# MUS420 Lecture <br> Choice of Wave Variables in Digital Waveguide Models 

Julius O. Smith III (jos@ccrma.stanford.edu)<br>Center for Computer Research in Music and Acoustics (CCRMA)<br>Department of Music, Stanford University<br>Stanford, California 94305

June 27, 2020

## Outline

- Moving String Termination
- Wave Impedance
- Displacement, Velocity, Acceleration Waves
- Force Waves
- Root-Power Waves


## Moving Termination: Ideal String



Uniformly moving rigid termination for an ideal string (tension $K$, mass density $\epsilon$ ) at time $0<t_{0}<L / c$.

Driving-Point Impedance $F_{0} / V_{0}$ :
$y^{\prime}\left(t_{0}, 0\right)=-\frac{v_{0} t_{0}}{c t_{0}}=-\frac{v_{0}}{c}=-\frac{v_{0}}{\sqrt{K / \epsilon}}$

$$
\Rightarrow \quad f_{0}=-K \sin (\theta) \approx-K y^{\prime}(t, 0)=\sqrt{K \epsilon} v_{0} \triangleq R v_{0}
$$

- If the left endpoint moves with constant velocity $v_{0}$ then the external applied force is $f_{0}=R v_{0}$
- $R \triangleq \sqrt{K \epsilon} \triangleq$ wave impedance (for transverse waves)
- Equivalent circuit is a resistor (dashpot) $R>0$
- We have the simple relation $f_{0}=R v_{0}$ only in the absence of return waves, i.e., until time $t_{0}=2 L / c$.
- Interactive Animation ${ }^{1}$

- Successive snapshots of the ideal string with a uniformly moving rigid termination
- Each plot is offset slightly higher for clarity
- GIF89A animation at
http://ccrma.stanford.edu/~jos/swgt/movet.html

[^0]
# Waveguide "Equivalent Circuits" for the Uniformly Moving Rigid String Termination 


a) Velocity waves
b) Force waves

- String moves with speed $v_{0}$ or 0 only
- String is always one or two straight segments
- "Helmholtz corner" (slope discontinuity) shuttles back and forth at speed $c$
- String slope increases without bound
- Applied force at termination steps up to infinity
- Physical string force is labeled $f(n)$
$-f_{0}=R v_{0}=$ incremental force per period


## Overview of Wave Variable Choices

We have thus far considered only transverse displacement waves. We can also choose

- Transverse velocity $v \triangleq \dot{y}$
- Transverse acceleration $a \triangleq \ddot{y}$
- Slope waves $y^{\prime}$
- Curvature waves $y^{\prime \prime}\left(=c^{2} \ddot{y}\right.$ for ideal string)
- Any number of derivatives or integrals of displacement $y$ with respect to time or position
- Conversion between time derivatives carried out by integrators and differentiators

$$
\begin{aligned}
& \ldots \xrightarrow{a(t)} \sqrt{v(t)} \sqrt{y(t)} \sqrt{d t} \xrightarrow{v(t)} \sqrt{\frac{d}{d t}} \stackrel{a(t)}{\longrightarrow} \cdots
\end{aligned}
$$

## Specifying String State

The complete state of the string is given at time $n$ by

- $\left\{y\left(t_{n}, x_{m}\right), \dot{y}\left(t_{n}, x_{m}\right)\right\}_{m=0}^{N-1}$ (typical in acoustics)
- $\left\{y\left(t_{n}, x_{m}\right), y\left(t_{n-1}, x_{m}\right)\right\}_{m=0}^{N-1}$ (typical in acoustic simulations)
- $\left\{y^{+}(n-m), y^{-}(n+m)\right\}_{m=0}^{N-1}$ (what we did)
- $\left\{y^{\prime+}(n-m), y^{\prime-}(n+m)\right\}_{m=0}^{N-1}$ (today)
- $\left\{v^{+}(n-m), v^{-}(n+m)\right\}_{m=0}^{N-1}$ (today)
- Any two linearly independent variables (either physical variables or wave variables)
- All traveling-wave variables can be computed from any others, as long as string state is specified
- Wave variable conversions requiring differentiation or integration are relatively expensive since a large-order digital filter is necessary to do it right


## String State, Cont'd

Velocity waves are a good overall choice for strings because

- It is less noisy numerically to integrate for displacement than to differentiate for velocity
- Force (slope) waves = scaling of velocity waves (as we will show shortly)
- Analogous to volume velocity in acoustic tubes


# First-Order Discrete-Time Wave-Variable Conversion Filters 

a) First-Order Difference

b) First-Order "Leaky" Integrator


- First-order difference:

$$
\hat{v}(n)=y(n)-y(n-1)
$$

- First-order "leaky" integrator:

$$
\hat{y}(n)=v(n)+g \hat{y}(n-1), \quad g<1, g \approx 1
$$

(loss factor $g$ avoids DC build-up)


## Filter Design Approach

- Ideal Digital Differentiator:

$$
H\left(e^{j \omega T}\right) \approx j \omega, \quad \omega \in[-\pi / T, \pi / T]
$$

- Ideal Digital Integrator

$$
H\left(e^{j \omega T}\right) \approx \frac{1}{j \omega}, \quad \omega \in[-\pi / T, \pi / T]
$$

- Exact match is not possible in finite order
- Minimize $\left\|H\left(e^{j \omega T}\right)-\hat{H}\left(e^{j \omega T}\right)\right\|$ where $\hat{H}$ is the digital filter frequency response


## Ideal Differentiator Frequency Response



- Discontinuity at $z=-1$ ensures no exact finite-order solution
- Need oversampling factor, as in interpolator design (e.g., 20 kHz to 22.05 kHz )

Response is unconstrained between bandlimit and $f_{s} / 2$

- As before, a small increment in oversampling factor yields a much larger decrease in required filter order to meet a given spec


## Spatial Derivatives

Slope waves are simply related to velocity waves. By the chain rule,

$$
\begin{aligned}
y^{\prime}(t, x) & \triangleq \frac{\partial}{\partial x} y(t, x) \\
& =y_{r}^{\prime}(t-x / c)+y_{l}^{\prime}(t+x / c) \\
& =-\frac{1}{c} \dot{y}_{r}(t-x / c)+\frac{1}{c} \dot{y}_{l}(t+x / c) \\
& \rightarrow-\frac{1}{c} v^{+}(n-m)+\frac{1}{c} v^{-}(n+m)
\end{aligned}
$$

$\Rightarrow$

$$
\begin{aligned}
& y^{\prime+}=-\frac{1}{c} v^{+} \\
& y^{\prime-}=\frac{1}{c} v^{-}
\end{aligned}
$$

or

$$
\begin{aligned}
& v^{+}=-c y^{\prime+} \\
& v^{-}=c y^{\prime-}
\end{aligned}
$$

- Physical string slope $=($ lower rail - upper rail $) / \mathrm{c}$ in a velocity-wave simulation
- $\Rightarrow v^{-}(0+m)=v^{+}(0-m) \forall m$ on a struck string


## Wave Impedance

We just showed

$$
\begin{aligned}
& y^{\prime+}=-\frac{1}{c} v^{+} \\
& y^{\prime-}=\frac{1}{c} v^{-}
\end{aligned}
$$

Define new wave variables in terms of slope waves as

$$
\begin{aligned}
& f^{+} \triangleq-K y^{\prime+} \\
& f^{-} \triangleq-K y^{\prime-}
\end{aligned}
$$

Note that $f^{ \pm}$are in physical units of force.
We have

$$
\begin{aligned}
& f^{+}=\frac{K}{c} v^{+} \\
& f^{-}=-\frac{K}{c} v^{-}
\end{aligned}
$$

Recall

$$
\begin{aligned}
c & =\sqrt{\frac{K}{\epsilon}} \\
\Rightarrow \quad \frac{K}{c} & =\sqrt{K \epsilon} \triangleq R
\end{aligned}
$$

which is the wave impedance of the ideal string (force/velocity for traveling waves). Thus,

$$
\begin{aligned}
& f^{+}=R v^{+} \\
& f^{-}=-R v^{-}
\end{aligned}
$$

## Ohm's Law for Traveling Waves

We just derived Ohm's Law for Traveling Waves on an Ideal String

$$
\begin{aligned}
& f^{+}(n)=R v^{+}(n) \\
& f^{-}(n)=-R v^{-}(n)
\end{aligned}
$$

where the velocity waves are defined in terms of transverse string displacement by

$$
\begin{aligned}
& v^{+}(n) \triangleq \dot{y}^{+}(n) \\
& v^{-}(n) \triangleq \dot{y}^{-}(n),
\end{aligned}
$$

$f^{+}$and $f^{-}$are corresponding force waves, and $R \triangleq \sqrt{K \epsilon}$ is the wave impedance of the string:

$$
R \triangleq \sqrt{K \epsilon}=\frac{K}{c}=\epsilon c
$$

## Force Waves



- Vertical force acting to the left is

$$
f_{l}(t, x)=K \sin (\theta) \approx K \tan (\theta)=K y^{\prime}(t, x)
$$

- Opposing force, acting to the right, is

$$
f_{r}(t, x)=-K \sin (\theta) \approx-K y^{\prime}(t, x)
$$

(Note that a negative slope pulls "up" on the segment to the right)

- These forces must cancel since a nonzero net force on a massless point would produce infinite acceleration

To unify vibrating strings with acoustic tubes, we choose the force which acts to the right as our force wave variable:

$$
f(t, x) \triangleq f_{r}(t, x)=-K y^{\prime}(t, x)
$$

- Analogous to longitudinal pressure in acoustic tubes
- We have

$$
f(t, x)=\frac{K}{c}\left[\dot{y}_{r}(t-x / c)-\dot{y}_{l}(t+x / c)\right]
$$

- Force waves are thus proportional to velocity waves
- Proportionality constant is called the wave impedance (or characteristic impedance) of the string:

$$
R \triangleq \sqrt{K \epsilon}=\frac{K}{c}=\epsilon c
$$

- Wave impedance $=$ geometric mean of spring stiffness and inertial mass
- Traveling force-wave components:

$$
\begin{aligned}
& f^{+}(n)=R v^{+}(n) \\
& f^{-}(n)=-R v^{-}(n)
\end{aligned}
$$

For acoustic tubes, we have

$$
\begin{aligned}
& p^{+}(n)=R_{\mathrm{\top}} u^{+}(n) \\
& p^{-}(n)=-R_{\mathrm{\top}} u^{-}(n)
\end{aligned}
$$

where

- $p^{+}(n)=$ right-going longitudinal pressure
- $p^{-}(n)=$ left-going longitudinal pressure
- $u^{ \pm}(n)=$ left and right-going volume-velocity waves
- wave impedance is

$$
R_{\mathrm{\tau}}=\frac{\rho c}{A} \quad \text { (Acoustic Tubes) }
$$

where
$-\rho=$ mass per unit volume of air
$-c=$ sound speed in air

- $A=$ cross-sectional area of tube
- For particle velocity, wave impedance $=R_{0}=\rho c$
- Particle velocity is appropriate in open air, while volume velocity is used for acoustic tubes


## Power Waves

Physically,

$$
\begin{aligned}
\text { Power } & =\text { Work } / \text { Time } \\
& =\text { Force } \times \text { Distance } / \text { Time } \\
& =\text { Force } \times \text { Velocity }
\end{aligned}
$$

Traveling power waves:

$$
\begin{aligned}
& \mathcal{P}^{+}(n) \triangleq f^{+}(n) v^{+}(n) \\
& \mathcal{P}^{-}(n) \triangleq-f^{-}(n) v^{-}(n)
\end{aligned}
$$

From "Ohm's law" $f^{+}=R v^{+}$and $f^{-}=-R v^{-}$, we have

$$
\begin{aligned}
& \mathcal{P}^{+}(n)=R\left[v^{+}(n)\right]^{2}=\frac{\left[f^{+}(n)\right]^{2}}{R} \\
& \mathcal{P}^{-}(n)=R\left[v^{-}(n)\right]^{2}=\frac{\left[f^{-}(n)\right]^{2}}{R}
\end{aligned}
$$

Note that both $\mathcal{P}^{+}$and $\mathcal{P}^{-}$are nonnegative
Summing traveling powers gives total power:

$$
\mathcal{P}\left(t_{n}, x_{m}\right) \triangleq \mathcal{P}^{+}(n-m)+\mathcal{P}^{-}(n+m)
$$

If we had instead defined $\mathcal{P}^{-}(n) \triangleq f^{-}(n) v^{-}(n)$ (no minus sign in front), then summing the traveling powers would give net power flow.

## Energy Density Waves

Energy density $=$ potential + kinetic energy densities:

$$
W(t, x) \triangleq \underbrace{\frac{1}{2} K y^{\prime 2}(t, x)}_{\text {potential }}+\underbrace{\frac{1}{2} \epsilon \dot{y}^{2}(t, x)}_{\text {kinetic }}
$$

Sampled wave energy density can be expressed as

$$
W\left(t_{n}, x_{m}\right) \triangleq W^{+}(n-m)+W^{-}(n+m)
$$

where

$$
\begin{aligned}
& W^{+}(n)=\frac{\mathcal{P}^{+}(n)}{c}=\frac{f^{+}(n) v^{+}(n)}{c}=\epsilon\left[v^{+}(n)\right]^{2}=\frac{\left[f^{+}(n)\right]^{2}}{K} \\
& W^{-}(n)=\frac{\mathcal{P}^{-}(n)}{c}=-\frac{f^{-}(n) v^{-}(n)}{c}=\epsilon\left[v^{-}(n)\right]^{2}=\frac{\left[f^{-}(n)\right]^{2}}{K}
\end{aligned}
$$

Total wave energy in string of length $L$ :

$$
\mathcal{E}(t)=\int_{x=0}^{L} W(t, x) d x \approx \sum_{m=0}^{L / X-1} W\left(t, x_{m}\right) X
$$

## Root-Power Waves

Wave variables normalized to square root of power carried:

$$
\begin{array}{ll}
\tilde{f}^{+} \triangleq f^{+} / \sqrt{R} & \tilde{f}^{-} \triangleq f^{-} / \sqrt{R} \\
\tilde{v}^{+} \triangleq v^{+} \sqrt{R} & \tilde{v}^{-} \triangleq v^{-} \sqrt{R}
\end{array}
$$

$\Rightarrow$

$$
\begin{aligned}
\mathcal{P}^{+} & =f^{+} v^{+}=\tilde{f}^{+} \tilde{v}^{+} \\
& =R\left(v^{+}\right)^{2}=\left(\tilde{v}^{+}\right)^{2} \\
& =\left(f^{+}\right)^{2} / R=\left(\tilde{f}^{+}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{P}^{-} & =-f^{-} v^{-}=-\tilde{f}^{+} \tilde{v}^{+} \\
& =R\left(v^{-}\right)^{2}=\left(\tilde{v}^{-}\right)^{2} \\
& =\left(f^{-}\right)^{2} / R=\left(\tilde{f}^{-}\right)^{2}
\end{aligned}
$$

- Normalized wave variables $\tilde{f}^{ \pm}$and $\tilde{v}^{ \pm}$behave physically like force and velocity waves
- Either can be squared to obtain signal power
- Dynamic range is normalized in $L_{2}$ sense
- Driving a normalized waveguide network with unit variance white noise gives signal power equal to 1 throughout the network
- Time-varying wave impedances do not cause "parametric amplification"


[^0]:    ${ }^{1}$ http://phet.colorado.edu/simulations/sims.php?sim=Wave_on_a_String

