Plane Wave at an Angle

MUS420/EE367A Lecture 6D

Plane-Wave Scattering at an Angle

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305
March 9, 2010

Outline

- Plane Wave at an Angle
- Plane-Wave Scattering at an Impedance Discontinuity
- Reflection and Refraction
- Evanescent Field due to Total Internal Reflection
- Plane-Wave Scattering at an Angle
- Imaginary wavenumbers

$$
p(t, \underline{x})=\cos \left(\omega t-\underline{k}^{T} \underline{x}\right), \quad \underline{x} \in \mathbf{R}^{3}
$$

where $\underline{k}=$ vector wavenumber:

$$
\underline{k}=\left[\begin{array}{l}
k_{x} \\
k_{y} \\
k_{z}
\end{array}\right]=k\left[\begin{array}{l}
k_{x} / k \\
k_{y} / k \\
k_{z} / k
\end{array}\right] \triangleq k\left[\begin{array}{c}
\cos \alpha \\
\cos \beta \\
\cos \gamma
\end{array}\right] \triangleq k_{\underline{u},},
$$

where

- $\underline{u}=$ (unit) vector of direction cosines
- $k=\frac{2 \pi}{\lambda}=$ (scalar) wavenumber along travel direction

Thus, the vector wavenumber $\underline{k}=k \underline{u}$ contains

- wavenumber in its magnitude $k=\|\underline{k}\|$
- travel direction in its orientation $\underline{u}=\underline{k} / k$

Note: wavenumber units are radians per meter (spatial radian frequency)

Oblique Plane-Wave Scattering

By continuity, waves must agree on boundary plane:

$$
\left\langle\underline{k}_{1}^{+}, \underline{r}\right\rangle=\left\langle\underline{k}_{1}^{-}, \underline{r}\right\rangle=\left\langle\underline{k}_{2}^{+}, \underline{r}\right\rangle
$$

where $\underline{r}=(0, y, z)$ denotes any vector in the boundary plane. Thus, at $x=0$ we have

$$
k_{1 y}^{+} y+k_{1 z}^{+} z=k_{1 y}^{-} y+k_{1 z}^{-} z=k_{2 y}^{+} y+k_{2 z}^{+} z
$$

If the incident wave is constant along z, then $k_{1 z}^{+}=0$, requiring $k_{1 z}^{-}=k_{2 z}^{+}=0$, leaving

$$
k_{1 y}^{+} y=k_{1 y}^{-} y=k_{2 y}^{+} y
$$

or

$$
k_{1} \sin \left(\theta_{1}^{+}\right)=k_{1} \sin \left(\theta_{1}^{-}\right)=k_{2} \sin \left(\theta_{2}^{+}\right)
$$

Reflection and Refraction

Above we derived

$$
k_{1} \sin \left(\theta_{1}^{+}\right)=k_{1} \sin \left(\theta_{1}^{-}\right)=k_{2} \sin \left(\theta_{2}^{+}\right)
$$

The first equality implies

$$
\theta_{1}^{+}=\theta_{1}^{-}
$$

(Angle of incidence equals angle of reflection)
Let c_{i} denote the phase velocity in wave impedance R_{i} :

$$
c_{i}=\frac{\omega}{k_{i}}, \quad i=1,2
$$

In impedance R_{2}, we have in particular

$$
\omega^{2}=c_{2}^{2} k_{2}^{2}=c_{2}^{2}\left[\left(k_{2 x}^{+}\right)^{2}+\left(k_{2 y}^{+}\right)^{2}\right]
$$

Solving for $k_{2 x}^{+}$gives

$$
k_{2 x}^{+}=\sqrt{\frac{\omega^{2}}{c_{2}^{2}}-\left(k_{2 y}^{+}\right)^{2}}=\sqrt{\frac{\omega^{2}}{c_{2}^{2}}-k_{2}^{2} \sin ^{2}\left(\theta_{2}^{+}\right)}
$$

Since $k_{1} \sin \left(\theta_{1}^{+}\right)=k_{2} \sin \left(\theta_{2}^{+}\right)$from above,

$$
k_{2 x}^{+}=\sqrt{\frac{\omega^{2}}{c_{2}^{2}}-k_{1}^{2} \sin ^{2}\left(\theta_{1}^{+}\right)}=\sqrt{\frac{\omega^{2}}{c_{2}^{2}}-\frac{\omega^{2}}{c_{1}^{2}} \sin ^{2}\left(\theta_{1}^{+}\right)}
$$

We have derived

$$
k_{2 x}^{+}=\frac{\omega}{c_{2}} \sqrt{1-\frac{c_{2}^{2}}{c_{1}^{2}} \sin ^{2}\left(\theta_{1}^{+}\right)}
$$

We earlier established $k_{2 y}^{+}=k_{1 y}^{+}$.

- This describes the refraction of the plane wave as it passes through the impedance-change boundary.
- Refraction angle depends on ratio of phase velocities c_{2} / c_{1}.
- This ratio is often called the index of refraction:

$$
n \triangleq \frac{c_{2}}{c_{1}}
$$

and the relation $k_{1} \sin \left(\theta_{1}^{+}\right)=k_{2} \sin \left(\theta_{2}^{+}\right)$is called Snell's Law (of refraction).

Evanescent Field due to Total Internal Reflection

Note that if $c_{1}<c_{2}\left|\sin \left(\theta_{1}^{+}\right)\right|$, the horizontal component of the wavenumber in medium 2 becomes imaginary:

- Acoustic field in medium 2 is "evanescent"
- Wave in medium 1 undergoes
"total internal reflection"
- No power travels from medium 1 to medium 2
- Evanescent field decays exponentially to the right
- "Tunneling" possible given medium 3 in which wave propagation resumes
- Reference: Vibrations and Waves in Physics by I.G. Main, Cambridge University Press, 1978.

What does it mean to have an imaginary wavenumber?

$$
\begin{aligned}
p(t, \underline{x}) & =\cos \left(\omega t-\underline{k}^{T} \underline{x}\right)=\operatorname{re}\left\{e^{j\left(\omega t-k_{x} x-k_{y} y\right)}\right\} \\
& =\operatorname{re}\left\{e^{j\left(\omega t-k_{y} y\right)} e^{-j k_{x} x}\right\}, \quad\left(\text { let } k_{x} \triangleq-j \kappa_{x}\right) \\
& \triangleq \operatorname{re}\left\{e^{j\left(\omega t-k_{y} y\right)} e^{-k_{x} x}\right\} \\
& =e^{-k_{x} x} \cos \left(\omega t-k_{y} y\right)
\end{aligned}
$$

- An imaginary wavenumber corresponds to an exponential decay
- Sign of κ_{x} is chosen to match boundary conditions at the plane
- Time dependence applies to all points to the right of the boundary (no "propagation")

