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Abstract

In concert hall acoustics, the reflection characteristics of
the ceiling and the walls are important for minimizing the in-
teraural cross correlation. Many design methods have been
presented so far in order to design highly diffusing surfaces.
This paper presents a two-dimensional digital waveguide mesh
having a highly diffusing boundary using quadratic residue
sequences, and illustrates its reflection properties. Empiri-
cal analyses show that high diffusion occurs at the diffusing
boundary, and the scattering characteristics show the energy
of an incident plane wave is evenly scattered in a mesh with
a diffusing boundary while a specular reflection occurs in a
mesh with flat surfaces.

1 Introduction

In an ideal concert hall, the reverberant response should
be smooth, dense, and free of overly prominent resonances
and reflections. While this is theoretically impossible at all
frequencies in a typical concert-hall geometry, the reverberant
response can be improved in a variety of ways. In particular,
it is desirable that reflected sound waves in the hall scatter as
uniformly as possible throughout the audience. That is, rather
than having specular reflections, which are analogous to light
reflecting from a mirror, we prefer diffuse reflections—maore
analogous to the scattered light which illuminates the daytime
sky.

In the 1970s, Schroeder proposed methods of designing
highly diffusing surfaces based on maximum-length sequences
and quadratic residue sequences (Schroeder 1975; Schroeder
1979). These so-called quadratic residue diffusers (QRD)
have been widely applied to the design of recording studios
and concert halls. In the 1960s, Schroeder also initiated the
topic of artificial reverberation (Schroeder and Logan 1961;
Schroeder 1970), in which digital filter structures (particu-
larly allpass filters) were used to simulate “colorless” rever-
beration. The use of allpass filters guaranteed an equal rever-
berant response at all frequencies, while a QRD guarantees an

equal reflection strength at some number of frequencies and
reflection angles.

In 1993, Van Duyne and Smith introduced an efficient
way of modeling wave propagation in a membrane using a 2-
D digital waveguide mesh, and showed that it coincided with
a standard finite difference approximation scheme for the 2-
D wave equation (Van Duyne and Smith 1993b). The mesh
has also been applied to the problem of artificial reverberation
(Smith 1985; Savioja, Backman, Jarvinen, and Takala 1995;
Huang, Serafin, and Smith 2000; Laird, Masri, and Canagara-
jah 1999; Murphy and Howard 2000; Murphy, Newton, and
Howard 2001).

In this paper, the 2-D digital waveguide mesh is extended
to include a diffusing boundary based on a Schroeder quadratic
residue diffuser. First we review quadratic residue diffusers
and the 2-D digital waveguide mesh, followed by implemen-
tation details and simulation results.

2 The Quadratic Residue Diffuser

Schroeder presented methods of designing concert hall
ceilings that could avoid direct reflections into the audience.
In 1975, he provided a way of designing highly diffusing
surfaces based on binary maximum-length sequences, and
showed that these periodic sequences have the property that
their harmonic amplitudes are all equal (Schroeder 1975). He
later extended his method and proposed surface structures
that give excellent sound diffusion over larger bandwidths
(Schroeder 1979). This is based on quadratic residue se-
guences of elementary number theory, investigated by A. M.
Legendre and C. F. Gauss. These sequences are defined by

s, =n? (mod N), (@)

i.e., n? is taken as the least nonnegative remainder modulo NV,
and N is an odd prime number. For N = 17, the quadratic
residue sequence reads as follows (starting with n = 0):

sn=0,1,4,9,16,8,2,15,13,13,15,2,8,16,9,4,1;0,1, - - -

These sequences have a few properties:



1. they are symmetric [aroundn = 0andn = (N—1)/2];
2. they are periodic with period NV;

3. surprisingly, the discrete Fourier transform R,,, of the
exponentiated sequence

P eij27rsn/N (2)

has constant magnitude
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The quadratic residue diffuser, or Schroeder diffuser, is
implemented by having periodic wells of different depths pro-
portional to s, with period N over the surface. Figure 1
shows a cross section through the diffusing surface based on
the quadratic residue sequence with N = 17.
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Figure 1. Cross section through a highly diffusing surface
based on quadratic residue sequence when N = 17. The
thin vertical lines represent rigid separators between individ-
ual wells.

The width of each well w is determined by the design
wavelength A\g(>> w), and the depths of the well d,, are de-
fined as

Ao

dn = SxrSn,
N ®

(4)
where s, is the quadratic residue sequence with period V.

Strube did empirical and numerical analyses on scattering
characteristics of Schroeder’s diffuser (Strube 1980a; Strube
1980b), and design techniques of concert halls were provided
by Ando using Schroeder’s diffuser (Ando 1985).

3 The2-D Digital Waveguide M esh

Digital waveguide techniques have been used to develop
efficient physical models of musical instruments since the
early 1990s (Smith 1987; Smith Il 2003; Van Duyne and
Smith 1993a; Van Duyne and Smith 1993b). The digital
waveguide model can be used to reduce the computational
cost of physical models based on numerical integration of the

wave equation by three orders of magnitude by simulating the
traveling waves with digital delay lines.

The one-dimensional digital waveguide can be extended
into a two-dimensional digital waveguide mesh (Van Duyne
and Smith 1993a; Van Duyne and Smith 1993b). The struc-
ture of the 2-D digital waveguide mesh can be viewed as a
layer of parallel vertical waveguides superimposed on a layer
of parallel horizontal waveguides intersecting each other at
4-port scattering junctions as shown in Figure 2.

Figure 2: The 2-D digital waveguide mesh.

In a lossless case, the scattering junction has two physical
constraints: 1) the velocities of all the strings at the junction
must be equal, i.e.,

V1 =V2 =" =7UN, Q)

and 2) the forces exerted by all the strings must sum to zero,
ie.,

fi+fot-+fn=0, (6)

where N is the number of strings.

Combining the two series junction constraints with the
wave impedance relations between force and velocity wave
variables defined as f* = Rv* and f~ = —Rv~, and
with the wave variable definitions, v; = v;r +ov;,and f; =
f;7 + f;, we can derive the lossless scattering equations for
the junctions in which four strings intersect,

_ 2 Z?:l Rz’”z‘+

vy = , 7
J Z?:l Rz ( )
v; =vg—vf, (8)

where v, represents the junction velocity, and the v} ’s and
the v; ’s are the incoming and the outgoing waves at the junc-
tion, respectively. Assuming an isotropic membrane, where



Ry = Ry = R3 = R4, Equation 7 further simplifies to
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4 Implementation and Results
4.1

The 2-D digital waveguide mesh can be implemented by
having bi-directional unit delay lines between adjacent junc-
tions as shown in Figure 3.

I mplementation of Boundary with the Wells

Figure 3: The 2-D digital waveguide mesh with bi-directional
unit delay lines.

In order to simulate the boundary with the wells of dif-
ferent depths in a 2-D digital waveguide mesh, we need to
convert the depths of the wells in Equation 4 to the number of
junctions. Since the travel time of the wave in the nth well is
given by
(10)

th = —,
C

where d,, is the depth of the nth well, and ¢ is the speed of
the sound, we can calculate the travel time in samples for the
traveling wave by multiplying Equation 10 by the sampling
rate, i.e.,
Np =1tnfs = d_nfsa
C
where n,, is the travel time in samples in the nth well and
fs is the sampling rate. Substituting d,, with that in Equation
4 yields

1)
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where s, is a quadratic residue sequence with period N.

Since the wells are rigidly separated from each other in
Schroeder’s diffuser, we need to take this into account when
implementing it in a 2-D digital waveguide mesh. This can
be accomplished by disconnecting all the horizontal strings
between adjacent junctions in the wells as shown in Figure
4. The disconnection of the strings between junctions means
the junctions in the wells are no more considered 4-port junc-
tions, and this changes the scattering coefficients. In fact, the
junctions in the wells are now pure digital delay lines with-
out any scattering, having reflections only at the end of the
wells. The junctions are terminated at the boundaries with a
reflection coefficient of 0.999.

Figure 4: The 2-D digital waveguide mesh in the vicinity of
diffusing boundary. Note there are no horizontal connections
between junctions in the wells.

The design wavelength Ag used in our simulation is 25
c¢m, and each well is one sample wide, which gives the well
width of w = ¢T = ¢/fs = 1.56 cm (K Ag). Therefore,
the Ao > w requirement in Schroeder’s diffuser has been
satisfied.

4.2 Empirical Analysis

We have modified the algorithm for the rectilinear mesh in
such a way that Schroeder’s diffuser is implemented on one of
its boundaries, and compared them by visualizing the meshes
at different time frames. Figure 5 shows wave propagation on
the rectilinear mesh with rigid, flat boundaries which yield
specular reflections when given an initial excitation at the
center.

The figure shows that specular reflections occur at the
boundaries. We can clearly see the symmetry in the wave
propagation pattern, and the energy is concentrated at some
regions in the mesh after some time has passed. On the other
hand, the mesh with one of its boundaries being replaced with
Schroeder’s diffuser reveals very different reflection charac-
teristics as shown in Figure 6. The wave propagates in the
same pattern at the beginning as in the plain mesh, but it
starts to diffuse in the third plot as it approaches a boundary
with Schroeder’s diffuser. This diffusion from the the uneven
boundary disturbs the symmetric wave propagation pattern
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Figure 5: Wave propagation on the mesh with flat surfaces at
time frames n = 1, 20, 40, 60, 100, respectively.
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Figure 6: Wave propagation on the mesh with Schroeder’s
diffuser when N = 17 (diffusing surface at bottom-right side).



Figure 7: Plane wave propagation on the mesh with flat sur- Figure 8: Plane wave propagation on the mesh with
faces at time frames n = 1,10, 20, 60, 200, respectively. Schroeder’s diffuser when N = 17 (diffusing surface at
bottom-right side).



seen in the plain mesh, and in the last plot, we can see the en-
ergy is evenly distributed all over the mesh after a very short
period of 4.5 milliseconds.

The comparison between the plain mesh with specular
boundaries and the mesh with a diffusing boundary becomes
more obvious if we use an incident plane wave as their initial
excitation. Even before looking at the animated results, we
may expect that the plain mesh with flat surfaces will show
a specular reflection pattern; i.e., the plane wave will reflect
with equal angles of incidence and reflection as light is re-
flected in the mirror. Figure 7 shows this specular reflection
of the plane wave when the angle of incidence is a = 45°.
The plane wave is reflected with the same angle as its angle
of incidence, and keeps the same specular reflection pattern,
resulting in the propagation pattern similar to diamond shape,
whereas the wave propagation pattern shown in Figure 8 is
totally different. The plane wave is diffused as it reaches the
diffusing surface in the second plot, and it starts to propagate
in many directions as shown in the next plot. Finally, in the
last plot, we can see the sound energy is evenly distributed
on the mesh without any visible concentration on specific re-
gions.

We have measured scattering levels at various angles in
the vicinity of the boundaries by using a half-plane wave nor-
mal to the reflection boundary as an excitation source (i.e.,
incidence angle of @ = 0°), and by having multiple recep-
tion points along the line parallel to the boundary as shown in
Figure 9. The resulting polar responses shown in Figure 10
clearly show that the sound energy is evenly scattered at every
angle at the diffusing boundary. On the other hand, in case of
the flat surface, most of the energy is centered on the receiver
where the reflection angle is 0° due to specular reflection.

Ry Ro R3 Ry Ry, _1Rn
[ ] e o o - ® @
l l l l lplanewave
boundary

Figure 9: 128x64 rectilinear mesh with a half-plane wave and
multiple reception points.

Note that sound examples and Matlab generated movies
which clearly visualize wave propagation are available from

the WWW URL address: http://www-ccrma.stanford.

edu/~kglee/2dmesh_QRD/
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Figure 10: Scattering levels from a Schroeder’s diffuser
(solid) and a flat surface (dashed).

5 Conclusions

Schroeder’s diffusers proved to be very successful, and
alternate designs as well as its original design have been ap-
plied to concert halls to evenly distribute the sound energy
to the audience area (Cox and D’Antonio 2003). In this pa-
per, we have implemented a 2-D digital waveguide mesh with
Schroeder’s diffuser based on quadratic residue sequences,
and have simulated its performance. We have shown that the
diffusion occurs at the boundary in a mesh where Schroeder’s
diffuser is implemented, the sound energy is evenly dispersed
everywhere after a while. On the other hand, a plain mesh
shows more specular reflections, and the sound energy is more
concentrated in some regions in a specific pattern. The com-
putational efficiency of the 2-D digital waveguide mesh is
largely preserved, since computations along the boundary of
an N x N mesh are O(N), while the time-update for the en-
tire mesh is O(IN2). This highly diffusing 2-D digital waveg-
uide mesh may be extended to implement artificial reverber-
ation, or to model a musical instrument’s body.
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