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e Moving String Termination

e Wave Impedance

e Displacement, Velocity, Acceleration Waves
e Force Waves

o Root-Power Waves

Moving Termination: ldeal String
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Uniformly moving rigid termination for an ideal string
(tension K, mass density €) at time 0 < ¢ty < L/c.

Driving-Point Impedance F;/Vj:
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e If the left endpoint moves with constant velocity v
then the external applied force is fy = Ruy

A A .
e R =/ Ke = wave impedance (for transverse waves)
e Equivalent circuit is a resistor (dashpot) R > 0

e We have the simple relation fy = Ruvg only in the
absence of return waves, i.e., until time t) = 2L/c.
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e Interactive Animation' Waveguide “Equivalent Circuits” for the
Uniformly Moving Rigid String Termination

String Driven by Moving Termination
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e String moves with speed v, or 0 only

e String is always one or two straight segments
e Successive snapshots of the ideal string with a

uniformly moving rigid termination e "Helmholtz corner” (slope discontinuity) shuttles

back and forth at speed ¢

e Each plot is offset slightly higher for clarity e String slope increases without bound

e GIF89A animation at _ o o
e Applied force at termination steps up to infinity

http://ccrma.stanford.edu/~ jos/swgt/movet.html . . .
) & — Physical string force is labeled f(n)

— fo = Ruvy = incremental force per period

'http://phet.colorado.edu/simulations/sims.php?sim=Wave_on_a_String
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Overview of Wave Variable Choices

We have thus far considered only transverse displacement
waves. We can also choose

. A .
e Transverse velocity v =y

: A
e Transverse acceleration a = yj
e Slope waves 3/
e Curvature waves " (= c%jj for ideal string)

e Any number of derivatives or integrals of
displacement y with respect to time or position

e Conversion between time derivatives carried out by
integrators and differentiators
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Specifying String State

The complete state of the string is given at time n by

o {y(tn, Tm), y(tmxm)}%;é (typical in acoustics)

o {y(ty, xm), y(tn_bxm)}%;é (typical in acoustic
simulations)

o {y"(n—m),y (n+m)} -} (what we did)

m=0

o {y/f(n—m),y (n+m)})_} (today)

m=0
o {vF(n—m), v (n+m) %;5 (today)

e Any two linearly independent variables
(either physical variables or wave variables)

o All traveling-wave variables can be computed from
any others, as long as string state is specified

e Wave variable conversions requiring differentiation or
integration are relatively expensive since a large-order
digital filter is necessary to do it right



String State, Cont’d First-Order Discrete-Time Wave-Variable
Conversion Filters

Velocity waves are a good overall choice for strings

beca use a) First-Order Difference b) First-Order “Leaky” Integrator
e It is less noisy numerically to integrate for ¥n) — - o) v —(1) ettt
+
displacement than to differentiate for velocity

e Force (slope) waves = scaling of velocity waves

(as we will show shortly) . _
e First-order difference:

o(n) =y(n) —y(n —1)

o First-order “leaky” integrator:

e Analogous to volume velocity in acoustic tubes

y(n) =v(n)+gyn—1), g<lg=l
(loss factor g avoids DC build-up)
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Filter Design Approach

e /deal Digital Differentiator:

H(T) ~ jw, w e [-m/T,7/T]

e [deal Digital Integrator
1

H(") ~—, wel|-n/T,n/T)

jw’

e Exact match is not possible in finite order

e Minimize H H(e?T) — H(elT)

digital filter frequency response

where H is the

Ideal Differentiator Frequency Response

e Discontinuity at z = —1 ensures no exact finite-order
solution

e Need oversampling factor, as in interpolator design
(e.g., 20 kHz to 22.05 kHz)
Response is unconstrained between bandlimit and

fs/2
e As before, a small increment in oversampling factor

yields a much larger decrease in required filter order
to meet a given spec
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Spatial Derivatives

Wave Impedance

Slope waves are simply related to velocity waves.
By the chain rule,

/ A 2

= Yt —z/c)+y(t+z/c)

— —%y,,.(t —x/c)+ %yl(t +x/c)

1 1
— —=v (n—m)+-v"(n+m)
c c
=
Y= = bt
yo = W
or
vt = — eyt
T— cy'~

e Physical string slope = (lower rail - upper rail)/c
in a velocity-wave simulation

e = v (0+m)=v"(0—m)Vm on a struck string
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We just showed

I+ 1+
y = -
I— 1,,—
y = v
Define new wave variables in terms of slope waves as
+ A I+
fm=-Ky
_ A _
fm=-Ky

Note that f* are in physical units of force.
We have

+ _ K, +

o= v
- K —

Jo=— v

Recall

K

c = —

€

K
= —=VKe2 R
&

which is the wave impedance of the ideal string
(force/velocity for traveling waves). Thus,

=  Rot
fm=— Rv™
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Ohm’s Law for Traveling Waves

Force Waves

We just derived Ohm’'s Law for Traveling Waves on an
Ideal String

fr(n) Rv*(n)
f~(n) = = Rv~(n)

where the velocity waves are defined in terms of
transverse string displacement by

vi(n) = ' (n)
v (n) =y~ (n),

f* and f~ are corresponding force waves, and
R2 V K¢ is the wave impedance of the string:

K
Ré\/KE:—:ec

e e
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K sin(0) _

- Kcos(8) K cos(B)

y (tx)
Displacement

0

0 Position X

e Vertical force acting to the left is
filt,z) = Ksin(f) ~ Ktan(f) = K y/(t, x)
e Opposing force, acting to the right, is
fr(t,x) = —Ksin(f) ~ —K (¢, x)

(Note that a negative slope pulls “up” on the
segment to the right)

e These forces must cancel since a nonzero net force on
a massless point would produce infinite acceleration
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To unify vibrating strings with acoustic tubes, we choose
the force which acts to the right as our force wave
variable:

A
f(tu 37) = f7”<t> :U) - _Ky/<t7 3:)
e Analogous to longitudinal pressure in acoustic tubes
e We have

fita) =2

C

[9:(t = x/c) =yt + z/c)]
e Force waves are thus proportional to velocity waves

e Proportionality constant is called the wave impedance
(or characteristic impedance) of the string:

K
RévK = — =¢€cC
c

e Wave impedance = geometric mean of spring stiffness
and inertial mass

e Traveling force-wave components:

ff(n) = Rv'(n)
f7(n) = = Rv(n)
For acoustic tubes, we have
p(n) =  Ru'(n)
p(n) = — Ru(n)

where
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e p(n) = right-going longitudinal pressure
e p~(n) = left-going longitudinal pressure
e u*(n) = left and right-going volume-velocity waves

e wave impedance is

R, = %f (Acoustic Tubes)

where

— p = mass per unit volume of air
— ¢ = sound speed in air

— A = cross-sectional area of tube
e For particle velocity, wave impedance = Ry = pc

e Particle velocity is appropriate in open air, while
volume velocity is used for acoustic tubes
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Power Waves

Physically,

Power = Work/Time
Force x Distance/Time

= Force x Velocity

Traveling power waves:
Pt(n)
P (n)

From “Ohm's law” /™ = Rv™ and f~ = —Rv~, we have

Note that both P* and P~ are nonnegative

Summing traveling powers gives total power:
Pltn, @) = PH(n —m) + P~ (n+m)

If we had instead defined P~(n) = f~(n)v=(n) (no
minus sign in front), then summing the traveling powers
would give net power flow.
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Energy Density Waves

Energy density = potential + kinetic energy densities:

1 1
Wi(t,z) 2 Kyt ) + et )

- g - g

potential kinetic
Sampled wave energy density can be expressed as

W (tn, 2m) = W —m) + W (n +m)

where
ey = PO e )
W_<TL) _ P_(n) — _f_(n)v_<n) — ¢ [U_(n>:|2 — [f_(TL)]

c c K

Total wave energy in string of length L:
L/X—1

E(t):/LOW(t,a;)d:cs > Witz X

m=0
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Root-Power Waves

Wave variables normalized to square root of power
carried:

fPEPNRE S VR
it 2 vtVR i~ 2 v VR
=
Pt =  frot = frot
= R(v*)? = (@N+)2
= PR = (7P
and
P = —fv = —fto"
= R(v)? = (07)
- (P/R = P

e Normalized wave variables fi and ©* behave
physically like force and velocity waves

e Either can be squared to obtain signal power
e Dynamic range is normalized in L5 sense

e Driving a normalized waveguide network with unit
variance white noise gives signal power equal to 1
throughout the network

e Time-varying wave impedances do not cause
“parametric amplification”

19



