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Outline

e Plane Wave at an Angle

e Plane-Wave Scattering at an Impedance Discontinuity

o Reflection and Refraction
e Evanescent Field due to Total Internal Reflection
e Plane-Wave Scattering at an Angle

e Imaginary wavenumbers

e u = (unit) vector of direction cosines

o k= QT’T = (scalar) wavenumber along travel direction

Thus, the vector wavenumber k = k u contains

e wavenumber in its magnitude k = || & ||

e travel direction in its orientation u = k/k

Note: wavenumber units are radians per meter
(spatial radian frequency)

Plane Wave at an Angle

R Y T
=Gk, =k sin(6)

wave crests of the sinusoidal traveling plane wave
p(t,x) = cos (wt - ETQ)

Planar pressure-wave traveling in an arbitrary direction:
p(t,z) = cos (wt — ETQ) ., zeR}

where k = vector wavenumber:

ki, k. /k cos &
k= |k | =k|k/k|2k|cosB | 2ku,
k. k./k cos 7y

where

Oblique Plane-Wave Scattering
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By continuity, waves must agree on boundary plane:

(kf,r) = (ky,r) = (k3.r)

where r = (0, y, z) denotes any vector in the boundary
plane. Thus, at x = 0 we have

kﬁ/y+k;z:k1§,y+k;z:k;yy+k:;zz

If the incident wave is constant along z, then k’ﬂ =0,
requiring ki, = k5, = 0, leaving
kiyy =k, y = ko, y

or

‘k’l sin(0]) = kysin(6;) = ko sin(%r)‘
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Reflection and Refraction

Above we derived

kysin(0)) = kysin(0]) = kosin(6;)
The first equality implies
(Angle of incidence equals angle of reflection)

Let ¢; denote the phase velocity in wave impedance R;:

In impedance Ry, we have in particular
W = ek = ¢ [(k3,)" + (k3,)?]

Solving for k. gives

2 2
ks, = \/C;)2 (k;/)Q = \/Lcu — k3sin®(0;)
2 2

Since ky sin(0]) = kosin(6;) from above,

W2
ki =] — — k}sin(0]) = — =5 sin(6})
“

Evanescent Field due to Total Internal Reflection

Note that if ¢; < ca|sin(6)|, the horizontal component
of the wavenumber in medium 2 becomes imaginary:
e Acoustic field in medium 2 is “evanescent”

e Wave in medium 1 undergoes
“total internal reflection”

e No power travels from medium 1 to medium 2
e Evanescent field decays exponentially to the right

e “Tunneling” possible given medium 3 in which wave
propagation resumes

o Reference: Vibrations and Waves in Physics by
[.G. Main, Cambridge University Press, 1978.

We have derived

2
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ki, = 1— %bln (67)
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We earlier established k;@ = kﬂ

e This describes the refraction of the plane wave as it
passes through the impedance-change boundary.

o Refraction angle depends on ratio of phase velocities
ca/c1.
e This ratio is often called the index of refraction:
A G
n=—
1
and the relation ki sin(f;) = kysin(6; ) is called
Snell’s Law (of refraction).

What does it mean to have an imaginary
wavenumber?

p(t,z)

CcOSs (wt — ETg) — re{E‘j<Wt7kII7kyy)}
re{ej(wikyy)efjka-l‘}’ (let k. é *j/ﬁzr)
re{ej(“t*kyy)efk”}

= e M cos(wt — kyy)
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e An imaginary wavenumber corresponds to an
exponential decay

e Sign of k. is chosen to match boundary conditions at
the plane

e Time dependence applies to all points to the right of
the boundary (no “propagation”)



