Music 421A
Spring 2019-2020
Homework #8

Filter Banks

One week assignment

Theory Problems

1. (10 pts) Suppose the window transform W (w) is a lowpass filter with cut-off frequency w, =
27 /R and infinite side-lobe suppression. That is, W (w) = 0 for |w| > we.

(a) (5 pts) In this case, show that

o0

1
—mR) = =W (0
m;OOUJ(n mR) = ZW(0)
irrespective of the shape of w or the shape of W (w) in the interval (—we,we).
(b) (5 pts) Specify the set of useable frame step sizes R’ such that

Z w(n —mR') = constant.

2. (10 pts) Constant-Overlap-Add Condition

(a) (5 pts) For windows in the 1-, 2-, and 3-term Blackman-Harris families, (i.e., rectangular,
generalized Hamming, and Blackman family), use the Poisson Summation Formula to
determine the set of all hop-size values giving constant overlap-add.

(b) (5 pts) Why does the Kaiser window not overlap-add to a constant exactly for R > 17
What range of hop sizes should be used and why? [Characterize the valid hop sizes in
terms of one or more spectral properties of the window. The matlab function ckola.
may be used to check your conclusions.]

"http://ccrma.stanford.edu/~jos/sasp/hw/ckola.m

http://ccrma.stanford.edu/~jos/sasp/hw/ckola.m

Lab Assignment

1. (30 pts) In this problem, you will implement a sinusoidal modeling framework that takes
any quasi-periodic signal, tracks its frequency and amplitude, and resynthesizes the signal
using a bank of sinusoidal oscillators. You should submit the original, resynthesized, and
pitch-shifted signals along with your code.

(a) (10 pts) You will use the findpeaks.m function you wrote in Homework 5 to get the
frequencies and amplitudes of a given audio signal. Implement a matching algorithm
in create_partial_tracks.m that creates frequency and amplitude tracks across suc-
cessive frames. This is known as partial tracking. For more information, see pa-
pers by McAulay and Quatierﬂ and/or [Serra and Smithﬁ The pseudo-code given in
create_partial tracks.m implements the MQ algorithm.

function [freq_tracks,amp_tracks] = create_partial_tracks(freqs,peaks,delta)

% create partial tracks according to McAulay-Quarieri algorithm
% freqs - detected frequency peaks

% peaks - complex amplitudes of detected peaks

% delta - margin of frequency difference allowed in Hz

% RETURNS :

% freq_tracks - matrix of frequency tracks (nframes x npeaks)

% amp_tracks - matrix of amplitude tracks (nframes x npeaks)

[nframes,nfreqs] = size(fregs);
for k = 1l:nframes-1

for n = 1l:nfreqgs

cur_freq = freqgs(k,n);

%—— Step 1 : check if current track is dead, i.e, check if
%abs(cur_freq - freqs(k+1l,:) >= delta). If track is dead,
%frequency is matched with itself in next frame and amplitude
%set to 0. If on the other hand, there exists a frequency in
%the next frame k+1, freqs(m,k+1), that lies within the matching
%interval about current frequency, and is the closest frequency,
%then it is declared to be a candidate match --%

%--Step 2 : check if candidate match is better matched to any of
%the remaining unmatched frequencies of frame k. If there is no
Y%better match, finalize candidate and eliminate it from further
Yiconsideration. If there is a better match, then the candidate
%match frequency is better matched to the frequency freqgs(k,n+1).

Zhttps:/ /ieeexplore.ieee.org /abstract /document /1164910
3https://ccrma.stanford.edu/~jos/parshl/

https://ccrma.stanford.edu/~jos/parshl/
https://ieeexplore.ieee.org/abstract/document/1164910
https://ccrma.stanford.edu/~jos/parshl/

%There can be two cases

%--Case 1 : fregs(k,n)-freqs(k+l,m-1) lies below matching
%interval => track is marked dead, frequency is matched to itself
%and amplitude matched to O.

%-—Case 2 : or else freqs(k+1,m-1) is finalized as a match
%to freqs(k,n) --%

%——Step 3 : when all frequencies of frame k gave been tested

%and assigned to continuous tracks or dying tracks, there may
%remain frequencies in frame k+1 for which no matches have been
made. Then those frequencies are considered to be "born" in frame

k, and a new frequency is created in frame k with zero amplitude --%

end

(b) (5 pts) Complete the code in additive_synthesis.m to return a sum of real sinusoids
given their frequencies and amplitudes. Use linear interpolation to smooth each ampli-
tude and frequency trajectory from one frame to another.

function [x] = additive_synthesis(amp_lims,freq_lims,M,fs)

% amp_lims - amplitudes in current and next frame (npeaks x 2)

% freq_lims - frequencies in current and next frame (npeaks x 2)
% M - window length

% fs - sampling rate (Hz)

’ RETURNS:

% x - sum of npeaks sinusoids of length M samples

end

(c) (10 pts) For the signal bird,chirps.wavﬁ, using a Hann window of length M = 1023
samples and a hopSize of R = %, break the signal into overlapping frames and find
the peak frequencies and amplitudes in each frame with maxPeaks = 20. Zero pad to
a factor of 4 for FFT computation. Find the frequency peaks and their amplitudes in
each frame using findpeaks.m. Link the found peaks using create_partial tracks.m.
Resynthesize the signal with additive_synthesis.m using overlap-add.

(d) (2 pts) Now pitch shift the original signal up by an octave and resynthesize it.

(e) (3 pts) Change R, M and mazPeaks and listen to how different the resynthesized signals
sound. How does each affect analysis?

“http://ccrma.stanford.edu/~jos/hw421/hw8/bird_chirps.wav

http://ccrma.stanford.edu/~jos/hw421/hw8/bird_chirps.wav

