Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Inverse STFT

If the window $ w(n)$ has the Constant OverLap-Add (COLA) property at hop-size $ R$ :

$\displaystyle \zbox{\sum_{m=-\infty}^{\infty} w(n-mR) = 1, \; \forall n\in\mathbb{Z}}
\quad\mbox{($w\in\hbox{\sc Cola}(R)$)}
$

then the individual DTFTs will sum to the DTFT of all $ x$ :

\begin{eqnarray*}
\sum_{m=-\infty}^\infty X_m(\omega)
&\mathrel{\stackrel{\mathrm{\Delta}}{=}}&
\sum_{m=-\infty}^\infty\sum_{n=-\infty}^{\infty} x(n) w(n-mR) e^{-j\omega n}\\
&=& \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}
\underbrace{\sum_{m=-\infty}^\infty w(n-mR)}_{1\hbox{ if }w\in\hbox{\sc Cola}(R)}
\\
&=& \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n} \\
&\mathrel{\stackrel{\mathrm{\Delta}}{=}}& \hbox{\sc DTFT}_\omega(x) = X(\omega)\\ [20pt]
\longleftrightarrow \quad x(n) %= \IDTFT_n(X)
&=& \frac{1}{2\pi}\int_{-\pi}^{\pi} X(\omega) e^{j\omega n}d\omega
\end{eqnarray*}


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Lecture 6: Time-Frequency Display'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]