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Abstract. We describe a system for automatic chord transcription from
the raw audio using genre-specific hidden Markov models trained on
audio-from-symbolic data. In order to avoid enormous amount of human
labor required to manually annotate the chord labels for ground-truth,
we use symbolic data such as MIDI files to automate the labeling pro-
cess. In parallel, we synthesize the same symbolic files to provide the
models with the sufficient amount of observation feature vectors along
with the automatically generated annotations for training. In doing so,
we build different models for various musical genres, whose model pa-
rameters reveal characteristics specific to their corresponding genre. The
experimental results show that the HMMs trained on synthesized data
perform very well on real acoustic recordings. It is also shown that when
the correct genre is chosen, simpler, genre-specific model yields perfor-
mance better than or comparable to that of more complex model that
is genre-independent. Furthermore, we also demonstrate the potential
application of the proposed model to the genre classification task.

1 Introduction

Extracting high-level information of musical attributes such as melody, harmony,
key, or rhythm from the raw audio is very important in Music Information Re-
trieval (MIR) systems. Using such high-level musical information, users can effi-
ciently and effectively search, retrieve, and navigate through a large collection of
musical audio. Among those musical attributes, chords play a key role in West-
ern tonal music. A musical chord is a set of simultaneous tones, and succession
of chords over time, or chord progression, forms the core of harmony in a piece of
music. Hence analyzing the overall harmonic structure of a musical piece often
starts with labeling every chord at every beat or measure.

Recognizing the chords automatically from audio is of great use for those who
want to do harmonic analysis of music. Once the harmonic content of a piece
is known, a sequence of chords can be used for further higher-level structural
analysis where themes, phrases or forms can be defined.

Chord sequences with the timing of chord boundaries are also a very compact
and robust mid-level representation of musical signals, and have many potential



applications, which include music identification, music segmentation, music sim-
ilarity finding, mood classification, and audio summarization. Chord sequences
have been successfully used as a front end to the audio cover song identification
system in [1], where a dynamic time warping algorithm was used to compute the
minimum alignment cost between two frame-level chord sequences. For these
reasons and others, automatic chord recognition has recently attracted a num-
ber of researchers in the Music Information Retrieval field. Some systems use
a simple pattern matching algorithm [2–4] while others use more sophisticated
machine learning techniques such as hidden Markov models or Support Vector
Machines [5–10].

Hidden Markov models (HMMs) are very successful for speech recognition,
and they owe such high performance largely due to gigantic databases accumu-
lated over decades. Such a huge database not only helps estimate the model
parameters appropriately, but also enables researchers to build richer models,
resulting in better performance. However, there is very few such database avail-
able for music applications. Furthermore, the acoustical variance in a piece of
music is far greater than that in speech in terms of its frequency range, timbre
due to instrumentation, dynamics, and/or tempo, and thus a even more data is
needed to build the generalized models.

It is very difficult to obtain a large set of training data for music, however.
First of all, it is nearly impossible for researchers to acquire a large collection of
musical recordings. Secondly, hand-labeling the chord boundaries in a number
of recordings is not only an extremely time consuming and laborious task but
also involves performing harmonic analysis by someone with the knowledge of
music theory.

In this paper, we propose a method of automating the daunting task of
providing the machine learning models with a huge amount of labeled training
data for supervised learning. To this end, we use symbolic data such as MIDI files
to generate chord names and precise chord boundaries, as well as to create audio
files. Audio and chord-boundary information generated this way are in perfect
alignment, and we can use them to estimate the model parameters. In addition,
we build a separate model for each musical genre, which, when a correct genre
model is selected, turns out to outperform a universal, genre-independent model.
The overall system is illustrated in Figure 1.

There are several advantages to this approach. First, a great number of sym-
bolic files are freely available, often the times categorized by genres. Second, we
do not need to manually annotate chord boundaries with chord names to obtain
training data. Third, we can generate as much data as needed with the same
symbolic files but with different musical attributes by changing instrumentation,
tempo, or dynamics when synthesizing audio. This helps avoid overfitting the
models to a specific type of music. Fourth, sufficient training data enables us to
build richer models for better performance.

This paper continues with a review of related work in Section 2; in Section
3, we describe the feature vector we used to represent the state in the models;
in Section 4, we explain the method of obtaining the labeled training data, and
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Fig. 1. Overview of the system.

describe the procedure of building our models; in Section 5, we present experi-
mental results with discussions, and draw conclusions followed by directions for
future work in Section 6.

2 Related Work

Several systems have been previously described for chord recognition from the
raw waveform using machine learning approaches. Sheh and Ellis proposed a
statistical learning method for chord segmentation and recognition [5]. They used
the hidden Markov models (HMMs) trained by the Expectation-Maximization
(EM) algorithm, and treated the chord labels as hidden values within the EM
framework. In training the models, they used only the chord sequence as an
input to the models, and applied the forward-backward algorithm to estimate
the model parameters. The frame accuracy they obtained was about 76% for



segmentation and about 22% for recognition, respectively. The poor performance
for recognition may be due to insufficient training data compared with a large
set of classes (just 20 songs to train the model with 147 chord types). It is also
possible that the flat-start initialization in the EM algorithm yields incorrect
chord boundaries resulting in poor parameter estimates.

Bello and Pickens also used HMMs with the EM algorithm to find the crude
transition probability matrix for each input [6]. What was novel in their approach
was that they incorporated musical knowledge into the models by defining a state
transition matrix based on the key distance in a circle of fifths, and avoided
random initialization of a mean vector and a covariance matrix of observation
distribution. In addition, in training the model’s parameter, they selectively up-
dated the parameters of interest on the assumption that a chord template or
distribution is almost universal regardless of the type of music, thus disallowing
adjustment of distribution parameters. The accuracy thus obtained was about
75% using beat-synchronous segmentation with a smaller set of chord types (24
major/minor triads only). In particular, they argued that the accuracy increased
by as much as 32% when the adjustment of the observation distribution parame-
ters is prohibited. Even with the high recognition rate, it still remains a question
if it will work well for all kinds of music.

The present paper expands our previous work on chord recognition [8–10]. It
is founded on the work of Sheh and Ellis or Bello and Pickens in that the states
in the HMM represent chord types, and we try to find the optimal path, i.e.,
the most probable chord sequence in a maximum-likelihood sense using a Viterbi

decoder. The most prominent difference in our approach is, however, that we use
a supervised learning method; i.e., we provide the models with feature vectors as
well as corresponding chord names with precise boundaries, and therefore model
parameters can be directly estimated without using an EM algorithm when a
single Gaussian is used to model the observation distribution for each chord. In
addition, we propose a method to automatically obtain a large set of labeled
training data, removing the problematic and time consuming task of manual
annotation of precise chord boundaries with chord names. Furthermore, this
large data set allows us to build genre-specific HMMs, which not only increase
the chord recognition accuracy but also provide genre information.

3 System

Our chord transcription system starts off by performing harmonic analysis on
symbolic data to obtain label files with chord names and precise time bound-
aries. In parallel, we synthesize the audio files with the same symbolic files using
a sample-based synthesizer. We then extract appropriate feature vectors from
audio which are in perfect sync with the labels and use them to train our models.

3.1 Obtaining Labeled Training Data

In order to train a supervised model, we need a large number of audio files with
corresponding label files which must contain chord names and boundaries. To



automate this laborious process, we use symbolic data to generate label files
as well as to create time-aligned audio files. To this end, we first convert a
symbolic file to a format which can be used as an input to a chord-analysis tool.
Chord analyzer then performs harmonic analysis and outputs a file with root
information and note names from which complete chord information (i.e., root
and its sonority – major, minor, or diminished) is extracted. Sequence of chords
are used as pseudo ground-truth or labels when training the HMMs along with
proper feature vectors.

We used symbolic files in MIDI (Musical Instrument Digital Interface) for-
mat. For harmonic analysis, we used the Melisma Music Analyzer developed by
Sleator and Temperley [11]. Melisma Music Analyzer takes a piece of music rep-
resented by an event list, and extracts musical information from it such as meter,
phrase structure, harmony, pitch-spelling, and key. By combining harmony and
key information extracted by the analysis program, we can generate label files
with sequence of chord names and accurate boundaries.

The symbolic harmonic-analysis program was tested on a corpus of excerpts
and the 48 fugue subjects from the Well-Tempered Clavier, and the harmony
analysis and the key extraction yielded an accuracy of 83.7% and 87.4%, respec-
tively [12].

We then synthesize the audio files using Timidity++. Timidity++ is a free
software synthesizer, and converts MIDI files into audio files in a WAVE for-
mat.1 It uses a sample-based synthesis technique to create harmonically rich
audio as in real recordings. The raw audio is downsampled to 11025 Hz, and
6-dimensional tonal centroid features are extracted from it with the frame size
of 8192 samples and the hop size of 2048 samples, corresponding to 743 ms and
186 ms, respectively.

3.2 Feature Vector

Harte and Sandler proposed a 6-dimensional feature vector called Tonal Cen-

troid, and used it to detect harmonic changes in musical audio [13]. It is based
on the Harmonic Network or Tonnetz, which is a planar representation of pitch
relations where pitch classes having close harmonic relations such as fifths, ma-
jor/minor thirds have smaller Euclidean distances on the plane.

The Harmonic Network is a theoretically infinite plane, but is wrapped to
create a 3-D Hypertorus assuming enharmonic and octave equivalence, and there-
fore there are just 12 chromatic pitch classes. If we reference C as a pitch class
0, then we have 12 distinct points on the circle of fifths from 0-7-2-9-· · ·-10-5,
and it wraps back to 0 or C. If we travel on the circle of minor thirds, however,
we come back to a referential point only after three steps as in 0-3-6-9-0. The
circle of major thirds is defined in a similar way. This is visualized in Figure 2.
As shown in Figure 2, the six dimensions are viewed as three coordinate pairs
(x1, y1), (x2, y2), and (x3, y3).

1 http://timidity.sourceforge.net/



Fig. 2. Visualizing the 6-D Tonal Space as three circles: fifths, minor thirds, and major
thirds from left to right. Numbers on the circles correspond to pitch classes and rep-
resent nearest neighbors in each circle. Tonal Centroid for A major triad (pitch class
9,1, and 4) is shown at point A (adapted from Harte and Sandler [13]).

Using the aforementioned representation, a collection of pitches like chords
is described as a single point in the 6-D space. Harte and Sandler obtained a
6-D tonal centroid vector by projecting a 12-bin tuned chroma vector onto the
three circles in the equal tempered Tonnetz described above. By calculating the
Euclidean distance between successive analysis frames of tonal centroid vectors,
they successfully detect harmonic changes such as chord boundaries from musical
audio.

While a 12-dimensional chroma vector has been widely used in most chord
recognition systems, it was shown that the tonal centroid feature yielded far less
errors in [10]. The hypothesis was that the tonal centroid vector is more efficient
and more robust because it has only 6 dimensions, and it puts emphasis on the
interval relations such as fifths, major/minor thirds, which are key intervals that
comprise most of musical chords in Western tonal music.

3.3 Hidden Markov Model

A hidden Markov model [14] is an extension of a discrete Markov model, in which
the states are hidden in the sense that an underlying stochastic process is not
directly observable, but can only be observed through another set of stochastic
processes.

We recognize chords using 36-state HMMs. Each state represents a single
chord, and the observation distribution is modeled by Gaussian mixtures with
diagonal covariance matrices. State transitions obey the first-order Markov prop-
erty; i.e., the future is independent of the past given the present state. In ad-
dition, we use an ergodic model since we allow every possible transition from
chord to chord, and yet the transition probabilities are learned.

In our model, we have defined three chord types for each of 12 chromatic
pitch classes according to their sonorities – major, minor, and diminished chords



– and thus we have 36 classes in total. We grouped triads and seventh chords
with the same root into the same category. For instance, we treated E minor
triad and E minor seventh chord as just E minor chord without differentiating
the triad and the seventh. We found this class size appropriate in a sense that
it lies between overfitting and oversimplification.

With the labeled training data obtained from the symbolic files, we first
train our models to estimate the model parameters. Once the model parameters
are learned, we then extract the feature vectors from the real recordings, and
apply the Viterbi algorithm to the models to find the optimal path, i.e., chord
sequence, in a maximum likelihood sense.

3.4 Genre-Specific HMMs

In [10], when tested with various kinds of input, Lee and Slaney showed that
the performance was greatest when the input audio was of the same kind as
the training data set, suggesting the need to build genre-specific models. This
is because not only different instrumentation causes the feature vector to vary,
but also the chord progression, and thus the transition probabilities are very
different from genre to genre.

We therefore built an HMM for each genre. While the genre information is not
contained in the symbolic data, most MIDI files are categorized by their genres,
and we could use them to obtain different training data sets by genres. We de-
fined six musical genres including keyboard, chamber, orchestral, rock, jazz, and
blues. We acquired the MIDI files for classical music – keyboard, chamber, and
orchestral – from http://www.classicalarchives.com, and others from a few
websites including http://www.mididb.com, http://www.thejazzpage.de,
and http://www.davebluesybrown.com. The total number of MIDI files and
synthesized audio files used for training is 4,212, which correspond to 348.73
hours of audio and 6,758,416 feature vector frames. Table 1 shows the training
data sets used to train each genre model in more detail.

Table 1. Training data sets for each genre model

Genre # of MIDI/Audio files # of frames Audio length (hours)

Keyboard 393 1,517,064 78.28

Chamber 702 1,224,209 63.17

Orchestral 319 1,528,796 78.89

Rock 1,046 1,070,752 55.25

Jazz 1,037 846,006 43.65

Blues 715 571,589 29.49

All 4,212 6,758,416 348.73

Figure 3 shows the 36×36 transition probability matrices for rock, jazz, and
blues model after training. Although they are all strongly diagonal because the
rate at which chord changes is usually longer than the frame rate, we still can



observe the differences among them. For example, the blues model shows higher
transition probabilities between the tonic (I) and the dominant (V) or subdom-
inant (IV) chord than the other two models, which are the three chords almost
exclusively used in blues music. This is indicated by darker off-diagonal lines 5
or 7 semitones apart from the main diagonal line. In addition, compared with
the rock or blues model, we find that the jazz model reveals more frequent tran-
sitions to the diminished chords, as indicated by darker last third region, which
are rarely found in rock or blues music in general.
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Fig. 3. 36×36 transition probability matrices of rock (left), jazz (center), and blues
(right) model. For viewing purpose, logarithm was taken of the original matrices. Axes
are labeled in the order of major, minor, and diminished chords.

We can also witness the difference in the observation distribution of the chord
for each genre, as shown in Figure 4. Figure 4 displays the mean tonal centroid
vectors and covariances of C major chord in the keyboard, chamber, and in the
orchestral model, respectively, where the observation distribution of the chord
was modeled by a single Gaussian.

We believe these unique properties in model parameters specific to each genre
will help increase the chord recognition accuracy when the correct genre model
is selected.

4 Experimental Results and Analysis

4.1 Evaluation

We tested our models’ performance on the two whole albums of Beatles (CD1:
Please Please Me, CD2: Beatles For Sale) as done by Bello and Pickens [6],
each of which contains 14 tracks. Ground-truth annotations were provided by
Harte and Sandler at the Digital Music Center at University of London in Queen
Mary.2

2 http://www.elec.qmul.ac.uk/digitalmusic/
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In computing scores, we only counted exact matches as correct recognition.
We tolerated the errors at the chord boundaries by having a time margin of one
frame, which corresponds approximately to 0.19 second. This assumption is fair
since the segment boundaries were generated by human by listening to audio,
which cannot be razor sharp.

To examine the dependency of the test input on genres, we first compared
the each genre model’s performance on the same input material. In addition to 6
genre models described in Section 3.4, we built a universal model without genre
dependency where all the data were used for training. This universal, genre-
independent model was to investigate the model’s performance when no prior
genre information of the test input is given.

4.2 Results and Discussion

Table 2 shows the frame-rate accuracy in percentage for each genre model. The
number of Gaussian mixtures was one for all models. The best results are shown
in boldface.

From the results shown in Table 2, we can notice a few things worthy of fur-
ther discussions. First of all, the performance of the classical models – keyboard,



Table 2. Test results for each model with major/minor/diminished chords (36 states,
% accuracy)

Model Beatles CD1 Beatles CD2 Total

Keyboard 38.674 73.106 55.890

Chamber 30.557 73.382 51.970

Orchestral 18.193 57.109 37.651

Rock 45.937 77.294 61.616

Jazz 43.523 76.220 59.872

Blues 48.483 79.598 64.041

All 24.837 68.804 46.821

chamber, and orchestral model – is much worse than that of other models. Sec-
ond, the performance of the rock model came 2nd out of all 7 models, which
proves our hypothesis that the model of the same kind as the test input out-
performs the others. Third, even though the test material is generally classified
as rock music, it is not striking that the blues model gave the best performance
considering that rock music has its root in blues music. Particularly, early rock
music like Beatles’ was greatly affected by blues music. This again supports our
hypothesis.

Knowing that the test material does not contain any diminished chord, we
did another experiment with the class size reduced down to just 24 major/minor
chords instead of full 36 chord types. The results are shown in Table 3.

Table 3. Test results for each model with major/minor chords only (24 states, %
accuracy)

Model Beatles CD1 Beatles CD2 Total

Keyboard 43.945 73.414 58.680

Chamber 43.094 79.593 61.344

Orchestral 37.238 77.133 57.186

Rock 60.041 84.289 72.165

Jazz 44.324 76.107 60.216

Blues 52.244 80.042 66.143

All 51.443 80.013 65.728

With fewer chord types, we can observe that the recognition accuracy in-
creased by as much as 20% for some model. Furthermore, the rock model out-
performed all other models, again verifying our hypothesis on genre-dependency.
This in turn suggests that if the type of the input audio is given, we can adjust
the class size of the corresponding model to increase the accuracy. For example,
we may use 36-state HMMs for classical or jazz music where diminished chords
are frequently used, but use only 24 major/minor chord classes in case of rock
or blues music, which rarely uses diminished chords.



Finally, we investigated the universal, genre-independent model in further
detail to see the effect of the model complexity. This is because in practical
situations, the genre information of the input is unknown, and thus there is
no choice but to use a universal model. Although the results shown in Table 2
and Table 3 indicate a general, genre-independent model performs worse than a
genre-specific model of the same kind as the input, we can build a richer model
for potential increase in performance since we have much more data. Figure
5 illustrates the performance of a universal model as the number of Gaussian
mixture increases.

1 3 5 7 9 11 13 15 17 19 21
20

25

30

35

40

45

50

55

60

65

Number of mixtures

A
cc

ur
ac

y 
(%

)

Beatles CD1

 

 

1 3 5 7 9 11 13 15 17 19 21
65

70

75

80

85

Number of mixtures

Beatles CD2

 

 

universal

rock

universal

rock

Fig. 5. Chord recognition performance of a 36-state universal model with the number
of mixtures as a variable (solid) overlaid with a 24-state rock model with one mixture
(dash-dot).

As shown in Figure 5, the performance increases as the model gets more com-
plex and richer. To compare the performance of a complex, genre-independent
36-state HMM with that of a simple, genre-specific 24-state HMM, overlaid is
the performance of a 24-state rock model with only one mixture. Although in-
creasing the number of mixtures also increases the recognition rate, it fails to
reach the rate of a rock model with just one mixture. This comparison is not
fair in that a rock model has only 24 states compared with 36 states in a univer-
sal model, resulting in less errors particularly because not a single diminished
chord is included in the test material. As stated above, however, given no prior
information regarding the kind of input audio, we can’t take the risk of using a
24-state HMM with only major/minor chords because the input may be classical
or jazz music in which diminished chords appear quite often.

The above statements therefore suggest that genre identification on the input
audio must be preceded in order to be able to use genre-specific HMMs for better
performance. It turns out, however, that we don’t need any other sophisticated



genre classification algorithms or different feature vectors like MFCC, which is
almost exclusively used for genre classification. Given the observation sequence
from the input, when there are several competing models, we can select the
correct model by choosing one with the maximum likelihood using a forward-
backward algorithm also known as a Baum-Welch algorithm. It is exactly the
same algorithm as one used in isolated word recognition systems described in
[14]. Once the model is selected, we can apply the Viterbi decoder to find the
most probable state path, which is identical to the most probable chord sequence.
Using this method, our system successfully identified 24 tracks as rock music out
of total 28 tracks, which is 85.71% accuracy. What is noticeable and interesting
is that the other four songs are all misclassified as blues music in which rock
music is known to have its root. In fact, they all are very blues-like music, and
some are even categorized as “bluesy”.

Our results compare favorably with other state-of-the-art system by Bello and
Pickens [6]. Their performance with Beatles’ test data was 68.55% and 81.54%
for CD1 and CD2, respectively. However, they went through a pre-processing
stage of beat detection to perform a tactus-based analysis/recognition. Without
a beat-synchronous analysis, their accuracy drops down to 58.96% and 74.78%
for each CD, which is lower than our results with a rock model which are 60.04%
and 84.29%.

5 Conclusion

In this paper, we describe a system for automatic chord transcription from the
raw audio. The main contribution of this work is the demonstration that auto-
matic generation of a very large amount of labeled training data for machine
learning models leads to superior results in our musical task by enabling richer
models like genre-specific HMMs. By using the chord labels with explicit seg-
mentation information, we directly estimated the model parameters in HMMs.

In order to accomplish this goal, we have used symbolic data to generate label
files as well as to synthesize audio files. The rationale behind this idea was that
it is far easier and more robust to perform harmonic analysis on the symbolic
data than on the raw audio data since symbolic files such as MIDI files contain
noise-free pitch and time information for every note. In addition, by using a
sample-based synthesizer, we could create audio files which have harmonically
rich spectra as in real acoustic recordings. This labor-free procedure to obtain a
large amount of labeled training data enabled us to build richer models like genre-
specific HMMs, resulting in improved performance with much simpler models
than a more complex, genre-independent model.

As feature vectors, we used 6-dimensional tonal centroid vectors which proved
to outperform conventional chroma vectors for the chord recognition task in
previous work by the same author.

Each state in HMMs was modeled by a multivariate, single Gaussian or Gaus-
sian mixtures completely represented by mean vectors and covariance matrices.
We have defined 36 classes or chord types in our models, which include for each



pitch class three distinct sonorities – major, minor, and diminished. We treated
seventh chords as their corresponding root triads, and disregarded augmented
chords since they very rarely appear in Western tonal music. We reduced the
class size down to 24 without diminished chords for some models – for instance,
for rock or blues model – where diminished chords are very rarely used, and we
could observe great improvement in performance.

Experimental results show that the performance is best when the model and
the input are of the same kind, which supports our hypothesis on the need for
building genre-specific models. This in turn indicates that although the models
are trained on synthesized data, they succeed to capture genre-specific musi-
cal characteristics seen in real acoustic recordings. Another great advantage of
present approach is that we can also predict the genre of the input audio by
computing the likelihoods of different genre models as done in isolated word rec-
ognizers. This way, we not only extract chord sequence but also identify musical
genre at the same time, without using any other algorithms or feature vectors.

Even though the experiments on genre identification yielded high accuracy,
the test data contained only one type of musical genre. In the near future, we
plan to expand the test data to include several different genres to fully exam-
ine the viability of genre-specific HMMs. In addition, we consider higher-order
HMMs for future work because chord progressions based on Western tonal music
theory reveal such higher-order characteristics. Therefore, knowing two or more
preceding chords will help make a correct decision.
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