Plane Wave at an Angle
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e Plane Wave at an Angle wave crests of the sinusoidal traveling plane wave
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e Plane-Wave Scattering at an Impedance Discontinuity p(t;z) = cos (wt k g)

e Reflection and Refraction

) . Planar pressure-wave traveling in an arbitrary direction:
e Evanescent Field due to Total Internal Reflection P & y
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e Plane-Wave Scattering at an Angle p(t,z) = cos (wt k @ , Z€R
: where k = vector wavenumber:
e Imaginary wavenumbers
k. k./k COoS (v
k= |k, | =k |k/k|2k|cosB| 2ku,
k. k./k cos 7y
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e u = (unit) vector of direction cosines

e k = 27 = (scalar) wavenumber along travel direction
Thus, the vector wavenumber k = k u contains

e wavenumber in its magnitude k£ = || k ||

e travel direction in its orientation u = k/k

Note: wavenumber units are radians per meter
(spatial radian frequency)

Obllque Plane-Wave Scattering

‘\1; Rl ‘: RQ k,-l—
,>\+‘ R TZQ+

x—» T2 =0
By continuity, waves must agree on boundary plane:
(ki,r) = (ky,r) = (k3,1)

where r = (0, y, z) denotes any vector in the boundary
plane. Thus, at x = 0 we have

kiyy + kL 2=k y+kz=ky,y+ky,z

If the incident wave is constant along z, then k:sz = (),
requiring k1, = k5. = 0, leaving

kfyy:k:fyy:k;yy

or

kysin(07) = kysin(0]) = ko sin(65)




Reflection and Refraction

Above we derived
kysin(0]) = kysin(0]) = kosin(0y)

The first equality implies

07 =67

(Angle of incidence equals angle of reflection)

Let ¢; denote the phase velocity in wave impedance R;:

Ci:E, Z:1,2

In impedance R5, we have in particular
w? = c3k3 = [(kﬂ)z + (k;g/ﬂ

Solving for k3, gives

w? w?
k. = 2 (ky,)? = = — k3 sin(0y)
2 2

Since ki sin(f]") = kysin(6;) from above,
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c

2 D)
2 &) 1

ot

We have derived

2
ky = g\/1 — C—gSmQ(QfL)

We earlier established k;y = kfy

e This describes the refraction of the plane wave as it
passes through the impedance-change boundary.

e Refraction angle depends on ratio of phase velocities
ca/cr.
e This ratio is often called the index of refraction:
A C2
n=—
C1
and the relation kysin(6;) = kosin(6; ) is called
Snell’s Law (of refraction).



Evanescent Field due to Total Internal Reflection

Note that if ¢; < co|sin(6])], the horizontal component
of the wavenumber in medium 2 becomes imaginary:
e Acoustic field in medium 2 is “evanescent”

e Wave in medium 1 undergoes
“total internal reflection’

e No power travels from medium 1 to medium 2
e Evanescent field decays exponentially to the right

e “Tunneling” possible given medium 3 in which wave
propagation resumes

e Reference: Vibrations and Waves in Physics by
|.G. Main, Cambridge University Press, 1978.

What does it mean to have an imaginary
wavenumber?

p(t, z) cos (wt — ETQ) — re{ej(wt—k‘xzv—kyy)}
re{ej(‘dt*kyy)e*jkﬂ}’ (|et k. A _j/‘fx)

é re{ej(“}t_k’yy)e_kxx}

—kyx

e " cos(wt — kyy)

e An imaginary wavenumber corresponds to an
exponential decay

e Sign of x, is chosen to match boundary conditions at
the plane

e Time dependence applies to all points to the right of
the boundary (no “propagation”)



