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Summary. This chapter summarizes some efficient signal processing structures
used for virtual musical instruments based on physical models. Instruments in the
string and wind families are considered.

1 Introduction

Digital sound synthesis has become a standard staple of modern music stu-
dios, videogames, and personal computers. As processing power has increased
over the years, sound synthesis implementations have evolved from dedicated
chip sets, to single-chip solutions, and ultimately to software implementations
within processors used primarily for other tasks (such as graphics or general
purpose computing). With the cost of implementation dropping closer and
closer to zero, there is increasing room for higher quality algorithms. A partic-
ularly fertile source of natural sound synthesis algorithms is the mathematical
models of musical instruments developed within the science of musical acous-
tics [20, 25, 51]. To realize practical instrument voices from these models, it
is helpful to develop robust and efficient signal processing algorithms which
retain the audible physical behavior while minimizing computational cost
[72].

In this article, a number of cost-effective synthesis models will be summa-
rized for various musical instrument families, including strings, and winds.
Emphasis is placed on techniques adapted from the field of digital signal pro-
cessing [35, 42]. Notably absent is any discussion of percussion instruments,
which are normally handled via sample-based methods [36, 26, 41], but some
model-based methods have been proposed based on the digital waveguide
mesh [21].

2 Vibrating Strings

In a stringed musical instrument, most of the sound energy is stored in the
vibrating string at any given time. The main determinant of the sound of
a stringed instrument is the interaction of the string and player. The body
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of the instrument functions as a passive resonator which is well modeled, in
principle, by a linear, time-invariant filter [62, 69].

The musical acoustics literature on stringed musical instruments is quite
rich. See, for example, [20, 38, 39, 40, 44, 45, 46, 47, 55, 81, 80]. Digital comp-
utational models of stringed instruments have been under active development
since at least the 1960s [6, 8, 9, 17, 19, 18, 23, 24, 30, 29, 50, 52, 59, 58, 62,
63, 64, 66, 71, 75, 76, 78, 77, 79].

2.1 Wave Equation

The starting point for a stringed instrument model is typically a wave equa-
tion for transverse vibrations of the vibrating string [10, 6, 39, 80]. For ex-
ample, a recently proposed [6] Partial Differential Equation (PDE) governing
motion of a piano string is given by

f(t, x) = εÿ − Ky′′ + EIy′′′′ + R0ẏ + R2ÿ
′ (1)

where

y = y(t, x) = string displacement at position x and time t

ẏ =
∂

∂t
y(t, x), y′ =

∂

∂x
y(t, x), (etc.)

f(t, x) = driving force density (N/m)

ε = mass density (kg/m)

K = tension force along the string axis (N)

E = Young’s modulus (N/m2)

I = radius of gyration of the string cross-section (m)

The basic lossless wave equation εÿ = Ky′′ is derived in most textbooks
on acoustics, e.g., [39].1 The term εÿ represents the mass per unit length
times the transverse acceleration, and Ky′′ equals the transverse restoring
force due to the string tension K. The more elaborate wave equation for
piano string includes frequency-dependent losses and dispersion. Frequency-
dependent losses are critical for obtaining the correct decay time as a function
of frequency, i.e., for each partial overtone. Dispersion (frequency-dependent
propagation speed) is required to obtain the correct tuning of the partial
overtones.

The term EIy′′′′ in Eq. (1) is the transverse restoring force exerted by a
stiff string in response to being bent. In an ideal string, with zero diameter,
this force is zero. Stiffness is normally neglected in models for guitars and
violins, but included in instruments with larger-diameter strings, such as the
piano and cello. The test for whether stiffness is needed in the model for

1For an online derivation, see, e.g.,
http://ccrma.stanford.edu/~jos/pasp/String Wave Equation.html.
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plucked or struck strings (any freely vibrating string) is whether the ear can
hear the “stretching” of the partial overtones due to stiffness [27]; for bowed
strings, the dispersion due to stiffness can effect the bow-string dynamics [37].
In the context of a digital waveguide string model (described in §2.3 below),
the dispersion associated with stiff strings is modeled indirectly by designing
an allpass filter for the string model. It is possible to correctly tune the first
several tens of partials for any natural piano string with a total allpass order
of 20 or less [50]. Additionally, minimization of the L∞ norm [33] has been
used to calibrate a series of allpass-filter sections [5, 56].

The final two terms of Eq. (1) provide damping, which is required in
any string practical model. The damping associated with R0 is frequency-
independent, while the damping due to the R2 term increases with frequency
[6]. For digitally simulated piano strings of the highest quality, more than
these two terms are needed in the PDE, to yield more finely tuned decay
times versus frequency. Instead of introducing such terms into the wave equa-
tion based on physical considerations, these terms are normally determined
implicitly by digital filter design techniques [43, 62]. For this application, the
error minimized by the filter-design software should be formulated in terms
of the audibility of the error in partial overtone decay rates and tuning [62,
pp. 182–184]. For example, in [7], the damping in real piano strings was mod-
eled using a length 17 linear-phase FIR filter for the lowest strings, and a
length 9 linear-phase FIR filter for the remaining strings.

2.2 Finite Difference Models

The original approach to digitally modeling vibrating strings was by means
of Finite Difference Schemes (FDS) [22, 52, 24, 10, 73]. Such models are also
called Finite Difference Time Domain (FDTD) methods [28, 29]. In these
models, partial derivatives are replaced by finite differences, e.g.,

ÿ(t, x) ≈
y(t + T, x) − 2y(t, x) + y(t − T, x)

T 2
(2)

y′′(t, x) ≈
y(t, x + X) − 2y(t, x) + y(t, x − X)

X2
(3)

2.3 Digital Waveguide Models

More recently, the Digital Waveguide (DW) approach has been developed
for modeling vibrating strings [64, 65, 71]. It can be viewed as a descendent
of the Kelly-Lochbaum model for voice synthesis [12, 31, 34, 35, 67]. The
DW approach is compared quantitatively with the FDS approach in [6]. For
strings used in typical musical instruments, the digital waveguide method
generally provides a more efficient simulation for a given sound quality level.
A combination of digital waveguides and finite differences may be preferred,
however, for nonlinear string simulation [32, 29, 45].
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The digital waveguide formulation can be derived by simply sampling the
traveling-wave solution to the ideal wave equation

Ky′′ = εÿ.

It is easily checked that the lossless 1D wave equation is solved by any string
shape y which travels to the left or right with speed c =

√

K/ε [16]. Denote
right-going traveling waves in general by yr(t− x/c) and left-going traveling
waves by yl(t+x/c), where yr and yl are assumed twice-differentiable. Then,
as is well known, the general class of solutions to the lossless, one-dimensional,
second-order wave equation can be expressed as

y(t, x) = yr

(

t −
x

c

)

+ yl

(

t +
x

c

)

. (4)

Sampling these traveling-wave solutions yields

y(nT,mX) = yr(nT − mX/c) + yl(nT + mX/c)

= yr[(n − m)T ] + yl[(n + m)T ]

= y+(n − m) + y−(n + m) (5)

where a “+” superscript denotes a “right-going” traveling-wave component,
and “−” denotes propagation to the “left”. This notation is similar to that
used for acoustic-tube modeling of speech [35].

(x = 0) (x = cT) (x = 2cT)

. . .

. . .. . .

. . .

z 1-

z 1-

z 1-

z 1-z 1-

z 1-

y (n+2)-y (n+1)-

y (n-1)+ y (n-2)+

y (nT,3X)

y (n)-

y (n)+

y (nT,0)

y (n-3)+

(x = 3cT)

y (n+3)-

Fig. 1. Digital simulation of the ideal, lossless waveguide with observation
points at x = 0 and x = 3X = 3cT . (The symbol “z−1” denotes a one-
sample delay.) [Reprinted with permission from [71]]

Figure 1 shows a signal flow diagram for the computational model of
Eq. (5), which is often called a digital waveguide model (for the ideal string
in this case) [65, 71]. Note that, by the sampling theorem [68, Appendix
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G],2 it is an exact model so long as the initial conditions and any ongoing
additive excitations are bandlimited to less than half the temporal sampling
rate fs = 1/T .

Note also that the position along the string, xm = mX = mcT meters,
is laid out from left to right in the diagram, giving a physical interpretation
to the horizontal direction in the diagram, even though spatial samples have
been eliminated in the translation of physical variables to traveling-wave com-
ponents. In Fig. 1, “transverse displacement outputs” have been arbitrarily
placed at x = 0 and x = 3X. The diagram is similar to that of well known
ladder and lattice digital filter structures [35], except for the delays along
the upper rail, the absence of scattering junctions, and the direct physical
interpretation.

2.4 FDTD and DW Equivalence

In [67, 70], it is shown that the FDS and DW recursions for the ideal vibrating
string are equivalent. That is, a one-to-one linear transformation exists which
translates the state space of one to the other, and the time updates perform
the same state-space transition in each case. As a result, the methods only
differ in low-level computational details such as numerical sensitivity, cost
efficiency, and the implementations of excitations and boundary conditions.
In one dimension, the DW method is much more efficient in most applications.
In higher dimensions, however, in which membranes and acoustic spaces are
modeled using a grid of intersecting digital waveguides—the so-called digital
waveguide mesh—the FDS approach is generally more efficient than the DW
method. (See [3] for quantitative comparisons).

2.5 Bowed Strings

An example DW model for a bowed-string instrument is shown in Fig. 2
[63, 71]. The main control is bow velocity, but bow force and position also
have an effect on the tone produced. The digital waveguide simulates traveling
velocity-wave components. The left- and right-going traveling-wave compo-
nents on the left of the bow are denoted v+

s,l(n) and v−

s,l(n), respectively,
where n denotes time in samples. To the right of the bow, the components
are v+

s,r(n) and v−

s,r(n). The (abstract) “incoming string velocity” is defined
as

v+
s (n) = v+

s,l(n) + v+
s,r(n) (6)

and the “incoming differential velocity” is defined as

v+

∆(n) = vb(n) − v+
s (n), (7)

where vb(n) denotes the bow velocity at sample-time n. The incoming dif-
ferential velocity v+

∆ can be interpreted physically as the physical differential

2http://ccrma.stanford.edu/~jos/mdft/Sampling Theorem.html

http://ccrma.stanford.edu/~jos/mdft/Sampling_Theorem.html
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velocity (bow minus string) that would occur if the bow-string friction were
zero (ideal, frictionless “slipping” of the bow along the string). A table-lookup
(or other nonlinear function implementation) gives the reflection coefficient
of the bow-string contact point, as seen by traveling waves on the string.
This coefficient is then applied to v+

∆ and added to the left- and right-going
traveling-wave paths. The bow table is derived from the bow-string friction-
curve characteristic, such as the one shown in Fig. 3. The details of this
derivation may be found in [71].3

Bridge-
Body

Bow Force

Bow to Bridge Delay

String

Reflection
Filter

Body
Filter

Bridge to Bow Delay

Nut to Bow Delay

Bow to Nut Delay

-1

String BowNut Air

Bow Velocity

-

v+
ls,

v+
rs,

v∆
+ ρ̂

v−
ls,

v−
rs,

- *
vb

Bow Table

Fig. 2. Digital waveguide bowed-string model. [From [71]]

The delay lines are drawn in “physical canonical form” for ease of physical
interpretation. We see that the string is modeled using two ideal (lossless)
digital waveguides, one to the left and one to the right of the bowing point.
(A 1D digital waveguide is defined as a pair of delay lines flowing in opposite
directions—a bidirectional delay line.) In practice, only two delay lines are
generally implemented, one on each side of the bowing point.

Note that delay lines require O(1) operations per sample, i.e., the num-
ber of operations per sample does not increase as the delay-line length is
increased.4 This is the heart of the reason digital waveguide models are more
efficient than finite difference models. At present, there is no known O(1)
FDS (or FDTD) model for vibrating strings.

The reflection filter in Fig. 2 implements all losses in one period of oscil-
lation due to the yielding bridge, absorption by the bow and finger, string
losses, etc. Since the string model is linear and time invariant, i.e., Eq. (1)
is linear with constant coefficients, superposition applies, and loss/dispersion

3Available online at
http://ccrma.stanford.edu/~jos/pasp/Bow String Scattering Junction.html.

4The notation O(K) denotes “computational complexity of order K”. This
means that the computational complexity is bounded by cNK for some constant c,
as N → ∞, where N is the size of the problem (delay-line length in this case).

http://ccrma.stanford.edu/~jos/pasp/Bow_String_Scattering_Junction.html
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− vc
∆

vc
∆

Bow and String
Stuck Together

Bow and String Slipping
(Reduced Friction)

Break-Away / Capture

Solution = Graphical
Intersection

Bore "Load Line"

Bow and String Slipping
(Reduced Friction)

v∆
∗

"Incoming"
differential

velocity

 

   

v∆

Normalized Friction  Rb / Rs

 times  differential velocity  v∆

v∆
+

Fig. 3. Overlay of normalized bow-string friction curve Rb(v∆)/Rs with
the string “load line” v+

∆
−v∆. The “capture” and “break-away” differential

velocity is denoted vc

∆. Note that increasing the bow force increases vc

∆ as
well as enlarging the maximum force applied (at the peaks of the curve).
[From [71]]

filtering within the string may be commuted to concentrated points. In prin-
ciple, such filters should appear on either side of the bow, and prior to each
output signal extracted. However, because the difference is perceptually moot,
normally only one loss/dispersion filter is employed per string loop. For mul-
tiple coupled strings, all loss/dispersion filtering may be implemented within
the bridge at which they share a common termination [66, 71].5

The bow-string junction is typically implemented as a memoryless lookup
table (or segmented polynomial). Preferably, however, a thermodynamic
model should be employed for bow friction, since the bow rosin is known to
have a time-varying viscosity due to temperature variations within a period
of sound [82]. In [61], thermal models of dynamic friction in bowed strings are
discussed, and such models have been incorporated into more recent synthesis
models [57, 60, 1].

A real-time software implementation of a bowed-string model similar to
that shown in Fig. 2 is available in the Synthesis Tool Kit (STK) distribution
[14, 11], as Bowed.cpp. This prototype can serve as a starting framework for
more elaborate models.

2.6 Electric Guitars

While most musical vibrating strings are well approximated as linear, time-
invariant systems, there are special cases in which nonlinear behavior is de-
sired. One example is the distorted electric guitar.

5http://ccrma.stanford.edu/~jos/pasp/Two Ideal Strings Coupled.html

http://ccrma.stanford.edu/~jos/pasp/Two_Ideal_Strings_Coupled.html
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A soft clipper is similar to a hard clipper (saturation on overflow), but
with the “corners” smoothed. A common choice of soft-clipper is the cubic
nonlinearity , e.g. [74],

f(x) =















− 2

3
, x ≤ −1

x − x3

3
, −1 ≤ x ≤ 1

2

3
, x ≥ 1

(8)

This particular soft-clipping characteristic is diagrammed in Fig. 4. An anal-
ysis of its spectral characteristics, along with some discussion regarding how
to avoid the aliasing it can cause, is given in [71].6 An input gain may be
used to set the desired degree of distortion.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
x=−1:0.01:1; plot([−(2/3)*ones(1,100), x−x.3/3, (2/3)*ones(1,100)])

x(n)

f(x
(n

))

Fig. 4. Soft-clipper defined by Eq. (8). [From [71]]

A cubic nonlinearity, as well as any odd distortion law,7 generates only
odd-numbered harmonics (like in a square wave). For best results, and in
particular for tube distortion simulation [2, 53], it can be argued that some
amount of even-numbered harmonics should also be present. Breaking the
odd symmetry in any way will add even-numbered harmonics to the output
as well. One simple way to accomplish this is to add an offset to the input
signal, obtaining

y(n) = f [x(n) + c], (9)

where c is some small constant. (Signals x(n) in practice are typically con-
strained to be zero mean by one means or another.)

Another method for breaking the odd symmetry is to add some square-law
nonlinearity to obtain

6http://ccrma.stanford.edu/~jos/pasp/Nonlinear Elements.html
7A function f(x) is said to be odd if f(−x) = −f(x).

http://ccrma.stanford.edu/~jos/pasp/Nonlinear_Elements.html


Virtual Musical Instruments 9

f(x) = αx3 + βx2 + γx + δ (10)

where β controls the amount of square-law distortion. This is then a more
general third-order polynomial. A square-law is the gentlest nonlinear distor-
tion, as can be seen by considering the Taylor series expansion of a general
nonlinearity transfer characteristic f(x). The constant δ can be chosen to zero
the mean, on average; if the input signal x(n) is zero-mean with variance is
1, then δ = −β compensates the nonzero mean introduced by the squaring
term. The term γ can be modified to adjust the “effect mix”.

2.7 Amplifier Feedback

A nonlinear feedback effect used with distorted electric guitars is amplifier
feedback. In this case, the amplified guitar signal couples back into the strings
with some gain and delay, as depicted schematically in Fig. 5 [74]. The feed-
back delay can be adjusted to cause different partial overtones to be amplified
relative to others.

Gain
Feedback
Amplifier

...

Direct-signal gain

Pre-distortion gain

Nonlinear Distortion

Amplifier Feedback Delay

String 1

String N

Output

Post-distortion gain

Fig. 5. Simulation of a basic distorted electric guitar with amplifier feed-
back. [From [71]]

2.8 Commuted Synthesis

Figure 6 depicts a diagram of commuted synthesis for an acoustic guitar
[66, 71, 78]. The string and body resonator have been commuted—an oper-
ation valid for all linear, time-invariant systems. Thus, instead of plucking
the string and filtering the string output with a digital filter of extremely
high order (to capture the many resonances in the range of human hearing),
the “pluck response” of the guitar body (a filtered impulse response) can be
fed to the string instead, as shown in Fig. 7. In a typical implementation,
the guitar-body impulse response (or some filtering of it), is stored in table,
just as in sampling synthesis, and a low-order filter is applied to the table



10 Smith III

playback in order to impart details of the plucking excitation. This simplifi-
cation exchanges an expensive body filter for an inexpensive “pluck filter”.
In addition to body resonances, the excitation table may include characteris-
tics of the listening space as well. Commuted synthesis of the piano has been
developed to a high degree of quality by Bensa [5].

Trigger OutputResonator StringExcitation

Fig. 6. Schematic diagram of commuted synthesis of plucked/struck
stringed instruments. [From [71]]

Aggregate
Excitation

a(t)
String

x(t)
OutputTrigger

Fig. 7. Use of an aggregate excitation given by the convolution of original
excitation with the resonator impulse response. [From [71]]

3 Wind Instruments

A basic DW model for a single-reed woodwind instrument, such as a clarinet,
is shown in Fig. 8 [63, 54, 71].

When the bore is cylindrical (plane waves) or conical (spherical waves), it
can be modeled quite simply using a bidirectional delay line [54]. Because the
main control variable for the instrument is air pressure in the mouth at the
reed, it is convenient to choose pressure wave variables. Thus, the delay-lines
carry left-going and right-going pressure samples p+

b and p−b (respectively)
which represent the traveling pressure-wave components within the bore.

To first order, the bell passes high frequencies and reflects low frequen-
cies, where “high” and “low” frequencies are divided by the wavelength which
equals the bell’s diameter. Thus, the bell can be regarded as a simple “cross-
over” network, as is used to split signal energy between a woofer and tweeter
in a loudspeaker cabinet. For a clarinet bore, the nominal “cross-over fre-
quency” is around 1500 Hz [4].
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Bell
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Reed to Bell Delay
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Reflection
Filter
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Filter

Bell to Reed Delay
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( )np−
b

-

-
h∆

+

hm

-

*
ρ̂

Reed Table

Fig. 8. Waveguide model of a single-reed, cylindrical-bore woodwind, such
as a clarinet. [From [71]]

The reflection filter at the right of the figure implements the bell or tone-
hole losses as well as the round-trip attenuation losses from traveling back and
forth in the bore. The bell output filter is highpass, and power complementary
with respect to the bell reflection filter. Power complementarity follows from
the assumption that the bell itself does not vibrate or otherwise absorb sound.
The bell is also amplitude complementary [71].

The reed is modeled as a signal- and embouchure-dependent nonlinear
reflection coefficient terminating the bore. Such a model is possible because
the reed mass is neglected. The player’s embouchure controls damping of
the reed, reed aperture width, and other parameters, and these can be im-
plemented as parameters on the contents of the lookup table or nonlinear
function.

Equation (11) below shows a simple function that can be sampled and
loaded into a reed table. The controlling mouth pressure is denoted pm. The
reflection-coefficient of the reed is denoted ρ(h+

∆), where h+

∆
∆

= p−b /2 − p+

b

(“incoming half-pressure-drop”). A simple choice of embouchure control is a
simple additive offset in the reed-table address. Since the main feature of
the reed table is the pressure-drop where the reed begins to open, such a
simple offset can implement the effect of biting harder or softer on the reed,
or changing the reed stiffness.

In the field of computer music, it is customary to use simple piecewise lin-
ear functions for functions other than signals at the audio sampling rate, e.g.,
for amplitude envelopes, FM-index functions, and so on [49, 48]. Along these
lines, good initial results were obtained [63] using the simplified qualitatively
chosen table

ρ̂(h+

∆) =

{

1 − m(hc
∆ − h+

∆), −1 ≤ h+

∆ < hc
∆

1, hc
∆ ≤ h+

∆ ≤ 1
(11)
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Total Reflection

h∆
+ 1-1 0 hc

∆

( )ρ̂ h∆
+

0

1

Reed
Closure

Reed
Blown
Shut

Inhale Exhale

Reed
Open

Reed
at

Rest

Total
Absorption

(Non-Physical)

Fig. 9. Simple, qualitatively chosen reed table for the digital waveguide
clarinet. [From [71]]

depicted in Fig. 9 for m = 1/(hc
∆ + 1). The corner point hc

∆ is the smallest
pressure difference giving reed closure.8 Embouchure and reed stiffness cor-
respond to the choice of offset hc

∆ and slope m. Brighter tones are obtained
by increasing the curvature of the function as the reed begins to open; for
example, one can use ρ̂k(h+

∆) for increasing k ≥ 1.
Another variation is to replace the table-lookup contents by a piecewise

polynomial approximation. While less general, good results have been ob-
tained in practice [13, 14, 15].

An intermediate approach between table lookups and polynomial approx-
imations is to use interpolated table lookups. Typically, linear interpolation is
used, but higher order polynomial interpolation can also be considered [71].9

STK software [11] implementing a model as in Fig. 8 can be found in the
file Clarinet.cpp.

4 Conclusion

In this section, a number of signal processing architectures were summarized
that have been found suitable for computational modeling of acoustic musi-
cal instruments. These algorithms generally provide a high degree of sound
quality and expressive response at a small fraction of the computational cost
associated with more general-purpose computational modeling techniques.

8For operation in fixed-point DSP chips, the independent variable h+

∆

∆
= pm/2−

p+

b
is generally confined to the interval [−1, 1). Having the table go all the way to

zero at the maximum negative pressure h+

∆
= −1 is not physically reasonable (0.8

would be more reasonable), but has the practical benefit that when the lookup-
table input signal is about to clip, the reflection coefficient goes to zero, thereby
opening the feedback loop.

9http://ccrma.stanford.edu/~jos/pasp/Delay Line Interpolation I.html

http://ccrma.stanford.edu/~jos/pasp/Delay_Line_Interpolation_I.html
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Models, PhD thesis, Université de la Méditérranée, Marseille, France, 2003,
http: //www.lma.cnrs-mrs.fr/~bensa/.

6. J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. O. Smith, “The simulation
of piano string vibration: from physical models to finite difference schemes and
digital waveguides,” Journal of the Acoustical Society of America, vol. 114(2),
pp. 1095–1107, 2003.

7. J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. Smith, “Computational
modeling of stiff piano strings using digital waveguides and finite differences,”
EURASIP Journal on Applied Signal Processing, vol. 4, 2004, (special issue on
string modeling), in review.

8. A. Chaigne, “On the use of finite differences for musical synthesis. application
to plucked stringed instruments,” Journal d’Acoustique, vol. 5, no. 2, pp. 181–
211, 1992.

9. A. Chaigne and A. Askenfelt, “Numerical simulations of piano strings. I. a
physical model for a struck string using finite difference methods,” Journal of
the Acoustical Society of America, vol. 95, no. 2, pp. 1112–1118, 1994.

10. A. Chaigne and A. Askenfelt, “Numerical simulations of piano strings, parts I
and II,” Journal of the Acoustical Society of America, vol. 95, pp. 1112–1118,
1631–1640, Feb.–March 1994.

11. P. Cook and G. Scavone, Synthesis ToolKit in C++, Version 4.0, http: //-

ccrma.stanford.edu/CCRMA/Software/STK/, March 2002.
12. P. R. Cook, Identification of Control Parameters in an Articulatory Vocal

Tract Model, with Applications to the Synthesis of Singing, PhD thesis,
Elec. Engineering Dept., Stanford University (CCRMA), Dec. 1990, http:

//www.cs.princeton.edu/~prc/.
13. P. R. Cook, “A meta-wind-instrument physical model, and a meta-controller for

real time performance control,” in Proceedings of the 1992 International Comp-
uter Music Conference, San Jose, pp. 273–276, Computer Music Association,
1992.

14. P. R. Cook, “Synthesis toolkit in C++, version 1.0,” in SIG-
GRAPH Proceedings, Assoc. Comp. Mach., May 1996, see http: //-

www.cs.princeton.edu/~prc/NewWork.html for a copy of this paper. The
Synthesis Tool Kit (STK) software itself is distributed by CCRMA: http:

//ccrma.stanford.edu/CCRMA/Software/STK/.
15. P. R. Cook, Real Sound Synthesis for Interactive Applications, A. K. Peters,

L.T.D., 2002.

http://www.dafx.de/
http://www.lma.cnrs-mrs.fr/~bensa/
http://ccrma.stanford.edu/CCRMA/Software/STK/
 http://www.cs.princeton.edu/~prc/SingingSynth.html
http://www.cs.princeton.edu/~prc/NewWork.html
http://ccrma.stanford.edu/CCRMA/Software/STK/


14 Smith III

16. J. l. R. d’Alembert, “Investigation of the curve formed by a vibrating string,
1747,” in Acoustics: Historical and Philosophical Development (R. B. Lindsay,
ed.), pp. 119–123, Stroudsburg: Dowden, Hutchinson & Ross, 1973.

17. G. Derveaux, A. Chaigne, P. Joly, and E. Bécache, “Time-domain simulation
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