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Abstract

The purpose of this note is to develop facts about positive real transfer functions for discrete-
time linear systems, i.e., in the z plane. Positive real functions arise naturally as the impedance
functions of passive continuous-time systems.
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1 Introduction

Any passive driving-point impedance, such as the impedance of a violin bridge, is positive real.
Positive real functions have been studied extensively in the continuous-time case in the context
of network synthesis [1, 9]. Very little, however, seems to be available in the discrete time case.
The purpose of this note (an excerpt from [7]) is to collect together some facts about positive real
transfer functions for discrete-time linear systems.

Definition. A complex valued function of a complex variable f(z) is said to be positive real
(PR) if

1. z real =⇒ f(z) real

2. |z| ≥ 1 =⇒ re {f(z)} ≥ 0

We now specialize to the subset of functions f(z) representable as a ratio of finite-order poly-
nomials in z. This class of “rational” functions is the set of all transfer functions of finite-order
time-invariant linear systems, and we write H(z) to denote a member of this class. We use the
convention that stable, minimum phase systems are analytic and nonzero in the strict outer disk.1

Condition (1) implies that for H(z) to be PR, the polynomial coefficients must be real, and there-
fore complex poles and zeros must exist in conjugate pairs. We assume from this point on that
H(z) 6= 0 satisfies (1). From (2) we derive the facts below.

Theorem. A real rational function H(z) is PR iff |z| ≥ 1 =⇒ |∠H(z)| ≤ π
2 .

Proof. Expressing H(z) in polar form gives

re {H(z)} = re
{

|H(z)| ej∠H(z)
}

= |H(z)| cos(∠H(z))

≥ 0, whenever |∠H(z)| ≤ π

2
,

since the zeros of H(z) are isolated. 2

Theorem. H(z) is PR iff 1/H(z) is PR.
Proof. Assuming H(z) is PR, we have by Thm. (1),

∣

∣∠H−1(z)
∣

∣ = |−∠H(z)| = |∠H(z)| ≤ π

2
, |z| ≥ 1.

2

Theorem. A PR function H(z) is analytic and nonzero in the strict outer disk.
Proof. (By contradiction)
Without loss of generality, we treat only nth order polynomials

α0z
n + α1z

n−1 + · · ·+ αn−1z + αn

which are nondegenerate in the sense that α0, αn 6= 0. Since facts about α0H(z) are readily deduced
from facts about H(z), we set α0 = 1 at no great loss.

1The strict outer disk is defined as the region |z| > 1 in the extended complex plane.

2



The general (normalized) causal, finite-order, linear, time-invariant transfer function may be
written

H(z) = z−ν
b(z)

a(z)

= z−ν
1 + b1z

−1 + · · ·+ bMz
−M

1 + a1z−1 + · · ·+ aNz−N

= z−ν
∏M
i=1(1− qiz−1)

∏N
i=1(1− piz−1)

= z−ν
Nd
∑

i=1

µi
∑

j=1

z Ki,j

(z − pi)j
, ν ≥ 0, (1)

where Nd is the number of distinct poles, each of multiplicity µi,and

Nd
∑

i=1

µi = max{N,M}.

Suppose there is a pole of multiplicity m outside the unit circle. Without loss of generality, we
may set µ1 = m, and p1 = Rejφ with R > 1. Then for z near p1, we have

zνH(z) =
z K1,m

(z −Rejφ)m +
z K1,m−1

(z −Rejφ)m−1
+ · · ·

≈ z K1,m

(z−Rejφ)m .

Consider the circular neighborhood of radius ρ described by z = Rejφ + ρ ejψ, −π ≤ ψ < π. Since
R > 1 we may choose ρ < R− 1 so that all points z in this neighborhood lie outside the unit circle.
If we write the residue of the factor (z −Rejφ)m in polar form as K1,m = C ejξ, then we have, for
sufficiently small ρ,

zνH(z) ≈ K1,mRe
jφ

(z −Rejφ)m =
K1,mRe

jφ

ρm ejmψ
=
C R

ρm
ej(φ+ξ−mψ). (2)

Therefore, approaching the pole Rejφ at an angle ψ gives

lim
ρ→0

∣

∣

∣
∠H(Rejφ + ρ ejψ)

∣

∣

∣
= |φ(1− ν) + ξ −mψ| , −π ≤ ψ < π

which cannot be confined to satisfy Thm. (1) regardless of the value of the residue angle ξ, or the
pole angle φ (m cannot be zero by hypothesis). We thus conclude that a PR function H(z) can
have no poles in the outer disk. By Thm. (1), we conclude that positive real functions must be
minimum phase. 2

Corollary. In equation Eq. (1), ν = 0.
Proof. If ν > 0, then there are ν poles at infinity. As |z| → ∞, H(z)→ z−ν =⇒ |∠H(z)| →

|ν∠z|, we must have ν = 0. 2

Corollary. The log-magnitude of a PR function has zero mean on the unit circle.
This is a general property of stable, minimum-phase transfer functions which follows immedi-

ately from the argument principle [3, 4].
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Corollary. A rational PR function has an equal number of poles and zeros all of which are in
the unit disk.

This really a convention for numbering poles and zeros. In Eq. (1), we have ν = 0, and all poles
and zeros inside the unit disk. Now, if M > N then we have M −N extra poles at z = 0 induced
by the numerator. If M < N , then N −M zeros at the origin appear from the denominator.

Corollary. Ėvery pole on the unit circle of a positive real function must be simple with a real
and positive residue.

Proof. Ẇe repeat the previous argument using a semicircular neighborhood of radius ρ about
the point p1 = ejφ to obtain

lim
ρ→0

∣

∣

∣
∠H(ejφ + ρejψ)

∣

∣

∣
= |φ+ ξ −mψ| , φ− π

2
≤ ψ ≤ φ+

π

2
. (3)

In order to have |∠H(z)| ≤ π/2 near this pole, it is necessary that m = 1 and ξ = 0. 2

Corollary. İf H(z) is PR with a zero at z = q1 = ejφ, then

H ′(z)
∆
=

H(z)

(1− q1z−1)

must satisfy

H ′(q1) 6= 0

∠H ′(q1) = 0.

Proof. Ẇe may repeat the above for 1/H(z).
Theorem. Every PR function H(z) has a causal inverse z transform h(n).
Proof. Ṫhis follows immediately from analyticity in the outer disk [5, pp. 30-36] However, we

may give a more concrete proof as follows. Suppose h(n) is non-causal. Then there exists k > 0
such that h(−k) 6= 0. We have,

H(z)
∆
=

∞
∑

n=−∞

h(n) z−n

= h(−k)zk +
∑

n6=−k

h(n) z−n.

Hence, H(z) has at least one pole at infinity and cannot be PR by Thm. (1). Note that this pole
at infinity cannot be cancelled since otherwise

h(−k)zk =
∑

l 6=−k

α(l) z−l

=⇒ h(−k)δ(n+ k) =
∑

m6=−k

α(m) δ(m− n)

=⇒ h(−k) = 0

which contradicts the hypothesis that h(n) is non-causal. 2

Theorem. H(z) is PR iff it is analytic for |z| > 1, poles on the unit circle are simple with real
and positive residues, and re

{

H(ejθ)
}

≥ 0 for 0 ≤ θ ≤ π.
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Proof. If H(z) is positive real, the conditions stated hold by virtue of Thm. (1) and the
definition of positive real.

To prove the converse, we first show nonnegativity on the upper semicircle implies nonnegativity
over the entire circle.

re
{

H(ejθ)
}

≥ 0, 0 ≤ θ ≤ π

=⇒ re
{

H(e−jθ)
}

∆
= re

{

∞
∑

n=−∞

h(n)ejnθ

}

=

∞
∑

n=−∞

h(n) cos(nθ)

= re
{

H(ejθ)
}

≥ 0, 0 ≤ θ ≤ π
=⇒ re

{

H(ejθ)
}

≥ 0, −π < θ ≤ π.

Alternatively, we might simply state that h(n) real =⇒ re
{

H(ejθ)
}

even in θ.

Next, since the function ez is analytic everywhere except at z =∞, it follows that f(z) = e−H(z)

is analytic wherever H(z) is finite. There are no poles of H(z) outside the unit circle due to the
analyticity assumption, and poles on the unit circle have real and positive residues. Referring again
to the limiting form Eq. (2) of H(z) near a pole on the unit circle at ejφ, we see that

H(ejφ + ρ ejψ) →ρ→0
C

ρ
ej(φ−ψ), φ− π

2
≤ ψ ≤ φ+

π

2

∆
=

C

ρ
ejθ, θ

∆
= φ− ψ, −π

2
≤ θ ≤ π

2

=⇒ f(z) →ρ→0 e
−C

ρ
ejθ

= e
−C

ρ
cos θ

e
−j C

ρ
sin θ

→ρ→0 0 (4)

since the residue C is positive, and the net angle θ does not exceed ±π/2. From Eq. (4) we can
state that for points z, z′ with modulus ≥ 1, we have For all ǫ > 0, there exists δ > 0 such that
|z − z′| < δ =⇒ |f(z)− f(z′)| < ǫ. Thus f(z) is analytic in the strict outer disk, and continuous
up to the unit circle which forms its boundary. By the maximum modulus theorem [2],

sup
|z|≥1
|f(z)| ∆

= sup
|z|≥1

∣

∣

∣
e−H(z)

∣

∣

∣
= sup

|z|≥1
e−re{H(z)} = inf

|z|≥1
re {H(z)}

occurs on the unit circle. Consequently,

inf
−π<θ≤π

re
{

H(ejθ)
}

≥ 0 =⇒ inf
|z|≥1

re {H(z)} ≥ 0 =⇒ H(z) PR .

For example, if a transfer function is known to be asymptotically stable, then a frequency
response with nonnegative real part implies that the transfer function is positive real.

Note that consideration of 1/H(z) leads to analogous necessary and sufficient conditions for
H(z) to be positive real in terms of its zeros instead of poles. 2
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2 Relation to Stochastic Processes

Theorem. If a stationary random process {xn} has a rational power spectral density Rejω corre-
sponding to an autocorrelation function r(k) = E {xnxn+k}, then

R+(z)
∆
=
r(0)

2
+

∞
∑

n=1

r(n)z−n

is positive real.
Proof.
By the representation theorem [8, pp. 98-103] there exists an asymptotically stable filter H(z) =

b(z)/a(z) which will produce a realization of {xn} when driven by white noise, and we have Rejω =
H(ejω)H(e−jω). We define the analytic continuation of Rejω by R(z) = H(z)H(z−1). Decomposing
R(z) into a sum of causal and anti-causal components gives

R(z) =
b(z)b(z−1)

a(z)a(z−1)
= R+(z) +R−(z)

=
q(z)

a(z)
+
q(z−1)

a(z−1)

where q(z) is found by equating coefficients of like powers of z in

b(z)b(z−1) = q(z)a(z−1) + a(z)q(z−1).

Since the poles ofH(z) andR+(z) are the same, it only remains to be shown that re
{

R+(ejω)
}

≥
0, 0 ≤ ω ≤ π.

Since spectral power is nonnegative, Rejω ≥ 0 for all ω, and so

Rejω
∆
=

∞
∑

n=−∞

r(n) ejωn

= r(0) + 2
∞
∑

n=1

r(n) cos(ωn)

= 2re
{

R+(ejω)
}

≥ 0.

2

3 Relation to Schur Functions

Definition. A Schur function S(z) is defined as a complex function analytic and of modulus not
exceeding unity in |z| ≤ 1.

Theorem. The function

S(z)
∆
=

1−R(z)

1 +R(z)
(5)

is a Schur function if and only if R(z) is positive real.
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Proof.
Suppose R(z) is positive real. Then for |z| ≥ 1, re {R(z)} ≥ 0 ⇒ 1+re {R(z)} ≥ 0 ⇒ 1+R(z)

is PR. Consequently, 1+R(z) is minimum phase which implies all roots of S(z) lie in the unit circle.
Thus S(z) is analytic in |z| ≤ 1. Also,

∣

∣S(ejω)
∣

∣ =
1− 2re

{

R(ejω)
}

+
∣

∣R(ejω
∣

∣

2

1 + 2re {R(ejω)}+ |R(ejω)|2
≤ 1.

By the maximum modulus theorem, S(z) takes on its maximum value in |z| ≥ 1 on the boundary.
Thus S(z) is Schur.

Conversely, suppose S(z) is Schur. Solving Eq. (5) for R(z) gives

R(z) =
1− S(z)

1 + S(z)

and taking the real part on the unit circle yields

re
{

R(ejω)
}

= re

{

1− S(ejω)

1 + S(ejω)
1 + S(e−jω)1 + S(e−jω)

}

= re

{

1− S(ejω) + S(e−jω)−
∣

∣S(ejω)
∣

∣

2

|1 + S(ejω)|2

}

=
1−

∣

∣S(ejω)
∣

∣

2

|1 + S(ejω)|2
≥ 0.

If S(z) = α is constant, then R(z) = (1− |α|2)/|1 + α|2 is PR. If S(z) is not constant, then by the
maximum principle, S(z) < 1 for |z| > 1. By Rouche’s theorem applied on a circle of radius 1 + ǫ,
ǫ > 0, on which |S(z)| < 1, the function 1 + S(z) has the same number of zeros as the function 1
in |z| ≥ 1 + ǫ. Hence, 1 + S(z) is minimum phase which implies R(z) is analytic for z ≥ 1. Thus
R(z) is PR.2

4 Relation to functions positive real in the right-half plane

Theorem. re {H(z)} ≥ 0 for |z| ≥ 1 whenever re
{

H
(

α+s
α−s

)}

≥ 0 for re {s} ≥ 0, where α is any

positive real number.
Proof. We shall show that the change of variable z ← (α + s)/(α − s), α > 0, provides a

conformal map from the z-plane to the s-plane that takes the region |z| ≥ 1 to the region re {s} ≥ 0.
The general formula for a bilinear conformal mapping of functions of a complex variable is given
by

(z − z1)(z2 − z3)
(z − z3)(z2 − z1)

=
(s− s1)(s2 − s3)
(s− s3)(s2 − s1)

. (6)

In general, a bilinear transformation maps circles and lines into circles and lines [2]. We see
that the choice of three specific points and their images determines the mapping for all s and z.
We must have that the imaginary axis in the s-plane maps to the unit circle in the z-plane. That
is, we may determine the mapping by three points of the form zi = ejθi and si = jωi, i = 1, 2, 3.
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If we predispose one such mapping by choosing the pairs (s1 = ±∞)↔ (z1 = −1) and (s3 = 0)↔
(z3 = 1), then we are left with transformations of the form

s =

(

s2
z2 + 1

z2 − 1

)(

z − 1

z + 1

)

= α

(

z − 1

z + 1

)

or

z ← α+ s

α− s, (7)

Letting s2 be some point jω on the imaginary axis, and z2 be some point ejθ on the unit circle, we
find that

α = jω
ejθ + 1

ejθ − 1
= ω

sin θ

1− cos θ
= ω cot(θ/2)

which gives us that α is real. To avoid degeneracy, we require s2 6= 0,∞, z2 6= ±1, and this
translates to α finite and nonzero. Finally, to make the unit disk map to the left-half s-plane, ω
and θ must have the same sign in which case α > 0. 2

There is a bonus associated with the restriction that α be real which is that

z =
α+ s

α− s ∈ ℜ ↔ s = α
z − 1

z + 1
∈ ℜ. (8)

We have therefore proven

Theorem. H(z) PR ↔ H
(

α+s
α−s

)

PR, where α is any positive real number.

The class of mappings of the form Eq. (6) which take the exterior of the unit circle to the right-
half plane is larger than the class Eq. (7). For example, we may precede the transformation Eq. (7)
by any conformal map which takes the unit disk to the unit disk, and these mappings have the
algebraic form of a first order complex allpass whose zero lies inside the unit circle.

z ← ejθ
w − w0

w0w − 1
, |w0| < 1 (9)

where w0 is the zero of the allpass and the image (also pre-image) of the origin, and θ is an angle
of pure rotation. Note that Eq. (9) is equivalent to a pure rotation, followed by a real allpass
substitution (w0 real), followed by a pure rotation. The general preservation of condition (2) in
Def. 2 forces the real axis to map to the real axis. Thus rotations by other than π are useless,
except perhaps in some special cases. However, we may precede Eq. (7) by the first order real
allpass substitution

z ← w − r
r w − 1

, |r| < 1, r real,

which maps the real axis to the real axis. This leads only to the composite transformation,

z ←
s+

(

α1−r
1+r

)

s−
(

α1−r
1+r

)

which is of the form Eq. (7) up to a minus sign (rotation by π). By inspection of Eq. (6), it is
clear that sign negation corresponds to the swapping of points 1 and 2, or 2 and 3. Thus the
only extension we have found by means of the general disk to disk pre-transform, is the ability to
interchange two of the three points already tried. Consequently, we conclude that the largest class
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of bilinear transforms which convert functions positive real in the outer disk to functions positive
real in the right-half plane is characterized by

z ← ±α+ s

α− s. (10)

Riemann’s theorem may be used to show that Eq. (10) is also the largest such class of conformal
mappings. It is not essential, however, to restrict attention solely to conformal maps. The pre-
transform z ← z, for example, is not conformal and yet PR is preserved.

The bilinear transform is one which is used to map analog filters into digital filters. Another
such mapping is called the matched z transform [6]. It also preserves the positive real property.

Theorem. H(z) is PR if H(esT ) is positive real in the analog sense, where T > 0 is interpreted
as the sampling period.

Proof. The mapping z ← esT takes the right-half s-plane to the outer disk in the z-plane. Also
z is real if s is real. Hence H(esT ) PR implies H(z) PR. (Note, however, that rational functions do
not in general map to rational functions.)2

These transformations allow application of the large battery of tests which exist for functions
positive real in the right-half plane [9].

5 Special cases and examples

• The sum of positive real functions is positive real.
• The difference of positive real functions is conditionally positive real.
• The product or division of positive real functions is conditionally PR.
• H(z) PR =⇒ α z±kH(z) not PR for α > 0, k ≥ 2.

6 Minimum Phase (MP) polynomials in z

All properties of MP polynomials apply without modification to marginally stable allpole transfer
functions (cf. Thm. (1)):

• Every first-order MP polynomial is positive real.

• Every first-order MP polynomial b(z) = 1 + b1 z
−1 is such that 1

b(z) −
1
2 is positive real.

• A PR second-order MP polynomial with complex-conjugate zeros,

H(z) = 1 + b1z
−1 + b2z

−2

= 1− (2R cosφ)z−1 +R2z−2, R ≤ 1

satisfies

R2 +
cos2 φ

2
≤ 1.

If 2R2 + cos2 φ = 2, then re
{

H(ejω)
}

has a double zero at

ω = cos−1

(

±
√

1−R2

2R2

)

= cos−1

(

±cosφ

2R

)

= cos−1

(

± 1√
2

cosφ
√

1 + sin2 φ

)

.
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• All polynomials of the form
H(z) = 1 +Rnz−n, R ≤ 1

are positive real. (These have zeros uniformly distributed on a circle of radius R.)

7 Conjectured Properties

The following conjectures are true for analog positive-real functions, but no rigorous attempt was
made to establish them in the discrete-time case.

• If all poles and zeros of a PR function are on the unit circle, then they alternate along the
circle.

• If B(z)/A(Z) is PR, then so is B′(z)/A′(z), where the prime denotes differentiation in z.
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