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Outline

• Plane Wave at an Angle

• Plane-Wave Scattering at an Impedance Discontinuity

• Reflection and Refraction

• Evanescent Field due to Total Internal Reflection

• Plane-Wave Scattering at an Angle

• Imaginary wavenumbers
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Plane Wave at an Angle
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wave crests of the sinusoidal traveling plane wave
p(t, x) = cos

(

ωt − kTx
)

Planar pressure-wave traveling in an arbitrary direction:

p(t, x) = cos
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ωt − kTx
)

, x ∈ R
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where k = vector wavenumber :
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• u = (unit) vector of direction cosines

• k = 2π
λ = (scalar) wavenumber along travel direction

Thus, the vector wavenumber k = k u contains

• wavenumber in its magnitude k = ‖ k ‖

• travel direction in its orientation u = k/k

Note: wavenumber units are radians per meter
(spatial radian frequency)
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Oblique Plane-Wave Scattering
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By continuity, waves must agree on boundary plane:
〈

k+
1 , r

〉

=
〈

k−
1 , r

〉

=
〈

k+
2 , r

〉

where r = (0, y, z) denotes any vector in the boundary
plane. Thus, at x = 0 we have

k+
1y y + k+

1z z = k−
1y y + k−

1z z = k+
2y y + k+

2z z

If the incident wave is constant along z, then k+
1z = 0,

requiring k−
1z = k+

2z = 0, leaving

k+
1y y = k−

1y y = k+
2y y

or
k1 sin(θ+

1 ) = k1 sin(θ−1 ) = k2 sin(θ+
2 )
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Reflection and Refraction

Above we derived

k1 sin(θ+
1 ) = k1 sin(θ−1 ) = k2 sin(θ+

2 )

The first equality implies

θ+
1 = θ−1

(Angle of incidence equals angle of reflection)

Let ci denote the phase velocity in wave impedance Ri:

ci =
ω

ki
, i = 1, 2

In impedance R2, we have in particular

ω2 = c2
2k

2
2 = c2

2

[

(k+
2x)

2 + (k+
2y)

2
]

Solving for k+
2x gives
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√

ω2

c2
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2y)

2 =

√
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2

− k2
2 sin2(θ+

2 )

Since k1 sin(θ+
1 ) = k2 sin(θ+

2 ) from above,

k+
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√
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c2
2

− k2
1 sin2(θ+

1 ) =

√

ω2

c2
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−
ω2

c2
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sin2(θ+
1 )
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We have derived

k+
2x =

ω

c2

√

1 −
c2
2

c2
1

sin2(θ+
1 )

We earlier established k+
2y = k+

1y.

• This describes the refraction of the plane wave as it
passes through the impedance-change boundary.

• Refraction angle depends on ratio of phase velocities
c2/c1.

• This ratio is often called the index of refraction:

n
∆
=

c2

c1

and the relation k1 sin(θ+
1 ) = k2 sin(θ+

2 ) is called
Snell’s Law (of refraction).
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Evanescent Field due to Total Internal Reflection

Note that if c1 < c2| sin(θ+
1 )|, the horizontal component

of the wavenumber in medium 2 becomes imaginary :

• Acoustic field in medium 2 is “evanescent”

• Wave in medium 1 undergoes
“total internal reflection”

• No power travels from medium 1 to medium 2

• Evanescent field decays exponentially to the right

• “Tunneling” possible given medium 3 in which wave
propagation resumes

• Reference: Vibrations and Waves in Physics by
I.G. Main, Cambridge University Press, 1978.
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What does it mean to have an imaginary

wavenumber?

p(t, x) = cos
(

ωt − kTx
)

= re
{

ej(ωt−kxx−kyy)
}

= re
{

ej(ωt−kyy)e−jkxx
}

, (let kx
∆
= −jκx)

∆
= re

{

ej(ωt−kyy)e−kxx
}

= e−kxx cos(ωt − kyy)

• An imaginary wavenumber corresponds to an
exponential decay

• Sign of κx is chosen to match boundary conditions at
the plane

• Time dependence applies to all points to the right of
the boundary (no “propagation”)
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