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Abstract

This paper presents a discrete-time model for simulation of woodwind toneholes in a musical
sound synthesis context. Starting from a lumped element approximation of the partially open
tonehole, we develop an efficient digital tonehole model with dynamically adjustable tonehole
state. The model, that covers a wider range of woodwind toneholes than those previously
reported, is discretised with the use of wave digital filter techniques.

INTRODUCTION

Physical modelling of woodwind instruments with application to musical sound synthesis requires
a digital tonehole model that 1) can represent toneholes of any physically and musically feasible
dimensions, 2) can be applied in the efficient travelling-wave formulation (such as a digital wave-
guide model), 3) closely approximates acoustical tonehole theories in the low-frequency-limit, 4)
characterises all tonehole states from open to closed, and 5) is computationally efficient. Tonehole
models that were previously developed in this context [5, 7, 8, 9, 10] do not meet all of these
requirements. The three-port tonehole model described in [9], in which wave propagation in the
tonehole is modelled using a short delay-line, meets all criteria except the first. This is because
the model is only computable for tonehole lengths that correspond to a round-trip time of at least
one delay. For an audio sampling frequency fs = 44.1kHz and a wave velocity c = 342m/s, the
tonehole length is restricted to a minimum of t = c/(2fs) ≈ 3.8mm. Since increasing the sample
rate is undesirable for a variety of reasons, simulation of woodwind instruments that contain holes
of shorter length (such as the saxophone) requires an alternative modelling approach.

WAVE DIGITAL MODELLING

Wave digital filter (WDF) techniques are used for digital simulation of analog networks [1, 2]. The
resulting digital networks are called wave digital filters. The classical analogy between electric and
acoustic systems allows application of similar techniques for the discretisation of lumped elements in
an acoustic model. WDF techniques are similar to digital waveguide modelling (DWM) techniques
in the sense that they both digitise continuous-time models using wave variables. A combined
approach (“wave digital modelling”) is possible in which lumped elements are modelled using WDF

1



techniques and distributed elements are modelled using DWM techniques. For example, in [6], such
an approach has been taken for digital simulation of force interaction between hammer and string in
a piano. In the current context of modelling acoustic wind instruments, the instantaneous acoustic
variables are pressure (P ) and volume flow (U). We define the decompostion of these into wave
variables as:

P+ =
P + R U

2
(1)

P− =
P − R U

2
,

where R is the port-resistance. In the case of a distributed acoustic element, the wave variables
correspond to pressure-waves travelling through a certain medium. The port-resistance then equals
the reference impedance that characterises the medium (as in DWM). In the lumped case, the
waves may only be understood to be travelling instantaneously [6]. From an acoustical point of
view, the port-resistance may then be considered arbitrary. Similar to the derivation of WDFs
(as described in [1, 2]), this freedom of choice can be used to avoid delay-free loops in the final
discrete-time modelling structure.

THE HALF-HOLE MODEL

Figure 1 shows a cross-sectional view of a woodwind tonehole. In the low-frequency limit, the
hole dimensions are usually small in comparison with the acoustic wavelength, thus the acoustic
behaviour may be characterised by a lumped acoustic element. For an open hole, the behaviour
is approximately that of a pure inertance, while for a closed one it approximately corresponds to
a pure compliance [10]. For intermediate tonehole states (partially open holes or “half-holes”),
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Figure 1: Cross-sections of a woodwind tonehole.

the tonehole volume Vb can be divided into an “open part” that behaves as an inertance, and a
“closed part” that behaves as a compliance. These volumes operate in parallel, thus the half-hole
load impedance is:

Zs(ω) =
jωL

1 − ω2LC
, (2)
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Figure 2 shows the network equivalent of this model. The half-hole compliance (C) and inertance
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Figure 2: Electrical network representation of the half-hole model.

(L) are given by:

C = (1 − g) ·
Sbt

ρc2
, L =

ρte
gSb

, (3)

where the parameter g expresses the tonehole state, defined as the ratio between open and total
tonehole volume. The tonehole height t is defined such that its product with the tonehole surface
Sb equals the geometric volume Vb [3]:

t = tw + 0.25b(b/a)
(

1 + 0.172(b/a)2
)

, (4)

The tonehole effective length te is similar to t, though it includes inner and outer length-correction
terms. The value for te given in [3] is frequency-dependent, though at low frequencies the following
approximation is sufficiently accurate:

te = t + b
(

1.4 − 0.58(b/a)2
)

(5)

An additional effect of inserting a hole in a woodwind bore is that the effective acoustic length of
the bore is slightly reduced on both sides of the hole [3, 10]. This length-correction depends on the
tonehole series equivalent length, for which we found a simplified expression that applies to both
open and closed tonehole state:

ta =
0.47(b/a)4

1 + 0.62(b/a)2 + 0.64(b/a)
(6)

The total main bore negative length correction for a tonehole with series equivalent length ta is
la = −(a/b)2ta [3]. Thus if the lengths of the main bore sections on each side of the tonehole are
l1 and l2, they should be corrected to l1 + la/2 and l2 + la/2, respectively. Because the length-
correction is very small, this formulation differs only slightly from the series impedance formulation
in [3].
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DISCRETISATION

In order to represent a half-hole model in a wave digital modelling context, a decomposition of the
instantaneous variables (P and U) into wave variables is required. Taking a three-port modelling
approach (as described in [5, 7, 9]), and applying eqs. (1) to the network in Fig. 2, the modelling
structure depicted in Fig. 3 results. Because the main bore is modelled as a digital waveguide,
both R1 and R2 must equal the main bore characteristic impedance Z0. The scattering equations
of the three-port junction that models the wave interaction at the intersection between the main
bore and the tonehole are:

P−

1 = P−

2 + W

P+
2 = P+

1 + W (7)

P+
3 = P+

1 + P−

2 − P−

3 + W,

with

W =

(

−Z0

2R3 + Z0

)

[

P+
1 + P−

2 − 2P−

3

]

, (8)

where the lumped element port-resistance R3 has to be chosen such that the structure is computable.
The continuous-time tonehole “reflectance” Rs(ω) is:
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Figure 3: Structure for discrete-time modelling of the half-hole model. The delay-lines model
wave propagation in the main bore.

Rs(ω) =
Zs(ω) − R3

Zs(ω) + R3

(9)
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Note that Rs(ω) does not correspond to the actual physical tonehole reflectance as seen from the
main bore. Substitution of eq. (2) and applying the bilinear transform gives the wave digital
reflectance, which has the form of an all-pass filter:

Rs(z) = −

α1 + α2z
−1 + z−2

1 + α2z−1 + α1z−2
, (10)

with

α1 =
R3

(

1 + β2LC
)

− βL

R3 (1 + β2LC) + βL

(11)

α2 =
2R3

(

1 − β2LC
)

R3 (1 + β2C) + βL
,

where β = 2fs is the bilinear operator. In order to avoid a delay-free loop, R3 must be chosen
such that the wave P+

3 entering Rs(z) is not immediately reflected back towards the three-port
scattering junction via P−

3 . This requires setting the filter coefficient α1 = 0, which means that we
must choose R3 = β/(L−1 + β2C). The resulting digital reflectance is:

Rs(z) = −z−1

(

α2 + z−1

1 + α2z−1

)

, (12)

with

α2 =
L−1

− β2C

L−1 + β2C
. (13)

Both R3 and α2 are computed using the term L−1, so that we can let L → ∞ (which corresponds
to fully closing the tonehole). In order to investigate the effect of the discretisation, the half-hole
two-port reflectance (i.e., the reflectance P−

1 /P+
1 ) of the half-hole was computed for a range of

tonehole states. Figure 4 compares the continuous-time half-hole model with its digital version, the
“wave digital tonehole model”, in terms of magnitude response. As can be expected, the discrete-
time model closely approximates the continuous-time model at the lower frequencies. However,
the deviation is rather large at the higher frequencies. Fortunately, this discrepancy is relatively
insignificant in a full instrument implementation, because the air column reflection function is
strongly low-pass due to viscothermal and radiation losses.

APPLICATION TO A SIX-HOLE FLUTE

The wave digital (WD) tonehole model closely approximates the tonehole transmission-line model
described in [3]. This was verified by comparing the reflection function of a six-hole flute, as
computed in [3], with the reflection function of a WD model of the flute. Figure 5 displays this
comparison for a fingering that corresponds to the note G. A 5kHz low-pass filter was applied to both
reflection functions in order to facilitate a visual comparison. In the WD model, fractional delay-
lengths were modelled using third-order Lagrange interpolation filters [5], which have a negligible
error in a bandwidth of 5kHz. In order to further ensure that the comparison is focussed on the
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Figure 4: Two-port reflectance of the continuous-time (top) and the discrete-time (bottom)
half-hole model, for a range of tonehole states (g = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0).
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Figure 5: Six-hole flute reflection function for the note G (the first three holes closed).
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tonehole part of the model, viscothermal losses were neglected in both computations. Note that
the fit is so close that the difference between the curves is barely visible.

SOUND RADIATION

Sound is radiated from a fully or partially open tonehole because the air just outside the tonehole
is disturbed by the vibrational motion of the “open” part of the tonehole volume. Hence the flow
Ue exiting the hole equals the flow through the inertance:

Ue =
P3

jωL
(14)

A woodwind tonehole may be considered as an isotropic source [4]. Given a source-strength Ue,
the radiation pressure at a distance r from such a source is:

Prad(r) =

(

jωρ

4πr

)

Ue e−jkr, (15)

where k = ω/c is the free space wave velocity. By combining (14) and (15), we can compute the
pressure radiated from a woodwind tonehole as:

Prad(r) =

(

ρ

4πrL

)

P3 e−jkr (16)

Note that the frequency term jω has disappeared in the final result. The term e−jkr represents a
pure time-delay (i.e., the time it takes for a radiated pressure wave to reach the “listening point”).
Thus, the radiated pressure at any distance from the tonehole can be computed by simply scaling
and delaying the bore pressure P3 just underneath the tonehole. We can incorporate this into the
wave digital tonehole model by formulating the digital domain version of (16) as:

Prad(r) =

(

g

r

)

ξ P3 z−N , (17)

where z−N represents a delay-line of fractional length N = r/(cT ), and where ξ = Sb/(4πte) is a
constant. It must be noted that eq. (17) gives a good approximation at lower frequencies, but the
accuracy decreases for higher frequencies. This is mainly because the WD tonehole model is based
on a low-frequency approximation of the real acoustical behaviour of the tonehole. Moreover, we
have assumed that the radiation is isotropic (i.e., the flow spreads out evenly in all directions). This
assumption is valid for low frequencies, but for higher frequencies the effects of directivity need to
be taken into account (such as described in [11]). Since the higher frequencies are relevant from
a perceptual point of view, an extra filter (that compensates for the deviations described above)
can be applied to the pressure calculated with eq. (17) in order to obtain a better aural result. In
general, such a filter has a rather “smooth” high-pass amplitude response, and can be approximated
with a lower-order digital filter.

CONCLUSIONS

The WD tonehole model uses only two multiplications per sample (one for the three-port scattering
and one for the reflectance filter). Similar to the three-port tonehole model presented in [9], the
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model allows dynamic control of the tonehole state and closely approximates the established theories
on tonehole acoustics. The advantages of the WD model are that 1) there is no minimum tonehole
length, which allows simulation of toneholes of particular small dimensions and 2) no fractional
delay filters are required for implementation of fractional delay tonehole lengths.
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