MUS420 Lecture Choice of Wave Variables in Digital Waveguide Models

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305

June 27, 2020

Outline

- Moving String Termination
- Wave Impedance
- Displacement, Velocity, Acceleration Waves
- Force Waves
- Root-Power Waves

Moving Termination: Ideal String

Uniformly moving rigid termination for an ideal string (tension K, mass density ϵ) at time $0 < t_0 < L/c$.

Driving-Point Impedance F_0/V_0 :

$$y'(t_0, 0) = -\frac{v_0 t_0}{c t_0} = -\frac{v_0}{c} = -\frac{v_0}{\sqrt{K/\epsilon}}$$

$$\Rightarrow$$
 $f_0 = -K\sin(\theta) \approx -Ky'(t,0) = \sqrt{K\epsilon} v_0 \stackrel{\Delta}{=} R v_0$

- ullet If the left endpoint moves with constant velocity v_0 then the external applied force is $f_0=Rv_0$
- $R \stackrel{\Delta}{=} \sqrt{K\epsilon} \stackrel{\Delta}{=}$ wave impedance (for transverse waves)
- Equivalent circuit is a resistor (dashpot) R > 0
- We have the simple relation $f_0 = Rv_0$ only in the absence of return waves, i.e., until time $t_0 = 2L/c$.

Interactive Animation¹

- Successive snapshots of the ideal string with a uniformly moving rigid termination
- Each plot is offset slightly higher for clarity
- GIF89A animation at

http://ccrma.stanford.edu/~jos/swgt/movet.html

Waveguide "Equivalent Circuits" for the Uniformly Moving Rigid String Termination

- a) Velocity waves
- b) Force waves
- ullet String moves with speed v_0 or 0 only
- String is always one or two straight segments
- ullet "Helmholtz corner" (slope discontinuity) shuttles back and forth at speed c
- String slope increases without bound
- Applied force at termination steps up to infinity
 - Physical string force is labeled f(n)
 - $-f_0 = Rv_0 = incremental$ force per period

 $[\]overline{\ ^1} http://phet.colorado.edu/simulations/sims.php?sim=Wave_on_a_String$

Overview of Wave Variable Choices

We have thus far considered only transverse *displacement* waves. We can also choose

- ullet Transverse *velocity* $v\stackrel{\Delta}{=}\dot{y}$
- Transverse acceleration $a \stackrel{\Delta}{=} \ddot{y}$
- Slope waves y'
- Curvature waves y'' (= $c^2\ddot{y}$ for ideal string)
- ullet Any number of derivatives or integrals of displacement y with respect to time or position
- Conversion between time derivatives carried out by *integrators* and *differentiators*

Specifying String State

The complete state of the string is given at time n by

- $\{y(t_n, x_m), \dot{y}(t_n, x_m)\}_{m=0}^{N-1}$ (typical in acoustics)
- $\{y(t_n, x_m), y(t_{n-1}, x_m)\}_{m=0}^{N-1}$ (typical in acoustic simulations)
- $\{y^+(n-m), y^-(n+m)\}_{m=0}^{N-1}$ (what we did)
- $\{y'^+(n-m), y'^-(n+m)\}_{m=0}^{N-1}$ (today)
- $\{v^+(n-m), v^-(n+m)\}_{m=0}^{N-1}$ (today)
- Any two linearly independent variables (either physical variables or wave variables)
- All traveling-wave variables can be computed from any others, as long as string state is specified
- Wave variable conversions requiring differentiation or integration are relatively expensive since a large-order digital filter is necessary to do it right

String State, Cont'd

Velocity waves are a good overall choice for strings because

- It is less noisy numerically to integrate for displacement than to differentiate for velocity
- Force (slope) waves = scaling of velocity waves (as we will show shortly)
- Analogous to volume velocity in acoustic tubes

First-Order Discrete-Time Wave-Variable Conversion Filters

a) First-Order Difference

b) First-Order "Leaky" Integrator

• First-order difference:

$$\hat{v}(n) = y(n) - y(n-1)$$

• First-order "leaky" integrator:

$$\hat{y}(n) = v(n) + g\hat{y}(n-1), \quad g < 1, g \approx 1$$

(loss factor g avoids DC build-up)

Filter Design Approach

• Ideal Digital Differentiator:

$$H(e^{j\omega T}) \approx j\omega, \quad \omega \in [-\pi/T, \pi/T]$$

• Ideal Digital Integrator

$$H(e^{j\omega T}) \approx \frac{1}{j\omega}, \quad \omega \in [-\pi/T, \pi/T]$$

- Exact match is not possible in finite order
- ullet Minimize $\left\| H(e^{j\omega T}) \hat{H}(e^{j\omega T}) \, \right\|$ where \hat{H} is the digital filter frequency response

Ideal Differentiator Frequency Response

- \bullet Discontinuity at z=-1 ensures no exact finite-order solution
- Need oversampling factor, as in interpolator design (e.g., $20~\rm{kHz}$ to $22.05~\rm{kHz}$) Response is unconstrained between bandlimit and $f_s/2$
- As before, a small increment in oversampling factor yields a much larger decrease in required filter order to meet a given spec

Spatial Derivatives

Slope waves are simply related to velocity waves. By the chain rule,

$$y'(t,x) \stackrel{\triangle}{=} \frac{\partial}{\partial x} y(t,x)$$

$$= y'_r(t-x/c) + y'_l(t+x/c)$$

$$= -\frac{1}{c} \dot{y}_r(t-x/c) + \frac{1}{c} \dot{y}_l(t+x/c)$$

$$\rightarrow -\frac{1}{c} v^+(n-m) + \frac{1}{c} v^-(n+m)$$

$$\Rightarrow$$

$$y'^+ = -\frac{1}{c} v^+$$

$$y'^- = \frac{1}{c} v^-$$
or
$$v^+ = -cy'^+$$

$$v^- = cy'^-$$

- Physical string slope = (lower rail upper rail)/c in a velocity-wave simulation
- $\bullet \Rightarrow v^-(0+m) = v^+(0-m) \, \forall m \text{ on a struck string}$

Wave Impedance

We just showed

$$y'^{+} = -\frac{1}{c}v^{+}$$

 $y'^{-} = \frac{1}{c}v^{-}$

Define new wave variables in terms of slope waves as

$$f^{+} \stackrel{\Delta}{=} -Ky'^{+}$$
$$f^{-} \stackrel{\Delta}{=} -Ky'^{-}$$

Note that f^{\pm} are in physical units of *force*.

We have

$$f^{+} = \frac{\underline{K}}{c}v^{+}$$
$$f^{-} = -\frac{\underline{K}}{c}v^{-}$$

Recall

$$c = \sqrt{\frac{K}{\epsilon}}$$

$$\Rightarrow \frac{K}{c} = \sqrt{K\epsilon} \stackrel{\Delta}{=} R$$

which is the *wave impedance* of the ideal string (force/velocity for traveling waves). Thus,

$$f^+ = R v^+$$

$$f^- = -R v^-$$

Ohm's Law for Traveling Waves

We just derived *Ohm's Law for Traveling Waves on an Ideal String*

$$f^{+}(n) = R v^{+}(n)$$

 $f^{-}(n) = -R v^{-}(n)$

where the *velocity waves* are defined in terms of transverse string displacement by

$$v^{+}(n) \stackrel{\Delta}{=} \dot{y}^{+}(n)$$

 $v^{-}(n) \stackrel{\Delta}{=} \dot{y}^{-}(n),$

 f^+ and f^- are corresponding force waves, and $R \stackrel{\Delta}{=} \sqrt{K\epsilon}$ is the wave impedance of the string:

$$R \stackrel{\Delta}{=} \sqrt{K\epsilon} = \frac{K}{c} = \epsilon c$$

Force Waves

Vertical force acting to the left is

$$f_l(t, x) = K \sin(\theta) \approx K \tan(\theta) = K y'(t, x)$$

• Opposing force, acting to the right, is

$$f_r(t, x) = -K \sin(\theta) \approx -K y'(t, x)$$

(Note that a negative slope pulls "up" on the segment to the right)

• These forces must cancel since a nonzero net force on a massless point would produce infinite acceleration

To unify *vibrating strings* with *acoustic tubes*, we choose the force which *acts to the right* as our *force wave variable*:

$$f(t,x) \stackrel{\Delta}{=} f_r(t,x) = \boxed{-Ky'(t,x)}$$

- Analogous to longitudinal pressure in acoustic tubes
- We have

$$f(t,x) = \frac{K}{c} [\dot{y}_r(t - x/c) - \dot{y}_l(t + x/c)]$$

- Force waves are thus proportional to velocity waves
- Proportionality constant is called the *wave impedance* (or *characteristic impedance*) of the string:

$$R \stackrel{\Delta}{=} \sqrt{K\epsilon} = \frac{K}{c} = \epsilon c$$

- Wave impedance = geometric mean of spring stiffness and inertial mass
- Traveling force-wave components:

$$f^{+}(n) = R v^{+}(n)$$

 $f^{-}(n) = -R v^{-}(n)$

For acoustic tubes, we have

$$p^{+}(n) = R_{\tau} u^{+}(n)$$

 $p^{-}(n) = -R_{\tau} u^{-}(n)$

where

- $p^+(n) = \text{right-going } longitudinal pressure$
- $p^-(n) =$ left-going longitudinal pressure
- $u^{\pm}(n) = \text{left and right-going } \textit{volume-velocity waves}$
- wave impedance is

$$R_{\scriptscriptstyle au} = rac{
ho c}{A}$$
 (Acoustic Tubes)

where

- $-\rho = \text{mass per unit volume of air}$
- -c =sound speed in air
- -A =cross-sectional area of tube
- ullet For particle velocity, wave impedance $=R_0=
 ho c$
- Particle velocity is appropriate in open air, while volume velocity is used for acoustic tubes

Power Waves

Physically,

$$\begin{array}{ll} \mathsf{Power} &=& \mathsf{Work}/\mathsf{Time} \\ &=& \mathsf{Force} \times \mathsf{Distance}/\mathsf{Time} \\ &=& \mathsf{Force} \times \mathsf{Velocity} \end{array}$$

Traveling power waves:

$$\mathcal{P}^{+}(n) \stackrel{\Delta}{=} f^{+}(n)v^{+}(n)$$

$$\mathcal{P}^{-}(n) \stackrel{\Delta}{=} - f^{-}(n)v^{-}(n)$$

From "Ohm's law" $f^+=Rv^+$ and $f^-=-Rv^-$, we have

$$\mathcal{P}^{+}(n) = R [v^{+}(n)]^{2} = \frac{[f^{+}(n)]^{2}}{R}$$
$$\mathcal{P}^{-}(n) = R [v^{-}(n)]^{2} = \frac{[f^{-}(n)]^{2}}{R}$$

Note that both \mathcal{P}^+ and \mathcal{P}^- are nonnegative

Summing traveling powers gives total power:

$$\mathcal{P}(t_n, x_m) \stackrel{\Delta}{=} \mathcal{P}^+(n-m) + \mathcal{P}^-(n+m)$$

If we had instead defined $\mathcal{P}^-(n) \stackrel{\Delta}{=} f^-(n) v^-(n)$ (no minus sign in front), then summing the traveling powers would give *net* power flow.

Energy Density Waves

Energy density = potential + kinetic energy densities:

$$W(t,x) \stackrel{\Delta}{=} \underbrace{\frac{1}{2}Ky'^2(t,x)}_{\text{potential}} + \underbrace{\frac{1}{2}\epsilon\dot{y}^2(t,x)}_{\text{kinetic}}$$

Sampled wave energy density can be expressed as

$$W(t_n, x_m) \stackrel{\Delta}{=} W^+(n-m) + W^-(n+m)$$

where

$$W^{+}(n) = \frac{\mathcal{P}^{+}(n)}{c} = \frac{f^{+}(n)v^{+}(n)}{c} = \epsilon \left[v^{+}(n)\right]^{2} = \frac{\left[f^{+}(n)\right]^{2}}{K}$$

$$W^{-}(n) = \frac{\mathcal{P}^{-}(n)}{c} = -\frac{f^{-}(n)v^{-}(n)}{c} = \epsilon \left[v^{-}(n)\right]^{2} = \frac{\left[f^{-}(n)\right]^{2}}{K}$$

Total wave energy in string of length L:

$$\mathcal{E}(t) = \int_{x=0}^{L} W(t, x) dx \approx \sum_{m=0}^{L/X-1} W(t, x_m) X$$

Root-Power Waves

Wave variables *normalized* to *square root* of power carried:

$$\tilde{f}^{+} \stackrel{\Delta}{=} f^{+}/\sqrt{R} \qquad \qquad \tilde{f}^{-} \stackrel{\Delta}{=} f^{-}/\sqrt{R} \\
\tilde{v}^{+} \stackrel{\Delta}{=} v^{+}\sqrt{R} \qquad \qquad \tilde{v}^{-} \stackrel{\Delta}{=} v^{-}\sqrt{R}$$

 \Rightarrow

$$\mathcal{P}^{+} = f^{+}v^{+} = \tilde{f}^{+}\tilde{v}^{+}$$

$$= R(v^{+})^{2} = (\tilde{v}^{+})^{2}$$

$$= (f^{+})^{2}/R = (\tilde{f}^{+})^{2}$$

and

$$\mathcal{P}^{-} = -f^{-}v^{-} = -\tilde{f}^{+}\tilde{v}^{+}$$

$$= R(v^{-})^{2} = (\tilde{v}^{-})^{2}$$

$$= (f^{-})^{2}/R = (\tilde{f}^{-})^{2}$$

- \bullet Normalized wave variables \tilde{f}^\pm and \tilde{v}^\pm behave physically like force and velocity waves
- Either can be squared to obtain signal power
- Dynamic range is normalized in L_2 sense
- ullet Driving a normalized waveguide network with unit variance white noise gives signal power equal to 1 throughout the network
- Time-varying wave impedances do not cause "parametric amplification"