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e Ideal vibrating string
e Traveling-wave solution

e Sampled traveling waves

Ideal Vibrating String Model

We know already how to model a string as a bidirectional
delay line with

e inverting reflecting terminations (for displacement)

o filters for loss and dispersion

e outputs as sums of traveling-wave components
This model is based on traveling waves and the
superposition of traveling waves as experimental fact. In

such a model, sound-speed must be measured
experimentally.

We now take our string model to the next level based on
the physics of ideal strings:
e Sound speed becomes a predicted quantity

e The very useful concept of wave impedance is derived


http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/

Ideal String Physics

String Tension
¥ (tx) - K—

€ = Mass/Length

0 Position

Wave Equation

K 2 string tension Y 2 y(t, )
¢ 2 linear mass density v 2 %y(t, x)
Y 2 string displacement Y 2 %y(t,x)

Newton’s second law

\Force = Mass x Acceleration|

Assumptions

o Lossless
e Linear
e Flexible (no “Stiffness”)

e Slope ¢/(t,z) < 1

String Wave Equation Derivation

f string\
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K sin(6,), A .
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|
x z +dx
Force diagram for length dx string element

Total upward force on length dz string element:

flx+dx/2) = Ksin(6) + K sin(6s)

~ K [tan(6) + tan(6s)]
K-y (z) + ¢ (z + dz)]
K[=y(z) +y'(x) + ¢ (z)dx)]
= Ky'(z)dz

Q

Mass of length dx string segment: m = e dx.
By Newton's law, f = ma = myj, we have
Ky'(t,x)dr = (e dx)j(t, )

or

Ky'(t,x) = ey(t, )




Traveling-Wave Solution e General solution to lossless, 1D, second-order wave

equation:
One-dimensional lossless wave equation: y(t,x) =y (t —x/c) + yi(t + x/c)
e y(-) and y,(-) are arbitrary twice-differentiable
Ky" = €j functions (slope < 1)
Plug in traveling wave to the right: e Important point: Function of two variables y(¢, x)

is replaced by two functions of a single (time) variable
= reduced computational complexity.

y(t, ) = yit —w/c) o Published by d'Alembert in 1747
1 (wave equation itself introduced in same paper)
= y,(t,l’) = __y<t7x)
c
L.
y”(twr) = gy(t,ili)

o Given c 2 \/ K /€, the wave equation is satisfied for
any shape traveling to the right at speed ¢ (but
remember slope < 1)

e Similarly, any left-going traveling wave at speed c,
yi(t + x/c), satisfies the wave equation (show)

ot
(=)



Infinitely long string plucked simultaneously at
three points marked ‘p’

String Shape at
time t,

String Shape at
time O

‘ g Wave

D Components p
at time t,,

e Initial displacement = sum of two identical triangular
pulses

e At time ¢, traveling waves centers are separated by
2cty meters

e String is not moving where the traveling waves
overlap at same slope.

e Nelson Lee's Animation!

e Travis Skare's Interactive Animation?

'http://ccrma.stanford.edu/~jos/rsadmin/TravellingWaveApp.swf
2https://ccrma.stanford.edu/ travissk/dwgdemo/
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Sampled Traveling Waves in a String

For discrete-time simulation, we must sample the
traveling waves

e Sampling interval 2 T seconds
e Sampling rate 2 fsHz=1/T

e Spatial sampling interval 2 x m/s 2T
= systolic grid

For a vibrating string with length L and fundamental
frequency f,

C:fO'QL (

so that

meters  periods meters
sec sec period

X =T = (fo2L)/ fs = LIfo/(fs/2)]

Thus, the number of spatial samples along the string is

L/X =(f/2)/fo|

or

\Number of spatial samples = Number of string harmonics



http://ccrma.stanford.edu/~jos/rsadmin/TravellingWaveApp.swf
https://ccrma.stanford.edu/~travissk/dwgdemo/

Examples:

e Spatial sampling interval for CD-quality digital model
of Les Paul electric guitar (strings ~ 26 inches)

— X = Lfy/(fs/2) = L82.4/22050 ~ 2.5 mm for
low E string

— X =~ 10 mm for high E string (two octaves higher
and the same length)

— Low E string: (f5/2)/ fo = 22050/82.4 = 268
harmonics (spatial samples)

— High E string: 67 harmonics (spatial samples)

e Number of harmonics = number of oscillators
required in additive synthesis

e Number of harmonics = number of two-pole filters
required in subtractive, modal, or source-filter
decomposition synthesis

e Digital waveguide model needs only one delay line
(length 2L)

Examples (continued):
e Sound propagation in air:

— Speed of sound ¢ ~ 331 meters per second

— X = 331/44100 = 7.5 mm

— Spatial sampling rate = v, = 1/X =133
samples/m

— Sound speed in air is comparable to that of
transverse waves on a guitar string (faster than
some strings, slower than others)

— Sound travels much faster in most solids than in air

— Longitudinal waves in strings travel faster than
transverse waves

* typically an order of magnitude faster
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Sampled Traveling Waves in any Digital
Waveguide

r = x, = mX
t —t, =nl
=
Yo, xm) = yrlln — zm/c) + yitn + xm/c)
= (T — mX/c) + (T +mX/c)
= y. [(n—m)T]+ y [(n+ m)T|
=y (n—m)+y (n+m)

when X = ¢T', where we defined
A _ A
y"(n) = y.(nT) y~(n) = u(nT)

e “+" superscript = right-going

e “—" superscript = left-going

e y.[(n—m)T] =y (n — m) = output of m-sample
delay line with input y™(n)

ey [(n+m)T] £y~ (n+m) = input to an m-sample

delay line whose output is y~(n)
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Lossless digital waveguide with observation
points at x = 0 and x = 3X = 3cT

¥in ) o) Hn-3)
71 71 z1
y (nT,0) y (nT,3X)
y () yn+1) y(n+2) y(n+3)
. 7z 7zl 7" .
(x=0) x=cD (x=2cT) (x=3cT)
e Recall:
t—x/c t+z/c
+ —
yit,x) =y (| —— |ty
( Y ) T T
y(nT.,mX) = y"(n—m)+y (n+m)

e Position x,, = mX = mcT is eliminated from the
simulation

e Position x,, remains laid out from left to right

e Left- and right-going traveling waves must be
summed to produce a physical output

y(tm xm) = y+(n - m) +y (n + m)

e Similar to ladder and lattice digital filters
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Important point: Discrete time simulation is exact at
the sampling instants, to within the numerical precision
of the samples themselves.

To avoid aliasing associated with sampling:

e Require all initial waveshapes be bandlimited to
e Require all external driving signals be similarly
bandlimited

e Avoid nonlinearities or keep them “weak”
e Avoid time variation or keep it slow

e Use plenty of oversampling and lowpass filtering with
rapid high-frequency roll-off in severely nonlinear
and/or time-varying cases

o Prefer “feed-forward” over “feed-back” around

nonlinearities and /or modulations when possible

Interactive simulation of a vibrating string:
http://wuw.colorado.edu/physics/phet/simulations/-

stringwave/stringWave.swf

13

Digital Waveguide Plucked-String Model Using
Initial Conditions

y+(n) _ y+(n—N/2)
“Bridge” -1 (x ‘7 Pluck Position) -1 “Nut”
i) T Y(n+N2)
(x=0) (x=L)

Initial conditions for the ideal plucked string.

e Amplitude of each traveling-wave = 1/2 initial string
displacement.

e Sum of the upper and lower delay lines = initial string
displacement.
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http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf

Other Wave Variables
(Wave-lmpedance Preview)

Transverse Velocity Waves:

> lle

y*(n)
y~(n)

Wave Impedance (we’ll derive later):

R=VKe= % = €c
Force Waves:

fHn) = Rv*(n)

f(n) = —Rv (n)

Ohm’s Law for Traveling Waves:

fHn) = Rovt(n)
f~(n) = = Rv™(n)
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Acoustic Plane Waves

Pressure Plane Waves:

pt(n) £ Rout(n)

2 _R, u (n)
where ut, u™ are
Longitudinal Particle-Velocity Waves

Ohm’s Law for Traveling Acoustic Plane Waves:

p*(n) =  Rat(n)
p(n) = — R (n)

where

is the wave impedance of air in terms of mass density p
(kg/m?) and sound speed c.
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Acoustic Tubes

In acoustic tubes, we again work with
Pressure Plane Waves:

p'(n)
p(n)
However, now U™, U~ are
Longitudinal Volume-Velocity Waves:

Ut(n) = Au*(n)
U (n) = Au"(n)

where A is the cross-sectional area of the tube. In an
acoustic tube, it is volume velocity that is conserved from
one tube section to the next.

R.U"(n)
—R.U (n)

e e

>

Ohm’s Law for Traveling Plane Waves in an
Acoustic Tube:

p(n) = RU"(n)

p(n) = — RU(n)
where e
R = 1

is the wave impedance of air in terms of mass density p,
sound speed ¢, and tube cross-section area A.
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