AI Accelerated Digital Filter Design: Butterworth, Chebyshev, Elliptic, and General IIR Filters

> Julius Smith CCRMA, Stanford University

Music 320 Extensions - Digital Filter Design

- [Analog Examples](#page-2-0)
- **[Derivations](#page-17-0)**

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Outline

- Example Classic Analog Filters (Butterworth, Chebyshev, Elliptic)
- Digitizing Analog Filters (two ways)
- Relating s and z planes
- Classic Analog Filter Design
	- Butterworth (maximally flat passband, smooth rolloff)
	- Chebyshev (equiripple passband, Butterworth stopband [or vice versa])
	- Elliptic (equiripple passband and stopband)
- Butterworth Filters in Python, Faust, and C++
- General Digital Filter Design (not starting from Analog)

AI was used *throughout* for

- LaTeX typesetting
- Python code for all figures
- Python and C++ functions for filter design (not in scipy.signal)
- • In general, Claude 3.5 Sonnett was used (often in Cursor or VS Code)

[Analog Examples](#page-2-0) **[Derivations](#page-17-0) [Butterworth](#page-22-0)** [Chebyshev](#page-38-0) **[Elliptic](#page-45-0)** [General Filters](#page-47-0)

Classic Analog Lowpass Filters

Butterworth Analog Lowpass Prototype Example

Julius Smith Music 320 Extensions - Digital Filter Design – 4 / 58

• [Butterworth Analog](#page-3-0)

[Analog Examples](#page-2-0)

- [Chebyshev1 Analog](#page-4-0)
- [Elliptic Analog](#page-5-0)
- [Overlays](#page-6-0)

• [Outline](#page-1-0)

- [Order 5](#page-7-0)
- [Python for Figures](#page-8-0)
- s and z [planes](#page-10-0)
- [Sampled IRs](#page-13-0)
- [Bilinear Transform](#page-15-0)
- $z \approx 1 + sT$ [at Low Freq](#page-16-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

[Analog Examples](#page-2-0) • [Butterworth Analog](#page-3-0) • [Chebyshev1 Analog](#page-4-0)

• [Elliptic Analog](#page-5-0)

• [Python for Figures](#page-8-0) • s and z [planes](#page-10-0) • [Sampled IRs](#page-13-0)

• [Bilinear Transform](#page-15-0)

• $z \approx 1 + sT$ [at Low Freq](#page-16-0)

• [Overlays](#page-6-0) • [Order 5](#page-7-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[General Filters](#page-47-0)

[Elliptic](#page-45-0)

Chebyshev1 Analog Lowpass Prototype Example

[Analog Examples](#page-2-0) • [Butterworth Analog](#page-3-0) • [Chebyshev1 Analog](#page-4-0)

• [Elliptic Analog](#page-5-0)

• [Python for Figures](#page-8-0) • s and z [planes](#page-10-0) • [Sampled IRs](#page-13-0)

• [Bilinear Transform](#page-15-0)

• $z \approx 1 + sT$ [at Low Freq](#page-16-0)

• [Overlays](#page-6-0) • [Order 5](#page-7-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[General Filters](#page-47-0)

[Elliptic](#page-45-0)

Elliptic Analog Lowpass Prototype Example

- [Outline](#page-1-0)
- [Analog Examples](#page-2-0)
- [Butterworth Analog](#page-3-0)
- [Chebyshev1 Analog](#page-4-0)
- [Elliptic Analog](#page-5-0)
- [Overlays](#page-6-0)
- [Order 5](#page-7-0)
- [Python for Figures](#page-8-0)
- s and z [planes](#page-10-0)
- [Sampled IRs](#page-13-0)
- [Bilinear Transform](#page-15-0)
- $z \approx 1 + sT$ [at Low Freq](#page-16-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Butterworth, Chebyshev I, and Elliptic Analog Lowpasses Overlaid

[Analog Examples](#page-2-0) • [Butterworth Analog](#page-3-0) • [Chebyshev1 Analog](#page-4-0)

• [Elliptic Analog](#page-5-0)

• [Python for Figures](#page-8-0) • s and z [planes](#page-10-0) • [Sampled IRs](#page-13-0)

• [Bilinear Transform](#page-15-0)

• $z \approx 1 + sT$ [at Low Freq](#page-16-0)

• [Overlays](#page-6-0) • [Order 5](#page-7-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[General Filters](#page-47-0)

[Elliptic](#page-45-0)

Butterworth, Chebyshev I *and* **II, Elliptic Analog Lowpasses, Wikipedia**

[Analog Examples](#page-2-0) • [Butterworth Analog](#page-3-0) • [Chebyshev1 Analog](#page-4-0)

• [Elliptic Analog](#page-5-0)

• [Python for Figures](#page-8-0) • s and z [planes](#page-10-0) • [Sampled IRs](#page-13-0)

• [Bilinear Transform](#page-15-0)

• [Overlays](#page-6-0) • [Order 5](#page-7-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[General Filters](#page-47-0)

[Elliptic](#page-45-0)

Python Main Program Used Above (by Claude 3.5 Sonnet)

```
• z \approx 1 + sTat Low Freq
                1 order = 4 # Filter order
                2 cutoff_hz = 1 # Cutoff_hz frequency in Hz
                3 ripple = 0.1 # Passband ripple in dB
                4 sb_att = 60 # Stopband attenuation (ripple) in dB
                5
                6 wB, HB = butterworth_lowpass (order, cutoff_hz)
                7 title = f' Order { order } Butterworth Lowpass '
                8 plot_bode (wB , HB , title , save_path =" ... ")
                9
                10 wC1 , HC1 = chebyshev1_lowpass ( order , cutoff_hz , ripple )
                11 title = f' Order { order } Chebyshev Type I Lowpass '
                12 plot_bode ( wC1 , HC1 , title , save_path =" ... ")
                13
                14 WE, HE = elliptic_lowpass (order, cutoff_hz, ripple, sb_att)
                15 title = f' Order { order } Elliptic ( Cauer ) Lowpass '
                16 plot_bode (wE , HE , title , save_path =" ... ")
                17
                18 ...
```


Python for Filter Design (by Claude 3.5 Sonnet)

```
• Outline
Analog Examples
• Butterworth Analog
Chebyshev1 Analog
• Elliptic Analog
Overlays
Order 5
Python for Figures
• s and zplanes
Sampled IRs
• Bilinear Transform
• z \approx 1 + sTat Low Freq
Derivations
Butterworth
Chebyshev
Elliptic
General Filters
                    1 def butterworth_lowpass (order, cutoff_hz):
                    2 w , H = signal . freqs (* signal . butter ( order , cutoff_hz * 2 *
                              \rightarrow np.pi, btype='lowpass', analog=True))
                    3 return w. H
                    1 def chebyshev1_lowpass ( order , cutoff , ripple ) :
                    2 w , H = signal . freqs (* signal . cheby1 ( order , ripple ,
                               \rightarrow cutoff_hz * 2 * np.pi, btype='lowpass', analog=
                               \rightarrow True))
                    3 return w, H
                    1 def elliptic_lowpass ( order , cutoff , ripple ,
                          \leftrightarrow stopband_attenuation):
                    2 w , H = signal . freqs (* signal . ellip ( order , ripple ,
                               ֒→ stopband_attenuation , cutoff_hz * 2 * np . pi , btype
                               \rightarrow ='lowpass', analog=True))
                    3 return w, H
```


The s **and** z **Planes**

Generalized sinusoids in continuous and discrete time:

Continuous Time

 $e^{st} = e^{(\sigma + j\omega)t}$ $= e^{\sigma t} e^{j\omega t}$ $= e^{-t/\tau} [\cos(\omega t) + j \sin(\omega t)]$

Laplace Transform

$$
X_c(s) = \int_0^\infty x_c(t)e^{-st}dt
$$

Fourier Transform (FT) $(s = j\omega)$ $X_c(j\omega) = \int^{\infty}$ 0 $x_c(t)e^{-j\omega t}dt$

Discrete Time when $z = e^{sT}$

$$
z^n = (e^{sT})^n = (e^{\sigma T + j\omega T})^n
$$

= $e^{\sigma nT} e^{j\omega nT}$
= $e^{-nT/\tau} [\cos(\omega nT) + j\sin(\omega nT)]$

z Transform

$$
X_d(z) = \sum_{n=0}^{\infty} x_d(n) z^{-n}
$$

Discrete Time FT (DTFT) ($z = e^{j\omega T}$)

$$
X_d(e^{j\omega T}) = \sum_{n=0}^{\infty} x_d(n)e^{-j\omega T}
$$

• [Order 5](#page-7-0) • [Python for Figures](#page-8-0)

• [Overlays](#page-6-0)

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

• [Elliptic Analog](#page-5-0)

• [Butterworth Analog](#page-3-0) • [Chebyshev1 Analog](#page-4-0)

- s and z [planes](#page-10-0)
- [Sampled IRs](#page-13-0)
- [Bilinear Transform](#page-15-0)
- $z \approx 1 + sT$ [at Low Freq](#page-16-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

[Analog Examples](#page-2-0) • [Butterworth Analog](#page-3-0) • [Chebyshev1 Analog](#page-4-0)

• [Elliptic Analog](#page-5-0)

• [Python for Figures](#page-8-0) • s and z [planes](#page-10-0) • [Sampled IRs](#page-13-0)

• [Bilinear Transform](#page-15-0)

• $z \approx 1 + sT$ [at Low Freq](#page-16-0)

• [Overlays](#page-6-0) • [Order 5](#page-7-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[General Filters](#page-47-0)

[Elliptic](#page-45-0)

Generalized Sinusoids e^{st} in the s Plane

Domain of Laplace transforms

Julius Smith Music 320 Extensions - Digital Filter Design – 12 / 58

Generalized Sinusoids z^n in the z Plane

Domain of z-transforms

• [Order 5](#page-7-0)

• [Overlays](#page-6-0)

• [Outline](#page-1-0)

[Analog Examples](#page-2-0) • [Butterworth Analog](#page-3-0) • [Chebyshev1 Analog](#page-4-0)

• [Elliptic Analog](#page-5-0)

- [Python for Figures](#page-8-0)
- s and z [planes](#page-10-0)
- [Sampled IRs](#page-13-0)
- [Bilinear Transform](#page-15-0)
- $z \approx 1 + sT$ [at Low Freq](#page-16-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

- [Outline](#page-1-0)
- [Analog Examples](#page-2-0)
- [Butterworth Analog](#page-3-0)
- [Chebyshev1 Analog](#page-4-0)
- [Elliptic Analog](#page-5-0)
- [Overlays](#page-6-0)
- [Order 5](#page-7-0)
- [Python for Figures](#page-8-0)
- s and z [planes](#page-10-0)
- [Sampled IRs](#page-13-0)
- [Bilinear Transform](#page-15-0)
- $z \approx 1 + sT$ [at Low Freq](#page-16-0)
- **[Derivations](#page-17-0)**

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Impulse Invariance Filter Digitization

The Impulse Invariance Method for digitizing analog filters effectively *samples* their *impulse response*.

An analog transfer function is always a *rational* function of s:

$$
H(s) = \frac{B(s)}{A(s)}
$$

- \bullet $B(s)$ = numerator polynomial having roots called the *zeros* of $H(s)$
- $A(s)$ = denominator polynomial having roots called the *poles* of $H(s)$.

In *partial fractions,*

$$
H(s) = \sum_{i=1}^{N} \frac{K_i}{s + s_i}.
$$
 (1)

The impulse response $h(t)$ is the *inverse Laplace transform* of (1):

$$
h(t) = \sum_{i=1}^{N} K_i e^{-s_i t}
$$

Impulse Invariance Method, Continued

We have

$$
h(t) = \sum_{i=1}^{N} K_i e^{-s_i t}
$$

Let's now *sample* $h(t)$ at intervals of T seconds:

$$
h(nT) = \sum_{i=1}^{N} K_i e^{-s_i nT} = \sum_{i=1}^{N} K_i (e^{-s_i T})^n \stackrel{\Delta}{=} \sum_{i=1}^{N} K_i z_i^n
$$

We see that each *analog pole* at $s = -s_i$ maps to a *digital pole* at

 $z_i = e$ $-s_iT$.

While the *analog zeros* do not map in a simple way to the z plane, the *pole residues* K_i are preserved unchanged.

• s and z [planes](#page-10-0)

• [Outline](#page-1-0)

[Analog Examples](#page-2-0) • [Butterworth Analog](#page-3-0) • [Chebyshev1 Analog](#page-4-0)

• [Elliptic Analog](#page-5-0)

• [Overlays](#page-6-0) • [Order 5](#page-7-0)

- [Sampled IRs](#page-13-0)
- [Bilinear Transform](#page-15-0)

• [Python for Figures](#page-8-0)

• $z \approx 1 + sT$ [at Low Freq](#page-16-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

[Analog Examples](#page-2-0)

- [Butterworth Analog](#page-3-0)
- [Chebyshev1 Analog](#page-4-0)
- [Elliptic Analog](#page-5-0)
- [Overlays](#page-6-0)
- [Order 5](#page-7-0)
- [Python for Figures](#page-8-0)
- s and z [planes](#page-10-0)
- [Sampled IRs](#page-13-0)
- [Bilinear Transform](#page-15-0)
- $z \approx 1 + sT$ [at Low Freq](#page-16-0)
- **[Derivations](#page-17-0)**
- **[Butterworth](#page-22-0)**
- **[Chebyshev](#page-38-0)**

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Bilinear Transform

An alternative to *sampling* in the time-domain for *systems* (as opposed to signals) is to start in the *frequency domain* and apply the *Bilinear Transform:*

- α is any positive constant
- Setting $\alpha = 2/T$ matches *low frequencies* relative to the sampling rate f_s
- More generally, α can map *any one frequency* exactly
- See also Cayley (1846) and Möbius transforms
- Can show:
	- \circ Analog frequency axis $s = j\omega$ (vertical axis in the s plane) maps exactly *once* to the digital frequency axis $z=e^{j\omega T}$ (unit circle in the z plane) \Rightarrow *no aliasing*
	- The *left half* of the s plane (stability region for *poles*) maps to the *interior* of the unit circle in the z plane (its stability region) ⇒ *stability preserved*

Oversampling Gives $z \approx 1 + sT$

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

- [Butterworth Analog](#page-3-0)
- [Chebyshev1 Analog](#page-4-0)
- [Elliptic Analog](#page-5-0)
- [Overlays](#page-6-0)
- [Order 5](#page-7-0)
- [Python for Figures](#page-8-0)
- s and z [planes](#page-10-0)
- [Sampled IRs](#page-13-0)
- [Bilinear Transform](#page-15-0)
- $z \approx 1 + sT$ [at Low Freq](#page-16-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

At low frequencies and dampings, *i.e.*, near $s \approx 0$ and $z \approx 1$, we have the following low-frequency approximations (low relative to the sampling rate):

• **Basic Sampling:**

$$
z = e^{sT} = 1 + sT + \frac{(sT)^2}{2!} + \frac{(sT)^3}{3!} + \dots \approx \boxed{1 + sT}
$$

• **Bilinear Transform:**

$$
z = \frac{1+s/\alpha}{1-s/\alpha} = \left(1+\frac{s}{\alpha}\right)\left[1+\frac{s}{\alpha}+\left(\frac{s}{\alpha}\right)^2+\cdots\right] \approx 1+2\frac{s}{\alpha} = \boxed{1+sT}
$$

when $\alpha = 2/T$

Julius Smith **Music 32 Transform (or even** *multiple* **bill team in Sporms, as in Wave Digital Filters)** igital Filter Design – 17 / 58 It is good to oversample sufficiently so that there is no audible difference between the z -planes of signals and systems digitized separately by ordinary sampling and the bilinear

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Classic Analog Filters Derived

IIR Digital Filter Design

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

- **[IIR Filter Design](#page-18-0)**
- [Reference](#page-19-0)
- [Taylor Series](#page-20-0)
- [IIR Case](#page-21-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Digitizing **Analog Prototypes** (Lowpass, Highpass, Bandpass) typically starts with

- Butterworth
	- Maximally flat passband
	- Poles on a *circle* in s and z planes
	- All zeros at *infinity* in the s plane
	- \circ All zeros at $z = -1$ in the z plane
- Chebyshev Type I
	- Equiripple passband ("Chebyshev in the Passband")
	- Poles along an *ellipse* in the s plane
	- "Butterworth in the Stopband"
		- All zeros at *infinity* in the s plane
		- All zeros at $z = -1$ in the z plane
- **Chebyshev Type II**
	- "Chebyshev in the Stopband"
	- "Butterworth in the Passband"
	- Zeros along *frequency axis* $s = j\omega$ or $z = e^{j\omega T}$
- Elliptic (Cauer)
	- "Chebyshev in the Stopband"
	- "Chebyshev in the Passband"
	- Poles along *ellipse*
	- Zeros along *frequency axis*
- [See also](#page-0-0) [MIT Open CourseWare,](https://ocw.mit.edu/courses/res-6-007-signals-and-systems-spring-2011/6ffe3f6c387555a8db26f1f3bbaddfb5_MITRES_6_007S11_lec24.pdf) and
	- [https://en.wikipedia.org/wiki/Butterworth](https://en.wikipedia.org/wiki/Butterworth_filter) filter
	- [https://en.wikipedia.org/wiki/Chebyshev](https://en.wikipedia.org/wiki/Chebyshev_filter) filter
	- [https://en.wikipedia.org/wiki/Elliptic](https://en.wikipedia.org/wiki/Elliptic_filter) filter

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

- [IIR Filter Design](#page-18-0)
- [Reference](#page-19-0)
- [Taylor Series](#page-20-0)
- [IIR Case](#page-21-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

IIR Digital Filter Design Reference

My go-to book:

Digital Filter Design

T. W. Parks and C. S. Burrus John Wiley and Sons, Inc., New York, 1987

The derivations below follow Parks and Burrus, using mostly the same notation.

Taylor Series Expansion

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

• [IIR Filter Design](#page-18-0)

• [Reference](#page-19-0)

• [Taylor Series](#page-20-0)

• [IIR Case](#page-21-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Any transfer function $F(\omega)$ can be expanded as a Taylor series:

$$
F(\omega) = K_0 + K_1 \omega + K_2 \omega^2 + K_3 \omega^3 + \cdots,
$$

where

$$
K_0 = F(0)
$$
, $K_1 = \frac{dF(\omega)}{d\omega}\Big|_{\omega=0}$, $K_2 = \frac{1}{2}\frac{d^2F(\omega)}{d\omega^2}\Big|_{\omega=0}$,

The *power response*

 $\mathcal{F}(j\omega) = F(\omega) \cdot \overline{F(\omega)}$

expands as a polynomial in ω^2 with *real coefficients*:

$$
\mathcal{F}(\omega)=k_0+k_2\,\omega^2+k_4\,\omega^4+\cdots
$$

 $\mathcal{F}(\omega)$ is *maximally flat about dc* when $k_2 = k_4 = k_6 = \cdots = k_{2N} = 0$, where N is the filter order. That is, *all degrees of freedom* in the filter (other than scaling) are used to *flatten* the power response near dc (0 Hz).

Rational Function Form

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

• [IIR Filter Design](#page-18-0)

• [Reference](#page-19-0)

• [Taylor Series](#page-20-0)

• [IIR Case](#page-21-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

An order N filter power response can also be expressed as a *rational function* of ω^2 : $\mathcal{F}(j\omega) = \frac{d_0 + d_2\,\omega^2 + d_4\,\omega^4 + \cdots + d_{2M}\,\omega^{2M}}{C_0 + C_2\,\omega^2 + C_4\,\omega^4 + \cdots + C_{2M}\,\omega^{2N}}$ $c_0 + c_2 \omega^2 + c_4 \omega^4 + \cdots + c_{2N} \omega^{2N}$ $, M \leq N$ (1)

In any passband, we can define the error $E(\omega)$ as the *deviation* from a gain of 1:

$$
\mathcal{F}(j\omega) = 1 + E(\omega) \tag{2}
$$

Combining (1) and (2) gives:

$$
d_0 + d_2 \,\omega^2 + \cdots + d_{2M} \,\omega^{2M} = c_0 + c_2 \,\omega^2 + \cdots + c_{2N} \,\omega^{2N} + E(\,\omega) [c_0 + c_2 \,\omega^2 + \cdots] \tag{3}
$$

Padé Approximation (to the constant d_0/c_0) *zeros as many leading terms as possible in the series expansion of the error*. (This also yields the *maximally flat passband*.) Thus, we set $c_0 = d_0$ $c_2 = d_2$ \cdots $c_{2M} = d_{2M}$ $c_{2M+2} = 0$ $c_{2M+4} = 0$ \cdots $c_{2N-2} = 0$ $c_{2N} =$ nonzero (4)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Butterworth Filters

Butterworth Power Response

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

The power response of the normalized N th-order Butterworth filter is given by

$$
\mathcal{F}(j\omega) = \frac{1}{1 + \omega^{2N}}
$$

- cutoff frequency is normalized to $\omega=1$
- To set cutoff frequency ω_c , use $\mathcal{F}(j\omega/\omega_c)$
- *All zeros at infinity* so that filter "rolls off" $-6N$ dB/octave above cutoff
- The general case gets $d_0 = 1$, $c_0 = 1$, $c_k = 0$ for $0 < k < 2N$, and $c_{2N} = 1$
- Lowpass passband is *maximally flat*
	- (Padé approximation to $\mathcal{F}(j\omega) \approx 1$ about dc)

Butterworth Transfer Function

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Power response of the normalized Nth-order Butterworth filter:

$$
\mathcal{F}(j\omega) = \frac{1}{1 + \omega^{2N}}
$$

Recall that

$$
\mathcal{F}(j\omega) \stackrel{\Delta}{=} F(j\omega) \overline{F(j\omega)} = F(s) F(-s)|_{s=j\omega}
$$

Thus, in the s -domain, we have

where $s \stackrel{\Delta}{=} \sigma + j \omega.$

$$
F(s)F(-s) = \frac{1}{1 + [(s/j)^2]^N} = \frac{1}{1 + (-s^2)^N},
$$

Pole Locations

We have

$$
F(s)F(-s) = \frac{1}{1 + (-s^2)^N}.
$$

[Derivations](#page-17-0)

[Analog Examples](#page-2-0)

• [Outline](#page-1-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

The locations of the N poles are therefore given by

$$
\sigma_k = -\cos\left(\frac{k\pi}{2N}\right), \quad \omega_k = \sin\left(\frac{k\pi}{2N}\right)
$$

for N values of k where

$$
k = \pm 1, \pm 3, \pm 5, \ldots, \pm (N-1) \quad \text{for N even},
$$

$$
k=0,\pm 2,\pm 4,\ldots,\pm (N-1)\quad\text{for N odd}.
$$

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Factored Form of F(s)

Even F(s) has the partially factored form

$$
F(s) = \prod_{k} \frac{1}{s^2 + 2\cos(k\pi/2N)s + 1}
$$

for
$$
k = 1, 3, 5, ..., N - 1
$$
.

For N odd, F(s) has a single real pole:

$$
F(s) = \frac{1}{s+1} \prod_{k} \frac{1}{s^2 + 2\cos(k\pi/2N)s + 1}
$$

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- \bullet [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- **[Bode Plots](#page-34-0)**
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Butterworth Poles in s **and** z **Planes**

Claude 3.5 Sonnet Prompt 1:

(Dictating by voice, then editing "airplane" to "s-plane" etc. in the prompt)

"Write a python script that plots the poles of a Butterworth filter on the left in the s-plane and on the right in the z-plane, given the filter order as a parameter. The filter cutoff frequency is 1 rad/s, and the sampling rate for the z-plane case is another parameter between 2 and 10 rad/s."

(Result: Excellent, except that all poles were plotted in the lower half-plane.)

Prompt 2:

"This is a good start. However, the Butterworth poles should be in the left-half plane, not the bottom-half. Also please draw the unit circle with a dashed line. All poles should lie on it."

(Result: Nailed it.)

Final Tweaks:

I placed the Python file in its own directory, cd'd there, typed "cursor .", and dictated "This plot is nice, but the z-plane case on the right should mention the sampling rate in its title. Also, the plot should be saved to the file ButterworthPoles.eps

Butterworth Poles in s **and** z **Planes Plotted**

Result:

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- \bullet [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- **[Bode Plots](#page-34-0)**
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Perhaps the easiest path to Butterworth filters in C++ is via FAUST:

• <https://faustlibraries.grame.fr/libs/filters/#filowpass>

The *graphic equalizer* filter bank is also based on Butterworth band-splits:

- <https://faustlibraries.grame.fr/libs/filters/#fifilterbank>
- Arbitrary spectral partitions are supported
- Bands sum to a *constant magnitude frequency response* when all gains are 1
- *Odd-order* Butterworth band-splits are required
- Reference:

 \bullet \bullet \bullet \bullet \bullet

Butterworth Filters in FAUST

"Tree-structured complementary filter banks using all-pass sections" Regalia et al., IEEE Trans. Circuits & Systems, CAS-34:1470-1484, Dec. 1987

FAUST Test Program

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

```
Butterworth
```
- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- Biguad Q
- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

```
import("stdfaust.lib");
cutoff = hslider("cutoff",5000,20,10000,1);
process = ba.pulsen(1, 10000) : fi.lowpass(3,cutoff);
```
Try this in the <https://faustide.grame.fr>:

Normalized Second-Order Analog Lowpass

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- \bullet [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

The transfer function of a *normalized* second-order lowpass can be written as

$$
H_l(s) = \frac{1}{\tilde{s}^2 + \frac{1}{Q}\tilde{s} + 1}, \quad \tilde{s} \triangleq \frac{s}{\omega_c},
$$

where the normalization $\tilde{s} = s/\omega_c$ maps the desired corner frequency ω_c to 1, and the "quality factor" Q is defined as

$$
Q \ \stackrel{\Delta}{=}\ \frac{\omega_c}{2\alpha}
$$

where α is minus the real part of the complex-conjugate pole locations p and \overline{p} :

$$
p, \overline{p} = -\alpha \pm j\sqrt{\omega_c^2 - \alpha^2}
$$

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

- **[Butterworth](#page-22-0)**
- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- \bullet [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- **[Bode Plots](#page-34-0)**
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

A Word About Q

• We defined the "quality factor" Q for a second-order (potentially *resonant*) *lowpass* as

$$
Q \ \stackrel{\Delta}{=}\ \frac{\omega_c}{2\alpha}
$$

where ω_c is the *corner frequency* and α is minus the poles' real part.

- The Q of a resonance is normally defined as *center frequency over bandwidth* https://ccrma.stanford.edu/~jos/filters/Quality_Factor_Q.html
- A real pole at $s = -\alpha$ in fact has its -3 dB points at $\omega = \pm \alpha$, giving 3dB *bandwidth* 2α radians per second (centered on $\omega = 0$)
- Shifting that pole up to $s = -\alpha + j\omega_c$ gives a *complex* resonator with bandwidth 2α
- Adding that to a pole at $s = -\alpha j\omega_c$ gives a *real* resonator, which we can view as the *superposition* of two complex resonators, each having bandwith 2α
- In this way, 2α may be regarded as the bandwidth of the *corner resonance* at ω_c , even when the resonance is not prominent, such as for $Q \le$ √ $\left[2/2\right]$ as we'll see:

Corner Resonance

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- \bullet [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

• The normalized second-order *Butterworth* lowpass has poles on the unit circle of the s plane at $p,\overline{p}=(-1\pm j)$ √ $2/2$

• Therefore,
$$
\alpha = \sqrt{2}/2
$$
 so that $Q = 1/\sqrt{2}$ for this case

- Larger Q values give the "corner resonance" effect often used in music synthesizers
- Let's now plot the *magnitude frequency response* of some second-order filter sections, with and without corner-resonance:

Bode Plots

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- \bullet [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

- A *Bode plot* draws the *magnitude frequency response* as *dB* versus some *log frequency*
- In the intro, we saw Bode plots showing the magnitude frequency-response of various Butterworth, Chebyshev, and Elliptic lowpass filters
- We can ask any good chatbot to make a Bode plot of scipy.signal.freqs(B,A)
- In *MATLAB* or *Octave*, we can say $sys = tf(1, [1, sqrt(2), 1]);$ bode(sys);

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- \bullet [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Bode Plots for Second-Order Butterworth Filters

- Normalized Second-Order Butterworth Lowpass/Bandpass/Highpass/Notch:
	- bode(tf([0 0 1],[1,sqrt(2),1])); % lowpass
	- bode(tf([0 1 0],[1,sqrt(2),1])); % bandpass
	- bode(tf([1 0 0],[1,sqrt(2),1])); % highpass
	- bode(tf([1 0 1],[1,sqrt(2),1])); % notch
	- These variations are normally brought out in second-order "state variable filters"
- Do not confuse "state variable filters" with "state variable representations" of linear systems: https://ccrma.stanford.edu/~jos/filters/State_Space_Realization.html https://ccrma.stanford.edu/~jos/StateSpace/State_Space_Models.html https://ccrma.stanford.edu/~jos/pasp/State_Space_Models.html
- The "state variable filter" is just a particular biquad structure: <https://ccrma.stanford.edu/~jos/svf/>

• [Butterworth Power Response](#page-23-0) • [Butterworth Transfer Function](#page-24-0) **Bode Plots for Second-Order Butterworth Filters**

Overlay of normalized 2nd-order Butterworth lowpass, bandpass, highpass, and notch.

• [Butterworth Pole Plots](#page-27-0) **• FAUST [Butterworth Filters](#page-29-0)**

• [Butterworth Poles](#page-25-0) • [Butterworth Biquads](#page-26-0)

- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- [Biquad](#page-32-0) Q

• [Outline](#page-1-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Analog Examples](#page-2-0)

- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Bode Plots for Second-Order Lowpass Filters with Corner Resonance

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

- [Butterworth Power Response](#page-23-0)
- [Butterworth Transfer Function](#page-24-0)
- [Butterworth Poles](#page-25-0)
- [Butterworth Biquads](#page-26-0)
- [Butterworth Pole Plots](#page-27-0)
- **FAUST [Butterworth Filters](#page-29-0)**
- FAUST [Test Program](#page-30-0)
- [Analog Biquad](#page-31-0)
- \bullet [Biquad](#page-32-0) Q
- [Corner Resonance](#page-33-0)
- [Bode Plots](#page-34-0)
- [Bode Plots](#page-35-0)
- [Butterworth Bode Plots](#page-36-0)
- [Corner Resonance](#page-37-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Overlay of second-order lowpass frequency responses for Q=1,2,3,4,5.

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Chebyshev Filters

Chebyshev Filter Transfer Function

The Chebyshev filter power response is defined by:

$$
|\mathcal{F}(j\omega)|^2 = \frac{1}{1 + \varepsilon^2 C_N^2(\omega)},
$$
\n(9)

where $C_N(\omega)$ is an Nth-order, real-valued function of the real variable ω : $C_N(\omega) = \cos(N \cos^{-1}(\omega)).$ (10)

• [Chebyshev Pole Plots](#page-43-0)

• [Chebyshev Polynomials](#page-40-0)

[Elliptic](#page-45-0)

• [Outline](#page-1-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

• [Chebyshev Filter](#page-39-0)

• [Pole Locations](#page-41-0)

[Analog Examples](#page-2-0)

[General Filters](#page-47-0)

Note that
$$
C_0 = 1
$$
 and $C_1 = \omega$.

We'll later use an intermediate complex variable $\phi = \cos^{-1}(\omega)$ to find the poles:

$$
C_N(\omega) = \cos(N\phi), \quad \text{where } \omega = \cos(\phi) \tag{11}
$$

We can check (<https://chatgpt.com/share/673fa853-e3f8-800f-a59c-d63738f6561e>) that

$$
C_{N+1}(\omega) = 2\omega C_N(\omega) - C_{N-1}(\omega)
$$
\n(12)

Thus, $C_N(\omega)$ is an Nth-order polynomial. We call it the Nth-order *Chebyshev Polynomial*.

Chebyshev Polynomial Examples

Using the recursion (12) we have

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

• [Outline](#page-1-0)

[Butterworth](#page-22-0)

- **[Chebyshev](#page-38-0)**
- [Chebyshev Filter](#page-39-0)
- [Chebyshev Polynomials](#page-40-0)
- [Pole Locations](#page-41-0)
- [Chebyshev Pole Plots](#page-43-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

 $C_0 = 1,$ $C_1 = \omega,$ $C_2 = 2\omega^2 - 1,$ $C_3 = 4\omega^3 - 3\omega,$ $C_4 = 8\omega^4 - 8\omega^2 + 1,$. . . The contract of the contrac

Useful identities for developing these polynomials are

$$
C_N^2 = \frac{1}{2} [C_{2N} + 1],
$$

\n
$$
C_{MN} = C_M (C_N(\omega))
$$
 where M and N are coprime. (14)

Poles of $\mathcal{F}(s)$

From (9) above, the poles of $\mathcal{F}(s)$ occur when

$$
1 + \varepsilon^2 C_N^2 \left(\frac{s}{j} \right) = 0.
$$

[Chebyshev](#page-38-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

• [Outline](#page-1-0)

• [Chebyshev Filter](#page-39-0)

[Analog Examples](#page-2-0)

- [Chebyshev Polynomials](#page-40-0)
- [Pole Locations](#page-41-0)
- [Chebyshev Pole Plots](#page-43-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Define
$$
cos(\phi) = s/j = -js
$$
 and recall from (11) that $C_N(s/j) = cos(N\phi)$:

$$
0 = 1 + \varepsilon^2 C_N^2 \left(\cos(\phi) \right) = 1 + \varepsilon^2 C_N^2 (N\phi).
$$

Solving for ϕ yields N solutions ϕ_m :

$$
\phi_m = \frac{1}{N} \arccos\left(\frac{\pm j}{\varepsilon}\right) + \frac{m\pi}{N}, \quad m = 0, 1, 2, \dots, N - 1.
$$

The poles are then given by

$$
s_m = j \cos(\phi_m), \; m = 0, 1, 2, \dots, N - 1.
$$

Chebyshev Poles in s **Plane**

The poles may be written more explicitly $as¹$ $as¹$ $as¹$

$$
s_m = j \cos(\phi_m)
$$

= $\pm \sinh\left(\frac{1}{N} \operatorname{arcsinh}\left(\frac{1}{\varepsilon}\right)\right) \sin(\theta_m) + j \cosh\left(\frac{1}{N} \operatorname{arcsinh}\left(\frac{1}{\varepsilon}\right)\right) \cos(\theta_m)$

with

$$
\theta_m = \frac{\pi}{2} \frac{2m+1}{N}, \quad m = 0, 1, 2, \dots, N-1.
$$

[General Filters](#page-47-0)

[Elliptic](#page-45-0)

• [Outline](#page-1-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

• [Chebyshev Filter](#page-39-0)

• [Pole Locations](#page-41-0)

• [Chebyshev Polynomials](#page-40-0)

• [Chebyshev Pole Plots](#page-43-0)

[Analog Examples](#page-2-0)

Since an ellipse centered at $s = 0$ in the complex plane can be described by

$$
s = a\sin(\theta) + jb\cos(\theta), \quad \theta \in [-\pi, \pi]
$$

(where a and b are the semi-axis lengths, one major and one minor when $a \neq b$), we find that the poles lie on an *ellipse* in s -space centered at $s = 0$.

¹See [Wikipedia page for "Chebyshev Filter".](https://en.wikipedia.org/wiki/Chebyshev_filter)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

- [Chebyshev Filter](#page-39-0)
- [Chebyshev Polynomials](#page-40-0)
- [Pole Locations](#page-41-0)
- [Chebyshev Pole Plots](#page-43-0)

[General Filters](#page-47-0)

Chebyshev Poles in s **and** z **Planes**

Cursor Prompt (Claude 3.5 Sonnet):

"This is great, now please add a function $plot_chebyshev_poles$ that does the same thing for Chebeshev filter poles, which are on an ellipse inside the unit circle. If you need formulas, let me know."

(It asked for formulas, which I pasted from this LaTeX source.)

Needed Tweaks:

- Sign error in the pole real-parts (one-character fix)
- Keep the Butterworth test as an option instead of replacing it

Chebyshev Poles in s **and** z **Planes Plotted**

Result:

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

• [Chebyshev Filter](#page-39-0)

• [Chebyshev Polynomials](#page-40-0)

- [Pole Locations](#page-41-0)
- [Chebyshev Pole Plots](#page-43-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

Elliptic Function (Cauer) Filters

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

• [Elliptic Functions](#page-46-0)

[General Filters](#page-47-0)

[Elliptic](#page-45-0)

[Analog Examples](#page-2-0)

Introduction to Elliptic Functions

Elliptic (Cauer) filters are based on *Jacobian elliptic functions*, which generalize the normal trigonometric and hyperbolic functions. The elliptic integral of the first kind is defined as

$$
u(\phi, k) = \int_0^{\phi} \frac{dy}{\sqrt{1 - k^2 \sin^2(y)}}
$$
(7.59)

The trigonometric sine of the inverse of this function is defined as the Jabocian elliptic sine of u with modulus k :

$$
\operatorname{sn}(u,k) = \sin(\phi(u,k))\tag{7.60}
$$

For details, see [https://en.wikipedia.org/wiki/Elliptic](https://en.wikipedia.org/wiki/Elliptic_filter)_filter

Features of Elliptic Filters (Lowpass, Highpass, Bandpass, Bandstop):

- Chebyshev (equiripple) in both passband and stopband (*two* ripple parameters)
- Sharpest possible transition from passband to stopband or vice versa
- Much "phase distortion" (*e.g.*, "ringing") at passband corners
- • Optimal passband-ripple, stopband-ripple, and transition-width tradeoffs

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

General Digital Filter Design

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

- [Problem](#page-48-0)
- [Frequency Sampling](#page-49-0)
- [Equation Error](#page-50-0)
- [LaTeX to Python](#page-51-0)
- [Abstract to Python](#page-52-0)
- [Why Python?](#page-53-0)
- [invfreqz.py](#page-54-0) Today
- [scipy.cpp](#page-55-0) Today
- • [Filter Design Summary](#page-56-0)

Example Driving Problem: Real-Time Filter Design in an Audio Plugin

(Red-Bordered Buttons Added to **Plugin GUI Magic**'s Equalizer Example)

Methods for Arbitrary Filter Design

- [Outline](#page-1-0)
- [Analog Examples](#page-2-0)
- **[Derivations](#page-17-0)**
- **[Butterworth](#page-22-0)**
- **[Chebyshev](#page-38-0)**
- **[Elliptic](#page-45-0)**
- [General Filters](#page-47-0)
- [Problem](#page-48-0)
- [Frequency Sampling](#page-49-0)
- [Equation Error](#page-50-0)
- [LaTeX to Python](#page-51-0)
- [Abstract to Python](#page-52-0)
- [Why Python?](#page-53-0)
- [invfreqz.py](#page-54-0) Today
- [scipy.cpp](#page-55-0) Today
- • [Filter Design Summary](#page-56-0)
- Frequency Sampling
	- 1. *Draw* or *Load* Your Desired Magnitude Frequency Response
	- 2. Make it *Minimum Phase* (so the filter will be *causal*)
	- 3. Inverse-FFT gives the Desired Impulse Response (IR)
	- 4. "Window" the IR to the Affordable FIR length (smoothing the Frequency Response)
	- 5. Use *Convolution* to implement the FIR filter (typical for Amp Cabinets and such)

Methods for Arbitrary Filter Design, Continued

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

- [General Filters](#page-47-0)
- [Problem](#page-48-0)
- [Frequency Sampling](#page-49-0)
- [Equation Error](#page-50-0)
- [LaTeX to Python](#page-51-0)
- [Abstract to Python](#page-52-0)
- [Why Python?](#page-53-0)
- [invfreqz.py](#page-54-0) Today
- [scipy.cpp](#page-55-0) Today
- • [Filter Design Summary](#page-56-0)

• Equation-Error Filter Design: Minimize $\|\hat{A}(\omega)H(\omega) - \hat{B}(\omega)\|$

- E.g., invfreqz in MATLAB and Octave
- We need C++ for an Audio Plugin!
	- (or some easily embedded filter-design language)
- AI Chatbots translate *well known languages* to C++ very well
- They also write good starting *unit tests*
- Speed Bumps:
	- MATLAB is proprietary (and no longer even precisely documented)
	- Octave is GPL (but contributing authors could be asked for permission)
	- Python is mostly BSD, but has no invfreqz yet in scipy.signal
- **Plan:** Implement invfreqz from scratch in Python and translate to C++
- **Method:** Paste the [algorithm description](https://ccrma.stanford.edu/~jos/filters/FFT_Based_Equation_Error_Method.html)^{[2](#page-50-1)} into Claude 3.5 Sonnet and debug
- **This actually worked!**

²https://ccrma.stanford.edu/~jos/filters/FFT_Based_Equation_Error_Method.html

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

- [General Filters](#page-47-0)
- [Problem](#page-48-0)
- [Frequency Sampling](#page-49-0)
- [Equation Error](#page-50-0)
- [LaTeX to Python](#page-51-0)
- [Abstract to Python](#page-52-0)
- [Why Python?](#page-53-0)
- [invfreqz.py](#page-54-0) Today
- [scipy.cpp](#page-55-0) Today
- • [Filter Design Summary](#page-56-0)

Following is a LaTeX description of a fast equation-error algorithm. Please write a Python implementation.

 α α algorithm description α

2. *Prompt 2:*

1. *Prompt 1:*

Write a separate test program in Python which uses `scipy.freqz` to generate three different test examples of progressing complexity. That way, the original and estimated filter coefficients can be compared. A good source of example starting filters would be `scipy.signal.butter` and `scipy.signal.cheby1` etc.

3. This was the starting test program for the one in my scipy fork: [https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test](https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test_invfreqz_jos.py) invfreqz jos.py

- [Analog Examples](#page-2-0)
- **[Derivations](#page-17-0)**
- **[Butterworth](#page-22-0)**
- **[Chebyshev](#page-38-0)**
- **[Elliptic](#page-45-0)**
- [General Filters](#page-47-0)
- [Problem](#page-48-0)
- [Frequency Sampling](#page-49-0)
- [Equation Error](#page-50-0)
- [LaTeX to Python](#page-51-0)
- [Abstract to Python](#page-52-0)
- [Why Python?](#page-53-0)
- [invfreqz.py](#page-54-0) Today
- [scipy.cpp](#page-55-0) Today
- • [Filter Design Summary](#page-56-0)

Claude 3.5 Sonnet Converts a *Paper Abstract* **to Working Python**

Prompt: Write a Python function that designs a *spectral tilt filter* as described in this paper abstract:[3](#page-52-1)

We derive closed-form expressions for the poles and zeros of approximate fractional integrator/differentiator filters, which correspond to spectral roll-off filters having any desired log-log slope to a controllable degree of accuracy over any bandwidth. The filters can be described as a **uniform exponential distribution of poles along the negative-real axis of the s plane, with zeros interleaving them. Arbitrary spectral slopes are obtained by sliding the array of zeros relative to the array of poles, where each array maintains periodic spacing on a log scale.** The nature of the slope approximation is close to Chebyshev optimal in the interior of the pole-zero array, approaching conjectured Chebyshev optimality over all frequencies in the limit as the order approaches infinity. Practical designs can arbitrarily approach the equal-ripple approximation by enlarging the pole-zero array band beyond the desired frequency band. The spectral roll-off slope can be robustly modulated in real time by varying only the zeros controlled by one slope parameter. Software implementations are provided in matlab and Faust.

 3 https://c $\verb|crma.stanford.edu/^j\verb|os/spectilt/spectilt.pdf$

Why Python?

• [Outline](#page-1-0)

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

- [Problem](#page-48-0)
- [Frequency Sampling](#page-49-0)
- [Equation Error](#page-50-0)
- [LaTeX to Python](#page-51-0)
- [Abstract to Python](#page-52-0)
- [Why Python?](#page-53-0)
- [invfreqz.py](#page-54-0) Today
- [scipy.cpp](#page-55-0) Today
- • [Filter Design Summary](#page-56-0)
- The test ${\tt _{main_}$ block can conveniently use ${\tt numpy}$, ${\tt scipy}$, and ${\tt matplotlib}$ functions for test displays and subsequent interactive development
- Chatbots:
	- are trained on a *lot* of Python, and it's a relatively simple language,
	- are *not yet good* at signal processing (even simple polynomial algebra), and
	- tend to fall apart on low-level signal-processing details
- I influence them to work in terms of *well documented high-level APIs* such as functions in scipy.signal rather than writing C++ from scratch
- Translation from Python to C₊₊ has been mostly smooth
- Eigen3 gets used a lot

[Analog Examples](#page-2-0)

[Derivations](#page-17-0)

[Butterworth](#page-22-0)

[Chebyshev](#page-38-0)

[Elliptic](#page-45-0)

[General Filters](#page-47-0)

- [Problem](#page-48-0)
- [Frequency Sampling](#page-49-0)
- [Equation Error](#page-50-0)
- [LaTeX to Python](#page-51-0)
- [Abstract to Python](#page-52-0)
- [Why Python?](#page-53-0)
- [invfreqz.py](#page-54-0) Today
- [scipy.cpp](#page-55-0) Today
- • [Filter Design Summary](#page-56-0)

invfreqz.py **Today**

invfreqz.py is working now in the jos scipy fork at

[https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test](https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test_invfreqz_jos.py) invfreqz jos.py (pull-request in preparation)

Features:

- New min phase option for creating minimum phase desired frequency response
- New stabilize option for reflecting unstable poles into the unit circle
- New method argument for selecting other methods besides equation-error:
	- Equation-error method (default)
	- Steiglitz-McBride (original iterative method)
	- Prony's method (least-squares numerator)
	- Pade-Prony method (impulse-response-matching numerator) ´
	- $\circ \quad$ Maybe: "Recursive Gauss-Newton iterations" [Hessian(n) $\approx \sum_n \nabla_n \nabla_n^T)$]
	- Maybe: *Neural map* from desired frequency response to starting poles and zeros
- All but Steiglitz-McBride are passing their unit tests
- It remains to decide what to finally do and integrate the proposed final version into filter design.py for a scipy pull request

- [Outline](#page-1-0)
- [Analog Examples](#page-2-0)
- **[Derivations](#page-17-0)**
- **[Butterworth](#page-22-0)**
- **[Chebyshev](#page-38-0)**
- **[Elliptic](#page-45-0)**

[General Filters](#page-47-0)

- [Problem](#page-48-0)
- [Frequency Sampling](#page-49-0)
- [Equation Error](#page-50-0)
- [LaTeX to Python](#page-51-0)
- [Abstract to Python](#page-52-0)
- [Why Python?](#page-53-0)
- [invfreqz.py](#page-54-0) Today
- [scipy.cpp](#page-55-0) Today
- • [Filter Design Summary](#page-56-0)

scipy.cpp **Today**

Since Claude uses scipy.signal functions in its generated Python, we need those translated to C++ as well. Translated so far by Claude (most were fast):

- tf2zpk convert transfer function to zero-pole-gain (ZPK) representation
- zpk2tf inverse of tf2zpk
- tf2sos convert transfer function to second-order-sections (sos)
- sos2tf inverse of tf2sos
- zpk2sos zero-pole-gain (ZPK) directly to SOS
- roots compute the roots of a polynomial (uses Eigen3)
- bilinear convert analog IIR filter to digital using bilinear transform
- bilinear_zpk bilinear transform for zeros, poles, and gain
- lp2lp zpk lowpass to lowpass frequency scaling for analog zeros, poles, and gain
- Unit Tests for all (Catch2) *This is very important Claude can write most of them*
- Status:
	- Working through what's needed now in filter design.py and its dependencies
	- A complete scipy.signal.cpp would nice to complete from there
	- Other scipy subirectories, such as fft and linalg, are in much better shape

General Filter Design Summary

- [Outline](#page-1-0)
- [Analog Examples](#page-2-0)
- **[Derivations](#page-17-0)**
- **[Butterworth](#page-22-0)**
- **[Chebyshev](#page-38-0)**
- **[Elliptic](#page-45-0)**
- [General Filters](#page-47-0)
- [Problem](#page-48-0)
- [Frequency Sampling](#page-49-0)
- [Equation Error](#page-50-0)
- [LaTeX to Python](#page-51-0)
- [Abstract to Python](#page-52-0)
- [Why Python?](#page-53-0)
- [invfreqz.py](#page-54-0) Today
- [scipy.cpp](#page-55-0) Today
- **• [Filter Design Summary](#page-56-0)**
- Translating Python to C₊₊ for real-time use is greatly facilitated by Chatbots
- Claude 3.5 Sonnet has been the clear winner for me
- They all struggle with sample-level signal processing, and polynomial algebra
- Several scipy.signal. filter design functions are done and tested
- In general, Python is a good intermediate language for new C₊₊ DSP functions
	- Pushes chatbots away from sample-level code
	- Facilitates visual test plots using matplotlib etc.
	- Encourages simpler C++ using Eigen3 etc.
- invfreqz is now available in Python on GitHub
- scipy.signal.cpp seems about half done
- These overheads (including all *links*) are available on the [JOS Home Page](https://ccrma.stanford.edu/~jos/Welcome.html) (as well as the ADC website)

Summary of Resources Online

- JOS Home Page (Videos, Overheads, including these): [https://ccrma.stanford.edu/~jos/](https://ccrma.stanford.edu/~jos/Welcome.html)
- Equation-Error Minimization for Filter Design: [https://ccrma.stanford.edu/~jos/filters/FFT](https://ccrma.stanford.edu/~jos/filters/FFT_Based_Equation_Error_Method.html) Based Equation Error Method.html
- invfreqz for Python in JOS *scipy* fork: [https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test](https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test_invfreqz_jos.py) invfreqz jos.py
- Spectral Tilt Filters: <https://ccrma.stanford.edu/~jos/spectilt/spectilt.pdf>

