
MUS420 Lecture
Introduction to Physical Signal Models

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music, Stanford University
Stanford, California 94305

June 27, 2020

Outline

• Signal Models

• Physical Signal Models

– Formulations

– Simple Examples

– Preview of Topics

1

Review of Physical Model Formulations

Below are names of various kinds of physical model
representations we have considered:

• Ordinary Differential Equations (ODE)

• Partial Differential Equations (PDE)

• Difference Equations (DE)

• Finite Difference Schemes (FDS)

• (Physical) State Space Models

• Transfer Functions (between physical signals)

• Modal Representations (Parallel Second-Order Filters)

• Equivalent Circuits

• Impedance Networks

• Wave Digital Filters (WDF)

• Digital Waveguide (DW) Networks

2

http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/

Formulation Summaries

• ODEs and PDEs are purely mathematical descriptions
(being differential equations), but they can be readily
“digitized” to obtain computational physical models

• Difference equations are simply digitized differential
equations — digitizing ODEs and PDEs produce DEs

• A DE may also be called a finite difference scheme

• A discrete-time state-space model is a special
formulation of a DE in which a vector of state
variables is defined and propagated in systematically

• In the linear time-invariant (LTI) case, a discrete-time
state-space model is a vector first-order

finite-difference scheme

• LTI difference equations can be reduced to a
collection of transfer functions, one for each pairing of
input and output signals

• Alternatively, a single transfer function matrix can
relate a vector of input-signal z transforms to a vector
of output signal z transforms

• An LTI state-space model can be diagonalized to
produce a so-called modal representation, yielding a

3

computational model consisting of a parallel bank of
second-order digital filters

• Impedance networks and their associated equivalent

circuits are at the foundations of electrical
engineering, and analog circuits have been used
extensively to model linear systems, etc.

• Impedance networks are also useful intermediate
representations for computational physical models

• Wave Digital Filters (WDF) were developed for
digitizing analog circuits element by element,
preserving the “topology” of the original analog
circuit (very useful when parameters are time varying)

• Digital waveguide networks can be viewed as highly
efficient computational forms for propagating
solutions to PDEs allowing wave propagation

• They can also be used to “compress” the
computation associated with a sum of quasi
harmonically tuned second-order resonators

4

ODEs

Ordinary Differential Equations (ODEs) typically result
from Newton’s laws of motion:

f (t) = mẍ(t) (Force = Mass times Acceleration)

where

a(t)
∆
= ẍ(t)

∆
=

d2x(t)

dt2

Second-order ODE relating force f (t) on mass m at time
t to second time-derivative ẍ(t) of position x(t)

Physical Diagram:

f(t)

x = 0

a(t), v(t), x(t)

m

Force f (t) driving mass m along frictionless surface

5

Mass-Spring ODE

An ideal spring described by Hooke’s law

f (t) = k x(t)

where k denotes the spring constant, x(t) denotes the
spring displacement from rest at time t, and f (t) is the
force required for displacement x(t)

If the force on a mass is due to a spring then, as
discussed later, we may write the ODE as

k x(t) +mẍ(t) = 0

(Spring Force + Mass Inertial Force = 0)

Physical diagram:

m

x = 0

ẋ(t) →

x(t) →

k

6

Mass-Spring-Dashpot ODE

If the mass is sliding with friction, then a simple ODE
model is given by

k x(t) + µ ẋ(t) +mẍ(t) = 0

(Spring + Friction + Inertial Forces = 0)

Physical diagram:

m

x = 0

k

µ

We will use such ODEs to model mass, spring, and
dashpot elements, and their equivalent circuits

7

PDEs

• A partial differential equation (PDE) extends ODEs
by adding one or more independent variables (usually
spatial variables)

• For example, the wave equation for the ideal vibrating
string adds one spatial dimension x (along the axis of
the string) and may be written as

K y′′(x, t) = ǫ ÿ(t)

(Restoring Force = Inertial Force)

where y(x, t) denotes the transverse displacement of
the string at position x along the string and time t,
and y′ is the string slope:

y′(x, t)
∆
=

∂

∂x
y(x, t)

(partial derivative of y with respect to x)

• The physical parameters in this case are string tension
K and string mass-density ǫ

• As we’ll see, this PDE is the starting point for highly
practical digital waveguide models and finite

difference schemes

8

Difference Equations
(Finite Difference Schemes)

• There are many methods for converting ODEs and
PDEs to difference equations

• For example, we’ll use a very simple, order-preserving
method which replaces each derivative with a finite

difference:

ẋ(t)
∆
=

d

dt
x(t)

∆
= lim

δ→0

x(t)− x(t− δ)

δ

≈ x(nT)− x[(n− 1)T]

T

for sufficiently small T (the sampling interval)

• This is formally known as the backward difference for
approximating differentiation

• We’ll look a few others as well

9

Difference Equation for a Force-Driven Mass

• Newton’s f = ma can be written

f (t) = m v̇(t)

• The backward-difference substitution gives

f (nT) = m
v(nT)− v[(n− 1)T]

T
, n = 0, 1, 2, . . .

• Solving for v(nT) yields a difference equation

(finite difference scheme):

v(nT) = v[(n− 1)T] +
T

m
f (nT), n = 0, 1, 2, . . .

with v(−T)
∆
= 0, or, in a lighter notation:

vn = vn−1 +
T

m
fn

with v−1
∆
= 0

• Note that a delay-free loop appears if f (nT) depends
on v(nT) (e.g., due to friction)

• In such a case, the difference equation is not
computable in this form

• We can address this by using a forward-difference in
place of a backward difference

10

Replacing Backward-Difference by
Forward-Difference

• Alternate finite difference scheme:

ẋ(t) = lim
δ→0

x(t + δ)− x(t)

δ
≈ x[(n + 1)T]− x(nT)

T

• As T → 0, the forward and backward difference
operators approach the same limit, since x(t) is
assumed continuous

• The forward difference gives an explicit finite

difference scheme even if the driving force depends on
current velocity:

vn+1 = vn +
T

m
fn, n = 0, 1, 2, . . .

with v0
∆
= 0.

11

Explicit and Implicit Finite Difference Schemes

Explicit:

yn+1 = xn +
1

2
yn

Implicit:

yn+1 = xn +
1

2
yn+1

• A finite difference scheme is said to be explicit when
it can be computed forward in time using quantities
from previous time steps

• We will associate explicit finite difference schemes
with causal digital filters

• In implicit finite-difference schemes, the output of the
time-update (yn+1 above) depends on itself, so a
causal recursive computation is not specified

• Implicit schemes are generally solved using

– iterative methods (such as Newton’s method) in
nonlinear cases, and

– matrix-inverse methods for linear problems

• Implicit schemes are typically used offline

(not in real time)

12

Semi-Implicit Finite Difference Schemes

• Implicit schemes can often be converted to explicit

schemes (e.g., for real-time usage) by limiting the
number of iterations used to solve the implicit scheme

• These are called semi-implicit finite-difference

schemes

• Iterative convergence is generally improved by working
at a very high sampling rate, and by initializing each
iteration to the solution for the previous sample

• See the 2009 CCRMA/EE thesis by David Yeh1 for
semi-implicit schemes for real-time computational
modeling of nonlinear analog guitar effects (such as
overdrive distortion)

1http://ccrma.stanford.edu/~dtyeh

13

Explicit Finite Difference Schemes as
Digital Filters

• In this course, we will be concerned almost exclusively
with explicit finite-difference schemes, i.e., digital
filter models of one sort or another

• In other words, we concentrate mainly on the
“physical modeling power” of ordinary digital filters
and delay lines, together with memoryless
nonlinearities (table look-ups and/or low-order
polynomials)

14

http://ccrma.stanford.edu/~dtyeh

State Space Models

Equations of motion for any physical system may be
conveniently formulated in terms of its state x(t):

ft

Input Forces u(t)

∫

Model State x(t) ẋ(t)

ẋ(t) = ft[x(t), u(t)]

where

x(t) = state of the system at time t

u(t) = vector of external inputs (typically driving forces)

ft = general function mapping the current state x(t) and

inputs u(t) to the state time-derivative ẋ(t)

• The function ft may be time-varying, in general

• This potentially nonlinear time-varying model is
extremely general (but causal)

• Even the human brain can be modeled in this form

15

State-Space History

1. Classic phase-space in physics (Gibbs 1901)
System state = point in position-momentum space

2. Digital computer (1950s)

3. Finite State Machines (Mealy and Moore, 1960s)

4. Finite Automata

5. State-Space Models of Linear Systems

6. Reference:
Linear system theory: The state space
approach
L.A. Zadeh and C.A. Desoer
Krieger, 1979

16

Key Property of State Vector

The key property of the state vector x(t) in the state
space formulation is that it completely determines the
system at time t

• Future states depend only on the current state x(t)
and on any inputs u(t) at time t and beyond

• All past states and the entire input history are
“summarized” by the current state x(t)

• State x(t) includes all “memory” of the system

17

Force-Driven Mass Example

Consider f = ma for the force-driven mass:

• Since the mass m is constant, we can use momentum
p(t) = mv(t) in place of velocity (more fundamental,
since momentum is conserved)

• x(t0) and p(t0) (or v(t0)) define the state of the mass
m at time t0

• In the absence of external forces f (t), all future states
are predictable from the state at time t0:

p(t) = p(t0) (conservation of momentum)

x(t) = x(t0) +
1

m

∫ t

t0

p(τ) dτ, t ≥ t0

• External forces f (t) drive the state to arbitrary points
in state space:

p(t) = p(t0) +

∫ t

t0

f (τ) dτ, t ≥ t0, p(t)
∆
= mv(t)

x(t) = x(t0) +
1

m

∫ t

t0

p(τ) dτ, t ≥ t0

18

Forming Outputs

Any system output is some function of the state, and
possibly the input (directly):

y(t)
∆
= ot[x(t), u(t)]

ft

Input Forces u(t)

∫

Model State x(t)
ẋ(t)

y(t)ot

Usually the output is a linear combination of state
variables and possibly the current input:

y(t)
∆
= Cx(t) +Du(t)

where C and D are constant matrices of
linear-combination coefficients

19

Numerical Integration

Recall the general state-space model in continuous time:

ẋ(t) = ft[x(t), u(t)]

An approximate discrete-time numerical solution is

x(tn + Tn) = x(tn) + Tn ftn[x(tn), u(tn)]

for n = 0, 1, 2, (Forward Euler)

Let gtn[x(tn), u(tn)]
∆
= x(tn) + Tn ftn[x(tn), u(tn)]:

u(tn)

x(tn)
gt

x(tn + Tn)

z−Tn

• This is a simple example of numerical integration for
solving the ODE

• ODE can be nonlinear and/or time-varying

• The sampling interval Tn may be fixed or adaptive

20

State Definition

We need a state variable for the amplitude of each
physical degree of freedom

Examples:

• Ideal Mass:

Energy =
1

2
mv2 ⇒ state variable = v(t)

Note that in 3D we get three state variables
(vx, vy, vz)

• Ideal Spring:

Energy =
1

2
kx2 ⇒ state variable = x(t)

• Inductor: Analogous to mass, so current

• Capacitor: Analogous to spring, so charge

(or voltage = charge/capacitance)

• Resistors and dashpots need no state variables
assigned—they are stateless (no “memory”)

21

State-Space Model of a Force-Driven Mass

For the simple example of a mass m driven by external
force f along the x axis:

f (t)

x = 0

v(t)

m

• There is only one energy-storage element (the mass),
and it stores energy in the form of kinetic energy

• Therefore, we should choose the state variable to be
velocity v = ẋ (or momentum p = mv = mẋ)

• Newton’s f = ma readily gives the state-space
formulation:

v̇ =
1

m
f

or
ṗ = f

• This is a first-order system (no vector needed)

22

Force-Driven Mass Reconsidered

Why not include position x(t) as well as velocity v(t) in
the state-space model for the force-driven mass?

[

ẋ(t)

v̇(t)

]

=

[

0 1

0 0

] [

x(t)

v(t)

]

+

[

0

1/m

]

f (t)

We might expect this because we know from before that
the complete physical state of a mass consists of its
velocity v and position x!

23

Force-Driven Mass Reconsidered and Dismissed

• Position x does not affect stored energy

Em =
1

2
mv2

• Velocity v(t) is the only energy-storing degree of

freedom

• Only velocity v(t) is needed as a state variable

• The initial position x(0) can be kept “on the side” to
enable computation of the complete state in
position-momentum space:

x(t) = x(0) +

∫ t

0

v(τ) dτ

• In other words, the position can be derived from the
velocity history without knowing the force history

• Note that the external force f (t) can only drive v̇(t).
It cannot drive ẋ(t) directly:

[

ẋ(t)

v̇(t)

]

=

[

0 1

0 0

] [

x(t)

v(t)

]

+

[

0

1/m

]

f (t)

24

State Variable Summary

• State variable = physical amplitude for some
energy-storing degree of freedom

• Mechanical Systems:
State variable for each

– ideal spring (linear or rotational)

– point mass (or moment of inertia)

times the number of dimensions in which it can move

• RLC Electric Circuits:
State variable for each capacitor and inductor

• In Discrete-Time:
State variable for each unit-sample delay

• Continuous- or Discrete-Time:
Dimensionality of state-space = order of the system
(LTI systems)

25

Modal Representation

The parallel second-order filter bank can be computed
from the general transfer function (a ratio of polynomials
in z) by means of the Partial Fraction Expansion (PFE):

H(z)
∆
=

B(z)

A(z)
=

n
∑

i=1

ri
1− piz−1

where

B(z) = b0 + b1z
−1 + b2z

−2 + · · · + bMz−M

A(z) = 1 + a1z
−1 + a2z

−2 + · · · + aNz
−N , M < N

• The PFE expands any (strictly proper) transfer
function as a parallel bank of (complex) first-order
resonators

• When the polynomial coefficients bi and ai are real,
complex poles pi and residues ri occur in conjugate
pairs, and these can be combined to form
second-order sections:

Hi(z) =
ri

1− piz−1
+

ri
1− piz−1

=
ri − ripiz

−1 + ri − ripiz
−1

(1− piz−1)(1− piz−1)

=
2re {ri} − 2re {ripi} z−1

1− 2re {pi} z−1 + |pi|2 z−2
= 2Gi

cos(φi)− cos(φi − θi)z
−1

1− 2Ri cos(θi)z−1 +R2
i z

−2

where pi
∆
= Rie

jθi and ri
∆
= Gie

jφi

26

Modal Representation, Cont’d

H(z)
∆
=

B(z)

A(z)
=

n
∑

i=1

ri
1− piz−1

• Every transfer function H(z) with real coefficients
can be realized as a parallel bank of real first- and/or
second-order digital filter sections, as well as a parallel
FIR branch when M ≥ N

• Modal Synthesis employs a “source-filter” synthesis
model consisting of some driving signal into a parallel
filter bank in which each filter section implements the
transfer function of some resonant mode in the
physical system

• Each section (mode) is typically second-order, but
fourth-order sections are sometimes used as well
(Chant, piano partials)

• In modal synthesis of vibrating strings, each
second-order filter implements one “ringing partial
overtone” in response to an excitation such as a
finger-pluck or piano-hammer-strike

27

State Space to Modal Synthesis

• The partial fraction expansion works well to create a
modal-synthesis system from a transfer function

• It is straightforward to share poles across inputs or
outputs:
[

y1
y2

]

=
1

A

[

B1 B2

B3 B4

] [

u1
u2

]

=

[

B1 B2

B3 B4

]{

1

A

[

u1
u2

]}

• Diagonalizing a state-space model (described below)
effectively shares the poles across all of the inputs and
outputs

• If the original state-space model is a physical model,
then the diagonalized system gives a parallel filter
bank that is excited from the inputs and observed at
the outputs in a physically correct way

28

State-Space Model Diagonalization Procedure

Linear State-Space Model:

y(n) = Cx(n) +Du(n)

x(n + 1) = Ax(n) + Bu(n)

To diagonalize this model:

• Find the eigenvectors of A by solving

Aei = λiei

for ei, i = 1, 2, where λi is simply the ith pole
(eigenvalue of A)

• The N eigenvectors ei are collected into a similarity

transformation matrix:

E =
[

e1 e2 · · · eN
]

If there are coupled repeated poles, the corresponding
missing eigenvectors can be replaced by generalized
eigenvectors

• A generalized eigenvector p of matrix A
corresponding to eigenvalue λ having multiplicity k is
a nonzero solution of (A− λI)kp = 0

29

• In matlab: [Evects,Evals] = eig(A) — see the
state-space appendix in the MUS320 filter book2 for
example matlab

• The E matrix is then used to diagonalize the system
by means of a simple change of coordinates:

x(n)
∆
= E x̃(n)

The new diagonalized system is then

x̃(n + 1) = Ã x̃(n) + B̃ u(n)

y(n) = C̃ x̃(n) + D̃ u(n), (1)

where

Ã = E−1AE

B̃ = E−1B

C̃ = CE

D̃ = D. (2)

• The transformed system describes the same system
relative to new state-variable coordinates x̃(n)

• For example, it can be checked that the
transfer-function matrix is unchanged

2https://ccrma.stanford.edu/~jos/filters/State_Space_Filters.html

30

https://ccrma.stanford.edu/~jos/filters/State_Space_Filters.html

Efficiency of Diagonalized State-Space Models

• A general N th-order state-space model requires
approximately N 2 multiply-adds to update for each
time step

• After diagonalization by a similarity transform,
complexity drops from O(N 2) to O(N)

• All efficient digital filter realizations are O(N)

• Thus, a diagonalized state-space model (modal
representation) is a strong contender for applications
that can benefit from independent control of resonant
modes

• Another advantage is that frequency-dependent
characteristics of hearing can be brought to bear

– Low-frequency modes can be modeled more
accurately than high-frequency modes

– High-frequency modes can be converted into more
efficient digital waveguide loops by retuning them
to the nearest harmonic mode series

31

Equivalent Circuits

• “Circuits” and “Ports” from classical circuit/network
theory are very useful for partitioning complex
systems into self-contained sections having
well-defined (small) interfaces

• For example, in a “voltage transfer” connection, a
low-output-impedance stage drives a
high-input-impedance stage

• The large impedance ratio allows us to neglect
“loading effects”

• Circuit sections (stages) can be modeled separately

32

Analog Equivalent Circuits

• The name “analog circuit” comes from the following:

– Electrical capacitors (denoted C) are analogous to
physical springs

– Inductors (L) are analogous to physical masses

– Resistors (R) are analogous to “dashpots”

• Rs Ls and Cs are called lumped elements (as opposed
to distributed-parameter devices such as capacitance
and inductance per unit length in a transmission line

• Lumped elements are described by ODEs while
distributed-parameter systems are described by PDEs

• RLC analog circuits can be constructed as equivalent
circuits for lumped dashpot-mass-spring systems

• These equivalent circuits can be digitized by finite
difference or wave digital methods

• PDEs describing distributed -parameter systems can
be digitized by finite difference methods as well, or,
when wave propagation is the dominant effect, digital
waveguide methods

33

Equivalent Circuit for a Force-Driven Mass

m

+
f (t)

+

v(t)

• Mass m is an inductor L = m Henrys

• Driving force f (t) is a voltage source

• Mass velocity v(t) is the loop current

34

Mass-Spring-Wall System

x(t)

m

0

k

()tf txe

() ()tvtv km =

()tf m

()tf k

() () ()tftftf kmtxe =++ 0

• Driving force fext(t) is to the right on the mass

• Driving force + mass inertial force + spring force = 0

• Mass velocity = spring velocity

• This is a series combination of the spring and mass

If two physical elements are connected so that they share
a common velocity, then they are said to be formally
connected in series

35

Equivalent Circuit for Mass-Spring-Wall

The “series” nature of the connection becomes more
clear when the equivalent circuit is considered:

-

-

+

fext(t)
-

+

vm(t) = vk(t)

+↔ voltage source Spring k ↔ Capacitance C = 1
k

(impedance Rk(s) =
k
s)

Mass m ↔ Inductance L = m
(impedance Rm(s) = ms)

fm(t)

fk(t)

• The driving force is applied to the mass such that a
positive force results in a positive mass displacement
and positive spring displacement (compression)

• The common mass and spring velocity appear as a
single current running through the inductor and
capacitor that model the mass and spring, respectively

36

Impedance Networks

The concept of impedance is central in classical electrical
engineering. The simplest case is Ohm’s Law for a
resistor R:

V (t) = RI(t)

where

V (t) denotes the voltage across the resistor at time t

I(t) is the current through the resistor

Impedance is the resistance R

For the corresponding mechanical element, the dashpot,
Ohm’s law becomes

f (t) = µ v(t)

• f (t) is the force across the dashpot at time t

• v(t) is its compression velocity

• Dashpot impedance value µ is a mechanical resistance

• Dashpots and resistors are always real, positive
impedances

37

Complex Impedances

• Models of damping in practical physical systems are
rarely completely independent of frequency, like the
ideal dashpot

• Thanks to the Laplace transform (or Fourier
transform), the concept of impedance easily extends
to masses and springs as well

• We need only allow impedances to be
frequency-dependent

• For example, the Laplace transform of Newton’s
f = ma yields, by the differentiation theorem,

F (s) = mX(s) = msV (s) = ms2A(s)

where

– F (s) = Ls{f} = Laplace transform of f (t) (initial
conditions assumed zero)

– Impedance of a point-mass is

Rm(s)
∆
=

F (s)

V (s)
= ms

– Specializing the Laplace transform to the Fourier
transform by setting s = jω gives

Rm(jω) = jmω

38

– Impedance of a spring with spring-constant k is

Rk(s) =
k

s

Rk(jω) =
k

jω

Important Benefit of Frequency-Domain
Impedance

Every interconnection of masses, springs, and dashpots
(every RLC equivalent circuit) can be analyzed as a
simple resistor network

Impedance Diagram for Force-Driven Series
Mass-Spring

-

-

+

+Fext(s)

Vm(s) = Vk(s)

+

- k
s

msFm(s)

Fk(s)

39

Impedance diagram for the force-driven, series
arrangement of mass and spring

Viewing the circuit as a (frequency-dependent) resistor
network, it is easy to write down, say, the Laplace
transform of the force across the spring using the voltage
divider formula:

Fk(s) = Fext(s)
Rk(s)

Rm(s) +Rk(s)
= Fext(s)

k/m

s2 + k/m

We will discuss further equivalent-circuit and
impedance-network models such as these, as well as ways
to digitize them into digital-filter form

40

Wave Digital Filters

The idea of wave digital filters is to digitize RLC circuits
(and certain more general systems) as follows:

1. Determine the ODEs describing the system (PDEs
also workable)

2. Express all physical quantities (such as force and
velocity) in terms of traveling-wave components

3. The traveling wave components are called wave

variables

4. For example, the force f (n) on a mass is decomposed
as f (n) = f+(n) + f−(n), where f+(n) is regarded
as a traveling wave propagating toward the mass,
while f−(n) is seen as the traveling component
propagating away from the mass

5. A “traveling wave” view of force mediation (at the
speed of light) is actually much closer to underlying
physical reality than any instantaneous model

6. Second, digitize the resulting traveling-wave system
using the bilinear transform

The bilinear transform is equivalent in the time
domain to the trapezoidal rule for numerical
integration

41

7. Connect N elementary units together by means of
N -port scattering junctions

8. There are two basic types of scattering junction, one
for parallel, and one for series connection

9. The theory of scattering junctions is introduced in the
digital waveguide context

A more detailed introduction to WDFs is provided in an
appendix of the text

Wave digital model (mass driven by external force f (n)):

f−

1 (n) =
f(n)
2

x(n)

−1

f+
2 (n) = f−

m(n)

f−

2 (n) = f+
m(n)

wave digital mass

f(n)

=

f+
1 (n) =

f(n)
2

1

0

2

z−1

−1

z−1

• We will not make much use of WDFs in this course,
preferring instead more prosaic finite-difference
models for simplicity

• However, closely related concepts are used extensively
in the digital waveguide modeling context

42

Lumped Elements versus Distributed
Parameters

• Masses, springs, dashpots, inductors, capacitors, and
resistors are examples of so-called lumped elements

• Perhaps the simplest distributed element is the
continuous ideal delay line

• Because it carries a continuum of independent
amplitudes, the order (number of state variables) is
infinity for a continuous delay line of any length!

• However, we typically work with sampled, bandlimited

systems ⇒ delay lines have a finite number of state

variables (one for each delay element)

• Networks of lumped elements yield finite-order
state-space models

• Even one distributed element jumps the order to
infinity (until it is bandlimited and sampled)

43

Digital Waveguides

• Digital waveguide models are built out of digital
delay-lines and filters (and nonlinear elements), and
they can be understood as propagating and filtering
sampled traveling-wave solutions to the wave equation
(PDE), such as for air, strings, rods, and the like

• Strings, woodwinds, and brasses comprise three of the
four sections of an orchestra (all but percussion)

• Digital waveguides have also been extended to
propagation in 2D, 3D, and beyond

• They are not finite-difference models, but
paradoxically they are equivalent under certain
conditions)

• A summary of historical aspects appears in an
appendix of the text

44

Digital Waveguide Models

We may begin with the PDE for the ideal 1D wave

equation:

y′′ = c2ÿ

where

c = traveling-wave propagation speed

y(t, x) = displacement at time t and position x

• For example, y can be the transverse displacement of
an ideal stretched string or the longitudinal
displacement (or pressure, velocity, etc.) in an air
column

• The independent variables are time t and the distance
x along the string or air-column axis

• The partial-derivative notation is more completely
written out as

ÿ
∆
=

∂2

∂t2
y(t, x)

y′′
∆
=

∂2

∂x2
y(t, x).

• Recall that the ideal wave equation derives directly
from Newton’s laws f = ma

45

• In the case of vibrating strings, the wave equation is
derived from first principles to be

Ky′′ = ǫÿ

(Restoring Force = Mass Density times Acceleration),

where

K
∆
= string tension

ǫ
∆
= linear mass density.

• The left-hand side of the wave equation (the restoring
force as tension times “curvature”), was first derived
by Brook Taylor of “Taylor series” fame

• Thus, it turns out that the propagation speed c can
be written in terms of the string tension K and mass
density ǫ as

c =

√

K

ǫ

• As has been known since d’Alembert, the 1D wave
equation is obeyed by arbitrary traveling waves at
speed c:

y(t, x) = yr(t− x/c) + yl(t + x/c)

(Just plug yr(t− x/c) or yl(t + x/c) or any linear
combination of them into the wave equation to verify
this)

46

• Next, the traveling-waves are sampled:

y(nT,mX) = yr(nT −mX/c) + yl(nT +mX/c) (X
∆
= cT)

= yr(nT −mT) + yl(nT +mT)

∆
= y+(n−m) + y−(n +m)

where T denotes the time sampling interval in
seconds, X = cT denotes the spatial sampling
interval in meters, and y+ and y− are defined for
notational convenience

• An ideal string (or air column) can thus be simulated
using a bidirectional delay line for the case of an
N -sample section of string or air column

47

Digital Waveguide Definition

z−N

z−N

R

A digital waveguide is defined as a bidirectional delay line

at some wave impedance R

• A digital waveguide simulates (exactly) sampled
traveling waves in ideal strings and acoustic tubes

• The “R” label denotes its wave impedance, which is
needed to connect digital waveguides to each other
and to other kinds of computational physical models
(such as finite difference schemes)

• While propagation speed on an ideal string is
c =

√

K/ǫ, we will derive that the wave impedance is

R =
√
Kǫ.

48

Digital waveguide model of a rigidly terminated
ideal string

(x = 0) (x = L = NX/2 = NcT/2)

N/2 samples delay

y (n+N/2)

-1 “Bridge”

Rigid Termination

y (n)
+

 “Nut”

Rigid Termination

N/2 samples delay -y (n)-

-1

y (n-N/2)
+

y (nT,ξ)

• One polarization-plane of transverse vibration

• Traveling-wave components
∆
= displacement samples

• Diagram for velocity and acceleration waves identical
(all have inverting reflection at each rigid termination)
(slope and force waves reflect with no sign inversion)

• Output signal y(nT, ξ) formed by summing
traveling-wave components at the desired “virtual
pickup” location (position x = ξ)

49

Digital waveguide model of a single-reed,
cylindrical-bore woodwind, such as a clarinet

Bell

Mouth

Pressure

Embouchure

Offset

Reed to Bell Delay
()np

m

2

BoreReed

Reflection

Filter

Output

Filter

Bell to Reed Delay

()np+
b

()np−
b

-

-

h∆
+

hm

-

*
ρ̂

Reed Table

50

Digital waveguide model for a bowed-string
instrument, such as a violin

Bridge-

Body

Bow Force

Bow to Bridge Delay

String

Reflection

Filter

Body

Filter

Bridge to Bow Delay

Nut to Bow Delay

Bow to Nut Delay

-1

String BowNut Air

Bow Velocity

-

v+
ls,

v+
rs,

v∆
+ ρ̂

v−
ls,

v−
rs,

- *
vb

Bow Table

51

Summary of Models Considered

1. Ordinary Differential Equations (ODE)

2. Partial Differential Equations (PDE)

3. Difference Equations (DE)

4. Finite Difference Schemes (FDS)

5. (Physical) State Space Models

6. Transfer Functions (between physical signals)

7. Modal Representations (Parallel 2nd-Order Filters)

8. Equivalent Circuits

9. Impedance Networks

10. Wave Digital Filters (WDF)

11. Digital Waveguide (DW) Networks

52

General Modeling Procedure

While each situation tends to have special opportunities,
the following procedure generally works well:

1. Formulate a state-space model

2. If it is nonlinear, use numerical time-integration:

• Explicit (causal finite difference scheme)

• Implicit (iteratively solved each time step)

• Semi-Implicit (truncated iterations of Implicit)

3. In the linear case, diagonalize the state-space model
to obtain the modal representation

• Implement isolated modes as second-order filters
(“biquads”)

• Implement quasi-harmonic mode series as digital
waveguides

It is usually good to partition the system into separate
modules when possible

For example, strings, horns, and woodwind bores have
quasi-harmonic modes and can be modeled as digital
waveguides from the outset

53

