
MUS420
Introduction to Linear State Space Models

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music, Stanford University
Stanford, California 94305

February 5, 2019

Outline

• State Space Models

• Linear State Space Formulation

• Markov Parameters (Impulse Response)

• Transfer Function

• Difference Equations to State Space Models

• Similarity Transformations

• Modal Representation (Diagonalization)

• Matlab Examples

1

State Space Models

Equations of motion for any physical system may be
conveniently formulated in terms of its state x(t):

ft

Input Forces u(t)

∫

Model State x(t) ẋ(t)

ẋ(t) = ft[x(t), u(t)]

where

x(t) = state of the system at time t

u(t) = vector of external inputs (typically driving forces)

ft = general function mapping the current state x(t) and

inputs u(t) to the state time-derivative ẋ(t)

• The function ft may be time-varying, in general

• This potentially nonlinear time-varying model is
extremely general (but causal)

• Even the human brain can be modeled in this form

2

State-Space History

1. Classic phase-space in physics (Gibbs 1901)
System state = point in position-momentum space

2. Digital computer (1950s)

3. Finite State Machines (Mealy and Moore, 1960s)

4. Finite Automata

5. State-Space Models of Linear Systems

6. Reference:
Linear system theory: The state space
approach
L.A. Zadeh and C.A. Desoer
Krieger, 1979

3

Key Property of State Vector

The key property of the state vector x(t) in the state
space formulation is that it completely determines the
system at time t

• Future states depend only on the current state x(t)
and on any inputs u(t) at time t and beyond

• All past states and the entire input history are
“summarized” by the current state x(t)

• State x(t) includes all “memory” of the system

4

http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/

Force-Driven Mass Example

Consider f = ma for the force-driven mass:

• Since the mass m is constant, we can use momentum
p(t) = mv(t) in place of velocity (more fundamental,
since momentum is conserved)

• x(t0) and p(t0) (or v(t0)) define the state of the mass
m at time t0

• In the absence of external forces f (t), all future states
are predictable from the state at time t0:

p(t) = p(t0) (conservation of momentum)

x(t) = x(t0) +
1

m

∫ t

t0

p(τ) dτ, t ≥ t0

• External forces f (t) drive the state to arbitrary points
in state space:

p(t) = p(t0) +

∫ t

t0

f (τ) dτ, t ≥ t0, p(t)
∆
= mv(t)

x(t) = x(t0) +
1

m

∫ t

t0

p(τ) dτ, t ≥ t0

5

Forming Outputs

Any system output is some function of the state, and
possibly the input (directly):

y(t)
∆
= ot[x(t), u(t)]

ft

Input Forces u(t)

∫

Model State x(t)
ẋ(t)

y(t)ot

Usually the output is a linear combination of state
variables and possibly the current input:

y(t)
∆
= Cx(t) +Du(t)

where C and D are constant matrices of
linear-combination coefficients

6

Numerical Integration

Recall the general state-space model in continuous time:

ẋ(t) = ft[x(t), u(t)]

An approximate discrete-time numerical solution is

x(tn + Tn) = x(tn) + Tn ftn[x(tn), u(tn)]

for n = 0, 1, 2, (Forward Euler)

Let gtn[x(tn), u(tn)]
∆
= x(tn) + Tn ftn[x(tn), u(tn)]:

u(tn)

x(tn)
gt

x(tn + Tn)

z−Tn

• This is a simple example of numerical integration for
solving the ODE

• ODE can be nonlinear and/or time-varying

• The sampling interval Tn may be fixed or adaptive

7

State Definition

We need a state variable for the amplitude of each
physical degree of freedom

Examples:

• Ideal Mass:

Energy =
1

2
mv2 ⇒ state variable = v(t)

Note that in 3D we get three state variables
(vx, vy, vz)

• Ideal Spring:

Energy =
1

2
kx2 ⇒ state variable = x(t)

• Inductor: Analogous to mass, so current

• Capacitor: Analogous to spring, so charge

(or voltage = charge/capacitance)

• Resistors and dashpots need no state variables
assigned—they are stateless (no “memory”)

8

State-Space Model of a Force-Driven Mass

For the simple example of a mass m driven by external
force f along the x axis:

f (t)

x = 0

v(t)

m

• There is only one energy-storage element (the mass),
and it stores energy in the form of kinetic energy

• Therefore, we should choose the state variable to be
velocity v = ẋ (or momentum p = mv = mẋ)

• Newton’s f = ma readily gives the state-space
formulation:

v̇ =
1

m
f

or
ṗ = f

• This is a first-order system (no vector needed)

9

Force-Driven Mass Reconsidered

Why not include position x(t) as well as velocity v(t) in
the state-space model for the force-driven mass?

[
ẋ(t)

v̇(t)

]

=

[
0 1

0 0

] [
x(t)

v(t)

]

+

[
0

1/m

]

f (t)

We might expect this because we know from before that
the complete physical state of a mass consists of its
velocity v and position x!

10

Force-Driven Mass Reconsidered and Dismissed

• Position x does not affect stored energy

Em =
1

2
mv2

• Velocity v(t) is the only energy-storing degree of

freedom

• Only velocity v(t) is needed as a state variable

• The initial position x(0) can be kept “on the side” to
enable computation of the complete state in
position-momentum space:

x(t) = x(0) +

∫ t

0

v(τ) dτ

• In other words, the position can be derived from the
velocity history without knowing the force history

• Note that the external force f (t) can only drive v̇(t).
It cannot drive ẋ(t) directly:

[
ẋ(t)

v̇(t)

]

=

[
0 1

0 0

] [
x(t)

v(t)

]

+

[
0

1/m

]

f (t)

11

State Variable Summary

• State variable = physical amplitude for some
energy-storing degree of freedom

• Mechanical Systems:
State variable for each

– ideal spring (linear or rotational)

– point mass (or moment of inertia)

times the number of dimensions in which it can move

• RLC Electric Circuits:
State variable for each capacitor and inductor

• In Discrete-Time:
State variable for each unit-sample delay

• Continuous- or Discrete-Time:
Dimensionality of state-space = order of the system
(LTI systems)

12

Discrete-Time Linear State Space
Models

For linear, time-invariant systems, a discrete-time
state-space model looks like a vector first-order

finite-difference model:

x(n + 1) = A x(n) +B u(n)

y(n) = C x(n) +D u(n)

where

• x(n) ∈ R
N = state vector at time n

• u(n) = p× 1 vector of inputs

• y(n) = q × 1 output vector

• A = N ×N state transition matrix

• B = N × p input coefficient matrix

• C = q ×N output coefficient matrix

• D = q × p direct path coefficient matrix

The state-space representation is especially powerful for

• multi-input, multi-output (MIMO) linear systems

• time-varying linear systems
(every matrix can have a time subscript n)

13

Zero-State Impulse Response
(Markov Parameters)

Linear State-Space Model:

y(n) = Cx(n) +Du(n)

x(n + 1) = Ax(n) +Bu(n)

The zero-state impulse response of a state-space model is

easily found by direct calculation: Let x(0)
∆
= 0 and

u = Ipδ(n) = diag(δ(n), . . . , δ(n)). Then

h(0) = Cx(0)B +DIpδ(0) = D

x(1) = A x(0) +BIpδ(0) = B

h(1) = CB

x(2) = A x(1) +B δ(1) = AB

h(2) = CAB

x(3) = A x(1) +B δ(1) = A2B

h(3) = CA2B

...

h(n) = CAn−1B , n > 0

14

Zero-State Impulse Response (Markov
Parameters)

Thus, the “impulse response” of the state-space model
can be summarized as

h(n) =

{

D, n = 0

CAn−1B, n > 0

• Initial state x(0) assumed to be 0

• Input “impulse” is u = Ipδ(n) = diag(δ(n), . . . , δ(n))

• Each “impulse-response sample” h(n) is a p× q
matrix, in general

• The impulse-response terms CAnB for n ≥ 0 are
called Markov parameters

15

Linear State-Space Model
Transfer Function

• Recall the linear state-space model:

y(n) = C x(n) +Du(n)

x(n + 1) = A x(n) +B u(n)

and its “impulse response”

h(n) =

{

D, n = 0

CAn−1B, n > 0

• The transfer function is the z transform of the
impulse response:

H(z)
∆
=

∞∑

n=0

h(n)z−n = D +

∞∑

n=1

(
CAn−1B

)
z−n

= D + z−1C

[∞∑

n=0

(
z−1A

)n

]

B

The closed-form sum of a matrix geometric series
gives

H(z) = D +C (zI−A)−1
B

(a p× q matrix of rational polynomials in z)

16

• If there are p inputs and q outputs, then H(z) is a
p× q transfer-function matrix

(or “matrix transfer function”)

• Given transfer-function coefficients, many digital filter
realizations are possible (different computing
structures)

Example: (p = 3, q = 2)

H(z) =








z−1 1− z−1

1− 0.5z−1
1 + z−1

2 + 3z−1

1− 0.1z−1

1 + z−1

1− z−1

(1− z−1)2

(1− 0.1z−1)(1− 0.2z−1)








17

System Poles

Above, we found the transfer function to be

H(z) = D +C (zI−A)−1
B

The poles of H(z) are the same as those of

Hp(z)
∆
= (zI−A)−1

By Cramer’s rule for matrix inversion, the denominator
polynomial for (zI−A)−1 is given by the determinant:

d(z)
∆
= |zI−A|

where |Q| denotes the determinant of the square matrix
Q (also written as det(Q).)

• In linear algebra, the polynomial d(z) = |zI−A| is
called the characteristic polynomial for the matrix A

• The roots of the characteristic polynomial are called
the eigenvalues of A

• Thus, the eigenvalues of the state transition matrix
A are the system poles

• Each mode of vibration gives rise to a pole pair

18

Initial-Condition Response

Going back to the time domain, we have the linear
discrete-time state-space model

y(n) = C x(n) +D u(n)

x(n + 1) = A x(n) +B u(n)

and its “impulse response”

h(n) =

{

D, n = 0

CAn−1B, n > 0

Given zero inputs and initial state x(0) 6= 0, we get

y
x
(n) = CAnx(0), n = 0, 1, 2,

By superposition (for LTI systems), the complete
response of a linear system is given by the sum of its
forced response (such as the impulse response) and its
initial-condition response

19

Difference Equation to State Space Form

A digital filter is often specified by its difference equation
(Direct Form I). Second-order example:

y(n) = u(n)+2u(n−1)+3u(n−2)−1

2
y(n−1)−1

3
y(n−2)

Every nth order difference equation can be reformulated
as a first order vector difference equation called the
“state space” (or “state variable”) representation:

x(n + 1) = A x(n) +B u(n)

y(n) = C x(n) +D u(n)

For the above example, we have, as we’ll show,

A
∆
=

[
−1

2 −1
3

1 0

]

(state transition matrix)

B
∆
=

[
1

0

]

(matrix routing input to state variables)

C
∆
=

[
3/2

8/3

]

(output linear-combination matrix)

D
∆
= 1 (direct feedforward coefficient)

20

Converting to State-Space Form by Hand

1. First, determine the filter transfer function H(z). In
the example, the transfer function can be written, by
inspection, as

H(z) =
1 + 2z−1 + 3z−2

1 + 1
2z

−1 + 1
3z

−2

2. If h(0) 6= 0, we must “pull out” the parallel delay-free
path:

H(z) = d0 +
b1z

−1 + b2z
−2

1 + 1
2z

−1 + 1
3z

−2

Obtaining a common denominator and equating
numerator coefficients yields

d0 = 1

b1 = 2− 1

2
=

3

2

b2 = 3− 1

3
=

8

3

The same result is obtained using long or synthetic
division

21

3. Next, draw the strictly causal part in direct form II, as
shown below:

x(n) y(n)

−1/3

x2(n)

x1(n)

z−1

z−1

3/2

8/3

1

−1/2

x1(n+ 1)

It is important that the filter representation be
canonical with respect to delay, i.e., the number of
delay elements equals the order of the filter

4. Assign a state variable to the output of each delay
element (see figure)

5. Write down the state-space representation by
inspection. (Try it and compare to answer above.)

22

Matlab Conversion from Direct-Form to
State-Space Form

Matlab has extensive support for state-space models,
such as

• tf2ss - transfer-function to state-space conversion

• ss2tf - state-space to transfer-function conversion

Note that these utilities are documented primarily for
continuous-time systems, but they are also used for
discrete-time systems.

Let’s repeat the previous example using Matlab:

23

Previous Example Using Matlab

>> num = [1 2 3]; % transfer function numerator

>> den = [1 1/2 1/3]; % denominator coefficients

>> [A,B,C,D] = tf2ss(num,den)

A =

-0.5000 -0.3333

1.0000 0

B =

1

0

C = 1.5000 2.6667

D = 1

>> [N,D] = ss2tf(A,B,C,D)

N = 1.0000 2.0000 3.0000

D = 1.0000 0.5000 0.3333

24

Matlab Documentation

The tf2ss and ss2tf functions are documented at
http://www.mathworks.com/access/helpdesk/help/toolbox/signal/tf2ss.shtml

as well as within Matlab itself (e.g., help tf2ss).

Related Signal Processing Toolbox functions include

• tf2sos — Convert digital filter transfer function
parameters to second-order sections form.

• sos2ss — Convert second-order filter sections to
state-space form.

• tf2zp — Convert transfer function filter parameters
to zero-pole-gain form.

• zp2ss — Convert zero-pole-gain filter parameters to
state-space form.

25

Similarity Transformations

A similarity transformation of a state-space system is a
linear change of state variable coordinates:

x(n)
∆
= Ex̃(n)

where

• x(n) = original state vector

• x̃(n) = state vector in new coordinates

• E = any invertible (one-to-one) matrix
(linear transformation)

Substituting x(n) = Ex̃(n) gives

Ex̃(n + 1) = AEx̃(n) +Bu(n)

y(n) = CEx̃(n) +Du(n)

Premultiplying the first equation above by E−1 gives

x̃(n + 1) =
(
E−1AE

)
x̃(n) +

(
E−1B

)
u(n)

y(n) = (CE) x̃(n) +Du(n)

Define the transformed system matrices by

Ã = E−1AE

B̃ = E−1B

C̃ = CE

D̃ = D

26

We can now write

x̃(n + 1) = Ãx̃(n) + B̃u(n)

y(n) = C̃x̃(n) +Du(n)

The transformed system describes the same system in
new state-variable coordinates

Let’s verify that the transfer function has not changed:

H̃(z) = D̃ + C̃(zI− Ã)−1B̃

= D + (CE)
(
zI− E−1AE

)−1
(E−1B)

= D +C
[
E
(
zI− E−1AE

)
E−1

]−1
B

= D +C (zI−A)−1
B = H(z)

• Since the eigenvalues of A are the poles of the
system, it follows that the eigenvalues of
Ã = E−1AE are the same. In other words,
eigenvalues are unaffected by a similarity
transformation.

• The transformed Markov parameters, C̃ÃnB̃, are
also unchanged since they are given by the inverse z
transform of the transfer function H̃(z). However, it
is also easy to show this by direct calculation.

27

State Space Modal Representation

Diagonal state transition matrix = modal representation:










x1(n+ 1)

x2(n+ 1)
.

.

.

xN−1(n+ 1)

xN(n+ 1)











=











λ1 0 0 · · · 0

0 λ2 0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 λN−1 0

0 0 0 0 λN





















x1(n)

x2(n)
.

.

.

xN−1(n)

xN(n)











+











b1
b2
.

.

.

bN−1

bN











u(n)

y(n) = Cx(n) +Du(n)

(always possible when there are no repeated poles)

The N complex modes are decoupled :

x1(n + 1) = λ1x1(n) + b1u(n)

x2(n + 1) = λ2x2(n) + b2u(n)
...

xN(n + 1) = λNxN(n) + bNu(n)

y(n) = c1x1(n) + c2x2(n) + · · · + cNxN(n) +Du(n)

That is, the diagonal state-space system consists of N
parallel one-pole systems:

H(z) = C(zI−A)−1B +D

= D +

N∑

i=1

cibiz
−1

1− λiz−1

28

Finding the (Diagonalized) Modal Representation

The ith eigenvector ei of a matrix A has the defining
property

Aei = λiei,

where λi is the associated eigenvalue. Thus, the
eigenvector ei is invariant under the linear transformation
A to within a (generally complex) scale factor λi.

An N ×N matrix A typically has N eigenvectors.1 Let’s
make a similarity-transformation matrix E out of the N
eigenvectors:

E =
[
e1 e2 · · · eN

]

Then we have

AE =
[
λ1e1 λ2e2 · · · λNeN

] ∆
= EΛ

where Λ ∆
= diag(λ) is a diagonal matrix having

λ ∆
=
[
λ1 λ2 · · · λN

]T
along its diagonal.

Premultiplying by E−1 gives

E−1AE = Λ

Thus, E =
[
e1 e2 · · · eN

]
is a similarity transformation

that diagonalizes the system.
1When there are repeated eigenvalues, there may be only one linearly independent eigenvector for the

repeated group. We will not consider this case and refer the interested reader to a Web search on “generalized
eigenvectors,” e.g., http://en.wikipedia.org/wiki/Generalized eigenvector .

29

State-Space Analysis Example:
The Digital Waveguide Oscillator

Let’s use state-space analysis to determine the frequency
of oscillation of the following system:

x1(n)

-

x2(n+ 1)

x2(n)x1(n+ 1)

c

z−1 z−1

The second-order digital waveguide oscillator.

Note the assignments of unit-delay outputs to state
variables x1(n) and x2(n).

We have

x1(n+1) = c[x1(n)+x2(n)]−x2(n) = c x1(n)+(c−1)x2(n)

and

x2(n+1) = x1(n)+c[x1(n)+x2(n)] = (1+c)x1(n)+c x2(n)

In matrix form, the state transition can be written as
[
x1(n + 1)

x2(n + 1)

]

=

[
c c− 1

c + 1 c

]

︸ ︷︷ ︸
A

[
x1(n)

x2(n)

]

30

or, in vector notation,

x(n + 1) = A x(n)

The poles of the system are given by the eigenvalues of
A, which are the roots of its characteristic polynomial.
That is, we solve

|λiI−A| = 0

for λi, i = 1, 2, . . . , N , or, for our N = 2 problem,

0 =

∣
∣
∣
∣

λi − c 1− c

−c− 1 λi − c

∣
∣
∣
∣
= (λi−c)2+(1−c)(1+c) = λi

2−2λic+1

Using the quadratic formula, the two solutions are found
to be

λi = c±
√

c2 − 1 = c± j
√

1− c2

Defining c = cos(θ), we obtain the simple formula

λi = cos(θ)± j sin(θ) = e±jθ

It is now clear that the system is a real sinusoidal
oscillator for −1 ≤ c ≤ 1, oscillating at normalized radian
frequency ωcT

∆
= θ ∆

= arccos(c) ∈ [−π, π].

We determined the frequency of oscillation ωcT from the
eigenvalues λi of A. To study this system further, we can
diagonalize A. For that we need the eigenvectors as well
as the eigenvalues.

31

Eigenstructure of A

The defining property of the eigenvectors ei and
eigenvalues λi of A is the relation

Aei = λiei , i = 1, 2,

which expands to
[

c c− 1

c + 1 c

] [
1

ηi

]

=

[
λi

λiηi

]

.

• The first element of ei is normalized arbitrarily to 1

• We have two equations in two unknowns λi and ηi:

c + ηi(c− 1) = λi

(1 + c) + cηi = λiηi

(We already know λi from above, but this analysis
will find them by a different method.)

• Substitute the first into the second to eliminate λi:

1 + c + cηi = [c + ηi(c− 1)]ηi = cηi + η2i (c− 1)

⇒ 1 + c = η2i (c− 1)

⇒ ηi = ±
√

c + 1

c− 1

32

http://en.wikipedia.org/wiki/Generalized_eigenvector

• We have found both eigenvectors:

e1 =

[
1

η

]

, e2 =

[
1

−η

]

, where η
∆
=

√

c + 1

c− 1

They are linearly independent provided
η 6= 0 ⇔ c 6= −1 and finite provided c 6= 1.

• The eigenvalues are then

λi = c+ηi(c−1) = c±
√

c + 1

c− 1
(c− 1)2 = c±

√

c2 − 1

• Assuming |c| < 1, they can be written as

λi = c± j
√

1− c2

• With c ∈ (−1, 1), define θ = arccos(c), i.e.,

c
∆
= cos(θ) and

√
1− c2 = sin(θ).

• The eigenvalues become

λ1 = c + j
√

1− c2 = cos(θ) + j sin(θ) = ejθ

λ2 = c− j
√

1− c2 = cos(θ)− j sin(θ) = e−jθ

as expected.

We again found the explicit formula for the frequency of
oscillation:

ωc =
θ

T
= fs arccos(c),

33

where fs denotes the sampling rate. Or,

c = cos(ωcT)

The coefficient range c ∈ (−1, 1) corresponds to
frequencies f ∈ (−fs/2, fs/2).

We have shown that the example system oscillates
sinusoidally at any desired digital frequency ωc when
c = cos(ωcT), where T denotes the sampling interval.

The Diagonalized Example System

We can now diagonalize our system using the similarity
transformation

E =
[
e1 e2

]
=

[
1 1

η −η

]

where η =
√

c+1
c−1.

We have only been working with the state-transition
matrix A up to now.

The system has no inputs so it must be excited by initial
conditions (although we could easily define one or two
inputs that sum into the delay elements).

34

We have two natural choices of output which are the
state variables x1(n) and x2(n), corresponding to the
choices C = [1, 0] and C = [0, 1]:

y1(n)
∆
= x1(n) = [1, 0] x(n)

y2(n)
∆
= x2(n) = [0, 1] x(n)

Thus, a convenient choice of the system C matrix is the
2× 2 identity matrix.

For the diagonalized system we obtain

Ã = E−1AE =

[
ejθ 0

0 e−jθ

]

B̃ = E−1B = 0

C̃ = CE = E =

[
1 1

η −η

]

D̃ = 0

where θ = arccos(c) and η =
√

c+1
c−1 as derived above.

We may now view our state-output signals in terms of

35

the modal representation:

y1(n) = [1, 0]x(n) = [1, 0]

[
1 1

η −η

]

x̃(n)

= [1, 1]x̃(n) = λn
1 x̃1(0) + λn

2 x̃2(0)

y2(n) = [0, 1]x(n) = [0, 1]

[
1 1

η −η

]

x̃(n)

= [η,−η]x̃(n) = ηλn
1 x̃1(0)− ηλn

2 x̃2(0)

The output signal from the first state variable x1(n) is

y1(n) = λn
1 x̃1(0) + λn

2 x̃2(0)

= ejωcnT x̃1(0) + e−jωcnT x̃2(0)

The initial condition x(0) = [1, 0]T corresponds to modal
initial state

x̃(0) = E−1

[
1

0

]

=
−1

2e

[
−e −1

−e 1

] [
1

0

]

=

[
1/2

1/2

]

For this initialization, the output y1 from the first state
variable x1 is simply

y1(n) =
ejωcnT + e−jωcnT

2
= cos(ωcnT)

Similarly y2(n) is proportional to sin(ωcnT)
(“phase quadrature” output), with amplitude η.

36

