
AUTOMATIC LABELING OF TRAINING DATA FOR SINGING VOICE
DETECTION IN MUSICAL AUDIO

Kyogu Lee
Media Technology Lab, Gracenote

2000 Powell Street, Emeryville, CA94608, USA
klee@gracenote.com

Markus Cremer
Media Technology Lab, Gracenote

2000 Powell Street, Emeryville, CA94608, USA
mcremer@gracenote.com

ABSTRACT
We present a novel approach to labeling a large amount of
training data for vocal/non-vocal discrimination in musical
audio with the minimum amount of human labor. To this
end, we use MIDI files for which vocal lines are encoded
on a separate channel and synthesize them to create audio
files. We then align synthesized audio with real recordings
using dynamic time warping (DTW) algorithm. Note on-
set/offset information encoded in vocal lines in MIDI files
provides precise vocal/non-vocal boundaries and we obtain
from the minimum-cost alignment path the corresponding
boundaries in actual recordings. This near labor-free label-
ing process allows us to acquire a large training data set,
and the experiments show promising results when tested
on an independent test set, using hidden Markov models as
a classifier. We also demonstrate that the data generated
by the proposed system is good data by showing that the
overall performance increases with more training data.

KEY WORDS
singing voice detection, supervised learning, automatic la-
beling, MIDI, dynamic time warping

1 Introduction

In most popular music, the singing voice section cap-
tures one of the most important characteristics, and thus
detection of the singing voice has attracted a number of
researchers in a music information retrieval (MIR) com-
munity for many years. Detection of singing voice or
vocal/non-vocal discrimination can be used in many other
related applications in MIR such as singer identifica-
tion, singing voice separation, query-by-humming (QBH),
structural analysis of music or lyrics-audio alignment, and
so on. For instance, the vocal/non-vocal boundaries of-
ten coincide with the structural segmentation boundaries in
most popular music and thus knowing the former helps to
detect the latter.

Another closely-related problem is speech/music dis-
crimination [13]. Although this appears to be a more gen-
eral task, vocal/non-vocal discrimination in musical audio
is more challenging because most vocal sections in popu-
lar music are accompanied by musical instruments as well,
making vocal sections less distinguishable from non-vocal
sections.

Many researchers view vocal/non-vocal discrimina-
tion as a classification problem and take machine-learning
approaches to solve it [1, 15, 9, 12]. That is, given an un-
seen input, we classify it as vocal or non-vocal based on
the propertieslearnedfrom vocal/non-vocal data which is
pre-labeled. Even though it is a binary classification prob-
lem with just two classes —i.e. vocal vs. non-vocal class
— the acoustical variance within each class is so large that
it is imperative to have sufficient amount of training data
to avoid overfitting. For instance, a vocal section may in-
clude a male or female singer, or both. It may also contain a
chorus or group singing. There is a great diversity in a non-
vocal or instrumental section too, because different artists
use a different set of instruments: some may use electric
guitars or others may prefer acoustic ones; some may use
drums or others may not. In addition to these variances in
voice/instrumentation, we must also consider differencesin
musical attributes such as tempo, melody, harmony and/or
dynamics.

Such diversities present in musical audio as is men-
tioned above lead to large variances in acoustic features,
and it may cause a serious overfitting problem if the models
are trained on insufficient data, failing to perform well on
an unseen input. The importance of large amount of train-
ing data in supervised learning is proved by a great success
in automatic speech recognition (ASR), owing to gigantic
databases accumulated over decades. However, it is hard
to find such data sets for music applications, especially for
vocal/non-vocal discrimination because it requires a great
deal of human labor to manually annotate vocal/non-vocal
boundaries as he/she listens to a number of audio files.

In this paper, we propose a solution to this bottle-
neck problem of acquiring a large, labeled training set
for vocal/non-vocal discrimination while keeping human-
involved labor at the minimum level. The key idea in our
approach is to use symbolic music files like MIDI files as a
tool to find vocal/non-vocal boundaries in real recordings.
If vocal lines are written on a separate channel, which is
often the case, we can extract the precise vocal/non-vocal
boundaries from note onset/offset information in a MIDI
file. We then synthesize audio from the MIDI file and
time-align it with a real recording using a dynamic time
warping (DTW) algorithm. The minimum-cost alignment
path found by the DTW algorithm gives us vocal/non-vocal
boundaries in real audio, and then we can generate labeled



MIDI Real recording

synthesis

V
NV

NV

NV

V

NV

V

NV NV NVV V V

DTWV/NV boundaries

Vocal Nonvocal
HMM HMM

Figure 1. System overview. Vocal/non-vocal boundaries
extracted from a MIDI file are used to find the boundaries in
a real recording by time-aligning MIDI-synthesized audio
with a real recording.

data to build the models. The overall process is illustrated
in Figure 1.

This paper continues with a review on related work in
Section 2. In Section 3, the method of labeling the train-
ing data and the details of HMM classifier are explained,
along with the acoustic features. We present the experi-
mental results with discussions in Section 4. Finally, we
draw conclusions and suggest the directions for future work
in Section 5.

2 Related Work

Scheirer and Slaney proposed a speech/music discrimina-
tion system in multi-dimensional classification frameworks
[13]. In their work, they use 13 different acoustic features
to capture distinct properties in speech and/or music sig-
nals and build four different classifiers. Of 40 minutes of
hand-labeled audio, they used 90% (36 minutes) to train
the models and 10% (4 minutes) for evaluation. Using the
“best 3” features — 4 Hz energy, variance of spectral flux,
and pulse metric — and a k-d spatial classifier, they ob-
tained the best results of 5.8% error on a frame-by-frame
basis, and 1.4% error using a longer (2.4 seconds) analysis
window. Although their work tackles a somewhat differ-
ent problem from vocal/non-vocal discrimination, it lays an
important background in the choice of the feature set and
by providing a complete evaluation framework.

Berenzweig and Ellis presented a system for locat-
ing singing voice segments within musical signals using

the acoustic classifier of a speech recognizer as a detector
[1]. They used posterior probability features (PPFs) gener-
ated from a multi-layer perceptron neural network trained
on speech database. Segmentation and classification are
accomplished simultaneously from the optimal state path
from a simple, two-state HMM. Using 101 short (5.5 sec-
onds on average) fragments of audio (61 for training and
40 for testing), their system obtained about 80% accuracy.

Kim and Whitman proposed a method for vocal re-
gion detection in their singer identification system [6].
Based on the observation that the singing voice is highly
harmonic, they came up with a measure of harmonicity us-
ing an inverse comb filter. Using a harmonicity value of
2.0 as a threshold for vocal classification, they achieved
performance of about 55%, using 20 songs as a test set.
Zhang also described in his singer identification system a
technique for automatically detecting a starting point of the
singing voice based on a set of pre-defined thresholds [17].
He then used the first 25 seconds from the beginning point
of the detected singing voice for singer identification. No
quantitative evaluation is performed on the singing voice
detection, however.

Tzanetakis addressed the two main problems in super-
vised learning approaches on the singing voice detection —
i.e., 1) the variability of singer and instrumentation charac-
teristics and 2) the difficulty of obtaining ground truth an-
notations — and proposed a bootstrapping method to solve
these problems [15]. In his song-specific bootstrapping,
a small random collection of snippets are used to train a
classifier that is subsequently used to segment/classify the
entire song. He used eight feature sets and six classifica-
tion algorithms for experiments. Using 10 Jazz songs as a
test set, he obtained the best results of 75% accuracy, using
16 2-second long snippets (32 seconds total) for bootstrap-
ping. Although he tried to avoid time-consuming human
annotation using a bootstrapping technique, it still requires
a significant amount of time to manually annotate 16 clips
for everysong.

Nwe et al. take one step further to utilize song struc-
ture information in a multi-model hidden Markov model
(MM-HMM) classifier, using a bootstrapping technique for
song-adaptive classification [9]. They observe that popu-
lar songs in general have a certain structure and each sec-
tion has different characteristics. They also take into ac-
count tempo and loudness to explain inter-song variation.
Based on three parameters — song structure, tempo and
loudness — they build 40 models – 20 each for vocal and
non-vocal class. They then use a bootstrapping method
from the initial results from an MM-HMM classifier, and
performed song-adaptive classification to further improve
performance. Using six songs for training and 14 songs
for testing, they obtained the best results of 86.7% with
bootstrapped HMMs, using Harmonic-Attenuated Log Fre-
quency Power Coefficients (HA-LFPCs). The high perfor-
mance is somewhat shadowed by strong assumptions they
made about the structure (intro-verse-chorus-bridge-outro)
and meter (4/4) of a song.



Recently, Rocamora and Herrera compared several
audio descriptors for singing voice detection by conducting
a series of experiments [12]. They developed three inde-
pendent data sets for training, validation and testing, allof
which are manually annotated. In addition to various fea-
ture sets and different classifiers, they also experimented
with the duration of an input fragment to examine the ef-
fect of long-term characteristics of feature frames. Using
46 songs in different styles for testing, they achieved the ac-
curacy of 78.5%, using Support Vector Machines (SVMs)
and MFCC feature.

As addressed above by others [6, 15], one of
the biggest problems in machine-learning approaches for
vocal/non-vocal discrimination is lack of training data to
train the classifiers due to a great deal of human labor and
time it takes to manually mark the vocal/non-vocal bound-
aries for a number of audio files. Some avoid this by just
using a small collection of hand-labeled audio segments
[13, 1], or others tackles this problem via bootstrapping
[15, 9]. Or others just make a hard decision based on a
pre-defined, heuristic threshold [6, 17].

A solution to this bottleneck problem is proposed in
the following sections.

3 System

Our system is composed of two stages. In the first stage, we
automatically generate labels for training data by aligning
real recordings with MIDI-synthesized audio, which con-
tains vocal/non-vocal boundary information. In the second
stage, we extract from the training data acoustic features
appropriate for vocal/non-vocal discrimination, and build
HMMs. These steps are described in more detail in the fol-
lowing sections.

3.1 Automatic Labeling

Unlike a PCM waveform that contains digitized audio sam-
ples, symbolic music documents such as MIDI (Musical In-
strument Digital Interface) contain a set of event messages
like pitch, velocity and note duration, along with clock sig-
nals from which we can synthesize audio samples. In addi-
tion, many MIDI files use separate channels to encode each
musical instrument, including vocal lines. Therefore, if we
know which channel contains vocal melody lines in MIDI
files, it is straightforward to segment MIDI-synthesized au-
dio into vocal and non-vocal sections because we can ex-
tract precise note onset/offset information from MIDI files.

However, we cannot directly use MIDI-synthesized
audio to train our models because it contains no real human
voice and it is critical to have it for our purpose. There-
fore, we must use real recordings with human singing voice
that correspond to MIDI files we use to obtain vocal/non-
vocal boundaries. However, it is impossible to simply ap-
ply vocal/non-vocal boundaries in MIDI-synthesized audio
to real recordings because the two audio files are likely to

be of different length or there may be changes in tempo in
either or in both audio. Therefore, we need to dynamically
align the two audio in order to find precise vocal/non-vocal
boundaries in real recordings.

We explain the feature vector of our choice for the
alignment purpose in the next section.

3.1.1 Chroma Feature

In order to align MIDI-synthesized audio with real record-
ings, we need to find acoustic features that, when extracted
from the two audio signals, should be close to each other.
MFCCs (Mel-Frequency Cepstral Coefficients), which are
widely used in many speech and music applications, do
not appear as a good choice because the sonic quality in
the two different audio will be quite different, particularly
due to other instrument replacing the vocal lines in MIDI-
synthesized audio. On the other hand, pitch information
would be perfect because it is mostly identical in both au-
dio, but a drawback is that it is very difficult to estimate
accurate pitches from real recordings.

Chroma feature appears ideal considering these dif-
ficulties. Chroma feature is widely accepted to describe
tonality in musical audio, and is extensively used in key ex-
traction and/or chord recognition systems. A chroma vec-
tor is often a 12-dimensional vector, each dimension repre-
senting spectral energy in a pitch class in a chromatic scale,
and is obtained by collapsing the whole spectrum into an
octave [4]. Therefore, if the pitch information in the two
audio signals is the same, the resulting chroma vectors will
not be significantly different, no matter what kind of instru-
ments are playing the notes.

However, we must consider situations where there is
mis-tuning in audio or the two audio are in different keys
because it will affect the distance measure on which our
alignment algorithm is based. To avoid this problem, we
obtain the global chroma vectors by averaging the whole
chromagrams and compute the correlation coefficients be-
tween the two global chroma vectors as we rotate a chroma
vector. When we find the maximum correlation, we rotate
a chromagram so that the two chromagrams are aligned
around the same tonal center. Serra and Gomez success-
fully used this technique to find cover versions in a different
key from that of the original song [14]. Figure 2 shows an
example where a chromagram from MIDI-synthesized au-
dio and one from a real recording have two different tonal
centers, along with the global chroma vectors below.

If we carefully look at the first two chromagrams in
Figure 2, we can see one is off by two semitones from
the other. It becomes more obvious when we look at the
global chroma vectors. It is clear that a real recording has
a tonal center of C, while MIDI-synthesized audio is cen-
tered around D, yielding a negative correlation of -0.1. As
mentioned above, this discrepancy in tonal centers signifi-
cantly affect the alignment algorithm based on the distance
between feature vectors, resulting in incorrect vocal/non-
vocal boundaries. Therefore, we first rotate-shift the sec-



Time (secs)

P
itc

h 
C

la
ss

Chromagram of real recording

0 50 100 150 200 250

C
C#

D
D#

E
F

F#
G

G#
A

A#
B

Time (secs)

Chromagram of MIDI−synthesized audio

0 50 100 150 200 250

C
C#

D
D#

E
F

F#
G

G#
A

A#
B

Time (secs)

Rotate−shifted chromagram of MIDI−synthesized audio

0 50 100 150 200 250

C
C#

D
D#

E
F

F#
G

G#
A

A#
B

C C# D D# E F F# G G# A A# B
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pitch Class

Global chroma vector of real recording

C C# D D# E F F# G G# A A# B
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pitch Class

Global chroma vector of MIDI−synthesized audio

C C# D D# E F F# G G# A A# B
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pitch Class

Global chroma vector of MIDI−synthesized audio

Figure 2. Chromagrams (top) and global chroma vectors (bottom) of a real recording (left) and MIDI-synthesized audio before
(middle) and after shift-rotation (right).Othersideby Red Hot Chili Peppers.

ond chromagram by two semitones so that two chroma-
grams have the same tonal center, as shown in the rightmost
plot in Figure 2. After rotation, the two global chroma vec-
tors yields a high positive correlation of 0.9.

Once the two chromagrams are arranged around the
same tonal center , we use them as an input to an alignment
algorithm, which is described in the following section.

3.1.2 Audio Alignment

Although the note onset/offset time of the vocal lines in
MIDI files gives us precise vocal/non-vocal boundaries, it
does not guarantee that these boundaries will correspond to
those in real recordings because the two audio files are usu-
ally different in length and there may be changes in tempo
in one or both audio. Therefore, we need to find a way to
dynamicallyalign the two audio files, using the chroma-
grams as a front end.

We use the dynamic time warping (DTW) algorithm
to this end. DTW is widely used to efficiently time-align
the two sequences of different length using dynamic pro-
gramming (DP) [7]. Given a pair of feature sequences, a
distance matrix is first computed using the Euclidean dis-
tance, and then the DTW finds the minimum-cost align-
ment path based on pre-defined transition cost function.
Therefore, as explained in Section 3.1.1, rotating the chro-
magrams so that they have the same referential point is crit-
ical to compute a meaningful distance matrix and for the
DTW algorithm to correctly find the optimal path. Figure

3 shows the vocal/non-vocal boundaries we obtained using
the method described above.

As shown in Figure 3, the automatically generated
boundaries are very close to the human-annotated bound-
aries. Although there are a few sources of errors such as
backing vocals which are not encoded on vocal lines, we
believe that these errors are negligible compared with a
even more amount of data which is correctly labeled.

In the next section, we describe a vocal/non-vocal
classifier using hidden Markov models.

3.2 HMM Classifier

Hidden Markov models (HMMs) are widely used in many
classification problems, particularly in speech/audio appli-
cations because of its capability to explain temporal dy-
namics present in signals. We do not intend to provide in
this paper mathematical backgrounds of HMMs, but inter-
ested readers are encouraged to see Rabiner [11].

3.2.1 Acoustic Features

Chroma feature proves very successful for an alignment
purpose as demonstrated in Section 3.1.1. However, it is
not suitable for vocal/non-vocal discrimination because it
focuses only on pitch relations or tonality instead of cap-
turing timbral characteristics, which is critical for our task.
For example, when in a non-vocal section a musical instru-
ment plays the same melody line as vocal in a vocal sec-



Figure 3. Automatically generated vocal/non-vocal boundaries forOthersideby Red Hot Chili Peppers. ‘V’ and ‘NV’ denote
vocal and non-vocal segments, respectively. At the top is shown the PCM waveform. At the middle are shown the ground-truth
boundaries. At the bottom are shown the boundaries automatically obtained using the alignment method described in the text.

tion, the resulting chroma features from the two sections
will look very similar, and thus it will be difficult to tell
one from the other.

Therefore, we use different feature vectors more
appropriate for discrimination purposes. Based on the
other related works on the same problem, we choose
three different features — Mel-Frequency Cepstral Coeffi-
cients (MFCCs), Perceptual Linear Prediction Coefficients
(PLPCs) and Log Frequency Power Coefficients (LFPCs).
More details on computing these features can be found in
Davis and Mermelstein [2], Hermansky [5] and in Nweet
al. [8], respectively. We use Matlab implementations by
Daniel Ellis for computing MFCCs and PLPCs.1

The original audio signals in the training set are in
a stereo format with a sampling rate of 44.1 kHz. Before
extracting the spectral features from this raw audio, it is
downmixed to mono signals, and is bandlimited from 130
Hz to 16kHz because most spectral energies are distributed
in this frequency range. A mono, bandlimited audio signal
is then processed every 10 ms using a Hamming window of
25 ms, resulting in 100 feature frames per second.

3.2.2 Models

Using the labeling process described in Section 3.1, we
generate training data from 163 audio files that are more
than 11 hours of audio or 3.5 million feature frames for
each feature. This data set covers wide range of music in
different styles — pop, rock, jazz, blues, country, etc. —
of male and female singers. Of all the data, about 60% are
labeled as vocal, and 40% are labeled as non-vocal. 10%
of each class is reserved for model validation, and we use
only 90% of the total data set to train the models.

For each feature set, we build a vocal HMM and a
non-vocal HMM, resulting in 6 HMMs in total, using Gaus-
sian distribution to model the observation probability dis-

1http://www.ee.columbia.edu/ ˜ dpwe/
resources/matlab/rastamat/

tribution. Each model hasQ = 4 hidden states andM = 2

mixtures per state. We use a HMM toolbox by Kevin Mur-
phy for HMM implementation.2

In order to examine how the amount of data affects
the models’ performance, we build the models trained on
different amount of data. That is, we build five models for
each class using 20%, 40%, 60%, 80% and 100% of the
training set. We believe that more data allows the models
to be more generalized, resulting in better performance. In
the next section, we present the experimental results.

4 Results

4.1 Evaluation

Prior to evaluating the models’ performance on the singing
voice detection problem, we first evaluated our automatic
labeling algorithm to examine the integrity of the labels.
We randomly selected 100 audio fragments from each
class, and listened to them for verification. Four out of 100
vocal-labeled clips were actually non-vocal, resulting in
96% accuracy. The accuracy for non-vocal clips dropped to
93%, seven of 100 containing the singing voice parts. The
slightly worse accuracy for non-vocal labeling is mostly
due to backing vocals, some of which are not explicitly
written in the MIDI files.

We performed several quantitative evaluations to test
our models. As explained in Section 3.2.2, we used 10% of
the data as a model validation set. This set includes about
67 minutes of audio or 400,000 feature samples, of which
58% are vocal and 42% are non-vocal. In addition to the
validation set, we developed an independent test set for the
following reasons. First, even though none in the valida-
tion set is used to train the models, it has the same origins
as the training set and thus the statistics of the data will
be similar. Therefore, for a more complete evaluation, we

2http://www.cs.ubc.ca/ ˜ murphyk/Software/
HMM/hmm.html



Table 1. Titles of 10 songs in the test set

Title Artist Genre
No Reply The Beatles (Ma) Rock

Here Comes My Baby Cat Stevens (M) Folk Pop
Anticipation Carly Simon (F) Pop

A Thousand Days Clay Aiken (M) Pop
Lean On Me Bill Withers (M) Deep Soul

Smile Lily Allen (F) Electronic Pop
When I’m Gone 3 Doors Down (M) Alternative Rock

Wishes Out Of The Grey (F) Rock
Breathe Faith Hill (F) Country

Everyday I Have The Blues B.B. King (M) Blues

aM[F] denotes a Male[Female] singer.

need a statistically independent test set. Second, the data
in the validation set is not annotated by humans, but is la-
beled automatically using the method described in Section
3.1, which may not be 100% true because of a few sources
of possible errors in a labeling process, such as backing
vocals not encoded on vocal lines. We do not believe that
these small errors have significant effect on building sta-
tistical models, but we cannot ignore them to evaluate the
models. Hence, we manually annotated a small set of songs
for testing, which was carefully selected to include as wide
range of songs as possible. The test set is composed of 10
songs, which contain approximately 37 minutes of audio or
218,000 feature frames. 65% of the test bed are vocal and
35% are non-vocal. The songs used for testing are listed in
Table 4.1.

Although the feature vectors are processed at a frame
rate of 100 frames/second, vocal or non-vocal segment sel-
dom has such a short duration of a single frame (10 ms)
but contains many consecutive frames. In addition, it is
important to examine temporal evolution of feature vectors
over a longer time period in order to make a more statisti-
cally reliable decision. Therefore, based on the findings of
others’ experiments, we choose one second as our analysis
window length for evaluation, with 50% overlap [10, 12].
The score in % is computed by dividing the duration of
correctly classified fragments by the total duration.

4.2 Results and Discussion

As described in Section 3.2.2, we compared the models
trained on different amount of data to investigate the ef-
fect of the data size on performance. Figure 4 shows the
accuracy in percentage for each feature using the data size
as a variable, with two mixtures per state (M = 2).

We observe in Figure 4 that performance increases
as the data size increases, although not monotonously for
all three features, which supports our hypothesis that more
data wins. No significant difference in performance is
seen among the various features. Having observed that the
models perform best with the full training set, we did an-
other experiment using the number of Gaussian mixtures
per state as a variable. The results are shown in Figure 5.

20 40 60 80 100
63

64

65

66

67

68

69

70

71

72

Data size (%)

A
cc

ur
ac

y 
(%

)

Results for validation set (M=2)

 

 

MFCC

PLPC

LFPC

Figure 4. Performance of the models on the validation set
as a function of data size (M=2).

Table 2. Performance comparison among MFCC, PLPC
and LFPC features on the validation set (% accuracy;
trained on the full training set,M = 10)

Feature Vocal Non-Vocal Average
MFCC 72.86 69.14 71.30
PLPC 65.82 79.04 71.37
LFPC 74.42 74.56 74.48

As shown in Figure 5, as the number of mixtures
per state increases, overall performance also increases, al-
though not monotonously, except for the MFCC feature.
This suggests that we have enough data to build richer mod-
els, yielding improved performance. We can also see the
LFPC feature outperforms the other two features.

Table 2 summarizes performance of three features us-
ing the models trained on the full training set withM = 10.
We can see from Table 2 that the MFCC feature is better
in classifying vocal correctly while it is opposite with the
PLPC feature. The LFPC feature works equally well for
both classes.

As described in Section 4.1, we used an independent
test set consisting of 10 songs in different styles for a more
complete evaluation. The results on this test set are dis-
played in Figure 6 using the data size as a variable, with 10
mixtures per state (M = 10).

Figure 6 shows a similar pattern as is seen in Figure 4
in that for all three features, performance increases in gen-
eral as the data size increases, which again supports the fact
that more data improves the model performance. Also, no
significant difference is found among the features. How-
ever, we notice that the overall performance has improved
by about 7% on average compared with the results on the
validation set. This is surprising considering that the val-
idation set has the same origins as the training set while



2 4 6 8 10
70

70.5

71

71.5

72

72.5

73

73.5

74

74.5

Number of mixtures per state

A
cc

ur
ac

y 
(%

)
Results for validation set (data size = 100%)

 

 

MFCC

PLPC

LFPC

Figure 5. Performance of the models on the validation set
as a function of the number of mixtures per state (data size
= 100%).

the test set does not. The possible explanation for this can
be drawn from the fact that part of the validation set was
mis-labeled due to errors in the automatic labeling process,
as explained in Section 4.1. This causes false positive or
false negative even for correct classification when comput-
ing the scores. Therefore, these errors come from the scor-
ing process, not from classification. However, the test set
was manually annotated by the authors and no errors come
from mis-labeling.

To confirm this assumption, we randomly selected 20
segments for each class from the validation set, and exam-
ine if some of them are mis-labeled. Of 20 vocal segments,
one segment was silence, which we labeled as non-vocal.
Two of 20 non-vocal segments contained backing vocals,
and one has a strong vocal line. The source of the first two
errors was consistent with our expectation, and the third
one turned out that the vocal line was encoded on a differ-
ent MIDI channel, causing mis-alignment between MIDI-
synthesized audio and a real recording.

Table 3 summarizes performance of three features us-
ing the models trained on the full training set withM = 10.
In contrast with the results on the validation set shown in
Table 2, MFCC feature works equally well on both vocal
and non-vocal classes while LFPC feature performs better
on non-vocal class. However, it is noticeable that PLPC
feature consistently works far better on non-vocal class
than on vocal class.

Figure 7 shows two examples of vocal/non-vocal seg-
mentation results on (a)No Replyby The Beatles and (b)
Smileby Lily Allen. Both results were obtained using the
models trained on the full training set and the MFCC fea-
ture, withM = 10.

We can see from Figure 7 that the vocal/non-vocal
boundaries detected by the algorithm are very close to the
true boundaries. In fact, often the times it is ambiguous

20 40 60 80 100
77

78

79

80

81

82

83

Data size (%)

A
cc

ur
ac

y 
(%

)

Results for test set (M=10)

 

 

MFCC

PLPC

LFPC

Figure 6. Performance of the models on the test set as a
function of data size (M=10).

Table 3. Performance comparison among MFCC, PLPC
and LFPC features on the test set (% accuracy; trained on
the full training set,M = 10)

Feature Vocal Non-Vocal Average
MFCC 82.25 83.73 82.96
PLPC 72.52 89.62 78.50
LFPC 79.02 84.49 80.93

even for humans to mark the clear-cut boundaries between
vocal and non-vocal segments. Considering this somewhat
ill-defined nature of a ground truth, the results look very
promising.

5 Conclusions

In this paper, we presented a novel approach to acquiring a
large set of labeled training data in a near labor-free way
for vocal/non-vocal classification in musical audio. The
main contribution of this paper is to demonstrate that the
data generated by the proposed system is good data and the
statistical classifier is capable of identifying large quantity
of good data. We demonstrated this by showing that the
overall performance improves as the training data set gets
larger.

In order to find the vocal/non-vocal boundaries in real
recordings, we used the MIDI files in which vocal lines
are written on a separate channel and synthesized them to
create audio files. Although synthesized, MIDI-generated
audio contained nearly identical tonal structure as in real
recordings, and thus using a chroma feature as a front end,
we aligned these two audio files using the dynamic time
warping (DTW) algorithm.

In parallel, we extracted the vocal/non-vocal bound-
aries from note onset/offset information in the MIDI files,



(a)No Replyby The Beatles.

(b) Smileby Lily Allen.

Figure 7. Vocal/non-vocal segmentation results for (a)No Replyby The Beatles and (b)Smileby Lily Allen. ‘V’ and ‘NV’
denote vocal and non-vocal segments, respectively. At the top is shown the PCM waveform. At the middle are shown the true
boundaries. At the bottom are shown the boundaries detectedby the algorithm.

and by mapping these boundaries to the minimum-cost
alignment path found by the DTW algorithm, we obtained
the precise vocal/non-vocal boundaries in real recordings.
This process allowed to build a large labeled data set, and
we built a hidden Markov model for each class. As acoustic
features, we compared three different features — MFCCs,
PLPCs and LFPCs. To investigate the models’ performance
on the size of the training data, we built the five different
models for each feature and each class that are trained on
20%, 40%, 60%, 80% and 100% of the full training set.

We performed experiments on the two distinct data
sets — a validation set and a test set. The validation set was
part of the automatically labeled data which was not used
in training, and the independent test set was composed of
10 songs in various styles that are manually annotated by
the authors. The results on both the validation and the test
set showed an increase in performance proportional to the
size of the training data, for all three features.

Contrary to our expectations, the models performed
better on the unseen, independent test set than on the val-
idation set of the same kinds as the training set. This can
be explained by the fact that there were some data in the

validation set that were labeled incorrectly, due to errorsin
the labeling process. However, we believe that these errors
are very small compared with the larger, correctly labeled
data, and therefore have little or no effect when estimating
the model parameters.

It is reported that the combination of information —
combination of feature streams, posterior probabilities or
hypotheses — results in better performance in classifica-
tion [3, 16]. We therefore consider information combina-
tion in our future work to improve classification accuracy.
Also, there are several applications where vocal/non-vocal
discrimination is useful as described in Section 1. Among
these applications, we consider using the results of our
models for lyrics-audio synchronization.

References

[1] A. Berenzweig and D. Ellis. Locating singing voice
segments within music signals. InProceedings of
IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, Mohonk, NY, 2001.



[2] S. Davis and P. Mermelstein. Comparison of para-
metric representations for monosyllabic word recog-
nition in continuously spoken sentences.IEEE Trans-
actions on Acoustics, Speech, and Signal Processing,
28(4):357–366, 1980.

[3] D. Ellis. Stream combination before and/or after the
acoustic model. InInternational Computer Science
Institute Technical Report, Berkeley, CA, 2000.

[4] T. Fujishima. Realtime chord recognition of musi-
cal sound: A system using Common Lisp Music. In
Proceedings of International Computer Music Con-
ference, Beijing, 1999.

[5] H. Hermansky. Perceptual linear predictive (plp)
analysis of speech.Journal of Acoustical Society of
America, 87(4):1738–1752, 1990.

[6] Y. Kim and B. Whitman. Singer identification in
popular music recordings using voice coding features.
In Proceedings of International Conference on Music
Information Retrieval, pages 164–169, Paris, France,
2002.

[7] C. S. Myers and L. R. Rabiner. A comparative study
of several dynamic time-warping algorithms for con-
nected word recognition.The Bell System Technical
Journal, 60(7):1389–1409, 1981.

[8] T. L. Nwe, S. W. Foo, and L. Silva. Classification
of stress in speech using linear and nonlinear fea-
tures. InProceedings of IEEE International Con-
ference on Acoustics, Speech, and Signal Processing,
Hong Kong, 2003.

[9] T. L. Nwe, A. Sheony, and Y. Wang. Singing voice
detection in popular music. InProceedings of ACM
Conference on Multimedia, New York, NY, 2004.

[10] T. L. Nwe and Y. Wang. Automatic detection of vocal
segments in popular songs. InProceedings of Inter-
national Conference on Music Information Retrieval,
Barcelona, Spain, 2004.

[11] L. R. Rabiner. A tutorial on hidden Markov models
and selected applications in speech recognition.Pro-
ceedings of the IEEE, 77(2):257–286, 1989.

[12] M. Rocamora and P. Herrera. Comparing audio de-
scriptors for singing voice detection in music audio
files. In Proceedings of Brazilian Symposium on
Computer Music, San Pablo, Brazil, 2007.

[13] E. Scheirer and M. Slaney. Construction and eval-
uation of a robustmultifeature speech/music discrim-
inator. In Proceedings of IEEE International Con-
ference on Acoustics, Speech, and Signal Processing,
Munich, Germany, 1997.

[14] J. Serra and E. Gomez. A cover song identification
system based on sequences of tonal descriptors. In
Extended Abstract for MIREX 2007 Task on Audio
Coversong Identification, Vienna, Austria, 2007.

[15] G. Tzanetakis. Song-specific bootstrapping of singing
voice structure. InProceedings of IEEE International
Conference on Multimedia and Expo, Taipei, Taiwan,
2004.

[16] S. Vembu and S. Baumann. Separation of vocals from
polyphonic audio recordings. InProceedings of Inter-
national Conference on Music Information Retrieval,
London, England, 2005.

[17] T. Zhang. Automatic singer identification. InPro-
ceedings of IEEE International Conference on Multi-
media and Expo, Baltimore, MD, 2003.


