
Final Exam Practice Questions for Music 421, with Solutions

Elementary Fourier Relationships

1. For the window w = [1/
√
2, 1, 1/

√
2], what is

(a) the dc magnitude of the window transform?

Solution: 1 +
√
2

(b) the magnitude at half the sampling rate?

Solution: 1−
√
2

2. Consider a discrete-time chirp signal x(nT )
∆
= cos

[

α · (nT )2 + φo

]

, where α = π
10
rad/s2,

T = 1
fs

= 1
44,100 sec. How long does it take for the instantaneous frequency to sweep from

DC to the Nyquist limit at 22,050Hz ?

Solution: 5 · 44100 seconds

3. For the frequency response

H(ω) =

{

1, 0 ≤ ω ≤ π

0, otherwise

(a) Find the corresponding continuous-time impulse response h(t).

Solution:

h(t) =
1

2
ej

π

2
tsinc

(

t

2

)

(b) Find h(n) for n = 0,±1,±2, . . . . (T = 1.) Simplify the result as far as you can.

Solution:

h(n) =
1

2
ej

π

2
nsinc

(n

2

)

= · · ·

(c) Find h(n+ 1/2) for n = 0,±1,±2, . . . .

Solution:

h(n+ 1/2) =
1

2
ej

π

2
(n+ 1

2
)sinc

(

n+ 1
2

2

)

= · · ·
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Window Method for FIR Filter Design

1. Describe, in a step-by-step manner, the window method for FIR design.

Solution: See text.

2. If the window w(n) = sinc(n/10), viewed as the impulse response of a lowpass filter, is said
to “cut off” at ω = π/10, at what frequency does the window w4(n) cut off?

Solution: Squaring the window corresponds to convolving the window transform with itself,
thus moving its cut-off from π/10 to 2π/10. Repeating this operation corresponds to w4(n)

and moves the cut-off from 2π/10 to 2π/5 . The pass-band shape goes from rectangular to

triangular after one convolution, and then to quadratic. Thus, it’s not really correct to call
it a “lowpass” filter in the usual sense.

3. If h(n) is the impulse response of a lowpass filter, describe two ways to make a highpass filter
from it.

Solution: See text. The best method covered is a π-rotation of the spectrum, (−1)nh(n) .

A second method mentioned is forming 1−H(z) ↔ δ(n)−h(n), but this requires more careful
normalization of h.

4. We wish to design an ideal lowpass filter H(z) with cut-off frequency at fs/4 = 0.25 in
normalized frequency. Suppose we want to compute the ideal sampled impulse response by
simulating the IDTFT using a large IFFT. Find the closed-form expression for the ideal
impulse response h(n) and use it to determine the smallest FFT length N (a power of 2)
which guarantees that every time-aliased sample of the inverse DTFT will have amplitude
less than 1/2000π.

Solution: The sinc fn reaches 1/2000π at n = 1000, so N = 2048 is first FFT size within
specs.

5. A causal Hann window w(n) can be implemented in the frequency domain as the smoothing
kernel W = (−1/4, 1/2,−1/4). We know that windowing in the time domain corresponds
to smoothing in the frequency domain. The second derivative operator (“Laplacian”) in the
frequency domain is given by the kernel (1,−2, 1) = −4W . This kernel is often used as an
“edge detector” in image processing, and it is regarded as a kind of high-pass filter (a double
differentiation). Explain how a Hann window in the time domain can be considered both a
smoothing operation and an edge detector (highpass filter) in the frequency domain.

Solution: One is the π-rotation of the other.

FFT Convolution

1. Suppose we perform FFT based convolution using the following system parameters:

N = 8 (FFT length)

M = 5 (Window length)

x(n) = (−1)nu(n) (Input signal)

w(n) = Triangular window = [1, 2, 3, 2, 1]
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(a) What is the FFT input buffer for frame 0, assuming

i. Causal processing

Solution: [1,−2, 3,−2, 1, 0, 0, 0]

ii. Zero-phase processing

Solution: [3,−2, 1, 0, 0, 0, 0, 0]

(b) What is the FFT input buffer for frame 1, assuming a hop size R = 2, and

i. Causal processing

Solution: [1,−2, 3,−2, 1, 0, 0, 0]

ii. Zero-phase processing

Solution: [3,−2, 1, 0, 0, 0, 1,−2]

(c) What is the overlap-add of the window (for all n), given the hop size R = 2?

Solution: Alias2(w) = [5, 4]

(d) What is the overlap-add of the window (for all n), given the hop size R = 1?

Solution: Alias1(w) =
∑

n

w(n) = 9

(e) What is the frame rate in Hz when R = 2 and the sampling rate is 60Hz?

Solution: 30 Hz

(f) Find the closed form expression of W (ω) in the zero-phase case (using the bilateral
DTFT of w)?

Solution: 3 + 4 cos(ωT ) + 2 cos(2ωT )

(g) Plot the magnitude spectrum |W (ω)| on a linear scale.

Solution: Paste the following into a matlab command window:

wT = [-pi:0.1:pi];

W = 3*cos(0*wT) + 4*cos(wT) + 2*cos(2*wT);

plot(wT,abs(W)); grid on;

Find

i. W (0)

Solution: W (0) = 3 + 4 + 2 = 9

ii. W (π/T )

Solution: W (π) = 3− 4 + 2 = 1

(h) Find
1

R

∑

k

W (ωk)e
jωknT

where ωk
∆
= 2πkfs/R, and R = 2.
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Solution:

1

2

1
∑

0

W (ωk)e
jωknT =

1

2

[

W (0) +W (1)ejπn
]

=
9

2
+ (−1)n

1

2
= 4.5 + (−1)n0.5

=

{

5, n even

4, n odd

or
Repeat∞([5, 4])

(i) Explain the relationship between the previous answer and that in part 1c.

Solution: By the Poisson Summation Formula, they must be the same.

2. Recall that FFT windows used for long convolutions must satisfy the constant overlap-add
(COLA) constraint:

∑

m

w(n−mR) = 1

Recall also that if this constraint is not satisfied, the window overlap add becomes some
R-periodic signal

sR(n)
∆
=
∑

m

w(n−mR),

and sR(n + kR) = sR(n) for every integer k. If sR(n) is not a constant in this way, can we
simply divide by it? If not, show what goes wrong. If so, prove the same result is obtained
as if sR(n) is 1. Consider three cases:

(a) No modifications, i.e., Ym(ωk) = Xm(ωk), where m is the frame index, Xm is the FFT of
the mth windowed input data frame, and Ym is the mth spectral frame for the output.

Solution: ok, but not robust in the presence of noise.

(b) Linear time-invariant modifications [Ym(ωk) = H(ωk)Xm(ωk)].

Solution: Fails because amplitude modulation is applied to the frame xm which is
then convolved with the LTI modification h.

(c) Linear time-varying modifications [Ym(ωk) = Hm(ωk)Xm(ωk)].

Solution: Fails for the same reason as the LTI case.

Spectral Modeling

1. Given the spectral magnitude samples X(ωk) = [0, 2, 2, 1, 0, . . .], a local magnitude peak is
found to exist in bins k = 1, 2, 3, using quadratic interpolation, find

(a) the index k∗ of the interpolated peak (in bins),

Solution: 1
1

2
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(b) the magnitude of the interpolated peak,

Solution: 2
1

8

(c) the formula for the parabolic interpolation itself.

Solution: See p. 40 of the text.

(d) Explain how to compute the phase of the interpolated peak X(ωk∗), and give a formula
for it.

Solution: See text — linear interpolation often good enough.

2. How does the phase vocoder relate to sinusoidal modeling?

Solution: The instantaneous amplitude and frequency is measured at the output of each filter
channel. These functions of time are used to define the amplitude- and frequency-envelopes
of quasi-sinusoidal oscillators in a sinusoidal signal model (additive synthesis).

3. Consider two sinusoids at 51 Hz and 200 Hz respectively. The sampling rate is 1500 Hz. Which
of the following windows will allow you to resolve the two sinusoids? (Use the definition of
“resolve” as in homework 3, where adjacent mainlobes do not overlap.)

Window type Window length (M) Able to resolve sinusoids?

Rectangular 100 samples YES / NO
Hamming 400 samples YES / NO
Hanning 800 samples YES / NO
Blackman 900 samples YES / NO

Solution: The difference frequency is 149 Hz. We need at least two cycles of the difference
frequency under a rectangular window, which, at a 1500 Hz samping rate, is 2 · 1500/149 =
20.134 samples. Thus, it is easily resolved. The Hamming and Hanning windows require
four cycles, or ¿40 samples, so yes, they are both well resolved. The Blackman requires ¿60
samples, so again resolve. The answers are thus YES, YES, YES, YES. (One suspects there

is a typo in this problem statement.)

Filter Banks

1. Given

x(n) =

{

n, n > 0

0, otherwise
,

find and plot y(n), where

Y (z)
∆
=

1

2
[X(z) +X(−z)]

Solution:

y(n) =

{

n, n even

0, n odd
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Relatively hard problems (one or two per final)

1. Consider the basic two-channel filter bank, with lowpass analysis filter H0(z), highpass anal-
ysis filter H1(z), lowpass synthesis filter F0(z), and highpass synthesis filter F1(z):
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Figure 1: Two-Channel Filter Bank.

(a) Find the input-output transfer function from x(n) to x̂(n).

Solution: See the text, section entitled “Two-Channel Critically Sampled Filter Banks”

(b) Given H0(z) and H1(z), find values for F0(z) and F1(z) which ensure aliasing cancella-
tion.

(c) Suppose we choose h0 = [1, h0(1), 1, 0, 1, 0, 1, 0] and H1(z) = 1 − H0(z), with Fi(z) set
to cancel aliasing.

Solution: See text, section entitled “Amplitude-Complementary 2-Channel Filter Bank”

i. For what values of h0(1) is perfect reconstruction obtained?

Solution: Any nonzero value

ii. Find the value h0(1) which gives unity gain, or prove that unity gain is impossible.

Solution: −1

2

iii. Find the delay of the output x̂(n) relative to the input x(n).

Solution: 1 sample

(d) Consider using the phase vocoder to analyze a signal which is known to be a sinusoid
at some amplitude, frequency, and phase. Suppose that the sinusoid’s frequency fx lies
somewhere between channel center frequencies k and k + 1, i.e., ωk ≤ ωx ≤ ωk+1. Find
a general formula for combining information from the two channel filters k and k + 1 in
order to produce a more accurate amplitude and frequency estimate (versus time) than
would be obtained from using either channel signal alone.

(e) In class, OLA and FBS were derived as alternate interpretations of a single formula,
the STFT. In the case of multiplicative spectral modifications (ordinary LTI filtering),
we showed that the analysis window w(n) convolves with the impulse response of the
modification in the OLA case, yielding w ∗ h, while it multiplies the modifications in
the FBS case, yielding w · h. Since OLA and FBS are supposed to be two different
interpretations of the same STFT formula, explain how the spectral modifications can
behave differently in the two cases.
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(f) Define νk(lL)
∆
= Xl(ωk)e

jωklL, where Xl(ωk) is the DTFT of the windowed frame xl

sampled at the points ωk = 2πk/N , xl(n)
∆
= x(n)w(n− lL),and we have M < N for the

window length and L ≤ M for the frame step-size.

Show that given the window constraint

L−1
∑

l=0

W (ωk + l2π/L) = Lw(0), k = 0, 1, . . . , N − 1

νk(lL) can be up-sampled using ideal (sinc) interpolation to give ν̂k(n) for all n, such
that

N−1
∑

k=0

ν̂k(n) = x(n)

Hint: Consider the dual of the Poisson summation formula. The usual Poisson summa-
tion formula is given by

∞
∑

l=−∞

w(n− lL) =
1

R

L−1
∑

k=0

W (2πk/R)e−j2πkn/R

(g) We learned in our study of FIR filter design that the length (in seconds) LT required for
an FIR lowpass filter impulse response is roughly proportional to one over its transition
width B in Hz. Assume for this problem that we have the exact relationship MT = 2/B
when the FIR impulse response is designed by the window method using the rectangular
window, where T denotes the sampling period.

i. what is the minimum length of an FIR filter which can suppress the negative-
frequency component of a single sinusoid at 25 Hz (e.g., for piano analysis) when
the sampling rate is fs = 10, 000 Hz? For this filter design, the positive-frequency
component should lie somewhere in the passband, and the negative-frequency com-
ponent should lie in somewhere the stopband. State any necessary assumptions you
need to arrive at your result.

ii. Is there a name for this type of filter? A few sentences of discussion are invited here.

iii. What is minimum FIR filter length if we change from using a rectangular window
to using a Hamming window?

iv. What is minimum FIR filter length if we change from using a rectangular window
to using a Blackman window?
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