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Outline

e Plane Wave at an Angle

e Plane-Wave Scattering at an Impedance Discontinuity
e Reflection and Refraction

e Evanescent Field due to Total Internal Reflection

e Plane-Wave Scattering at an Angle

e Imaginary wavenumbers
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Plane Wave at an Angle
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wave crests of the sinusoidal traveling plane wave
p(t,z) = cos (wt — ETQ)

Planar pressure-wave traveling in an arbitrary direction:
p(t,z) = cos (wt — &Tg) . zeR’

where £ = vector wavenumber:

K, [k kT [ cos o |
k= |k, | =k|k/k|2k]|cosp|2ku,
|k, | k. /K | | cos7y |

where



e u = (unit) vector of direction cosines

o ki = 2 = (scalar) wavenumber along travel direction

Thus, the vector wavenumber k& = k£ u contains

e wavenumber in its magnitude k = || k ||

e travel direction in its orientation u = k/k

Note: wavenumber units are radians per meter
(spatial radian frequency)



Oblique Plane-Wave Scattering
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By continuity, waves must agree on boundary plane:
(kT 1) = (ky 1) = (k3. 1)

where r = (0,4, z) denotes any vector in the boundary
plane. Thus, at x = 0 we have

kfyyﬂLkﬂz:kl_nyrkfzz:k;nyrk;;z

If the incident wave is constant along z, then kf; — 0,
requiring k., = k5. = 0, leaving

kfyy: ki, y = k;yy

or

kisin(67) = kysin(6;) = ko sin(67)




Reflection and Refraction

Above we derived
kisin(07) = kysin(07) = kysin(63)

The first equality implies

07 =07

(Angle of incidence equals angle of reflection)

Let ¢; denote the phase velocity in wave impedance R;:

In impedance Ry, we have in particular
W' = coky = ¢ (k)" + (k3,)°]

Solving for k3. gives

w? w? ,
kg, = \/Cz — (ky,)? = \/CQ — k3 sin*(605)
2 2

Since ki sin(0]) = kosin(63) from above,

2 2 2
K, = 4| — K2sin?(07) = |5 — = sin?(67)
& €3 1



We have derived

2
ky = w\/l — C—gsiDQ(Qf)

We earlier established k;y — kfgj

e This describes the refraction of the plane wave as it
passes through the impedance-change boundary.

e Refraction angle depends on ratio of phase velocities
ca/cq.
e This ratio is often called the index of refraction:
A 2
C1
and the relation k1 sin(6;) = kosin(65) is called
Snell’s Law (of refraction).



Evanescent Field due to Total Internal Reflection

Note that if ¢; < ¢s|sin(6;)|, the horizontal component
of the wavenumber in medium 2 becomes imaginary:
e Acoustic field in medium 2 is “evanescent”

e Wave in medium 1 undergoes
“total internal reflection”

e No power travels from medium 1 to medium 2
e Evanescent field decays exponentially to the right

e “Tunneling” possible given medium 3 in which wave
propagation resumes

e Reference: Vibrations and Waves in Physics by
|.G. Main, Cambridge University Press, 1978.



What does it mean to have an imaginary
wavenumber?

COS (wt — @Tg) = re{ej (wt_kxx_kyy)}
re{el =Rkt - (let k, 2 —jKy)

2 refeiwi—k)e—hir)

p(t, z)

e M cos(wt — kyy)

e An imaginary wavenumber corresponds to an
exponential decay

e Sign of K, is chosen to match boundary conditions at
the plane

e Time dependence applies to all points to the right of
the boundary (no “propagation”)



