific model of

the same kind as the input, we can build a richer model for potential increase in

performance since we have much more data. Figure 4.9 illustrates the performance

of a universal model as the number of Gaussian mixture increases.

As shown in Figure 4.9, the performance increases as the model gets more complex

and richer. To compare the performance of a complex, genre-independent 36-state

HMM with that of a simple, genre-specific 24-state HMM, we overlay the performance

of a 24-state rock model with only a single mixture. Although increasing the number

of mixtures also increases the recognition rate, it fails to reach the rate of a rock

model with just one mixture. This comparison is not fair in that a rock model has

only 24 states compared with 36 states in a universal model, resulting in less errors,

particularly because not a single diminished chord is included in the test material.
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As stated above, however, given no prior information regarding the kind of input

audio, we can’t take the risk of using a 24-state HMM with only major/minor chords

because the input may be classical or jazz music in which diminished chords appear

quite often.

The above statements therefore suggest that genre identification on the input

audio must be done in advance in order to be able to use genre-specific HMMs for

better performance. It turns out, however, that we don’t need any other sophisticated

genre classification algorithms or different feature vectors like MFCC, which is almost

exclusively used for genre classification. Given the observation sequence from the

input, when there are several competing models, we can select the correct model

by choosing one with the maximum likelihood using a forward algorithm or Viterbi

decoder. It is exactly the same algorithm as one used in isolated word recognition

systems described by Rabiner [86]. Once the model is selected, we can apply the

Viterbi decoder to find the most probable state path, which is identical to the most

probable chord sequence. Using this method, our system successfully identified 24

tracks as rock music out of total 28 tracks, which is 85.71% accuracy. What is

noticeable and interesting is that the other four mis-classified songs are all classified

as blues music in which rock music is known to have its root. In fact, they all are

very blues-like music, and some are even categorized as “bluesy”. This suggests that

perhaps rock and blues should be merged into one genre — blues and rock.

4.4 Summary

In this chapter, we have demonstrated that we can extend the basic chord recognition

system using an HMM described in Chapter 3 to build key- or genre-specific HMMs

and train them with synthesized audio. Easily generating a large amount of labeled

training data from symbolic music files allows us to build such richer models.

Based on the close relationship between key and chord in Western tonal music,

we built 24 key-dependent HMMs, one for each key, using key information derived

from the symbolic music files. Given an acoustic input, our system performs feature

analysis and a sequence of observation is input to the key-dependent HMMs. Using
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a Viterbi decoder, we estimate the key by selecting the model with the maximum

likelihood; at the same time, we recognize frame-level chord sequence because it is

the same as the optimal state path in a selected key model. Experimental results

on real acoustic recordings show that a key-dependent model not only gives the key

information of an input, but also increases the chord recognition accuracy, yielding

very promising results on both musical tasks.

Although genre information is not explicitly encoded in symbolic music files as key

is, it is not difficult to find symbolic music files categorized by genres. We therefore

build genre-specific HMMs, similar to key-dependent HMMs, resulting in improved

performance with much simpler models than a more complex, genre-independent

model.

Using synthesized audio to train the models successfully capture genre-specific

musical characteristics seen in real acoustic recordings, and experimental results show

that the performance is best when the model and the input are of the same kind, which

supports our hypothesis on the need for building genre-specific models. Another

great advantage of the present approach is that we can also predict the genre — even

though the identification rate is not that of other state-of-the-art systems whose only

purpose is genre identification — of the input audio by computing the likelihoods

of different genre models as is done in isolated word recognizers. This way, we not

only extract chord sequence but also identify musical genre at the same time, without

using any other algorithms or feature vectors. This is important because we integrate

two distinct musical tasks—i.e. chord recognition and genre classification—into one

framework.

In the next chapter, we introduce an enhanced model for chord recognition —

discriminative HMM.



Chapter 5

Advanced Model

5.1 Introduction

In this chapter, we present an advanced approach that combines a powerful discrim-

inative algorithm for chord classification with the HMM smoothing for finding the

optimal state path. This model is not finalized yet and we haven’t had enough ex-

periments to provide complete quantitative evaluations. However, we believe this

model is based on more advanced statistical learning algorithms and therefore will

outperform the basic models.

5.2 Discriminative HMM

In our HMM described in Chapter 3, we modeled each state (i.e., chord) using a

multivariate Gaussian, which is a generative approach; that is, we try to build each

chord model first, based on the labeled training data. Then we compute the poste-

rior probabilities that the observation is generated by each model, given the input

observation, using Bayes’ rule [90]. Mathematically, we compute for each chord model

p(y|x) =
p(x|y)p(y)

p(x)
, (5.1)

82
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where x is an input observation and y is a class or chord. In a generative model, we

learn p(x|y) and p(y) from the data. p(y) is called class priors and is given by

p(y) =
∑

y

p(x|y). (5.2)

In fact, we don’t even need to know the marginal likelihood p(x) to compute the

posterior p(y|x) since from Equation 5.1, we have

argmax
y

p(y|x) = argmax
y

p(x|y)p(y)

p(x)

= argmax
y

p(x|y)p(y). (5.3)

A generative model such as a Gaussian model is based on assumptions about

how the data is generated. For example, if the distribution of the data is indeed

Gaussian, the Gaussian model is asymptotically efficient, especially for a large amount

of training data [72].

On the other hand, in a discriminative model no such assumptions are made

and therefore it is more robust and less sensitive to incorrect modeling assumptions.

Instead of computing the posterior distributions p(y|x) from the model likelihood

p(x|y) and the prior p(y) as in a generative model, the discriminative model tries to

learn the boundary that discriminates p(y|x) directly from the training data.

Support vector machines (SVMs) are among the most popular discriminative mod-

els and have recently been used with a great success in a number of applications,

including music applications such as genre classification [5], chord recognition [69],

mood classification [53] and instrument identification [44] and so on.

A hybrid model has been used in speech recognition to combine the discrimina-

tive power of SVMs with the ability of HMMs to efficiently represent the temporal

dynamics of speech [47, 48]. However, the output of an SVM is a distance measure

between the observation and the optimal decision boundary, which is not suitable

for an HMM which requires posterior probabilities. Platt proposed an algorithm to
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estimate these emission probabilities from the SVM output f(x) using Gaussians of

equal variance and then computing the probability of the class given the output by

using Bayes’ rule, yielding [83]

p(y = 1|x) = g(f(x), A,B)

≡
1

1 + exp(Af(x) +B)
. (5.4)

Platt also proposed an algorithm to estimate the parameters A,B in Equation 5.4

using maximum likelihood estimation. Interested readers are encouraged to see [83].

Finally, since SVMs are binary classifiers, we need to find a method to classify

more than two classes as in our chord recognition (we have 36 classes). There are two

widely used approaches for multi-class SVMs: one-vs-rest approach and one-vs-one

approach [38, 91]. Although the one-vs-one approach requires N(N −1)/2 number of

SVMs for N -class classification (e.g., 630 SVMs for our application), it takes much

less time to train them all since the time to train one SVM depends super-linearly on

the number of training samples.

Using the hybrid model described above, Krüger et al. achieved better results on

phoneme recognition, even with less training samples than the HMM with Gaussian

mixture models, which was trained on the full training set [47, 48].

We believe that this hybrid SVM/HMM approach, which has the best of both

worlds, will help increase our chord recognition performance because recognizing the

sequence of chords also does benefit from temporal modeling represented by an HMM

through state-transition probabilities, and yet the powerful discriminative algorithms

like SVMs are likely to help compute the posterior probabilities more accurately.

5.2.1 Experiments and Discussions

We performed an initial experiment on the discriminative HMMs for chord recogni-

tion. We used the same classical data for training and the Beatles’ two albums for

testing, which were also used in Chapter 3. The average % accuracy was 57.68% for
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the CD1 (Please Please Me) and 76.72% for the CD2 (Beatles For Sale). These num-

bers are low compared to those by the basic models, which are 63.81% and 81.73%

for each album, respectively.

However, we used only 1000 training samples for each class (chord) due to the

extensive amount of time it takes to train 630 SVMs (we used one-versus-one approach

for multi-class classification as explained in Section 5.2). This diluted training data set

is just 7% of the full training set used in the original HMMs with Gaussian modeling.

We hope that the performance of the discriminative HMMs increases as we increase

the size of the training data.

One interesting observation worthy of further discussion is that the classification

without HMM smoothing is better with the SVMs than with the Gaussian models;

that is, the SVMs outperform the Gaussian models in classifying the given obser-

vations to correct classes (chords), using only the posterior probabilities. However,

when we integrate the posterior distribution into an HMM framework with the state-

transition probabilities and compute the optimal state path using a Viterbi decoder,

the HMM with the Gaussian models yields the better results. We haven’t fully investi-

gated this yet, but a possible explanation is that the posterior probabilities estimated

from the distance measures from the SVMs aren’t accurate. We plan to try different

estimation algorithms in the future.

For more complete and fair comparison, we built the Gaussian models using only

7% of the full training set as we did with the SVMs, and performed the experiments

on the same test set. Table 5.1 shows the results.

Table 5.1: Comparison of SVMs and Gaussian models trained on the same amount
of training data (% accuracy)

Model Test data
CD1 CD2 Average

SVMs (diluted, 1/15) 57.68 76.72 67.20
Gaussian models (diluted, 1/15) 46.24 78.63 62.44

Gaussian models (full set) 63.81 81.73 72.77

As is shown in Table 5.1, SVMs outperform the Gaussian models by 5% under

the same condition; i.e., when the amount of training data to train both models is
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the same. The sharp drop in accuracy (from 72.77% to 62.44%) with the Gaussian

models trained on fewer data indicates the weakness of Gaussian model when the data

is insufficient because in generative models, the less data we have, the more difficult

it becomes to correctly estimate the model parameters.

5.3 Summary

In this chapter, we presented a hybrid model for chord recognition based on the

original HMM. The hybrid model uses powerful discriminative algorithms to compute

the posterior probabilities that the given observation vector belongs to each chord.

To this end, we use SVMs which have proved to be very successful in many other

classification problems, including several music applications. In order to estimate the

emission probability distribution required in the HMM smoothing stage, we use a one-

versus-one approach, which requires 36 × (36 − 1)/2 = 630 support vector machines

to be trained. The experiments show promising results: when we train the SVMs and

the Gaussian models with the same amount of diluted training data (approximately

1/15 of the full data), the SVMs outperform the Gaussian models by 5%.

In the following chapter, we demonstrate several practical applications where the

key and the chord sequence recognized by the system are directly or indirectly used.



Chapter 6

Applications

6.1 Introduction

There are a number of practical applications where content-based music information

retrieval becomes very useful. These applications include audio coversong finding,

structural analysis, music segmentation/clustering, audio thumbnailing, query-by-

humming (QBH), query-by-example (QBE), music recommendation, playlist genera-

tion, to name a few.

In this chapter, we demonstrate that we can use a sequence of chords, which is

extracted using the models described in Chapter 3 and Chapter 4, in some of the

applications stated above.

6.2 Audio Cover Song Identification

A cover song is defined as a song performed by an artist different from the origi-

nal artist.1 Identifying cover songs given an original as a seed/query or finding the

original given a cover version from the raw audio is a challenging task, and it has

recently drawn attention in the Music Information Retrieval community. A cover

song is different from its original in terms of many musical attributes such as tempo,

dynamics, melody, key, timbre, and/or instrumentation, and thus the raw waveform

1http://www.secondhandsongs.com/wiki/Guidelines/Cover

87
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or its frequency-domain representation like spectrogram is very different from each

other. Therefore, identifying cover songs requires a robust feature set that remains

largely unchanged under various acoustical changes caused by various musical prop-

erties mentioned above.

Harmonic progression or chord sequence is a robust mid-level representation that

is largely preserved under such musical variations. While other musical details such

as melody, tempo, and/or timbre may vary from one to another, their harmonic

progression over time undergoes minor changes compared with the others because it

was built by conforming to fundamental rules found in Western tonal music. Using

harmonic progression or chord sequence as a feature set has more advantages: first,

once the chord sequence is extracted from the raw audio, it is just a uni-dimensional

string, and thus is computationally very efficient to process. Second, in computing

the distance between two chord sequences, we can also define the transition cost from

a chord to another as well as the cost of being in aligned states since, for example,

a transition from a G major chord to a C major chord is much more probable than

a transition from a G major to a A♯ minor in Western tonal harmony. Defining

such transition cost would not be possible or meaningful unless we use explicit chord

names. Experiments show that adding a transition cost to an alignment cost improves

performance of the proposed system.

In the next section, we review other related works on cover song finding.

6.2.1 Related Work

Pickens and Crawford proposed a system for polyphonic music retrieval using the har-

monic description[82]. It was also based on the assumption that the underlying har-

monies remain similar in variations on a piece of music. They chose 24 major/minor

lexical chords, but used the distribution of chords rather than selecting a single chord

to describe harmonic content. They then used this harmonic description to build a

Markov model, and computed the Kullback-Lieber (KL) measure to create a ranked

list between a query and the documents in a search collection. Even though they

used the symbolic data to evaluate their system, their approach was unique in that
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they used several important methods in combination such as harmonic description,

statistical Markov modeling, and transposition invariant modeling.

Gomez and Herrera used tonal descriptors to identify cover versions from the au-

dio [33]. They chose the Harmonic Pitch Class Profile (HPCP) as the feature set,

which is similar to the chromagram. From the tonal descriptors, they obtained two

types of similarity measures. First was a global similarity obtained by the correlation

coefficient between two averaged HPCP vectors. The other was the instantaneous

tonal similarity represented by diagonals in the similarity matrix from tonal descrip-

tors. They also used the dynamic time warping (DTW) algorithm to compute the

second measure. Using a transposed version of the HPCP and the DTW algorithm,

they could obtain the accuracy of 55% at a recall level of 30%.

Ellis proposed a cover song identification system using a beat-synchronous chroma

feature as a front end [25]. He first detects the beat of an input audio signal, and then

averages the chroma frames within a beat to create a beat-synchronous chromagram.

The main argument for using a beat-based representation is that variations in tempo

in different cover versions are normalized, in addition to computational efficiencies.

Given a beat-synchronous, normalized chromagram pair, he then performs cross-

correlation between the two matrices to find the matches. Using a small set of test

songs (15 cover song pairs), his best system successfully identified 10 out of 15 tracks.

Our system is similar to the aforementioned systems in that harmonic content is

used as the feature set and the DTW algorithm is applied to compute the distance

between a pair of songs. However, instead of using the raw PCP vectors, we extract

from them more efficient and musically meaningful chord sequence, and use them as

a front end to the DTW algorithm to compute the minimum alignment cost between

a pair of chord sequences. This not only decreases the computation time by far

but also allows the inclusion of a transition cost in computing the similarity matrix

required by the DTW algorithm. Adding the transition cost turns out to increase the

performance of the system.
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Figure 6.1: Overview of the coversong identification system.

6.2.2 Proposed System

Our system is composed of two main stages. First, we recognize musical chords at

the frame rate using hidden Markov models (HMMs), as explained in Chapter 3

and Chapter 4. We then take the chord sequences as a front end to the distance

computing algorithm, where we use the dynamic time warping (DTW) algorithm

to find the minimum alignment cost between the two chord sequences. Figure 6.1

illustrates the system architecture.

In order to use the DTW algorithm, we first need to obtain two-dimensional cost

matrix from the two inputs. We defined a cost of being in aligned states by computing
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the chord-to-chord distance from the HMM parameters obtained above. In addition,

we also defined a transition cost from the transition probability matrix in the HMM.

Therefore, a combined cost at time step k for input ak and bk is given by

d(ak, bk) = dS(ak, bk) + dT (ak, bk|ak−1, bk−1), (6.1)

where dS is a cost of being in aligned states, and dT is a transition cost from the

previous states to the current states. The total cost of alignment between the two

sequences a and b is then given by

D(a, b) =

K
∑

k=1

d(ak, bk). (6.2)

Transposition from one key to another is not rare in cover songs, and it may

cause a serious problem in computing the distance because chord-to-chord distance

becomes larger even though relative chord progression between the two sequences

might be alike. To avoid this problem, key identification must precede the distance

computation. Instead of designing a sophisticated key identification algorithm, we

simply estimated the key of a song to be the most frequent chord in the chord se-

quence, and transposed every song to a C major chord before sending it to a distance

computing algorithm.

6.2.3 Experimental Results

Test material

In order to evaluate the proposed system, our test material consisted of 19 cover

songs and five originals. Five original songs were Come Together by John Lennon,

Knockin’ on Heaven’s door by Bob Dylan, Can’t Explain by The Who, Eight Days

a Week by The Beatles, and Live and Let Die by Wings. Three to five cover songs

were included for each original and we could obtain only cover songs for the last set.

Cover songs vary from their original in tempo, duration, performance style (live or
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Table 6.1: Test Material for Coversong Identification
Title Original Cover

Come Together John Lennon
Aerosmith

Tina Turner
Tribute Band

Knockin’ on Heaven’s Door Bob Dylan
Eric Clapton

Guns ’N’ Roses

Can’t Explain The Who

The Who (live)
David Bowie

Scorpions
The Flammin Groovies

Eight Days a Week The Beatles
The Premier String Quartet

TheTribute (live)

Live and Let Die Wingsa
Guns’N’ Roses

Mig Ayesa (live)
Starlite Orchestra

aDoesn’t exist in the test collection because we couldn’t obtain the original.

studio recording), and/or instrumentation. Table 6.1 shows the test material in more

detail.

In addition to the original and cover songs, we added 19 non-cover songs to the

search collection to verify the robustness of the algorithm in the presence of non-

related, noisy items. Figure 6.2 displays the examples of the DTW for a cover-pair

(on the left) and for a non-cover pair (on the right). As shown, the similarity matrix of

a cover-pair is very symmetric and the lowest-cost path is almost diagonal, resulting in

low alignment cost. On the other hand, the cost matrix of a non-cover pair appears

very irregular and the minimum alignment path is also ziggy-zaggy, and therefore

alignment cost is very high. We normalized the minimum alignment cost by dividing

it by the sum length of the pair to compensate for the longer cover songs.

Evaluation

We evaluated the performance of our algorithm using a Cranfield-style recall-precision

test. Given a query/seed, its cover songs are marked as relevant items, and all the
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non-cover pair.
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others non-relevant. We then computed the distances between the query and all the

other songs, and a ranked list was generated for this query. We included the original

song in the query set as well since users may want to find its cover songs using the

original as a seed just as they want to find the original using its covers. The query

is then inserted into a search collection, and another relevant song is used as a query

to generate another ranked list. We repeated this process for the remaining relevant

items or cover songs, and the whole process is then repeated for all other query sets.

We performed a recall-precision test on each ranked list for each query, and obtained

an averaged 11-point interpolated recall-precision graph for 19 queries. This is shown

in Figure 6.3.

Results

In Figure 6.3, two different results were displayed over the baseline (random precision).

First of all, they both are way above the baseline, which is just the probability of

randomly choosing a relevant item to a query. Secondly, the solid line with squares

is the result obtained using a transition cost as well as a cost of being in aligned

states (chord-to-chord distance) when computing the distance between the two chord
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Table 6.2: Summary results of eight algorithms.
Measure Total number of Mean number of Mean of maxima MRR of first correctly

covers identified covers identified identified cover

1 D.P.W. Ellis (761) D.P.W. Ellis (2.31) D.P.W. Ellis (4.53) D.P.W. Ellis (0.49)
2 K. Lee [1] (365) K. Lee [1] (1.11) K. Lee [1] (2.50) K. Lee [1] (0.22)
3 K. Lee [2] (314) K. Lee [2] (0.95) K. Lee [2] (2.27) K. Lee [2] (0.22)
4 Sailer & Dressler Sailer & Dressler Sailer & Dressler Sailer & Dressler

(211) (0.64) (2.13) (0.21)
5 Lidy & Rauber Lidy & Rauber Lidy & Rauber Lidy & Rauber

(149) (0.45) (1.57) (0.12)
6 K. West [1] (117) K. West [1] (0.35) T. Pohle (1.50) K. West [1] (0.10)
7 T. Pohle (116) T. Pohle (0.35) K. West [1] (1.30) K. West [1] (0.10)
8 K. West [2] (102) K. West [2] (0.31) K. West [2] (1.23) T. Pohle (0.09)

sequences whereas a dashed line with X’s is the result of using just the cost of being

in aligned states. As can be seen, the precision rate is 5 to 7% higher in the case of

using both costs up to a recall rate of 0.4.

This is because even if two different chords have the same distance from a refer-

ence chord, if transition costs from the previous chords are different, then the chord

sequence with more similar harmonic progression will have the shorter distance, and

therefore will appear higher in a ranked list than the other.

For more complete and objective evaluation, we submitted our algorithm to Audio

Cover Song Identification competition in MIREX 2006.2 In the competition, test data

consisted of 30 queries with each query having 11 different cover versions including

themselves, resulting in 30×11 = 330 songs. In addition, 670 non-relevant songs were

added to a collection to make the task more challenging. The collection includes a

wide range of music from classical to hard rock.

Eight algorithms including these two by the author were evaluated. Four measures

were used to evaluate the performance of the algorithms — (1) total number of cover

songs identified; (2) mean number of cover songs identified; (3) mean of maxima; and

(4) Mean reciprocal rank (MRR) of first correctly identified cover. Table 6.2 shows

the results using these measures.

As shown in Table 6.2, the two algorithms described in this paper are ranked at 2nd

and 3rd places, respectively, using all four measures. Raw results reveal that some

2http://www.music-ir.org/mirex2006/index.php/Audio Cover Song
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songs are difficult to identify for all systems while other songs are system-specific.

In addition, the top four algorithms were specifically designed only for cover song

identification whereas the bottom four were originally used in the similarity finding

task as well. This proves that the two tasks are quite different from each other.

However, although we used our system only to recognize the cover songs, we

believe it can also be used to find musical similarity since cover songs are extreme

examples of similar music. Therefore, those items having small distance to a query

by the coversong identification system, even if they are not the cover versions, might

be evaluated similar to the query by human subjects, especially harmonic content is

one of key criteria when evaluating musical similarity.

6.3 Structural Analysis

As mentioned in Section 1.2.2, in Western tonal music, once we know harmonic con-

tent — musical key and chord progression — of a piece over time, it is possible to

perform higher-level structural analysis from which we can define themes, phrases or

forms. Although other musical properties like melody or rhythm are relevant, har-

monic progression has the closest relationships with the musical structure. Finding

structural boundaries automatically, or so-called structural music segmentation, can

be very useful when, for example, shopping for items in large archives as in online

music stores or navigating through a large collection of musical audio. It saves a great

amount of time by allowing the users to skip to the next section without having to

listen to the whole song from the beginning to the end.

Music segmentation is directly related to two other applications: music clustering

and music summarization. Music clustering is referred to as grouping similar seg-

ments into a cluster. Then we can summarize a musical piece by finding the most

repeating cluster, which in general is the most representative part and thus is likely

to be remembered. Music summarization is also called music thumbnailing, where

thumbnailing is a term used in the visual domain to describe a process to create

a scaled-down image from the larger original, while preserving the overall content.

For example, most popular music in general, although it may vary in detail, has a
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structure as follows:

Intro--Verse1--Chorus--Verse2--Chorus--Bridge--Chorus--Outro

In such a case, the goal of music segmentation is to find segmental boundaries

between the two contiguous segments. In the above example, there are eight segments

in total. Clustering is used to group similar segments. If we don’t distinguish the

lyrics in verses, Verse1 and Verse2 are grouped as the same cluster, and so are the

three Chorus segments. Therefore, we have five distinct clusters. Finally, we can

summarize the above example by finding the most repetitive segment, which in this

case is Chorus. Or we can add Verse1 or Verse2 as well to generate a bit longer

thumbnail like Verse1–Chorus.

In the following section, we review several systems for structural analysis of tonal

music in more detail.

6.3.1 Related Work

Analyzing the musical structure automatically from audio has recently attracted a

number of researchers both from the academy and from the industries.

Foote proposed a system for automatic music segmentation using a measure of

audio novelty based on the self-similarity matrix [27]. In his work, Foote first param-

eterized the raw audio using standard spectral analysis, and computed a 2-dimensional

self-similarity matrix S, where an element S(i, j) represents a similarity measure be-

tween the parameterized feature frame fi and fj. He used the cosine distance as a

similarity measure and thus the matrix S is symmetric. He computed the distance

between all pairs of frames. Figure 6.4 shows an example of a self-similarity matrix.

By visualizing a self-similarity matrix, he argues that not only local performance

details are visible, as displayed as squares along the diagonal, but also the global

structure such as repetitions can be found as off-diagonal lines. He then performed

a kernel correlation on the similarity matrix S to compute a 1-dimensional novelty

score, where peaks indicate significant changes in music and therefore denote potential

segment boundaries. He later proposed other algorithms based on the similarity
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Figure 6.4: Self-similarity matrix of the first seconds from Bach’s Prelude No. 1 in
C major performed by Gould (from Foote [28]).

matrix to automatically find musical structures using MFCCs [28]. Foote and Cooper

also used a self-similarity matrix to cluster the segments and then summarize music

[29, 19, 20].

Although their work made significant contributions to visualizing the musical

structure and to finding the segments, it is entirely dependent on the distance be-

tween individual low-level feature frames and thus fails to provide the relationships

between the musical structure and high-level musical attributes such as melody or

harmony, which is highly correlated with the structure.

Aucouturier and Sandler used a three-state HMM for music segmentation, where

each state corresponds to {silence}, {voice + accordion + accompaniment} and

{accordion + accompaniment} [1]. They trained the model on the sequence of fea-

ture vectors using the classic Baum-Welch algorithm to estimate the states’ output

distributions and state-transition probabilities. They then used Viterbi decoding to
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find the most probable state path, which also unveils the musical structure.

Even though they use a statistical model to learn from the actual data the struc-

ture of music, it is based on the assumption that the “texture” or “polyphonic timbre”

represented by low-level features of one segment are different from those of other seg-

ments, which may not be always true. For example, in music with very homogeneous

instrumentation, such as piano solo, it is not likely that each section reveals distinct

texture. Furthermore, they also assumed the fixed number of states or clusters, which

is unknown.

Levy and Sandler addressed the problems of such unsupervised learning model

and proposed a semi-supervised approach to segmentation [63]. They argue a simple

division of a piece into two regions by a user — therefore called semi -supervising —

helps initialize the states of the HMMs.

Goodwin and Laroche proposed a dynamic programming (DP) approach to audio

segmentation and speech/music discrimination [35]. To this end, they first performed

linear discriminant analysis (LDA) to condition feature space in a way that the classes

— speech and music classes in their application — are maximally separable from each

other, and apply dynamic programming to identify data clusters. The strength in

their approach is that no prior information as to the number of clusters or states is

required: DP finds it automatically as it computes the minimum cost path in feature

space as shown in Figure 6.5.

All the aforementioned systems for structural analysis of music, whether they

use a novelty measure between feature frames or a machine learning model to find

the statistical properties within the clusters, depend on the (dis)similarity of low-level

features, which barely have anything to do with more musically meaningful properties.

In the next section, we present a novel approach to finding structural boundaries

in tonal music based on the sequence of chords and their time boundaries.
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Figure 6.5: In dynamic programming, clustering in feature-space is done by finding
the optimal state-path based on a transition cost and a local cost. The dotted diagonal
is the nominal feature path. A candidate cluster path is shown in solid line (from
Goodwin and Laroche [35]).

6.3.2 Proposed System

In tonal music, the tonality of a piece is very closely related with the cadence. Grove

Music Online3 defines cadence as follows:

Cadence: The conclusion to a phrase, movement or piece based on a recognizable

melodic formula, harmonic progression or dissonance resolution; the formula

on which such a conclusion is based. The cadence is the most effective way of

establishing or affirming the tonality of an entire work or the smallest section

thereof; it may be said to contain the essence of the melodic (including rhythmic)

and harmonic movement, hence of the musical language, that characterizes the

style to which it belongs.

As is defined above, if we can identify the cadences in tonal music, we can also

recognize the phrase or section boundaries since a cadence concludes a musical seg-

ment such as a phrase or movement. Furthermore, among many musical attributes,

analyzing harmonic progression is the most definitive and effective way of identifying

such cadences in tonal music. Therefore, we propose a system for finding structural

3http://www.grovemusic.com
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boundaries in tonal music by recognizing the cadences from the key and chord pro-

gression. Figure 6.6 shows the overall procedure of the proposed system using the

HMMs described in Chapter 3 and in Chapter 4. Each step is explained in more

detail as follows:

1) Feature extraction: Tonal centroid feature is extracted from audio as de-

scribed in Section 3.2.3.

2) Key & Chord recognition: Using key-dependent HMMs described in Section

4.2, key and the chord sequence with time boundaries are estimated from the

feature vectors.

3) Harmonic-Beat detection: Most dominant length of the chord duration is

computed by performing an autocorrelation analysis on the chord sequence.

Because we are not interested in how but when the chord changes, we convert

the chord sequence to an impulse train and the autocorrelation analysis is done

on this impulse train. This process is explained in more detail in Section 6.3.3.

Computation of harmonic beat is important in computing the tonal tension

curve because it is impossible to define the length of cadential formulas without

knowing the duration.

4) Tonal tension curve generation: Based on the harmonic-beat and key in-

formation, one or more cadential formulas are first created. We can use, for

example, only a perfect authentic cadence (V-I), or a combination of a perfect

authentic cadence and a half cadence such as IV-V. Once we have defined a ca-

dential formula, we slide it through the estimated chord sequence and compute

the distance between the cadential formula and the chord sequence at the frame

level. For instance, assume that the estimated key was C major. Then if the

harmonic beat was 10-frames long and if we used a V-I cadence, then we have

a 20-frame long cadential formula whose first 10 frames are in G major chord

and the last 10 frames are in C major chord. Therefore, if there are phrases

that end with a V-I cadence, we’ll have very low distance at those locations,

indicating the potential phrase boundaries.
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Figure 6.6: The overview of structural segmentation system
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5) Cadence recognition: Once we compute the tonal tension curve, we can

recognize potential cadences by finding the local minima in the curve. We can

do this either by setting some threshold value heuristically or by finding the

local valleys significantly lower than the neighboring points.

6) Boundary selection: Since step 5 can give false cadences as well, we need a

pruning technique to select only true cadences. We prune such false cadences

by finding the most dominant segment length as we did to detect the harmonic

beat in step 3. This pruning is based on the assumption that most tonal music,

particularly most pop music, has a fairly regular structure, and therefore most

segments or phrases in a piece of music have a length that are related to the

length of such a dominant, fundamental segment. Therefore, once we figure out

the length of the most dominant segment, we can get rid of false boundaries

using a simple correlation analysis.

6.3.3 Experimental Results

Segmentation

Figure 6.7 shows the frame-level chord recognition results obtained using key-dependent

HMMs. The model correctly estimated the key, which is the key of C major.

The frame-level recognition accuracy was about 88.06%. We can observe in Figure

6.7 that the chord changes at a very regular rate most of the times. We can find

the length of the most dominant chord duration, or harmonic beat, using a simple

autocorrelation analysis. In doing so, we first generate an impulse train that has ones

whenever chord changes and zeros otherwise. This is because we are not interested

in how but when the chord changes. Then we compute the autocorrelation of this

impulse train, which is shown in Figure 6.8.

We can see in Figure 6.8 that the peaks can be found at about every 11 frames.

We can choose the first significant peak as the fundamental period of the harmonic

beat. The next step is to generate a cadential formula. Among several cadential

formulas, we use the perfect cadence or V-I movement since it is the most frequently

used cadence in tonal music. In addition, we also use the half-cadence in IV-V motion
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Figure 6.7: Frame-level chord recognition results (The Beatles’ “No Reply”).
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as an additional cadential formula since it is also frequently used, especially in rock

music.

We then compute the Euclidean distance between the pre-defined cadential for-

mula and the chord sequence, for each cadential formula, and multiply them to obtain

a combined tonal tension curve. In computing the distance, we use a lookup table of

24×24 matrix which contains every possible chord-to-chord distance for 24 chords–12

major and 12 minor chords. This table is pre-computed using the observation distri-

bution parameters learned from the data. Figure 6.9 shows a 24 × 24 chord distance

matrix.

Using such a matrix to compute the tonal tension curve has several advantages.

First of all, it is meaningless to use the chord names in computing the distance
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because the distance in the chord name space does not necessarily correspond to the

distance between the chords in a perceptual or musical sense. We may use a circle of

fifths to put related chords to close to each other, but computing the distance would

still be completely heuristic. However, using the observation probability distribution

of a feature vector such as tonal centroid, which is learned from the data, we can

appropriately represent the chords in the feature space, and therefore can estimate

the more meaningful distance between the chords.

A second advantage of this approach is that related chords such as tonic-dominant

or relative major-minor are close to each other in the feature space, resulting in

small distance, as shown in Figure 6.9 by off-diagonal lines in lighter colors. This is

important because even when the chord recognition is incorrect, it is highly likely that

the mis-recognized chord is related and thus the actual distance would still remain

small. This adds more robustness to the segmentation algorithm.

Lastly, since all possible chord-to-chord distance is pre-computed, it is computa-

tionally very efficient using a table lookup method.

Using the distance matrix described above, we compute the tonal tension curve

by sliding the cadential formula through the chord sequence, computing the distance

at the frame rate. When we encounter a chord transition same as or similar to

one defined in cadential formulas, we have very low tension or dissonance resolution,

indicating a potential phrase boundary. Figure 6.10 shows the tonal tension curve

overlaid with the chord recognition results.

From Figure 6.10, we observe several notches where tonal tension is minimal,

indicating the potential cadences or boundaries. As mentioned above, however, it is

possible that some of them are false cadences, and therefore we need to select only

true ones by pruning. We prune false cadences by finding the most significant segment

length, in a manner similar to how we find the harmonic beat. Once we find the most

dominant segment length, we generate a periodic impulse train whose fundamental

period is equal to the dominant segment length. We then slide this impulse train

through the tonal tension curve and compute the inner product. The final structural

boundaries are defined where the inner product is the smallest, namely the total

tonal tension is minimal. Estimated boundaries shown in Figure 6.11 are close to
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Reply”).
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Figure 6.11: Final segmentation result. Estimated boundaries are shown in vertical
solid lines and true boundaries in dashed-dot lines (The Beatles’ “No Reply”).

true boundaries, except that there is another estimated boundary around 80 seconds

in the middle of the bridge section. We can eliminate this in the clustering stage, as

will be described shortly.

Clustering

Once we have found the structural boundaries, we can group the similar segments

into a cluster by computing the distance between a pair of segments for all possible

pairs. For example, we have nine segments in total in the above example. Since they

are of the same length, we can directly compute the frame-level distance between

a segment pair in the feature using the chord sequence. Figure 6.12 shows a 9×9

distance matrix of all segment pairs.

As is shown in Figure 6.12, the similar segments have smaller distance to each
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Figure 6.12: Distance matrix between segment pairs (The Beatles’ “No Reply”).

other and appear as lighter color in the distance matrix. We then normalize the

matrix and use a threshold value to determine if a segment pair is close enough

to be grouped as a cluster. The final clustering result is as follows: Cluster A:

{1,3,7}; Cluster B: {2,4,8}; Cluster C: {5,6}; Cluster D: {9}. If there are contiguous

segments in the same cluster, such as segments 5 and 6 in the example, it implies a

continuously repeating segment and thus we can group them into one segment. This

will remove an extra boundary in Figure 6.11 and will result in segmentation closer

to true segmentation,

Music Summarization

As has been described earlier, the most representative part in an entire piece of music

is often the most frequently repeating part, such as a chorus section. Therefore, once

we have found out the clustering information, we can easily summarize music simply

by finding the cluster with the largest number of segments, because the segments in

a cluster are similar to each other, or repetitive. So, in the above example, we can

choose either a segment in Cluster A or one in Cluster B, or both since the number

of repetitions is the same. Figure 6.13 illustrates the overall process of structural
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analysis.

6.4 Miscellaneous Applications

The applications described in the previous sections — cover song identification and

music segmentation/clustering/summarization — use the chord sequences as a front

end to the systems to perform these tasks. However, a sequence of chords and cor-

responding boundaries by themselves, although not 100% correct, provide invaluable

information to perform harmonic analysis of music. In addition, with the combination

of musical key, which is estimated using key-dependent models as explained in Chap-

ter 4, one can derive functional harmony in which each chord has a specific function

with regard to its tonal center such as tonic, dominant or subdominant and so on.

This will help many non-musicians or students without any formal music education

understand the harmonic structure of music.

Chords can also be used in melody extraction to reduce the search space when

estimating the pitch. This is because melody and chord are very closely related in

tonal music, and therefore a melody tone is usually one of the chord tones, assuming

enharmonic and octave equivalence. For example, if we know, at a certain time, that

the current chord is a C major triad, then we can have more confidence in pitch

classes such as C, E or G. Such melody-chord relationships can also be learned from

the data to build a statistical model.
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In applications like music recommendation or playlist generation, a mood is one

of important criteria to find similarity or categorize in a collection of music. Mood is

a complex state of mind and in music, several attributes such as melody, key, tempo

or timbre contribute to defining the mood. We can infer simple relations like (fast

tempo, major key ↔ happy) or (slow tempo, minor key ↔ sad), for instance. We

believe harmonic progression also contributes significantly to building the mood in

music. For example, even when a piece is in a major key, a frequent usage of minor

chords can make it sound sad. The similar argument holds for a piece with a number

of major chords but in a minor key. Therefore, knowing the harmonic content and

its progression over time will help classify the mood in tonal music. Mood-specific

HMMs, where each HMM is trained on a specific mood as in key-dependent or genre-

specific HMMs, showed promising results in the Audio Music Mood Classification

competition in MIREX 2007.4

Audio mixing is another interesting and practical application where a chord se-

quence is very useful. When mixing several or more clips from different musical

sources, the process can’t be arbitrary: it is very important to preserve consistency

through a mixing process and placing the right chord at the right time is one of crit-

ical requirements to maintain such consistency. Furthermore, harmonic progression

tells the degree of closure or cadence via specific sequence of chord functions such

as dominant-tonic. Therefore, if we know the chord progression characteristic in the

clips to be mixed, it is possible to edit and arrange them in a harmonically pleasing

way.

6.5 Summary

In this chapter, we have demonstrated that a sequence of chords and chord time

boundaries provide useful information in applications such as cover song identification

and structural analysis.

In cover song finding, we use a pair of one-dimensional chord sequence as input

4http://www.music-ir.org/mirex2007/index.php/Audio Music Mood
Classification
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to the dynamic time warping algorithm to score an alignment between the two songs

abstracted through chord sequences. The rationale behind this idea was that har-

monic content would remain largely intact under various acoustical changes found

in different versions of cover songs. In computing the total cost, we not only used

optimal state alignment but also a transition cost from chord to chord to reflect the

theory of harmonic progression in Western tonal music. This increased the precision

of the system evaluated using a recall-precision test. The evaluations performed by

the author and by MIREX 2006 prove that the chord sequence is an efficient and

robust feature in cover song identification

We have presented a novel approach to structural analysis by recognizing cadences

in chord sequences. The hypothesis was, in tonal music, that a section such as a

phrase, chorus or verse ends on some sort of cadential movement in general. Therefore,

finding the cadences leads to finding the phrase boundaries. In doing so, we first detect

the harmonic beat or the rate at which the chord is most likely to change, and define

the cadential templates based on the key. We then slide these cadential templates

through the recognized chord sequence and compute the distance, resulting in the

tonal tension curve. When there are chord transitions the same as or similar to one

defined in cadential templates, tonal tension will be low, which indicates potential

phrase boundaries. False boundaries are removed using the dominant phrase length

to give final segmentation results.

After segmentation, we compute the distance between each pair of segments and

group those which are close to each other into a cluster. Finally, we summarize music

by selecting the segment(s) that are most often repeated.

We have also described several potential applications, including analysis of func-

tional harmony, melody extraction, mood classification and audio mixing, where har-

monic content can be directly or indirectly used.



Chapter 7

Conclusions and Future Directions

7.1 Summary of Contributions

In this dissertation, we have presented a unified system for chord transcription and

key extraction from audio. The main contribution of this work is its presentation of

a framework for acquiring a large amount of training data, via a nearly labor-free

process, that enables us to use a powerful supervised learning algorithm, leading to

state-of-the-art performance in both musical tasks.

The key idea in this approach is using symbolic music data. Symbolic music files

such as MIDI files contain noise-free information about pitch and duration of the

notes and therefore it is much easier and more robust to perform harmony analysis to

obtain the ground-truth data. In parallel, we synthesize the symbolic files to create

audio from which we extract the feature vectors. The acoustic feature vectors and the

chord labels are then in perfect alignment and we can use them to train the models

in a supervised way.

The labeled training data allow us to directly estimate the model parameters;

that is, we avoid the process of model initialization which is critical to accurately

estimate the parameters in unsupervised learning. We also avoid incorporating any

heuristics or musical knowledge that are required in many other key-finding or chord

recognition systems for parameter estimation; we just give the data and the models

will learn all the parameters.
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We chose a first-order hidden Markov model for chord recognition and key es-

timation because of its abilities to describe temporal dynamics in observations, via

transition probabilities, which are very important in music in general, and in chord

progression in particular. The hidden state in the HMM represents a chord and is

modeled by a single, multivariate Gaussian (12-dimensional for chroma feature or

6-dimensional for tonal centroid feature). We defined 36 states or chords in an HMM,

including major, minor and diminished chords for each pitch class in a chromatic

scale. We treated seventh chords as their corresponding root triads and disregarded

augmented chords since they very rarely appear in Western tonal music. We allowed

all possible transitions from chord to chord, resulting in an ergodic HMM.

As feature vectors, we compared the conventional 12-dimensional chroma vectors

to the 6-dimensional tonal centroid vector. Chroma has been successfully used by

others in chord recognition and in key finding. Tonal centroid is computed by a linear

transformation from the chroma vector, and puts emphasis on important interval

relations such as fifths, major and minor thirds. The experiments showed that the

tonal centroid feature significantly outperformed the chroma feature.

After training the model with synthesized audio, we evaluated our system using

various kinds of musical audio and demonstrated that the models trained just on

synthesized audio perform very well on real recordings as well, in both musical tasks.

We also compared our data-driven model with a state-of-the-art knowledge-based

model to show that our model performs better than or comparable to the knowledge-

based model.

A large training data set enabled us to build richer models, and we extended our

HMM to be key-dependent as described in Section 4.2. The rational behind this idea

was a close relationship between key and chord in tonal music. If we know what

key a piece is in, recognizing chords is easier. We therefore built 24 key-dependent

HMMs, one for each key, using key information derived from the symbolic music files.

Given an acoustic input, our system performed feature analysis and a sequence of

observation became an input to the key-dependent HMMs. Using a Viterbi decoder,

we estimated the key by selecting the model with the maximum likelihood; at the

same time, we recognized frame-level chord sequence because it is the same as the
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optimal state path in a selected key model. Experiments on real acoustic recordings

showed that a key-dependent model not only estimated the key of an input, but

also increased the chord recognition accuracy, yielding very promising results on both

musical tasks.

Based on the fact that each musical genre has chord progression characteristics of

its own, we also extended our basic model to build genre-specific models in Section

4.3. Although genre information is not explicitly encoded in symbolic music files,

it is not difficult to find symbolic music files categorized by genres. We therefore

built genre-specific HMMs, similar to key-dependent HMMs, resulting in improved

performance with much simpler models than a more complex, genre-independent

model. Experimental results showed that the performance is best when the model

and the unknown input are of the same kind, which supports our hypothesis on the

need for building genre-specific models. Furthermore, a selected genre model using

a maximum likelihood often gave a correct genre, suggesting the possibility of using

the model as a genre classifier.

We also introduced a hybrid model for chord recognition in Chapter 5. In the

hybrid model, we used powerful discriminative classifiers to compute the posterior

probabilities given the observation feature vector. To this end, we used support vector

machines (SVMs) which are widely used successfully in many other classification

problems, including several music applications. Experiments showed the proposed

discriminative approach using SVMs achieved the better performance when the same

amount of data (1/15 of the full set) is used to train both SVMs and Gaussian models.

Another principal contribution of this dissertation is the demonstration that a

harmonic description of music can be a compact, robust mid-level representation in

several potential applications as described in Chapter 6. These applications are very

important in music information retrieval because they allow efficient and effective

methods in search/retrieval. One such application is finding cover versions of an orig-

inal using the chord sequence as a front end to the system, as explained in Section

6.2. In order to identity cover songs, which can be acoustically very different from

the original because of changes in instrumentation, tempo, key and/or dynamics, we

need a robust representation that must remain largely invariant under such acoustical
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transformations. Our hypothesis was that chord sequence is a robust mid-level repre-

sentation that undergoes only minor changes under such musical variations. We then

computed the optimal alignment of the original and cover song chord sequences using

dynamic time warping algorithm. The results showed that the chord sequence can

be successfully used to identify cover songs, proving our hypothesis. We also believe

that it is usable in finding musical similarity as well.

Harmonic description of tonal music, as represented by key and chords, is a fun-

damental attribute for music analysis as described in a number of treatises. Music

analysis often leads to finding a structure —i.e., searching for smaller building blocks

which all together form a whole piece. Therefore, we can use key and chords to

perform structural analysis of music, which leads to three closely related practical

applications, namely music segmentation, clustering and summarization.

In music segmentation, we tried to identify structural boundaries in musical audio.

We presented a novel approach to this problem in Section 6.3 by recognizing cadences

based on the fact that, in tonal music, a section usually ends with a cadence, which

is a specific harmonic motion (e.g., V-I movement in perfect cadence) characterized

by its key. To this end, we first extracted key and frame-level chords and defined

cadential templates based on the estimated key. We then located the positions where

such cadential movements are found by computing the tonal tension curve using the

pre-defined cadential templates and chord sequence. The valleys in the tonal tension

curve indicated potential cadences, namely structural boundaries. We then used a

pruning technique to remove false boundaries by finding the most dominant phrase

length.

Some sections in tonal music, particularly in popular music, share the same har-

monic content. For instance, the harmonic content of the first and the second verse

or that of chorus sections seldom changes. Therefore, we can group similar segments

into a cluster by finding harmonically similar segments. We computed segment-to-

segment distances at the chord level and grouped segments that are close enough to

each other to find a cluster. This clustering is useful in identifying repeating segments

such as chorus or verse, which also leads to another immediate application of music

summarization. Often the times, the most repeating section in music is also the most
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remembered or representative section. Therefore, we could find a summary of mu-

sic, sometimes called an audio thumbnail, by recognizing the most repeating section

based on clustering information.

We also described other potential applications where harmonic descriptions are

valuable such as melody extraction, music recommendation, playlist generation, mood

classification or audio mixing.

We believe that the proposed system for chord recognition and key extraction

achieves state-of-the-art performance in both musical tasks. Although the proposed

hidden Markov models could successfully learn the first-order (i.e., from the current

to the next) chord transition probability distributions from the data, most tonal music

employs higher-order chord progressions, which leads to a direction for further work.

7.2 Higher-Order HMM

7.2.1 Introduction

The HMMs described in Chapter 3 and in Chapter 4 are based on the first-order

Markov process; that is, the current state qt (chord) is only dependent on the prede-

cessor state qt−1 (chord), namely

P (qt = Sj |qt−1 = Si, qt−2 = Sk, · · · ) = P (qt = Sj|qt−1 = Si). (7.1)

Therefore, given the predecessor state qt−1 (chord), knowing the previous state(s)

qt−2, qt−3, · · · (chords) has no effect in predicting the current state qt (chord). How-

ever, this first-order property does not hold in music or in chord progression in partic-

ular. For example, a popular 12-bar blues1 has a chord progression of {I-I-I-I-IV-IV-

I-I-V-V(IV)-I-I} [43]. Such higher-order progression is also common in tonal music

in general. For instance, {ii-V-I} or {iv-V-i} movement are most common cadential

formulas [46].

1Although it is originated in blues music, the 12-bar blues progression is one of the most
widely used chord progressions in popular music in general.
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Therefore, if we know two or more preceding chords in tonal music, it is very likely

that we can decide which chord to follow with more confidence. In fact, high-order

HMMs perform better and thus have been successfully used in Natural Language

Processing (NLP) [65, 22, 10, 34]. It is straightforward to solve the three basic

problems of a high-order HMM2 based on the first-order HMM. Interested readers

are encouraged to read du Preez [23].

When applying high-order HMMs to chord recognition, however, we encounter a

few problems. First, we can’t recognize chords at the frame-rate any more because

high-order chord transitions are not likely to happen at the frame rate; in other words,

it is very unlikely that the chord changes at one frame and changes again at the very

next frame. This in turn means that we can never model high-order chord transition

characteristics like {ii-V-I}, for example, at the frame-level. Therefore, in order to

use higher-order HMMs, we need to perform higher-level segmentation analysis than

at the frame-level.

One possible solution to this problem is to use beat-synchronous analysis as

done by Bello and Pickens in chord recognition [8]. Although they didn’t do beat-

synchronous analysis for modeling high-order chord progressions, we may be able to

learn high-order chord transitions at the beat-level. In order to be more precise, how-

ever, we need to find out the harmonic beat rather than the rhythmic beat since the

two can be different in general. We proposed an algorithm to compute the harmonic

beat in Section 6.3.2 which can be used for harmonic beat-level analysis.

Another problem in high-order modeling is data sparsity. Because we increase the

order of state transitions, the possible number of transitions increases exponentially,

assuming an ergodic model3 Therefore, if we had 36 × 36 = 1, 296 possible chord-to-

chord transitions with 36 different chords, in a 2nd-order HMM, we have 36×36×36 =

46, 656 possible transitions. This means we need even more data to appropriately fill

this 3-dimensional matrix; in fact, even with a lot more data, most elements in the

matrix will be zero. This leads to a serious overfitting problem since the model

can never generalize to unseen input sequences. And yet this is in the case of only

2Refer to Section A.4 in Appendix A
3In an ergodic model, every state-to-state transition is possible.
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2nd-order model.

This sparse-data problem becomes even more serious when we analyze audio at

a higher level than at the frame-level such as beat-synchronous level, because the

number of training samples becomes much less. To make this more concrete, we

could train the 2nd-order model to learn the 2nd-order transition probabilities using

the beat-level training data which contain more than 223,000 samples. The result

was less than 20% of the matrix elements were nonzero; in other words, more than

80% of all possible chord-to-chord-to-chord transitions never happened!

The data sparsity is a central issue in language modeling as well. Researchers

therefore proposed several smoothing algorithms to alleviate the sparsity problem

[41, 42, 18, 45]. In smoothing algorithms, some probability is taken away from some

occurrences because occurrences which appear only one time are usually greatly over-

estimated [34]. By taking some probability from some words and redistributing it to

other words, zero probabilities can be avoided.

We believe we can apply these smoothing techniques widely used in language

modeling to our application although the language context and the musical context

are different from each other.

7.2.2 Preliminary Results and Discussions

We experimented with the 2nd-order HMM which was trained on beat-synchronous

data. For training data, we didn’t perform beat-analysis on audio because Temper-

ley’s Melisma Music Analyzer also gives beat information [95]. For test audio. we

used the beat-detection algorithm by Ellis [26]. The feature frames in a beat seg-

ment was averaged to give one feature vector per beat. Table 7.1 shows the chord

recognition results with the song No Reply by the Beatles.

As shown in Table 7.1, the accuracy is highest with the 1st-order HMM trained on

the frame-level data, followed by the 1st-order HMM trained on the beat-synchronous

data. The proposed 2nd-order model trained on the beat-level data performed worse

than the 1st-order models. One thing that is noticeable is a significant performance

increase in the 2nd-order HMM when the data is smoothed (from 67% to 84%). This
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Table 7.1: Test results on 2nd-order HMM (% correct)
Analysis level

Model Frame Beat-synchronous
1st-order 86.45 84.49

2nd-order (w/o smoothing) N/A 66.99
2nd-order (w/ smoothing) N/A 83.51

supports the idea that the smoothing techniques for language modeling are applicable

to music application.

There are a few possible explanations why the 2nd-order model performs no better

than the 1st-order models. First, the beat-analysis algorithm must be consistent

between the training and the test data, which isn’t the case in our experiments.

While beat information in the training data is directly extracted from the symbolic

data, not from the synthesized audio, we detect the beat from audio for the test data.

We plan to perform beat-analysis on the synthesize training audio using the same

beat-detection algorithm used for the test data.

Secondly, we may need more data to estimate the model parameters more accu-

rately. As mentioned earlier, the number of parameters to be estimated grows expo-

nentially as the order of Markov process in HMMs increases, although a smoothing

technique helps avoid overfitting problems.

Finally, we are not sure of the applicability of the smoothing techniques used in

language modeling to music application, especially in chord recognition. Although

the fundamental idea in smoothing —i.e. redistributing the probabilities from rare

occurrences to others to avoid zero probabilities — may also hold in chord progression

modeling, the word space is far bigger than the chord space (thousands of words vs.

36 chords), and thus the same smoothing techniques may not be appropriate. This

may require modifying the smoothing techniques to make them more suitable for

chord progression modeling.
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7.3 Musical Expectation

7.3.1 Introduction

As has been pointed out several times in this dissertation, harmonic description of

tonal music, represented by key and chord names (and their onset/offset time), is a

powerful attribute to describe musical semantics (e.g., expectation, emotion/mood,

storytelling, etc.). In particular, as we listen to music, we constantly build some

sort of expectations — consciously or unconsciously — and our emotions, to a great

degree, are governed by their realizations or violations.

Music listening involves continuous interactions between the stimulus, namely the

listener’s perception, and mental processes. In doing so, the listener builds “tenden-

cies” to respond to the musical stimuli. According to Meyer,

. . . The tendency to respond becomes more conscious where in-

hibition of some sort is present, when the normal course of the

reaction pattern is disturbed or its final completion is inhibited.

Such conscious and self-conscious tendencies are often thought of

and referred to as “expectations” [66].

The musical expectations can be formed by melody, harmony, rhythm or by a

combination of such attributes. However, in Western tonal music, expectations are

particularly pronounced in the use of harmony as the most pervasive forms of music

employ a small set of chords in highly constrained ways [9]. Bharucha and Stoeckig

explored the cognitive processes underlying musical expectation by reaction time in

a priming paradigm, and observed that a harmonic context primes the processing of

chords related to the context, relative to chords unrelated to the context. They also

proposed a spreading activation network model of the representation and processing

of harmony, and proved the hypotheses using a set of experiments for chord priming.

Povel also investigated on musical expectations evoked by a sequence of chords in

exploring the elementary harmonic force present in tonal music, based on the similar

experiments done by Bharucha and Stoeckig [85].



CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 122

7.3.2 Modeling Musical Expectation

These close relationships between harmony and musical expectations found in the

literature suggest that we can induce the level and the type of expectations from

chord progression or a sequence of chords. For example, if our chord recognition

system tells a chord sequence like {C-d-G}, then we can say there is a very strong

expectation that a C major chord will follow. If a C major chord follows, as expected,

then our expectation is realized. If the next chord is instead a B♭ major for example,

however, then we can say that our expectation is violated. This concept of implication-

realization model in the context of melody expectation was studied by Narmour

[70, 71].

Leistikow proposed a probabilistic framework to model musical expectations [62].

In his thesis, he presented a dynamic Bayesian inference engine to model an array of

cognitive tasks performed by a listener when presented with musical sounds. He used

a set of musical rules learned from musical corpora to predict upcoming notes and

measured the surprise associated with the observed realizations.

As Leistikow suggested that his expectation models can be seamlessly integrated

into probabilistic models that use audio signal features as input, we hope in the fu-

ture to develop such a framework for modeling musical expectations from audio using

our model to provide higher-level symbolic attributes — musical key and chords —

extracted from audio. In addition, we can build a hierarchical model such as one de-

scribed by Leistikow in which several musical attributes are mutually informative [62].

Although there are many more variables defined in his model, including meter, beat,

duration, bar, harmony, and the observation is a (symbolic) musical note, we can

build a similar hierarchical model with a reduced set of variables — that is, key, har-

mony and beat — and with the chroma or tonal centroid feature as observations. Our

system doesn’t have a beat-detection algorithm, but we believe it is needed because

beat information is directly or indirectly related to many other musical properties.

Once we build such a hierarchical model, the evaluation of expectation realiza-

tion/violation can be performed following these steps:

1. Estimate the prior distributions and the transition distributions from the labeled



CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 123

training data as we do in our proposed system (assuming we perform beat-

synchronous analysis).

2. Perform chord recognition and key extraction given an input audio. We may also

consider local key-finding to examine more localized key-harmony relationships.

3. Compute a one-step observation prediction given as

P (Xi+1|x1:i) =
∑

KCBi,KCBi+1

P (KCBi, KCBi+1, Xi+1|x1:i), (7.2)

where Ki, Ci, Bi, Xi denote key, chord, beat and observation at time i.

4. Compute the violation or surprisal of that observation by evaluating

Surprisal(xi+1|xi) = − log2 P (Xi+1 = xi+1|x1:i). (7.3)

We can compute the quantities in Step 3 and 4 using the directed acyclic graph

(DAG) for a hierarchical model proposed by Leistikow [62].

7.4 Final Remarks

It is our hope that the framework for extracting harmonic content from musical audio

will make a significant contribution to the music information retrieval community in

general and to those who try to apply machine learning techniques to solve music-

related problems in particular. With our initial phase of research concluded, we wish

to continue to work on more difficult, but even more interesting problems, such as

those suggested in the previous sections, in the future.



Appendix A

Hidden Markov Model 1

A.1 Discrete Markov Process

Figure A.1 illustrates a Markov chain with four states that may be described at any

time as being in one of N distinct states, S1, S2, · · · , SN (N = 4 in this example). If

we denote the time instants associated with state changes as t = 1, 2, · · · , and the

actual state at time t as qt, we can fully describe the behavior of such system by

specifying the current state at time t and the previous states at time t− 1, t− 2, · · · .

For the special case of a discrete, first-order, Markov chain, this probabilistic

description simplifies to just the current and the preceding state, i.e.,

P (qt = Sj |qt−1 = Si, qt−2 = Sk, · · · ) = P (qt = Sj|qt−1 = Si). (A.1)

Furthermore, only considering those process where the right-hand side of Equation

A.1 is independent of time leads to a set of state transition probabilities aij of the

form

aij = P (qt = Sj|qt−1 = Si), 1 ≤ i, j ≤ N (A.2)

1This appendix is based on Rabiner [86] and Rabiner and Juang [87]
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S4

S1 S2

S3

Figure A.1: A Markov chain with 4 states (labeled S1 to S4) with all possible state
transitions.

with the following properties:

aij ≥ 0 (A.3a)
N

∑

j=1

aij = 1. (A.3b)

The above Markov process may be called an observable Markov model since the

output of the process is the set of states at each time, where each state corresponds

to a physical (and thus observable) event.

For example, let’s consider a simple three-state Markov model of the weather,

where the weather is observed, once a day, as being one of the following:

State 1 (S1): rain

State 2 (S2): cloudy

State 3 (S3): sunny.

We assume that the weather on day t undergoes a change of a state based on the
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state transition probability matrix A given by

A = {aij} =









0.4 0.3 0.3

0.2 0.6 0.2

0.1 0.1 0.8









. (A.4)

We can then ask a question such as: given that the weather on day 1 (t = 1)

is sunny (S3 = 3), what is the probability that the weather for the next three days

will be “sun-sun-cloudy-rain-rain”? Stated more formally, we define the observation

sequence O as O = {S3, S3, S2, S1, S1} at t = 1, 2, · · · , 5, respectively, and we wish

to compute the probability of O, given the above model. This probability can be

expressed and evaluated as

P (O|Model) = P (S3, S3, S2, S1, S1|Model)

= P (S3)P (S3|S3)P (S2|S3)P (S1|S2)P (S1|S1)

= π3 · a33 · a32 · a21 · a11

= 1 · 0.8 · 0.1 · 0.2 · 0.4

= 0.0064 (A.5)

where we use the notation

πi = P (q1 = Si), 1 ≤ i ≤ N (A.6)

to denote the initial state probabilities.

A.2 Extension to Hidden Markov Models

In the Markov model described above, each state (weather on a day) corresponds to

an observable (physical) event (rain, cloudy or sunny). This model is too restrictive

to be applicable to many problems since we may not be able to directly observe the
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Figure A.2: An N -state urn and ball model of a discrete symbol HMM (adapted from
Rabiner [86]).

states. Therefore, we extend the concept of Markov models to include the case where

the model’s states are hidden in that they are not directly observable, but can only

be observable through another set of stochastic processes that generate the sequence

of observations.

Let’s consider the urn and ball system shown in Figure A.2. We assume that there

are N glass urns in a room, each filled with a large number of balls with M number

of distinct colors. The process of obtaining observations is as follows. According to

some random process, one chooses an initial urn. From this urn, a ball is chosen at

random, and its color is recorded as the observation. The ball is then replaced in the

urn from which it was selected. A new urn is then selected according to the random

process associated with the current urn, and the ball selection process is repeated.

This entire process produces a finite observation sequence of colors, which is going to

be modeled as the observable output of a hidden Markov model. In this example, the

processes of choosing the urn and selecting the ball are hidden; they just generate a

sequence of balls, according to some stochastic processes, that are observable.
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A.3 Elements of an HMM

From the above example, we now formally define the elements of an HMM. An HMM

is characterized by the following:

1) N , the number of states in the model. Although the states are hidden in HMMs,

there is often physical significance in the states of the model. In the above urn

and ball example, the states corresponded to the urns. The states in general are

interconnected in such a way that any state can be reached from any other state;

however, it is sometimes more practical and appropriate to put some restrictions

on state transitions. We denote the individual states as S = {S1, S2, · · · , SN},

and the state at time t as qt.

2) M , the number of distinct observation symbols per state. The observation

symbols correspond to the physical output of the system to be modeled. In

the ball and urn example, they were the colors of the balls. We denote the

individual symbols as V = {v1, v2, · · · , vM}.

3) The state transition probability distribution A = {aij} where

aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N, (A.7)

with the properties given in Equation A.3.

4) The observation probability distribution in state j, B = {bj(k)}, where

bj(k) = P (vk at t|qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤M. (A.8)

5) The initial state distribution π = {πi} where

πi = P (q1 = Si), 1 ≤ i ≤ N. (A.9)

Given appropriate values of N,M,A,B, and π, the HMM can be used to generate

an observation sequence
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O = O1O2 · · ·OT , (A.10)

where each observation Ot is one of the symbols from V , and T is the number of

observations in the sequence, as follows:

1) Choose an initial state q1 = Si according to the initial state distribution π.

2) Set t = 1.

3) Choose Ot = vk according to the symbol probability distribution in state Si,

i.e., bi(k).

4) Transit to a new state qt+1 = Sj according to the state transition probability

distribution for state Si, i.e., aij .

5) Set t = t+ 1; return to step 3) if t < T ; otherwise terminate the procedure.

We can see from the above discussion that an HMM is completely characterized

by the specification of two model parameters (N and M), observation symbols and

the three probability measures A,B, and π. For convenience, we use the compact

notation

λ = (A,B, π) (A.11)

to indicate the complete parameter set of the model.

A.4 The Three Fundamental Problems of an HMM

Given the form of HMM described in the previous section, there are three basic

problems that must be solved for the model to be useful in real-world applications.

These problems are:
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Problem 1: Given the observation sequence O = O1O2 · · ·OT and a model

λ = (A,B, π), how do we efficiently compute P (O|λ), the probability of the

observation sequence, given the model?

Problem 2: Given the observation sequence O = O1O2 · · ·OT and a model

λ, how do we choose a corresponding state sequence Q = q1q2 · · · qT which is

optimal in some meaningful sense (i.e., best “explains” the observations)?

Problem 3: How do we adjust the model parameters λ = (A,B, π) to maximize

P (O|λ)?

Problem 1 is the evaluation problem; i.e., given the observation sequence and a

model, how do we compute the probability that the model produced the observation

sequence. This is extremely useful when we try to choose among several competing

models by allowing us to select the model with the highest probability.

Problem 2 is the one where we try to uncover the hidden part of the model, namely

the “correct” state path. However, there is no “correct” state sequence except for

the degenerate models, and therefore in practical applications, we usually use an

optimality criterion to solve the problem as best as possible.

Problem 3 is the one in which we attempt to optimize the model parameters in

order to best explain how a given observation sequence is generated. We refer to this

procedure as “training” the HMM and call the observation sequence used to adjust

the model parameters a training sequence. The training problem is very important for

most applications because it allows us to build best models for real-world phenomena.

A.4.1 Solution to Problem 1

We wish to compute P (O|λ), the probability of the observation sequence O = O1O2 · · ·OT ,

given the model λ. Let’s consider a state sequence

Q = q1q2 · · · qT (A.12)
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then the probability of the observation sequence O for the state sequence Q of Equa-

tion A.12 is

P (O|Q, λ) =

T
∏

t=1

P (Ot|qt, λ) (A.13a)

= bq1
(O1)bq2

(O2) · · · bqT
(OT ), (A.13b)

where we have assumed statistical independence of observations.

The probability of such a state sequence Q can be written as

P (Q|λ) = πq1
aq1q2

aq2q3
· · ·aqT−1qT

. (A.14)

The joint probability of O and Q is simply the product of the above two terms,

i.e.,

P (O,Q|λ) = P (O|Q, λ)P (Q|λ). (A.15)

Therefore, the probability of O given the model λ is obtained by summing this joint

probability over all possible state sequences q giving

P (O|λ) =
∑

all Q

P (O|Q, λ)P (Q|λ) (A.16a)

=
∑

q1,q2,··· ,qT

πq1
bq1

(O1)aq1q2
bq2

(O2) · · ·aqT−1qT
bqT

(OT ). (A.16b)

The direct calculation of P (O|λ) following Equation A.16, however, involves on

the order of 2T · NT calculations and is computationally infeasible, even for small

values of N and T ; e.g., for N = 5 (states), T = 100 (observations), there are on the

order of 2 · 100 · 5100 ≈ 1072 computations! We can more efficiently solve this problem

using a procedure called a Forward-Backward algorithm.
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Let’s consider the forward variable αt(i) defined as

αt(i) = P (O1O2 · · ·Ot, qt = Si|λ), (A.17)

i.e., the probability of the partial observation sequence O1O2 · · ·Ot until time t and

state Si at time t, given the model λ. We then can solve for αt(i) inductively, following

these steps:

1) Initialization:

α1(i) = πibi(O1), 1 ≤ i ≤ N. (A.18)

2) Induction:

αt+1(j) =

[

N
∑

i=1

αt(i)aij

]

bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N. (A.19)

3) Termination:

P (O|λ) =

N
∑

i=1

αT (i). (A.20)

In a similar manner, we can define a backward variable βt(i) as

βt(i) = P (Ot+1Ot+2 · · ·OT |qt = Si, λ), (A.21)

i.e., the probability of the partial observation sequence from t+1 to the end, given

state Si at time t and the model λ. Using this Forward-Backward algorithm2, we see

that the calculation of P (O|λ) requires on the order of N2T calculations, compared

with 2TNT as required by the direct calculation. For N = 5 and T = 100, this is

about 3000 computations versus 1072, a savings of about 69 orders of magnitude.

2In order to solve Problem 1, we only need the forward or backward part of the forward-
backward procedure, but both procedures are required to solve Problem 3.
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A.4.2 Solution to Problem 2

While there exists an exact solution to Problem 1, there are several possible ways to

solve Problem 2, i.e., finding the “optimal” state sequence associated with the given

observation sequence. Therefore, the solution may vary according to what optimality

criterion is used. One of such optimality criteria that are mostly widely used is to

find the single best state sequence or path to maximize P (Q|O, λ) which is equivalent

to maximizing P (Q,O|λ). A formal technique for finding this single optimal state

sequence exists, based on dynamic programming methods, and is called the Viterbi

algorithm.

We wish to find the single best state sequence, Q = q1q2 · · · qT , given the observa-

tion sequence O = O1O2 · · ·OT and the model λ. Let’s define the quantity

δt(i) = max
q1,q2,···qT

P (q1q2 · · · qt = i, O1O2 · · ·Ot|λ); (A.22)

i.e., δt(i) is the best score (highest probability) along a single path, at time t, which

accounts for the first t observations and ends in state Si. By induction we have

δt+1(j) =
[

max
i
δt(i)aij

]

· bj(Ot+1). (A.23)

In order to retrieve the state sequence, we need to keep track of the argument

which maximize Equation A.23, for each t and j. We do this via the array ψt(j)

which holds state information. The complete procedure can be explained as follows:

1) Initialization:

δ1(i) = πibi(O1), 1 ≤ i ≤ N (A.24a)

ψ1(i) = 0. (A.24b)

2) Recursion:

δt(j) = max
1≤i≤N

[δt−1(i)aij ] bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N (A.25a)

ψt(j) = argmax
1≤i≤N

δt−1(i)aij , 2 ≤ t ≤ T, 1 ≤ j ≤ N (A.25b)
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3) Termination:

p∗ = max
1≤i≤N

δT (i) (A.26a)

q∗T = argmax
1≤i≤N

δT (i). (A.26b)

4) Path (state sequence) backtracking:

q∗t = ψt+1(q
∗
t+1), t = T − 1, T − 2, · · · , 1. (A.27)

As can be shown in the above procedure, the Viterbi algorithm is similar in imple-

mentation, except for the backtracking step, to the forward calculation of Equation

A.18–A.20.

A.4.3 Solution to Problem 3

The third, and by far the most difficult, problem of HMMs is to adjust the model

parameters (A,B, π) to maximize the probability of the observation sequence given

the model, and there is no analytical solution to this problem. In fact, given any

finite training sequence, there is no optimal way of estimating the model parame-

ters. However, we can choose λ = (A,B, π) such that P (O|λ) is locally maximized

using an iterative approach such as the Baum-Welch method, also known as the EM

(Expectation-Modification) algorithm.

Let’s first define ξt(i, j), the probability of being in state Si at time t and in state

Sj at time t+ 1, given the model and the observation sequence, i.e.,

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ). (A.28)

Using the definitions of the forward and backward variables in Equation A.17 and



APPENDIX A. HIDDEN MARKOV MODEL 135

A.21, respectively, we can rewrite ξt(i, j), using Bayes’ rule, in the form

ξ =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)

=
αt(i)aijbj(Ot+1)βt+1(j)

N
∑

i=1

N
∑

j=1

αt(i)aijbj(Ot+1)βt+1(j)

. (A.29)

If we define another variable γt(i), the probability of being in state Si at time t,

given the model and the observation sequence, as

γt(i) =
αt(i)βt(i)

P (O|λ)
=

αt(i)βt(i)
N

∑

i=1

αt(i)βt(i)

(A.30)

we can relate γt(i) to ξt(i, j) by summing over j, giving

γt(i) =
N

∑

j=1

ξt(i, j). (A.31)

If we sum this quantity over time t, we obtain the expected number of times that

state Si is visited, or equivalently, the expected number of transitions made from

state Si, excluding t = T for termination. Similarly, summation of ξt(i, j) over t

(from t = 1 to t = T − 1) gives the expected number of transitions from state Si to

state Sj, i.e.,

T−1
∑

t=1

γt(i) = expected number of transitions from Si (A.32a)

T−1
∑

t=1

ξt(i) = expected number of transitions from Si to Sj (A.32b)

Using the above formulas and definitions, we can give a method of re-estimating

the parameters of an HMM. A set of reasonable re-estimation formulas for π,A and
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B are

πi = expected frequency (number of times) in state Si at time (t = 1)

= γ1(i) (A.33a)

aij =
expected number of transitions from state Si to state Sj

expected number of transitions from state Si

=

T−1
∑

t=1

ξt(i, j)

T−1
∑

t=1

γt(i)

(A.33b)

bj(k) =
expected number of times in state Sj and observing symbol vk

expected number of times in state Sj

=

T
∑

t=1

s.t.Ot=vk

γt(j)

T
∑

t=1

γt(j)

. (A.33c)

The above formulas allow us to recursively re-estimate the model parameters λ =

(A,B, π), as determined from the left-hand sides of Equation A.33 using the current

model λ = (A,B, π) on the right-hand sides. Baum and his colleagues [6, 3] have

proven that the re-estimated model λ is always equally likely as or more likely than

the current model λ in the sense that P (O|λ) ≥ P (O|λ); i.e., a new model λ is more

likely to have produced the observation sequence.

Therefore, if we iteratively use λ in place of λ to estimate new model parameters,

we can improve the likelihood of the observation sequence being generated by the

model until convergence. The final result of this re-estimation procedure is called

a maximum likelihood estimate of the HMM. It should be noted, however, that the

forward-backward algorithm leads to local maxima only, and thus the initialization

of the model is crucial in many real-world applications.
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