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• Example Classic Analog Filters (Butterworth, Chebyshev, Elliptic)

• Digitizing Analog Filters (two ways)

• Relating s and z planes

• Classic Analog Filter Design

◦ Butterworth (maximally flat passband, smooth rolloff)

◦ Chebyshev (equiripple passband, Butterworth stopband [or vice versa])

◦ Elliptic (equiripple passband and stopband)

• Butterworth Filters in Python, Faust, and C++

• General Digital Filter Design (not starting from Analog)

AI was used throughout for

• LaTeX typesetting

• Python code for all figures

• Python and C++ functions for filter design (not in scipy.signal)

• In general, Claude 3.5 Sonnett was used (often in Cursor or VS Code)



Classic Analog Lowpass Filters

Analog Examples

Derivations

Butterworth

Chebyshev

Elliptic

General Filters

Julius Smith Music 320 Extensions - Digital Filter Design – 3 / 58



Butterworth Analog Lowpass Prototype Example

• Outline

Analog Examples

• Butterworth Analog

• Chebyshev1 Analog

• Elliptic Analog

• Overlays

• Order 5

• Python for Figures

• s and z planes

• Sampled IRs

• Bilinear Transform

• z ≈ 1 + sT at Low Freq

Derivations

Butterworth

Chebyshev

Elliptic

General Filters

Julius Smith Music 320 Extensions - Digital Filter Design – 4 / 58

100 101
Frequency [Hz]

−100

−80

−60

−40

−20

0

M
ag
ni
tu
de
 [d

B]

Bode Plot of Order 4 Butterworth Low ass Filter

Cutoff_hz Frequency
-3 dB Point



Chebyshev1 Analog Lowpass Prototype Example

• Outline

Analog Examples

• Butterworth Analog

• Chebyshev1 Analog

• Elliptic Analog

• Overlays

• Order 5

• Python for Figures

• s and z planes

• Sampled IRs

• Bilinear Transform

• z ≈ 1 + sT at Low Freq

Derivations

Butterworth

Chebyshev

Elliptic

General Filters

Julius Smith Music 320 Extensions - Digital Filter Design – 5 / 58

10−1 100 101

Frequency [Hz]

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 [d

B]

Bode P ot of Order 4 Chebyshev Type I Lowpass Fi ter

Cutoff_hz Frequency
-3 dB Point
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Butterworth, Chebyshev I, and Elliptic Analog Lowpasses Overlaid
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Butterworth, Chebyshev I and II, Elliptic Analog Lowpasses, Wikipedia
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Python Main Program Used Above (by Claude 3.5 Sonnet)
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1 order = 4 # Filter order

2 cutoff_hz = 1 # Cutoff_hz frequency in Hz

3 ripple = 0.1 # Passband ripple in dB

4 sb_att = 60 # Stopband attenuation (ripple) in dB

5

6 wB , HB = butterworth_lowpass(order , cutoff_hz)

7 title = f’Order {order} Butterworth Lowpass ’

8 plot_bode(wB , HB , title , save_path="...")

9

10 wC1 , HC1 = chebyshev1_lowpass(order , cutoff_hz , ripple)

11 title = f’Order {order} Chebyshev Type I Lowpass ’

12 plot_bode(wC1 , HC1 , title , save_path="...")

13

14 wE , HE = elliptic_lowpass(order , cutoff_hz , ripple , sb_att)

15 title = f’Order {order} Elliptic (Cauer) Lowpass ’

16 plot_bode(wE , HE , title , save_path="...")

17

18 ...
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1 def butterworth_lowpass(order , cutoff_hz):

2 w, H = signal.freqs(* signal.butter(order , cutoff_hz * 2 *

→֒ np.pi, btype=’lowpass ’, analog=True))

3 return w, H

1 def chebyshev1_lowpass(order , cutoff , ripple):

2 w, H = signal.freqs(* signal.cheby1(order , ripple ,

→֒ cutoff_hz * 2 * np.pi, btype=’lowpass ’, analog=

→֒ True))

3 return w, H

1 def elliptic_lowpass(order , cutoff , ripple ,

→֒ stopband_attenuation ):

2 w, H = signal.freqs(* signal.ellip(order , ripple ,

→֒ stopband_attenuation , cutoff_hz * 2 * np.pi, btype

→֒ =’lowpass ’, analog=True))

3 return w, H
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Generalized sinusoids in continuous and discrete time:

Continuous Time

est = e(σ+jω)t

= eσtejωt

= e−t/τ [cos(ωt) + j sin(ωt)]

Discrete Time when z = esT

zn =
(

esT
)n

=
(

eσT+jωT
)n

= eσnT ejωnT

= e−nT/τ [cos(ω nT ) + j sin(ω nT )]

Laplace Transform

Xc(s) =

∫

∞

0
xc(t)e

−stdt

z Transform

Xd(z) =
∞
∑

n=0

xd(n)z
−n

Fourier Transform (FT) (s = jω)

Xc(jω) =

∫

∞

0
xc(t)e

−jωtdt

Discrete Time FT (DTFT) (z = ejωT )

Xd(e
jωT ) =

∞
∑

n=0

xd(n)e
−jωT
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Impulse Invariance Filter Digitization
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The Impulse Invariance Method for digitizing analog filters effectively

samples their impulse response.

An analog transfer function is always a rational function of s:

H(s) =
B(s)

A(s)

• B(s) = numerator polynomial having roots called the zeros of H(s)
• A(s) = denominator polynomial having roots called the poles of H(s).

In partial fractions,

H(s) =
N
∑

i=1

Ki

s+ si
. (1)

The impulse response h(t) is the inverse Laplace transform of (1):

h(t) =
N
∑

i=1

Kie
−sit



Impulse Invariance Method, Continued
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We have

h(t) =
N
∑

i=1

Kie
−sit

Let’s now sample h(t) at intervals of T seconds:

h(nT ) =
N
∑

i=1

Kie
−sinT =

N
∑

i=1

Ki

(

e−siT
)n ∆

=
N
∑

i=1

Kiz
n
i

We see that each analog pole at s = −si maps to a digital pole at

zi = e−siT .

While the analog zeros do not map in a simple way to the z plane,

the pole residues Ki are preserved unchanged.
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An alternative to sampling in the time-domain for systems (as opposed to signals) is to start

in the frequency domain and apply the Bilinear Transform:

s = α
1− z−1

1 + z−1
z−1 =

1− s/α

1 + s/α

• α is any positive constant

• Setting α = 2/T matches low frequencies relative to the sampling rate fs
• More generally, α can map any one frequency exactly

• See also Cayley (1846) and Möbius transforms

• Can show:

◦ Analog frequency axis s = jω (vertical axis in the s plane) maps exactly once

to the digital frequency axis z = ejωT (unit circle in the z plane) ⇒ no aliasing

◦ The left half of the s plane (stability region for poles) maps to the interior of the unit

circle in the z plane (its stability region) ⇒ stability preserved



Oversampling Gives z ≈ 1+ sT
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At low frequencies and dampings, i.e., near s ≈ 0 and z ≈ 1, we have the following

low-frequency approximations (low relative to the sampling rate):

• Basic Sampling:

z = esT = 1 + sT +
(sT )2

2!
+

(sT )3

3!
+ · · · ≈ 1 + sT

• Bilinear Transform:

z =
1 + s/α

1− s/α
=

(

1 +
s

α

)

[

1 +
s

α
+
( s

α

)2
+ · · ·

]

≈ 1 + 2
s

α
= 1 + sT

when α = 2/T

It is good to oversample sufficiently so that there is no audible difference between the

z-planes of signals and systems digitized separately by ordinary sampling and the bilinear

transform (or even multiple bilinear transforms, as in Wave Digital Filters)



Classic Analog Filters Derived

Analog Examples

Derivations

Butterworth

Chebyshev

Elliptic

General Filters

Julius Smith Music 320 Extensions - Digital Filter Design – 18 / 58



IIR Digital Filter Design

• Outline

Analog Examples

Derivations

• IIR Filter Design

• Reference

• Taylor Series

• IIR Case

Butterworth

Chebyshev

Elliptic

General Filters

Julius Smith Music 320 Extensions - Digital Filter Design – 19 / 58

Digitizing Analog Prototypes (Lowpass, Highpass, Bandpass) typically starts with

• Butterworth

◦ Maximally flat passband

◦ Poles on a circle in s and z planes

◦ All zeros at infinity in the s plane

◦ All zeros at z = −1 in the z plane

• Chebyshev Type I

◦ Equiripple passband

(“Chebyshev in the Passband”)

◦ Poles along an ellipse in the s plane

◦ “Butterworth in the Stopband”

• All zeros at infinity in the s plane

• All zeros at z = −1 in the z plane

• Chebyshev Type II

◦ “Chebyshev in the Stopband”

◦ “Butterworth in the Passband”

◦ Zeros along frequency axis

s = jω or z = ejωT

• Elliptic (Cauer)

◦ “Chebyshev in the Stopband”

◦ “Chebyshev in the Passband”

◦ Poles along ellipse

◦ Zeros along frequency axis

• See also MIT Open CourseWare, and

◦ https://en.wikipedia.org/wiki/Butterworth filter

◦ https://en.wikipedia.org/wiki/Chebyshev filter

◦ https://en.wikipedia.org/wiki/Elliptic filter

https://ocw.mit.edu/courses/res-6-007-signals-and-systems-spring-2011/6ffe3f6c387555a8db26f1f3bbaddfb5_MITRES_6_007S11_lec24.pdf
https://en.wikipedia.org/wiki/Butterworth_filter
https://en.wikipedia.org/wiki/Chebyshev_filter
https://en.wikipedia.org/wiki/Elliptic_filter
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My go-to book:

Digital Filter Design

T. W. Parks and C. S. Burrus

John Wiley and Sons, Inc., New York, 1987

The derivations below follow Parks and Burrus, using mostly the same notation.
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Any transfer function F (ω) can be expanded as a Taylor series:

F (ω) = K0 +K1 ω +K2 ω
2 +K3 ω

3 + · · · ,

where

K0 = F (0), K1 =
dF (ω)

dω

∣

∣

∣

∣

ω=0

, K2 =
1

2

d2F (ω)

dω2

∣

∣

∣

∣

ω=0

,

The power response

F(jω) = F (ω) · F (ω)

expands as a polynomial in ω2 with real coefficients:

F(ω) = k0 + k2 ω
2 + k4 ω

4 + · · ·

F(ω) is maximally flat about dc when k2 = k4 = k6 = · · · = k2N = 0,

where N is the filter order. That is, all degrees of freedom in the filter (other than scaling)

are used to flatten the power response near dc (0 Hz).
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An order N filter power response can also be expressed as a rational function of ω2:

F(jω) =
d0 + d2 ω

2 + d4 ω
4 + · · ·+ d2M ω2M

c0 + c2 ω2 + c4ω4 + · · ·+ c2N ω2N
, M ≤ N (1)

In any passband, we can define the error E(ω) as the deviation from a gain of 1:

F(jω) = 1 + E(ω) (2)

Combining (1) and (2) gives:

d0+d2 ω
2+· · ·+d2M ω2M = c0+c2 ω

2+· · ·+c2N ω2N+E(ω)[c0+c2 ω
2+· · · ] (3)

Padé Approximation (to the constant d0/c0) zeros as many leading terms as possible in the

series expansion of the error. (This also yields the maximally flat passband.) Thus, we set

c0 = d0 c2 = d2 · · · c2M = d2M

c2M+2 = 0 c2M+4 = 0 · · · c2N−2 = 0

c2N = nonzero (4)
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The power response of the normalized N th-order Butterworth filter is given by

F(jω) =
1

1 + ω2N

• cutoff frequency is normalized to ω = 1
• To set cutoff frequency ωc, use F(jω/ωc)
• All zeros at infinity so that filter “rolls off” −6N dB/octave above cutoff

• The general case gets d0 = 1, c0 = 1, ck = 0 for 0 < k < 2N , and c2N = 1
• Lowpass passband is maximally flat

(Padé approximation to F(jω) ≈ 1 about dc)



Butterworth Transfer Function

• Outline

Analog Examples

Derivations

Butterworth

• Butterworth Power Response

• Butterworth Transfer Function

• Butterworth Poles

• Butterworth Biquads

• Butterworth Pole Plots

• FAUST Butterworth Filters

• FAUST Test Program

• Analog Biquad

• Biquad Q

• Corner Resonance

• Bode Plots

• Bode Plots

• Butterworth Bode Plots

• Corner Resonance

Chebyshev

Elliptic

General Filters

Julius Smith Music 320 Extensions - Digital Filter Design – 25 / 58

Power response of the normalized N th-order Butterworth filter:

F(jω) =
1

1 + ω2N

Recall that

F(jω)
∆
= F (jω)F (jω) = F (s)F (−s)|s=jω

Thus, in the s-domain, we have

F (s)F (−s) =
1

1 + [(s/j)2]N
=

1

1 + (−s2)N
,

where s
∆
= σ + jω.
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We have

F (s)F (−s) =
1

1 + (−s2)N
.

The locations of the N poles are therefore given by

σk = − cos

(

kπ

2N

)

, ωk = sin

(

kπ

2N

)

for N values of k where

k = ±1,±3,±5, . . . ,±(N − 1) for N even,

k = 0,±2,±4, . . . ,±(N − 1) for N odd.
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Even F(s) has the partially factored form

F (s) =
∏

k

1

s2 + 2 cos(kπ/2N)s+ 1

for k = 1, 3, 5, . . . , N − 1.

For N odd, F(s) has a single real pole:

F (s) =
1

s+ 1

∏

k

1

s2 + 2 cos(kπ/2N)s+ 1



Butterworth Poles in s and z Planes

• Outline

Analog Examples

Derivations

Butterworth

• Butterworth Power Response

• Butterworth Transfer Function

• Butterworth Poles

• Butterworth Biquads

• Butterworth Pole Plots

• FAUST Butterworth Filters

• FAUST Test Program

• Analog Biquad

• Biquad Q

• Corner Resonance

• Bode Plots

• Bode Plots

• Butterworth Bode Plots

• Corner Resonance

Chebyshev

Elliptic

General Filters

Julius Smith Music 320 Extensions - Digital Filter Design – 28 / 58

Claude 3.5 Sonnet Prompt 1:

(Dictating by voice, then editing “airplane” to “s-plane” etc. in the prompt)

“Write a python script that plots the poles of a Butterworth filter on the left in

the s-plane and on the right in the z-plane, given the filter order as a parameter.

The filter cutoff frequency is 1 rad/s, and the sampling rate for the z-plane case

is another parameter between 2 and 10 rad/s.”

(Result: Excellent, except that all poles were plotted in the lower half-plane.)

Prompt 2:

“This is a good start. However, the Butterworth poles should be in the left-half

plane, not the bottom-half. Also please draw the unit circle with a dashed line.

All poles should lie on it.”

(Result: Nailed it.)

Final Tweaks:

I placed the Python file in its own directory, cd’d there, typed “cursor .”, and dictated

“This plot is nice, but the z-plane case on the right should mention the sampling rate in its

title. Also, the plot should be saved to the file ButterworthPoles.eps
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Result:
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Perhaps the easiest path to Butterworth filters in C++ is via FAUST:

• https://faustlibraries.grame.fr/libs/filters/#filowpass

• · · ·
The graphic equalizer filter bank is also based on Butterworth band-splits:

• https://faustlibraries.grame.fr/libs/filters/#fifilterbank

• Arbitrary spectral partitions are supported

• Bands sum to a constant magnitude frequency response when all gains are 1

• Odd-order Butterworth band-splits are required

• Reference:

“Tree-structured complementary filter banks using all-pass sections”

Regalia et al., IEEE Trans. Circuits & Systems, CAS-34:1470-1484, Dec. 1987

https://faustlibraries.grame.fr/libs/filters/#filowpass
https://faustlibraries.grame.fr/libs/filters/#filowpass
https://faustlibraries.grame.fr/libs/filters/#fifilterbank
https://faustlibraries.grame.fr/libs/filters/#fifilterbank
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Try this in the https://faustide.grame.fr:

import("stdfaust.lib");

cutoff = hslider("cutoff",5000,20,10000,1);

process = ba.pulsen(1, 10000) : fi.lowpass(3,cutoff);

https://faustide.grame.fr
https://faustide.grame.fr
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The transfer function of a normalized second-order lowpass can be written as

Hl(s) =
1

s̃2 + 1
Q s̃+ 1

, s̃
∆
=

s

ωc
,

where the normalization s̃ = s/ωc maps the desired corner frequency ωc to 1, and the

“quality factor” Q is defined as

Q
∆
=

ωc

2α

where α is minus the real part of the complex-conjugate pole locations p and p:

p, p = −α± j
√

ω2
c − α2
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• We defined the “quality factor” Q for a second-order (potentially resonant) lowpass as

Q
∆
=

ωc

2α

where ωc is the corner frequency and α is minus the poles’ real part.

• The Q of a resonance is normally defined as center frequency over bandwidth

https://ccrma.stanford.edu/~jos/filters/Quality_Factor_Q.html

• A real pole at s = −α in fact has its −3dB points at ω = ±α, giving 3dB bandwidth 2α
radians per second (centered on ω = 0)

• Shifting that pole up to s = −α+ jωc gives a complex resonator with bandwidth 2α
• Adding that to a pole at s = −α− jωc gives a real resonator, which we can view as

the superposition of two complex resonators, each having bandwith 2α
• In this way, 2α may be regarded as the bandwidth of the corner resonance at ωc, even

when the resonance is not prominent, such as for Q ≤
√
2/2, as we’ll see:

https://ccrma.stanford.edu/~jos/filters/Quality_Factor_Q.html
https://ccrma.stanford.edu/~jos/filters/Quality_Factor_Q.html
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• The normalized second-order Butterworth lowpass has poles on the unit circle of the s
plane at p, p = (−1± j)

√
2/2

• Therefore, α =
√
2/2 so that Q = 1/

√
2 for this case

• Larger Q values give the “corner resonance” effect often used in music synthesizers

• Let’s now plot the magnitude frequency response of some second-order filter sections,

with and without corner-resonance:
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• A Bode plot draws the magnitude frequency response as dB versus some log frequency

• In the intro, we saw Bode plots showing the magnitude frequency-response of various

Butterworth, Chebyshev, and Elliptic lowpass filters

• We can ask any good chatbot to make a Bode plot of scipy.signal.freqs(B,A)

• In MATLAB or Octave, we can say

sys = tf(1,[1,sqrt(2),1]);

bode(sys);
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• Normalized Second-Order Butterworth Lowpass/Bandpass/Highpass/Notch:

◦ bode(tf([0 0 1],[1,sqrt(2),1])); % lowpass

◦ bode(tf([0 1 0],[1,sqrt(2),1])); % bandpass

◦ bode(tf([1 0 0],[1,sqrt(2),1])); % highpass

◦ bode(tf([1 0 1],[1,sqrt(2),1])); % notch

• These variations are normally brought out in second-order “state variable filters”

• Do not confuse “state variable filters” with “state variable representations” of linear

systems: https://ccrma.stanford.edu/~jos/filters/State_Space_Realization.html

https://ccrma.stanford.edu/~jos/StateSpace/State_Space_Models.html

https://ccrma.stanford.edu/~jos/pasp/State_Space_Models.html

• The “state variable filter” is just a particular biquad structure:

https://ccrma.stanford.edu/~jos/svf/

https://ccrma.stanford.edu/~jos/filters/State_Space_Realization.html
https://ccrma.stanford.edu/~jos/filters/State_Space_Realization.html
https://ccrma.stanford.edu/~jos/StateSpace/State_Space_Models.html
https://ccrma.stanford.edu/~jos/StateSpace/State_Space_Models.html
https://ccrma.stanford.edu/~jos/pasp/State_Space_Models.html
https://ccrma.stanford.edu/~jos/pasp/State_Space_Models.html
https://ccrma.stanford.edu/~jos/svf/
https://ccrma.stanford.edu/~jos/svf/
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The Chebyshev filter power response is defined by:

|F(jω)|2 = 1

1 + ε2C2
N (ω)

, (9)

where CN (ω) is an Nth-order, real-valued function of the real variable ω:

CN (ω) = cos(N cos−1(ω)). (10)

Note that C0 = 1 and C1 = ω.

We’ll later use an intermediate complex variable φ = cos−1(ω) to find the poles:

CN (ω) = cos(Nφ), where ω = cos(φ) (11)

We can check (https://chatgpt.com/share/673fa853-e3f8-800f-a59c-d63738f6561e) that

CN+1(ω) = 2ωCN (ω)− CN−1(ω) (12)

Thus, CN (ω) is an N th-order polynomial. We call it the N th-order Chebyshev Polynomial.

https://chatgpt.com/share/673fa853-e3f8-800f-a59c-d63738f6561e
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Using the recursion (12) we have

C0 = 1,

C1 = ω,

C2 = 2ω2 − 1,

C3 = 4ω3 − 3ω,

C4 = 8ω4 − 8ω2 + 1,

... (13)

Useful identities for developing these polynomials are

C2
N =

1

2
[C2N + 1], (14)

CMN = CM (CN (ω)) where M and N are coprime.
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From (9) above, the poles of F(s) occur when

1 + ε2C2
N

(

s

j

)

= 0.

Define cos(φ) = s/j = −js and recall from (11) that CN (s/j) = cos(Nφ):

0 = 1 + ε2C2
N (cos(φ)) = 1 + ε2C2

N (Nφ).

Solving for φ yields N solutions φm:

φm =
1

N
arccos

(±j

ε

)

+
mπ

N
, m = 0, 1, 2, . . . , N − 1.

The poles are then given by

sm = j cos(φm), m = 0, 1, 2, . . . , N − 1.
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The poles may be written more explicitly as1

sm = j cos(φm)

= ± sinh

(

1

N
arcsinh

(

1

ε

))

sin(θm) + j cosh

(

1

N
arcsinh

(

1

ε

))

cos(θm)

with

θm =
π

2

2m+ 1

N
, m = 0, 1, 2, . . . , N − 1.

Since an ellipse centered at s = 0 in the complex plane can be described by

s = a sin(θ) + jb cos(θ), θ ∈ [−π, π]

(where a and b are the semi-axis lengths, one major and one minor when a 6= b),

we find that the poles lie on an ellipse in s-space centered at s = 0.

1
See Wikipedia page for “Chebyshev Filter”.

https://en.wikipedia.org/wiki/Chebyshev_filter
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Cursor Prompt (Claude 3.5 Sonnet):

“This is great, now please add a function plot chebyshev poles that does

the same thing for Chebeshev filter poles, which are on an ellipse inside the

unit circle. If you need formulas, let me know.”

(It asked for formulas, which I pasted from this LaTeX source.)

Needed Tweaks:

• Sign error in the pole real-parts (one-character fix)

• Keep the Butterworth test as an option instead of replacing it
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Result:
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Elliptic (Cauer) filters are based on Jacobian elliptic functions, which generalize the normal

trigonometric and hyperbolic functions. The elliptic integral of the first kind is defined as

u(φ, k) =

∫ φ

0

dy
√

1− k2 sin2(y)
(7.59)

The trigonometric sine of the inverse of this function is defined as the Jabocian elliptic sine

of u with modulus k:

sn(u, k) = sin(φ(u, k)) (7.60)

For details, see https://en.wikipedia.org/wiki/Elliptic filter

Features of Elliptic Filters (Lowpass, Highpass, Bandpass, Bandstop):

• Chebyshev (equiripple) in both passband and stopband (two ripple parameters)

• Sharpest possible transition from passband to stopband or vice versa

• Much “phase distortion” (e.g., “ringing”) at passband corners

• Optimal passband-ripple, stopband-ripple, and transition-width tradeoffs

https://en.wikipedia.org/wiki/Elliptic_filter
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(Red-Bordered Buttons Added to Plugin GUI Magic’s Equalizer Example)
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• Frequency Sampling

1. Draw or Load Your Desired Magnitude Frequency Response

2. Make it Minimum Phase (so the filter will be causal)

3. Inverse-FFT gives the Desired Impulse Response (IR)

4. “Window” the IR to the Affordable FIR length (smoothing the Frequency Response)

5. Use Convolution to implement the FIR filter (typical for Amp Cabinets and such)
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• Equation-Error Filter Design: Minimize ‖Â(ω)H(ω)− B̂(ω)‖
◦ E.g., invfreqz in MATLAB and Octave

◦ We need C++ for an Audio Plugin!

(or some easily embedded filter-design language)

◦ AI Chatbots translate well known languages to C++ very well

◦ They also write good starting unit tests

◦ Speed Bumps:

• MATLAB is proprietary (and no longer even precisely documented)

• Octave is GPL (but contributing authors could be asked for permission)

• Python is mostly BSD, but has no invfreqz yet in scipy.signal

◦ Plan: Implement invfreqz from scratch in Python and translate to C++

◦ Method: Paste the algorithm description2 into Claude 3.5 Sonnet and debug

◦ This actually worked!

2https://ccrma.stanford.edu/˜jos/filters/FFT Based Equation Error Method.html

https://ccrma.stanford.edu/~jos/filters/FFT_Based_Equation_Error_Method.html
https://ccrma.stanford.edu/~jos/filters/FFT_Based_Equation_Error_Method.html
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1. Prompt 1:

Following is a LaTeX description of a fast equation-error algorithm. Please

write a Python implementation.

<LaTeX source of algorithm description>

2. Prompt 2:

Write a separate test program in Python which uses `scipy.freqz` to

generate three different test examples of progressing complexity. That way,

the original and estimated filter coefficients can be compared. A good

source of example starting filters would be `scipy.signal.butter` and

`scipy.signal.cheby1` etc.

3. This was the starting test program for the one in my scipy fork:

https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test invfreqz jos.py

https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test_invfreqz_jos.py
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Prompt: Write a Python function that designs a spectral tilt filter as described in this paper

abstract:3

We derive closed-form expressions for the poles and zeros of approximate fractional

integrator/differentiator filters, which correspond to spectral roll-off filters having any

desired log-log slope to a controllable degree of accuracy over any bandwidth. The

filters can be described as a uniform exponential distribution of poles along the

negative-real axis of the s plane, with zeros interleaving them. Arbitrary spectral

slopes are obtained by sliding the array of zeros relative to the array of poles,

where each array maintains periodic spacing on a log scale. The nature of the

slope approximation is close to Chebyshev optimal in the interior of the pole-zero array,

approaching conjectured Chebyshev optimality over all frequencies in the limit as the

order approaches infinity. Practical designs can arbitrarily approach the equal-ripple

approximation by enlarging the pole-zero array band beyond the desired frequency

band. The spectral roll-off slope can be robustly modulated in real time by varying only

the zeros controlled by one slope parameter. Software implementations are provided in

matlab and Faust.

3https://ccrma.stanford.edu/~jos/spectilt/spectilt.pdf

https://ccrma.stanford.edu/~jos/spectilt/spectilt.pdf
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• The test main block can conveniently use numpy, scipy, and matplotlib

functions for test displays and subsequent interactive development

• Chatbots:

◦ are trained on a lot of Python, and it’s a relatively simple language,

◦ are not yet good at signal processing (even simple polynomial algebra), and

◦ tend to fall apart on low-level signal-processing details

• I influence them to work in terms of well documented high-level APIs such as functions

in scipy.signal rather than writing C++ from scratch

• Translation from Python to C++ has been mostly smooth

• Eigen3 gets used a lot
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invfreqz.py is working now in the jos scipy fork at

https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test invfreqz jos.py

(pull-request in preparation)

Features:

• New min phase option for creating minimum phase desired frequency response

• New stabilize option for reflecting unstable poles into the unit circle

• New method argument for selecting other methods besides equation-error:

◦ Equation-error method (default)

◦ Steiglitz-McBride (original iterative method)

◦ Prony’s method (least-squares numerator)

◦ Padé-Prony method (impulse-response-matching numerator)

◦ Maybe: “Recursive Gauss-Newton iterations” [Hessian(n) ≈ ∑

n∇n∇T
n )]

◦ Maybe: Neural map from desired frequency response to starting poles and zeros

• All but Steiglitz-McBride are passing their unit tests

• It remains to decide what to finally do and integrate the proposed final version into

filter design.py for a scipy pull request

https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test_invfreqz_jos.py
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Since Claude uses scipy.signal functions in its generated Python, we need those

translated to C++ as well. Translated so far by Claude (most were fast):

• tf2zpk - convert transfer function to zero-pole-gain (ZPK) representation

• zpk2tf - inverse of tf2zpk

• tf2sos - convert transfer function to second-order-sections (sos)

• sos2tf - inverse of tf2sos

• zpk2sos - zero-pole-gain (ZPK) directly to SOS

• roots - compute the roots of a polynomial (uses Eigen3)

• bilinear - convert analog IIR filter to digital using bilinear transform

• bilinear zpk - bilinear transform for zeros, poles, and gain

• lp2lp zpk - lowpass to lowpass frequency scaling for analog zeros, poles, and gain

• Unit Tests for all (Catch2) — This is very important — Claude can write most of them

• Status:

◦ Working through what’s needed now in filter design.py and its dependencies

◦ A complete scipy.signal.cpp would nice to complete from there

◦ Other scipy subirectories, such as fft and linalg, are in much better shape
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• Translating Python to C++ for real-time use is greatly facilitated by Chatbots

• Claude 3.5 Sonnet has been the clear winner for me

• They all struggle with sample-level signal processing, and polynomial algebra

• Several scipy.signal. filter design functions are done and tested

• In general, Python is a good intermediate language for new C++ DSP functions

◦ Pushes chatbots away from sample-level code

◦ Facilitates visual test plots using matplotlib etc.

◦ Encourages simpler C++ using Eigen3 etc.

• invfreqz is now available in Python on GitHub

• scipy.signal.cpp seems about half done

• These overheads (including all links) are available on the JOS Home Page

(as well as the ADC website)

https://ccrma.stanford.edu/~jos/Welcome.html


Summary of Resources Online
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• JOS Home Page (Videos, Overheads, including these):

https://ccrma.stanford.edu/~jos/

• Equation-Error Minimization for Filter Design:

https://ccrma.stanford.edu/~jos/filters/FFT Based Equation Error Method.html

• invfreqz for Python in JOS scipy fork:

https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test invfreqz jos.py

• Spectral Tilt Filters:

https://ccrma.stanford.edu/~jos/spectilt/spectilt.pdf

https://ccrma.stanford.edu/~jos/Welcome.html
https://ccrma.stanford.edu/~jos/filters/FFT_Based_Equation_Error_Method.html
https://github.com/josmithiii/scipy/blob/jos/scipy/signal/test_invfreqz_jos.py
https://ccrma.stanford.edu/~jos/spectilt/spectilt.pdf
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