
Music 421A
Spring 2019-2020
Homework #8

Filter Banks
One week assignment

Theory Problems

1. (10 pts) Suppose the window transform W (ω) is a lowpass filter with cut-off frequency ωc =
2π/R and infinite side-lobe suppression. That is, W (ω) = 0 for |ω| ≥ ωc.

(a) (5 pts) In this case, show that

∞∑

m=−∞

w(n−mR) =
1

R
W (0)

irrespective of the shape of w or the shape of W (ω) in the interval (−ωc, ωc).

(b) (5 pts) Specify the set of useable frame step sizes R′ such that

∞∑

m=−∞

w(n−mR′) = constant.

2. (10 pts) Constant-Overlap-Add Condition

(a) (5 pts) For windows in the 1-, 2-, and 3-term Blackman-Harris families, (i.e., rectangular,
generalized Hamming, and Blackman family), use the Poisson Summation Formula to
determine the set of all hop-size values giving constant overlap-add.

(b) (5 pts) Why does the Kaiser window not overlap-add to a constant exactly for R > 1?
What range of hop sizes should be used and why? [Characterize the valid hop sizes in
terms of one or more spectral properties of the window. The matlab function ckola.m1

may be used to check your conclusions.]

1http://ccrma.stanford.edu/~jos/sasp/hw/ckola.m

1

http://ccrma.stanford.edu/~jos/sasp/hw/ckola.m

Lab Assignment

1. (30 pts) In this problem, you will implement a sinusoidal modeling framework that takes
any quasi-periodic signal, tracks its frequency and amplitude, and resynthesizes the signal
using a bank of sinusoidal oscillators. You should submit the original, resynthesized, and
pitch-shifted signals along with your code.

(a) (10 pts) You will use the findpeaks.m function you wrote in Homework 5 to get the
frequencies and amplitudes of a given audio signal. Implement a matching algorithm
in create partial tracks.m that creates frequency and amplitude tracks across suc-
cessive frames. This is known as partial tracking. For more information, see pa-
pers by McAulay and Quatieri2 and/or Serra and Smith.3 The pseudo-code given in
create partial tracks.m implements the MQ algorithm.

function [freq_tracks,amp_tracks] = create_partial_tracks(freqs,peaks,delta)

% create partial tracks according to McAulay-Quarieri algorithm

% freqs - detected frequency peaks

% peaks - complex amplitudes of detected peaks

% delta - margin of frequency difference allowed in Hz

% RETURNS :

% freq_tracks - matrix of frequency tracks (nframes x npeaks)

% amp_tracks - matrix of amplitude tracks (nframes x npeaks)

[nframes,nfreqs] = size(freqs);

for k = 1:nframes-1

for n = 1:nfreqs

cur_freq = freqs(k,n);

%-- Step 1 : check if current track is dead, i.e, check if

%abs(cur_freq - freqs(k+1,:) >= delta). If track is dead,

%frequency is matched with itself in next frame and amplitude

%set to 0. If on the other hand, there exists a frequency in

%the next frame k+1, freqs(m,k+1), that lies within the matching

%interval about current frequency, and is the closest frequency,

%then it is declared to be a candidate match --%

%--Step 2 : check if candidate match is better matched to any of

%the remaining unmatched frequencies of frame k. If there is no

%better match, finalize candidate and eliminate it from further

%consideration. If there is a better match, then the candidate

%match frequency is better matched to the frequency freqs(k,n+1).

2https://ieeexplore.ieee.org/abstract/document/1164910
3https://ccrma.stanford.edu/~jos/parshl/

2

https://ccrma.stanford.edu/~jos/parshl/
https://ieeexplore.ieee.org/abstract/document/1164910
https://ccrma.stanford.edu/~jos/parshl/

%There can be two cases :

%--Case 1 : freqs(k,n)-freqs(k+1,m-1) lies below matching

%interval => track is marked dead, frequency is matched to itself

%and amplitude matched to 0.

%--Case 2 : or else freqs(k+1,m-1) is finalized as a match

%to freqs(k,n) --%

%--Step 3 : when all frequencies of frame k gave been tested

%and assigned to continuous tracks or dying tracks, there may

%remain frequencies in frame k+1 for which no matches have been

made. Then those frequencies are considered to be "born" in frame

k, and a new frequency is created in frame k with zero amplitude --%

end

(b) (5 pts) Complete the code in additive synthesis.m to return a sum of real sinusoids
given their frequencies and amplitudes. Use linear interpolation to smooth each ampli-
tude and frequency trajectory from one frame to another.

function [x] = additive_synthesis(amp_lims,freq_lims,M,fs)

% amp_lims - amplitudes in current and next frame (npeaks x 2)

% freq_lims - frequencies in current and next frame (npeaks x 2)

% M - window length

% fs - sampling rate (Hz)

% RETURNS:

% x - sum of npeaks sinusoids of length M samples

...

end

(c) (10 pts) For the signal bird chirps.wav4, using a Hann window of length M = 1023
samples and a hopSize of R = M+1

8
, break the signal into overlapping frames and find

the peak frequencies and amplitudes in each frame with maxPeaks = 20. Zero pad to
a factor of 4 for FFT computation. Find the frequency peaks and their amplitudes in
each frame using findpeaks.m. Link the found peaks using create partial tracks.m.
Resynthesize the signal with additive synthesis.m using overlap-add.

(d) (2 pts) Now pitch shift the original signal up by an octave and resynthesize it.

(e) (3 pts) Change R,M and maxPeaks and listen to how different the resynthesized signals
sound. How does each affect analysis?

4http://ccrma.stanford.edu/~jos/hw421/hw8/bird chirps.wav

3

http://ccrma.stanford.edu/~jos/hw421/hw8/bird_chirps.wav

